MULTI-HULL SHIPS: strength, structure mass

Victor A. Dubrovsky Dr. Scs., Dr. Phil. Multi-hulls@yandex.ru "Specificity and designing of multi-hull ships & boats", Nova Science Publishers,

ISBN 9781634846158, USA, 2016.

Simplified scheme for catamaran external loads [1].

Some experimental data on clearance influence on external bending moments [1].

 $M_{1} = K_{1B/d} K_{1B} K_{1B} K_{1B} C_{1} C_{WL} \rho g B_{1} dL z_{0}$

An example of the data for approximate estimation of catamaran external loads [1]: symmetrical moment M₁.

$$M_{1} = K_{1(B/d)} * K_{1\underline{B}} * K_{1\underline{B}} * K_{1\underline{B}} * C_{1} * C_{WL}^{0.4} * \rho g B_{1} d L z_{0}$$

- Here L, B, d a hull dimensions;
- C_{WL} a hull water-plane area coefficient;
- ρ water density;
- g acceleration of free drop;

An example: transverse moment on outrigger ship, outriggers on middle [2]

Effect of outriggers' position on longitudinal hogging (1) and sagging (2) bending moment, M_L , relative to that when outriggers at amidships, M_M , after [2];

here a = distance between midship stations of outriggers and main hull,

negative for outriggers shifted aft.

Some examples of applied types of a catamaran cross structure [1].

Schematics of structural response analysis in different solutions [1]:

- a) after Galakhov
 & Volkova [1] for
 the structure in
 Slide 5, bottom;
- b) after Ferin & Belenky [1] for the structure in Slide 5, top.

Stages of a catamaran structure idealization [1]

Idealization of deck plating by a beam simulating its shear loading [1]

Catamaran girder idealization [1].

Tested model of girder [1].

Idealization of torsional rigidity of the bridge [1]:

a – actual cross section,

b - contour of the bridge as a whole,

c, d - characteristics of torsional rigidity of individual girders

13

Bridge model for stress distribution study [1]

Generalized data on catamaran hull weight, [1].

SWATH external loads [3].

Experimental data on side force at rest [3].

17

The scheme of side force F_S generation – the main external load for early stage of designing [2]

Today the relative vertical accelerations are recognized as the reason of the main part of transverse global loads of multi-hull ships with traditional hulls.

But the relative horizontal speeds are recognized as the reason of main part of transverse global loads of ships with small water-plane area.

For s semi-SWATH, two corresponded values of loads must be calculated and compared, and the bigger value can be used for estimation of such ships.

Measured loads on a SWATH model, [3].

Tested outrigger SWA model, [3].

The main external loads and structure, a triple-hull SWA ship, [2].

Longitudinal bending moment, [2].

Options of platform structures: effective platform bulkheads must be supported by corresponded bulkheads in hulls, [3].

Structure of built trisec "Kaimalino", [3], (not supported bulkheads in the platform)

Effective band of transverse bulkheads of strut and platform, [3]

Usual cross structure of platform, [3] (with "second bottom" in the platform.

Developed structure of platform (without one plating), [3].

Bad (left) and better (right) bulkhead structure, [3].

Small-sized SWA hull connection without "double-bottom" of platform: the transverse strength is ensured by bulkheads only, [3].

Minimal thickness of plating, [1].

31

Approximate estimation of hull relative mass, [1].

Cross section comparison: left – initial option, full displacement 6,000 t; right – alternative option, 4,500 t, [2].

REFERENCES.

1. Dubrovsky V., Lyakhovitsky A., "Multi Hull Ships", 2001, *ISBN 0-9644311-2-2, Backbone Publishing Co., Fair Lawn,USA, 495 p.*

- 2. Dubrovsky V., "Ships With Outriggers", 2004, ISBN 0-9742019-0-1, Backbone Publishing Co., Fair
- Lawn, USA, 88 p

3. Dubrovsky V., Matveev K., Sutulo S., "Small Waterplane Area Ships", *Backbone Publishing Co., 2007, ISBN-13978-09742019-3-1, Hoboken, USA,256 p.*