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Introduction

Between 2007 and 2012, shipping accounted for an average of 2.8 percent of global 

greenhouse gas emissions. By 2050, these maritime emissions are projected to increase by 

50 percent to 250 percent (International Maritime Organization, 2014). To better analyze 

these trends, an understanding of common marine emission model methods, and their 

impacts, is required. All activity-based marine emission models include an estimation of 

ship propulsive power, for which multiple methods, of varying degrees of complexity, are 

available. Most of the marine emissions inventories of the last ten years have estimated 

power using variations on the Propeller Law (EPA,2009a) (EPA,2009b) (Starcrest,2016) 

(Starcrest,2017) (MacKay,2015) (Yau,2012) (Goldsworthy,2015).

A Propeller Law methodology was originally pursued in part for its simplicity, at a time 

when comprehensive vessel activity data was unavailable. However, recent years have seen 

an emergence of Automated Identification System (AIS) ship activity data in marine 

emissions modeling methodology. AIS supplies detailed vessel speed, draft and location 

information, along with vessel identifications. This influx of data has allowed the Propeller 

Law to be analyzed according to reported, rather than assumed, speeds. In addition, over the 

last five years, several inventories have been calculated using power models that are more 

complex than the Propeller Law (International Maritime Organization, 2014) (Scarbrough et 

al., 2017) (Winther et al., 2014) (Jalkanen et al., 2012).

Simple, load-factor-based power models have often been regarded in marine emissions 

inventories as roughly representative of more complex methods (Goldsworthy, 2015) 

(International Maritime Organization, 2014). Complex models are often avoided due to their 

large number of required inputs and are likely more feasible with the use of averaged ship 

parameters for gap filling (Nunes et al., 2017). However, the impact of applying these 

different power models on marine emissions inventories has yet to be fully evaluated. This 

paper examines the effects of two complex, resistance-based and two simple, load-factor-

based, propulsive power models on calculating baseline emissions inventories with unique 

vessel parameters. CO₂ emissions were calculated for each inventory using the Propeller 

Law, Admiralty Law, Holtrop & Mennen method, and Kristensen method (EPA,2009a) 

(EPA,2009b) (International Maritime Organization, 2014) (Holtrop & Mennen, 1982) 

(Kristensen 2016). In addition, to determine the effect of applying averaged ship parameters 
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on emissions inventories, an average hull inventory was compiled by replacing all individual 

ship characteristics in the baseline inventory with values averaged by ship subtypes.

Power Models

Propeller Law

Most available marine emissions inventories have modeled power demand based on the 

Propeller Law (Eq.1) where P is the engine power required to drive a propeller with speed of 

V, and the coefficients c and n define the proportionality between the two.

P = c × Vn (1)

The accuracy of this model may change with hull fouling, engine efficiency, and weather 

effects; however, it has been shown to produce reasonable estimations of engine power 

(Molland, 2011) (MAN Diesel & Turbo, 2011). Replacing engine power and propeller speed 

with ship required power and vessel speed reduces the accuracy of this relationship (MAN 

Diesel & Turbo, 2011). Most marine emissions inventories based on the Propeller Law have 

used an adapted version, where a relative engine load factor (LF) is calculated from the 

cubed ratio of the ship’s speed (V) to a reference speed (Vref) (Eq. 2) (EPA,2009a) (EPA,

2009b) (Starcrest,2016) (Starcrest,2017) (MacKay,2015) (Yau,2012) (Goldsworthy,2015).

P = LF × Pre f = V
Vre f

3
× Pre f

The load factor is assumed to be equal to the ratio of the ship’s required power at speed V, 

and the power required (Pref) for the ship to travel at the reference speed. Pref, at service 

speed, is modeled as 83 percent of total installed propulsive power (EPA, 2009a).

This approach assumes that that the cubic relationship (n=3) and the proportionality (c) 

between vessel speed and power demand would remain constant for all speeds and ship 

types. However, studies have shown that both n and c are affected by ship type and speed 

(Schneekluth, 1998) (MAN Diesel & Turbo, 2011). Using a load factor based on the 

Propeller Law has the benefit of requiring few inputs while reflecting general speed-power 

relationships used by engine manufacturers. Additionally, the load factor formula anchors 

the calculated power around well documented relationships between engine power and speed 

at the ship’s service speed. However, the Propeller Law does not capture significant 

influences on ship power such as hull shape, cargo load, and engine efficiency.

Admiralty Law

One alternative to the Propeller Law is the Admiralty Law, where Disp is the ship hull 

displacement and A is the admiralty coefficient (Eq. 3).

Brown and Aldridge Page 2

J Air Waste Manag Assoc. Author manuscript; available in PMC 2020 June 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



P = Disp
2
3 × Vn

A (3)

The admiralty coefficient is considered a rough approximation of the relationships between 

ship hull parameters, speed and power (Harvald, 1983) (Schneekluth,1998) (Molland, 2011) 

(MAN Diesel & Turbo, 2011). Some recent emissions inventories have begun to implement 

an Admiralty Law load factor (Eq.4), by substituting draft (T) for displacement 

(International Maritime Organization, 2014) (Scarbrough et al., 2017).

P = LF × Pre f =
Treported

2
3 × Vreported

3

Tre f

2
3 × Vre f

3
× Pre f (4)

The Admiralty Law load factor is mathematically equivalent to the Propeller Law load factor 

when vessels are modeled as operating at their maximum draft. As such, the Propeller Law 

load factor acts as an upper bound to the Admiralty Law load factor. Some advantages of the 

Admiralty Law load factor include its minimal required inputs, and its ability to account for 

an approximation of hull wetted surface area, via the draft parameter. Like the Propeller law, 

the Admiralty Law anchors engine power estimates to the relationship between service 

speed and service power. However, it does not account for the effect of speed and hull shape 

on the changing exponential relationship (n) between ship speed and power (Schneekluth,

1998). Additionally, the effects of engine efficiency, and of hull shape on hull wetted surface 

area, are not accounted for (Schneekluth,1998).

Resistance-Based Models

Resistance-based models of ship power typically follow the form of equation 5, where CT is 

the total ship hull resistance coefficient, ρ is sea water density, S is the hull wetted surface 

area, and ηT represents engine efficiency.

P =
ρ × CT × 1

2 × S × Vreported
3

ηT
(5)

This study analyzes two resistance-based models, one developed by Holtrop & Mennen and 

the other by Kristensen (Holtrop & Mennen, 1982) (Kristensen, 2016). Holtrop & Mennen 

developed one of the first numerical resistance-based models in 1982 through regression 

analysis of tank towing data from the Netherlands Ship Model Basin (Holtrop & Mennen, 

1982). Their model is well referenced in naval architecture literature and has been 

implemented and analyzed in recent inventory work (Rakke, 2016) (International Maritime 
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Organization, 2014). A more recently developed resistance-based model is Kristensen’s 

SHIP-DESMO model (Kristensen 2016), which is an evolution of Harvald’s 1982 tank 

towing regression analysis, and has been used in recent inventories (Harvald, 1982) (Winther 

et al., 2014). Other inventories, such as Jalkanen et al. (2012) (2014), have also included 

resistance-based power models in their methods and have been recommended for use (Nunes 

et al., 2017). However, these require inputs which were not easily accessible through ship 

parameter and activity datasets.

The Holtrop & Mennen total hull resistance is calculated as described in equation 6, in 

which the resistance components RW, RB, RTr, CF, FormFactor, and CA are described as 

functions of their input vessel parameters.

CTHoltropMennen
=

Rw Vreported, Breadth,   CB,   TRe f , TReported,   DispMax, lwl, Ship   Type,   ρ

+   RB Vreported, Breadth, CB, TRe f , TReported, Ship   Type, ρ

+   RTr Vreported, Breadth, CB, TRe f , TReported, Ship   Type, ρ

+ 1
2 × ρ × S × Vreported

2

×   CF Vreported, Lwl, Temp, ρ

×   FormFactor TRe f , TReported, Lwl,   Breadth, DispMax,   Ship   Type, CB

+   CA TRe f , TReported, Lwl, Breadth, Ship   Type, CB

(6)

The Kristensen total hull resistance is calculated as described in equation 7, in which the 

resistance components CF, CR, CA, and CAA are described as functions of their input vessel 

parameters.

CTKristensen
=

CF Vreported, Lwl, Temp, ρ

+CR Ship   Type, CB,   TRe f , TReported, Breadth,   DispMax,   Lwl

+CA Ship   Type, CB, TRe f ,   TReported,   DispMax

+CAA Ship   Type, DWT

× 1
2 × ρ × S × Vreported

2

(7)

Where,
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Breadth = Ship   Breadth   m

CA = Hull   Roughness   Resistance   Coe f f icient

CAA = Air   Resistance   Coe f f icient

CF = Frictional   Resistance   Coe f f icient

CR = Residual/Wavemaking   Resistance   Coe f f icient

CB = Block   Coe f f icient =  
DispMax

lwl × Breadth × TRe f

DispMax = Maximum   Hull   Displacement   m3

DWT = Deadweight   Tonnage

Lwl = Waterline   Length   m

RB = Bulbous   Bow   Resistance   kN

RTR = Immersed   Transom   Resistance   kN

Rw = Wavemaking   Resistance   kN

Temp = Sea   Sur f ace   Temperature   15 ℃
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TRe f = Summer   Load   Line   Dra f t   m

TReported =   AIS   Reported   Dra f t   m

The power required to propel a vessel against frictional resistance generally increases with a 

cubic relationship to speed. However, resistance-based models also capture wave-making 

resistance, for which the relationship to ship speed is not cubic and varies significantly 

(MAN Diesel & Turbo, 2011). Additionally, these methods account for the effect of hull 

shape on hull wetted surface area and hull resistance. Because of this, the resulting 

relationship between the estimated power demand and vessel speed changes according to 

ship speed and ship type for both resistance-based methods. Unlike the load-factor-based 

models, resistance-based models are not inherently anchored to the engine’s service power. 

Ideally, resistance-based models should be calibrated against in-use data from full-sized 

vessels. Resistance-based power models require a larger number of inputs (listed in Tables 

1–3) and calculation steps than the load-factor-based approaches. However, these models 

allow for greater flexibility in modeling the impact of ship hull design, and speed ranges, on 

propulsive engine load and thus emissions.

The International Maritime Organization (IMO) Greenhouse Gas Study conducted a 

comparison of the Holtrop & Mennen and Admiralty Law load factor models (IMO, 2014). 

The study calculated the values of the exponent (n) in the Admiralty Law load factor 

equation for a sample of ships and speeds such that the model agreed with power estimates 

from the Holtrop & Mennen model. This analysis showed that exponential relationships 

where n ≥ 3 create the best agreement between the two models. Because the exponent, n, is 

applied to a load factor with a value less than or equal to one, a larger exponent indicates a 

decrease in modeled power. The IMO study determined that a cubic relationship (n = 3) is 

preferable for larger bulk carriers, while higher values are preferable for smaller container 

ships. These findings are consistent with recommendations supplied by MAN Diesel & 

Turbo (2011) regarding how the speed-power relationship within the Propeller Law could 

best represent hull resistance. MAN Diesel & Turbo recommended an exponent of 3.2 for 

slow-speed bulk carriers and tankers, 3.5 for medium-speed feeder container ships, reefers, 

and ro-ros, and 4 for high-speed container ships.

Beyond these studies, little analysis been done on the relative differences between these 

models, and on the effect of model selection on the magnitude of calculated emissions. The 

following analysis compares the emissions estimates generated using these four power 

models. Additionally, the impact of using average ship characteristics, rather than ship-

specific ones, as model inputs, is assessed.
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Methodology

Sample Fleet

Six months of AIS data for vessels operating off the coast of the southwestern United States 

was acquired from the United States Coast Guard (USCG) for analysis. The sample area is 

bounded by the rectangle defined by 38.242 ⁰N −116.796 ⁰W, and 32.6703 ⁰N −128.296 

⁰W. This sample region contains the ports of Los Angeles and Long Beach to the south and 

the port of Oakland to the north. To the west, this area extends just beyond the boundary of 

the North American Emission Control Area. This region was selected for its high level of 

ship traffic which would yield a suitably large sample of vessels for this study. Additionally, 

the selected region captures a wide range of ship activity from port operations, to near coast 

traffic within the California Vessel Speed Reduction Zone (VSR), as well as higher speed 

cruise activity further from the coast. Container ships, tankers, and bulk carriers were 

sampled, as these ship types represent those most commonly used in national commerce 

(United States Army Corps of Engineers, 2017). Only vessels for which all necessary ship 

parameter data (see Tables 1–3) was available were considered in this analysis, to avoid the 

effect of vessel parameter assumptions. Vessels reporting outlier speeds, greater than 30 

knots, or with missing reported speeds, were excluded from the analysis. In total, the sample 

was comprised of records from 248 unique vessels.

The AIS dataset used for this study is aggregated to five-minute intervals but sometimes 

includes gaps between messages greater than five minutes. For this analysis, vessels were 

assumed to operate at the same speed as the message prior to the gap for the duration of the 

missing period. If the position and heading of the ship associated with a gap between 

messages indicated that the ship had traveled outside of the sample area, no activity was 

assumed during that gap. Data from IHS Fairplay was used to capture the full range of ship 

parameters needed for the four models, as this methodology is consistent with common 

inventory practices (IHS Maritime Fairplay, 2014) (International Maritime Organization, 

2014) (Starcrest, 2017). Likewise, ship types were determined by the Lloyds Stat 5 code 

from the same data set. The parameters were initially matched to the AIS data by IMO 

Number. If IMO numbers were not available, Maritime Mobile Service Identity (MMSI) 

numbers were used.

At-berth and anchorage operations were defined as all vessel activity at or below three knots 

and categorized as hotelling (International Maritime Organization, 2014). Hotelling activity 

accounts for the majority of records in the AIS sample, reflecting 72 percent, 56 percent, and 

75 percent of bulk carrier, container ship and tanker time, respectively. The propulsive power 

required for these operations is minimal, and often is calculated as zero required power, at 

zero knots, or is bounded at 2 percent of total power. Given that hoteling propulsive power is 

bounded regardless of power model, the effect of power model selection on hoteling 

emissions is minimal, and these emissions have been omitted from the scope of this study.

The speed distribution (>3kn) of the sample fleet, using one knot speed bins, is plotted in 

Figure 1, along with the distribution of the ratio of reported AIS speed to vessel service 

speed for each message. Here service speed is defined as 94 percent of maximum vessel 

speed and is generally considered the speed at which load-factor-based models are most 
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accurate (EPA, 2009a) (Goldsworthy, 2015). Most container ships continue to operate well 

below their service speed while bulk carriers and tankers consistently operate at 90 percent 

of their service speed. The speed distributions of all three ship types peak around 12 knots, 

the maximum speed allowed for vessels to receive benefits from the Port of Los Angeles and 

Long Beach’s Vessel Speed Reduction Program (Starcrest, 2017).

Reported draft is a necessary input into the Admiralty, Holtrop & Mennen, and Kristensen 

power models. This analysis uses the AIS reported draft for vessel trips, following the 

methodology of the Third IMO Greenhouse Gas Study (2014). Figure 2 demonstrates the 

ratio between the reported and summer load line drafts of the sample fleet. The transits 

analyzed in Figure 2 are defined by observed trips from AIS activity. The bimodal 

distributions of draft reported by tankers and bulk carriers indicate that these ships typically 

operate at nearly full capacity or near ballast conditions.

Tables 1–3 summarize the time-weighted average and relative standard deviations of the 

sample fleet’s ship parameters by ship type and subtype groupings. Subtypes represent ship 

type size classes categorized by the given deadweight tonnage (dwt) ranges, as defined by 

Kristensen, along with the TEU to dwt ratios for container ships (Kristensen, 2017a, 2017b, 

2017c). Few large tankers exist within the sample, resulting in small relative standard 

deviations for their parameters. Larger variances surround hull displacement, deadweight 

tonnage, and total propulsive power for this sample fleet. Tankers display the highest 

variance in reported draft, as is also seen in Figure 2.

Inventory Calculations

A baseline ship fleet was created by compiling the above-mentioned vessels, their unique 

ship parameters, and their message by message AIS activity profiles. In addition, an average 

hull fleet was created using the average hull parameters from Tables 1–3. For this fleet, each 

vessel in the baseline fleet was assigned the average hull parameters of their respective ship 

type and subtype groups. The accuracy of the average hull fleet increased significantly when 

average block coefficients (CB), which describe the “blockiness” of the hull, were applied to 

the fleet instead of being calculated by average displacement, breath, length and draft 

parameters.

Four inventories were developed for the baseline and average hull fleets by calculating 

power demand according to Propeller Law, Admiralty Law, Holtrop & Mennen, and the 

Kristensen models. Propulsive power was calculated for each time interval between 

consecutive AIS messages of all vessels in the sample fleet. For each five-minute interval, 

vessels were assumed to operate at the same speed and draft as the message at the beginning 

of the period. The Propeller and Admiralty Laws were modeled using the load factor 

equations presented above. The Holtrop & Mennen model was calculated with the 

assumptions described in Rakke (2016). The Kristensen model was calculated according to 

the assumptions used in the associated SHIP-DESMO excel model (Kristensen, 2017d). An 

R package was developed to apply each of these models to the sample fleet and to aggregate 

the results. As this analysis was intended to assess impact of propulsive power models on 

calculated emissions, it ignored additional vessel energy usage, such as auxiliary engine, and 

shaft generator loads. For simplicity, no service margin was included and sea surface 

Brown and Aldridge Page 8

J Air Waste Manag Assoc. Author manuscript; available in PMC 2020 June 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



temperature of 15°C was assumed. Likewise, although some resistance-based models 

include acceleration and shallow water effects, these have been omitted from the current 

analysis (Jalkanen, 2012) (Lackenby, 1963) (Kristensen, 2017d).

A lower bound of 2 percent, and an upper bound of 100 percent, of total installed power, was 

applied to these estimates of ship power demand (EPA, 2009a). Low load adjustment factors 

(LLAF) account for the decrease in engine efficiency during low loads. They were applied to 

vessel emissions estimates for which modeled power was less than or equal to 20 percent of 

total installed power. The EPA (2009a) provided CO₂ LLAF is calculated from the load 

factor using equation 8.

LLAFCO2
= 44.1(   LF)−1 + 648.6. (8)

Because CO₂ emissions are directly correlated to engine power output and efficiency, they 

were chosen as the most appropriate metric to compare these models. All sampled vessels 

were determined to have slow speed diesel (SSD) engines, which are primarily identified as 

two stroke engines, or as engines operating at speeds less than or equal to 500 rpm if stroke 

type was unknown. With some exceptions, there is generally a broad rpm band separating 

slow and medium speed diesel engines, however the 500 rpm cutoff was deemed most 

appropriate to separate these two groups (Diesel & Gas Turbine, 2013). Equation 8 is 

derived from medium-speed engines, however it is applied to the SSD fleet at hand for 

consistency with standard inventory practices (Starcrest, 2017) (International Maritime 

Organization, 2014). The ENTEC (2002) category 3 CO₂ emission factor for SSD engines is 

620.62 g/kWh, which reflects an assumption of residual fuel usage by the entire sample 

fleet. Emissions were calculated per AIS message interval using equation 9:

EmissionsCO2
= EFCO2

×   LLAFCO2
×   P ×   Δt (9)

where EFCO2 is the base emission factor, and Δt is the time between consecutive AIS 

messages.

Results

Inventories

Power Model Selection Impacts—Figure 3 summarizes the total non-hotelling CO₂ 
emissions calculated for the baseline fleet using each power model. Due to its widespread 

use in published marine emissions inventories, the Propeller Law model is chosen as a 

reference for comparison. Table 4 describes the percent difference in emissions estimates 

from that of the Propeller Law inventory. The Holtrop & Mennen model deviates the furthest 

from the Propeller Law and the Admiralty Law deviates the least. Deviations from Propeller 

Law CO₂ estimates range from −9.5 percent to −42.4 percent.
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Calculations using the Admiralty Law result in estimated emissions ranging from 9.5 

percent to 18.1 percent lower than those calculated using the Propeller Law. As previously 

noted, this is because the Propeller Law can be considered an upper bound for the Admiralty 

Law equation, which explicitly accounts for the wetted surface area of hulls that are not fully 

loaded. As Figure 2 shows, a large portion of container ships in the fleet were active at 90 

percent of their maximum draft. This is near where the Admiralty Law converges with the 

Propeller Law, thus resulting in the smallest observed difference between the two models for 

container ships. Alternately, bulk carriers and tankers tend to operate in either fully loaded or 

ballast conditions. These ship type dependent operations result in much larger deviations 

between the Admiralty and Propeller Law estimates for these ship types.

Emissions were lowest when calculated by resistance-based models. Like the Admiralty 

Law, resistance-based models account for the wetted surface area of hulls that are not fully 

loaded, and thus estimate lower CO₂ emissions than the Propeller Law does for this fleet. As 

previously noted, the Third IMO Greenhouse Gas Study has shown that Admiralty Law load 

factor exponents (n) need to be increased for its results to agree with those of Holtrop & 

Mennen. An increase in an exponent applied to a fractional engine load results in decreased 

Holtrop & Mennen modeled power with respect to the Admiralty Law, which Figure 3 

reflects.

These differences between the power models are best demonstrated by comparing total 

calculated emissions as a function of ship speed. Figure 4 plots percent differences in total 

emissions estimates from the Propeller Law by speed bin (0.5 knots bins).

Near the service speed, hull resistance is dominated by frictional resistance, which is 

generally proportional to the cube of the ship’s speed (MAN Diesel & Turbo, 2011). 

Therefore, at the service speed, the Admiralty Law roughly approximates the influences of 

the hull wetted surface area and the frictional resistance that are calculated by the resistance-

based models. The resistance-based models account for the effect of wave-making resistance 

which becomes exponentially significant relative to the overall power demand as ship speed 

increases beyond the service speed (MAN Diesel & Turbo, 2011). Because of this, Figure 4 

shows resistance-based modeled power increasing toward, and at times surpassing, the 

Propeller Law power estimations at high speeds. The Admiralty Law does not take wave-

making resistance into account, and thus, at higher speeds, its modeled power does not 

increase relative to the Propeller Law.

The effect of wave-making resistance is even more significant for high speed container ships 

than it is for tankers or bulk carriers (MAN Diesel & Turbo, 2011). However, the AIS 

activity profiles show the sample fleet container ships operating at speeds much lower than 

their rated service speed (Figure 1). For this reason, and because most container ships in the 

sample operate fully loaded, the observed deviations between modeled emissions are 

smallest for container ships.

Effect of Applying Average Hulls—The above analysis indicates that power model 

selection can significantly impact inventory emissions estimates. Thus, the integration of 

these models into inventory methodology should be evaluated. Resistance-based models are 
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typically avoided due to the number of required inputs (Nunes et al., 2017). As of yet, no 

study has documented their sensitivities to average ship parameters. Average ship hull 

inventories were computed using exclusively subtype averaged hull characteristics and were 

compared to the baseline estimates for each ship type and power model. The percent 

difference in the emissions estimates of these two inventories are plotted in Figure 5.

This analysis indicates that use of subtype averaged ship parameters would result in less than 

a 2.5 percent difference in emission estimates for a given AIS sample of this size. 

Furthermore, the analysis showed that the Propeller Law model is the most sensitive to 

average bulk carrier total installed propulsive power, which has a high level of variance 

(Table 1). Holtrop & Mennen was the least impacted by average ship parameters, while the 

Kristensen model saw sensitivities to average hull displacement. In comparing the effect of 

each average ship parameter to the effect of the entire average hull, it was determined that 

more accurate results were obtained when just one, rather than all, parameters were replaced 

by subtype averaged values.

Individual Vessels

Power Model Selection Impacts—As inventories range in scope and size, it is crucial to 

understand the impact of power model selection when estimating emissions for individual 

vessels. The results of the Propeller Law were compared to those of the remaining models 

for each unique vessel in the sample (Figure 6).

Predicted emissions deviations from the Propeller Law increase when considering emissions 

from individual vessels as compared to the inventory of the entire fleet. These differences for 

unique vessels range at times up to 70 percent, however on average fall within a 40 percent 

range. Like inventory-wide comparisons, most sampled vessels saw a decrease in estimated 

emissions relative to results from the Propeller Law. This is likely due to the use of AIS 

reported draft, and the low engine loads resulting from resistance models at low speeds.

This relationship is evident by examining outlier vessels. Outlier vessels were described as 

having higher emissions by resistance-based models than by the Propeller Law. The 

characteristics of these outlier vessel messages are plotted in Figure 7 and represent either 

reported speeds greater than the service speed, or vessels with fully loaded hulls. As 

described above, the Propeller Law is best fit to approximate the power demand required for 

frictional resistance on fully loaded hulls. When resistance-based methods model such hulls, 

with reported draft representing 90 percent to 110 percent of summer load line draft, they 

account for wave-making resistance and exceed Propeller Law model estimations. Likewise, 

power demand for vessels at high speeds is dominated by wave-making resistance. The 

power required for such activity can at times exceed the demand modeled by the Propeller 

Law.

Effect of Applying Average Hulls—Figure 8 shows that the application of average ship 

parameters has a greater effect on the emissions estimates of individual vessels than of 

fleets. Most vessels see between a −10 percent to 20 percent difference in emissions 

estimates when average hull, as compared to unique, parameters are used. Whereas fleet-

wide inventories are minimally impacted by averaged parameters, and significantly impacted 
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by power model selection, the effects of these two influences may be equivalent for some 

individual vessel emissions estimates. Outlier vessels can see a 50 percent to 200 percent 

difference in modeled emissions when average ship parameters are used.

The effect of average parameters on the emissions estimates of the median vessels in the 

sample was greater on load-factor-based models than on resistance-based models. This was 

especially true when considering the adoption of subtype averaged total install propulsive 

power values. Total installed propulsive power has a large amount of variance. Of the 

resistance-based models, the Kristensen method was most sensitive to the use of average 

displacement. Hull displacement is often under-represented and requires gap-filling in most 

ship registry databases.

Whereas the adoption of all subtype average ship parameters may result in a 20 percent 

difference in emissions estimates for typical vessels, the adoption of just one average 

parameter results in at most a 10 percent difference. This analysis concludes that the 

application of average values for a single parameter is typically more accurate than the 

application of those for all parameters.

Discussion

The availability of AIS data has allowed access to more accurate and detailed ship speed and 

reported draft information. In correlation with this, more complex, load-factor-based, and 

resistance-based, power models have recently been applied to marine emissions inventories. 

An understanding of the effect of these models, and the required gap-filling on their input 

parameters, is necessary for future inventory comparisons and analysis. This is significant, 

as future modeling efforts will reflect the growing impact of shipping on worldwide 

greenhouse gas emissions and the future global marine fuel sulfur cap (International 

Maritime Organization, 2014).

Fleet-wide emissions inventories were significantly impacted by power model selection and 

were minimally impacted by the use of subtype averaged ship parameters. Any transition 

away from the commonly used Propeller Law resulted in decreased emissions, likely 

because the Propeller Law is equivalent to assuming maximum hull wetted surface area. 

Similarly, most transitions from load-factor-based, to resistance-based, models resulted in 

decreased modeled emissions. This result agrees with the IMO Third Greenhouse Gas Study, 

which saw the load factor exponent (n) increase, and modeled power decrease, when 

equating load-factor-based and resistance-based model results (International Maritime 

Organization, 2014). A comparison of these power models across speed ranges displayed 

how load-factor-based models are rooted in their proportionality parameters, c and n. In 

assuming these to be constant, load-factor-based models may be representative near service 

speeds, when frictional resistance dominates total hull resistance. However, their failure to 

account for wave-making resistance is especially significant at high speeds, when wave-

making resistance heavily impacts power demand. These results agree with industry 

publications on the effect of wave-making resistance estimated by resistance-based models 

(MAN Diesel & Turbo, 2011) (Schneekluth, 1998). Only high-speed or fully-loaded vessel 

activities, plotted in Figure 7, were modeled as requiring greater power by resistance-based 
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methods than by the Propeller Law. It is thus concluded that the results of similar analysis on 

a sample fleet with much faster activity profiles, or much heavier loads, would differ 

significantly from that of the current study.

Resistance-based models have often been avoided due their large number of required inputs. 

This analysis shows that subtype averaged ship parameters may be applied to ship specific 

activities to get relatively accurate emissions estimates (within 2.5 percent). Inventory 

sensitivities to average values increase as sample size decreases. It is worth noting that this 

study did not assess the spatial distribution of emissions. For air quality modeling purposes, 

the impact of averaging ship parameters may be different within a given modeled grid cell.

Container ships, tankers, and bulk carriers are comprised of generally well-defined ship 

groups and subtypes, with limited hull design options. Because of this, future analysis is 

required to understand the effect of subtype average ship parameters on more variable ship 

groups, such as Ro-Ros and passenger ships. Likewise, resistance-based models allow for a 

wide range of modeling opportunities which were not considered in this analysis. These 

include modeling for the impacts of acceleration, shallow water operations, variable sea 

water temperature, and ship trim, among others (Jalkanen, 2014) (Lackenby, 1963) 

(Schneekluth, 1998). Service, fouling, and weather margins were excluded from this 

analysis for simplicity sake, however their inclusion is recommended for any power model 

implementation in emissions modeling (Harvald, 1982) (International Maritime 

Organization, 2014) (Kristensen, 2016) (MAN Diesel & Turbo, 2011). Analysis of outlier 

vessels showed that fully-loaded and high-speed vessels would likely be modeled with larger 

emissions by resistance-based methods than load-factor based methods. The speed profiles 

in the baseline fleet (Figure 1) indicate that the analyzed inventories were largely impacted 

by slow-speed activity due to the Los Angeles and Long Beach vessel speed reduction 

zones. Because of this, future analysis should compare the effects of power models on 

regions without vessel speed reduction zones for a greater understanding of power model 

influences on emissions inventories.
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Figure 1. 
Distribution of vessel speeds from AIS data, as a ratio of vessel service speed, and as 

reported.
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Figure 2. 
Distribution reported vessel draft to summer load line draft for each ship type.
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Figure 3. 
Total CO2 emissions calculated using each model, for each ship type.
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Figure 4. 
Percent difference in emissions estimates for each model relative to the propeller law model. 

The shaded regions indicate the service speed range for each vessel type.
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Figure 5. 
Effect of using sub-type average hull parameters for estimating fleet level emissions
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Figure 6. 
Percent difference in estimated CO2 emissions relative to the propeller law model for 

individual vessels
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Figure 7. 
Reported speed and draft conditions that resulted in propulsive power estimates greater than 

those generated by the propeller law

Brown and Aldridge Page 22

J Air Waste Manag Assoc. Author manuscript; available in PMC 2020 June 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 8. 
Effect of using average hull parameters to calculate CO2 emissions for a single ship, rather 

than using ship specific parameters.
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Table 1:

Averaged ship parameters for bulk carriers

Subtype Handymax Panamax

Sample Size 24 21

DWT Range 25000– 55000 55000 – 85000

Reported Draft (m) 9.21 ± 17.19% 9.5 ± 16.37%

Breadth (m) 29.42 ± 3.6% 32.24 ± 0.1%

Displacement (m3) 41971.8 ± 13.58% 80259.58 ± 10.31%

Service Speed (kn) 14.2 ± 3.67% 14.6 ± 1.69%

Summer Load Line Draft (m) 10.08 ± 6.92% 13.57 ± 4.24%

Total propulsive power (kW) 6614.04 ± 14.5% 11637.7 ± 21.12%

Block Coefficient 0.81 ± 1.72% 0.85 ± 1.1%

Waterline Length (m) 173.81 ± 2.84% 216.24 ± 7.23%

Deadweight Tonnage 34813.43 ± 15.4% 67777.13 ± 9.07%
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Table 2:

Averaged ship parameters for container ships

Subtype Feeder Panamax Post-Panamax

Sample Size 7 27 88

DWT Range < 35000 35000 – 60000 > 60000

Reported Draft (m) 8.93 ± 9.4% 10.74 ± 9.11% 11.93 ± 10.54%

Breadth (m) 28.64 ± 5.94% 32.6 ± 5.23% 42.1 ± 10.22%

Displacement (m3) 38679.11 ± 6.63% 62230.57 ± 12.66% 123881.07 ± 21.67%

Service Speed (kn) 21.38 ± 2.77% 22.96 ± 5.17% 24.73 ± 2.78%

Summer Load Line Draft (m) 11.36 ± 0.94% 12.39 ± 3.7% 14.4 ± 4.78%

Total propulsive power (kW) 20790.28 ± 9.57% 34308.41 ± 18.6% 60003.25 ± 16.84%

Block Coefficient 0.65 ± 7.45% 0.64 ± 3.63% 0.65 ± 4.33%

Waterline Length (m) 184.57 ± 6.54% 239.1 ± 8.14% 310.1 ± 8.24%

Deadweight Tonnage 29148.77 ± 7.15% 47604.12 ± 12.25% 94727.84 ± 22.11%
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Table 3:

Averaged ship parameters for tankers

Subtype Handysize handymax Panamax Aframax Suezmax VLCC

Sample Size 6 26 35 9 1 4

DWT Range 10000 – 25000 25000 – 55000 55000 – 80000 80000 – 120000 120000 – 170000 > 170000

Reported Draft (m) 8.89 ± 11.94% 9.88 ± 18.47% 10.25 ± 17.83% 9.25 ± 2 1.44% 9.2 ± 0% 12.28 ± 28.48%

Breadth (m) 24.53 ± 2.56% 31.1 ± 6.73% 32.23 ± 0.09% 43.38 ± 1.83% 45.7 ± 0% 60 ± 0%

Displacement (m3) 27072.37 ± 11.68% 51796.25 ± 19.5% 83384.08 ± 5.35% 128138.81 ± 3.86% 169844.88 ± 0% 358303.7 ± 0.38%

Service Speed (kn) 14.87 ± 1.03% 14.88 ± 2.85% 14.86 ± 3.34% 15.33 ± 1.72% 15.3 ± 0% 15.97 ± 1.51%

Summer Load Line 
Draft (m) 9.92 ± 5.84% 12.02 ± 8.98% 13.92 ± 4.64% 14.97 ± 0.37% 17.52 ± 0% 22.62 ± 0.21%

Total propulsive 
power (kW) 6636.51 ± 10.69% 8430.22 ± 14.22% 11420.38 ± 10.63% 13383.53 ± 3.55% 16858 ± 0% 29047.44 ± 3.17%

Block Coefficient 0.76 ± 0.59% 0.8 ± 2.44% 0.84 ± 0.78% 0.83 ± 1.28% 0.81 ± 0% 0.82 ± 0.11%

Waterline Length (m) 145.02 ± 3.54% 170.88 ± 5.4% 220.62 ± 1.45% 238.88 ± 2.24% 260.58 ± 0% 323.02 ± 0.12%

Deadweight Tonnage 20834.68 ± 6.95% 43331 ± 20.71% 71462.97 ± 5.01% 113092.03 ± 4.08% 151736 ± 0% 319350.77 ± 0.22%
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Table 4:

Percent difference from Propeller Law estimated CO₂ emissions

Power Model Bulk Carriers Container Ships Tankers

Admiralty Law −15.62% −9.5% −18.1%

Kristensen −26.19% −19.17% −17.06%

Holtrop Mennen −42.37% −20.67% −30.53%
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