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Testing the efficacy of heated seawater for managing biofouling in ship’s sea
chests

Abstract
Biofouling within sea chests may be more important than ballast water and hull fouling for dispersing certain
non-indigenous marine species (NIMS). Despite this current Australian guidelines remain costly, ineffective
or may increase the biosecuirty risk of sea chests. This thesis tested the efficacy of a new heated seawater
biofouling treatment technique on managing the biosecurity risks posed by sea chests. Chapter 2 provides a
baseline assessment of time and temperature regimes required to achieve 100% mortality of secondary
biofouling assemblages on Perspex settling plates placed in Port Kembla Harbour. Perspex plates were used
because of relative ease to which fouling organism settle such artificial surfaces. Seawater heated to 40⁰C for
15 minutes was the minimum temperature and time required to achieve 100% biofouling mortality (F =
508.805, p < 0.0001). Interestingly 30⁰C had no significant impact on organism mortality (F = 2.6, p = 0.115).
In total 1619 organisms were quantified, Bryozoans were the most prevalent group making up over 57% (935)
of organisms/colonies identified. Other taxa included polychaeta (648), cirripedia (12), bivalvia (4),
ascidians (8) and porifera (12). These findings show that moderately elevated seawater temperatures (>
40⁰C) are capable of treating 3 months of temperate marine biofouling. Future work might test temperatures
between 30°C and 40°C determine minimum temperature and time regimes to achieve 100% biofouling
mortality.

Chapter 3 tests the efficacy of Hull Surface Treatment (HST), a new biofouling treatment technology, for
treating secondary and tetiary biofouling within sea chests. A mock sea chest (1 x 1 x 0.75m) was constructed
for the HST trials. As was shown in the trials from Chapter 2 treatments of 40⁰C for 15 minutes were enough
to ensure 100% mortality of secondary biofouling within sea chests. 40⁰C treatments however, did not show
any significant difference from control treatments for tertiary biofouling (f = 3.000, p = 0.114). Both 60 and
70⁰C treatments were observed to cause 100% tertiary biofouling mortality (f = 13.102, p < 0.0001). These
results show that HST is a viable option for treating the biosecuirty risks associated with biofouling within sea
chests. Currently HST cannot treat other vessel niche areas (without diver intervention), as such HST should
be used in association other antifouling and defouling measures and maritime regulatory practices. Future
Studies should focus on larger sea chests and on tropical assemblages.
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Abstract 
 
Biofouling within sea chests may be more important than ballast water and hull fouling for 

dispersing certain non-indigenous marine species (NIMS). Despite this current Australian 

guidelines remain costly, ineffective or may increase the biosecuirty risk of sea chests. This 

thesis tested the efficacy of a new heated seawater biofouling treatment technique on 

managing the biosecurity risks posed by sea chests. Chapter 2 provides a baseline 

assessment of time and temperature regimes required to achieve 100% mortality of 

secondary biofouling assemblages on Perspex settling plates placed in Port Kembla Harbour. 

Perspex plates were used because of relative ease to which fouling organism settle such 

artificial surfaces. Seawater heated to 40⁰C for 15 minutes was the minimum temperature 

and time required to achieve 100% biofouling mortality (F = 508.805, p < 0.0001). 

Interestingly 30⁰C had no significant impact on organism mortality (F = 2.6, p = 0.115). In 

total 1619 organisms were quantified, Bryozoans were the most prevalent group making up 

over 57% (935) of organisms/colonies identified. Other taxa included polychaeta (648), 

cirripedia (12), bivalvia (4), ascidians (8) and porifera (12). These findings show that 

moderately elevated seawater temperatures (> 40⁰C) are capable of treating 3 months of 

temperate marine biofouling. Future work might test temperatures between 30°C and 40°C 

determine minimum temperature and time regimes to achieve 100% biofouling mortality.   

 

Chapter 3 tests the efficacy of Hull Surface Treatment (HST), a new biofouling treatment 

technology, for treating secondary and tetiary biofouling within sea chests. A mock sea 

chest (1 x 1 x 0.75m) was constructed for the HST trials. As was shown in the trials from 

Chapter 2 treatments of 40⁰C for 15 minutes were enough to ensure 100% mortality of 

secondary biofouling within sea chests. 40⁰C treatments however, did not show any 

significant difference from control treatments for tertiary biofouling (f = 3.000, p = 0.114). 

Both 60 and 70⁰C treatments were observed to cause 100% tertiary biofouling mortality (f = 

13.102, p < 0.0001). These results show that HST is a viable option for treating the 

biosecuirty risks associated with biofouling within sea chests. Currently HST cannot treat 

other vessel niche areas (without diver intervention), as such HST should be used in 

association other antifouling and defouling measures and maritime regulatory practices. 

Future Studies should focus on larger sea chests and on tropical assemblages.  
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Chapter 1: Introduction 
 

It is now recognised that over 429 marine species have been introduced into Australain 

water ways (Hewitt and Campbell, 2008). Many of these species are problematic fouling 

species that affect both commercial industries (e.g. aquaculture and shipping) and natural 

environments. Biosecurity (biological security) is the protection of native environments and 

commercial ventures from the potentially harmful impacts of introduced marine species. 

Human mediated incursions of non-indigenous species (NIS) into new environments has 

been recognised as a major mechanism causing environmental change around the world 

(Vitousek et al., 1996). The introduction of non-indigenous marine species (NIMS) can have 

catastrophic environmental, economic and social consequences (Carlton, 1996, Pimentel et 

al., 2000, Hewitt, 2003).  

 

Impacts of Non – Indigenous Marine Species 

 
The environmental impacts of NIMS are not completely understood, but include species, 

population, community or entire ecosystem effects (Parker et al., 1999). It is estimated that 

the introduction of NIS is considered to be the second most important cause of native 

species loss globally (Vitousek et al., 1996). NIMS can include low impact and cryptic 

introduced species, as well as marine “pests” that have a larger effect on the marine 

ecosystem. Obvious impacts on native communities include predation, competitive 

exclusion and habitat modification (Pimm, 1989). For example the New Zealand screwshell, 

Maoricolpus roseus, is affecting soft sediments in south-eastern Australia. Maoricolpus 

roseus covers soft sediments with it’s hard shell, which can provide structures for marine 

fauna (including other exotic species) to settle onto (Hewitt et al., 2005). The increase in M. 

roseus has been linked to a decrease in a threatened, native scallop species, Gazameda 

gunnii,which occupy the same beds (Patil et al., 2004). Maoricolpus roseus may reduce the 

numbers of scallops via direct competition for food and space as they are a filter feeding 

species with similar habitat requirements (Bax et al., 2003a).  Other introduced species 

impacts include changes to predator-prey relations, changes in food web-structures, 

hybridisation, parasitism and (in the case of NIMS) bioturbidation (Pimm, 1989). The New 

Zealand screwshell’s resultant shells provide effective homes for hermit crabs where sandy 
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sediments were previously inhibited by surface macrobenthos (scallops dominating the 

substrate, providing no viable homes for hermit crabs). The resultant increase in predation 

is expected to have a large impact on the post settlement survival of native screwshells and 

scallops (Bax et al., 2003a).  

 
The economic and social impacts of NIMS can include threats to human health in the case of 

pathogenic microorganisms or toxic species in the food chain. For example harmful algal 

blooms have increased in frequency, many species of which are invasive around the world 

(Van Dolah, 2000), these blooms can have significant direct health impacts with humans as 

well as the local environment. Other costs include impacts on the productivity of industries 

dependent on the health of the marine environment including fisheries, aquaculture, 

tourism, marine infrastructure and shipping. In the Black Sea an invasive ctenophore, 

Mnemiopsis leidyi, is considered to have caused the collapse of the coastal fishing industry 

worth millions of dollars annually (Shiganova, 1998). NIS have been estimated to cause 

losses up to $120 billion annually in the US alone (Pimentel et al., 2000). Such economic 

effects have immediate social impacts through decreased employment and flow on 

economic downturns in human communities. Other social impacts may be through declines 

in community welfare due to the decreased quality of the native environment.  

 
Characteristics of successfully established species  vary depending on the vector and the 

environment being colonised however some common attributes have been observed (Table 

1). Both the European Green Crab (Carcinus maenas) and the North Pacific Seastar (Asterias 

amurensis) have successfully established themselves in southern Australia. Both of these 

species have a large native range (indicating high tolerance to physical variation) in which 

they have a high abundance, they are both mobile with a broad diet, they each have a highly 

fecund and dispersive life history strategy and are able to function in a wide range of 

environments (Thresher et al., 2000, Byrne et al., 1997). Often the environment being 

colonised displays signs of disturbance, alterations to ecological, biological, chemical or 

physical states change the susceptibility of recipient regions to invasion (Carlton, 1996, 

Dafforn et al., 2009). 
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Table 1: Characteristics of Successful Invaders 

Successful Invaders Unsuccessful Invaders 

Large native range Small native range 

Abundant in original range Rare in original range 

Mobile Sedentary 

Broad Diet Relatively restricted diet 

Short generation times Long generation times 

Able to shift between r and K strategy  Unable to shift 

Much genetic variability Little  genetic variability 

Gregarious Solitary 

Female able to colonize alone Female unable to colonize alone 

Larger than most relatives Smaller than most relatives 

Associated with H.sapiens Not associated with H.sapiens 

Able to function in a wide range of 
physical conditions 

Only able to function in a narrow range of 
physical conditions 

(adapted from Ehrlich, 1989) 
 

The total number of NIMS in Australia has increased from 55 reported in 1990 (Pollard, 

1990) to over 250 species reported in just under a decade. Over 170 of the 250 species 

reported have been found in Port Phillip Bay, Victoria alone (Hewitt et al., 1999). In 2008 the 

total number of NIMS recorded in Australian waters was 429 (Hewitt and Campbell, 2008). 

This increase reflects a global and domestic increase in the frequency of vessel movements, 

as well as changes in the shipping trade (Perrings et al., 2005), changes in environmental 

conditions that facilitate introductions (Carlton, 1996, Glasby et al., 2007) and greater 

awareness of biosecurity as an issue. A combination of government initiatives and a cultural 

shift towards environmental awareness has lead to a greater awareness of NIMS in general, 

but it wasn’t until the establishment of the Centre for Research on Introduced Marine Pests 

(CRIMPS) within the CSIRO in the late 1990s that lead to a greater understanding of the 

state of NIMS in Australian waters. The introduction of genetic technology has seen the 

development of new tools being used to better inform population structure as well as 

sources of species (Turon et al., 2003). 

 
When a marine pest is established it is usually difficult to eradicate (Thresher and Kuris, 

2004). Therefore, a preventative approach is the prefered means of treating marine pest 
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incursions, made possible by management of the vectors (mechanisms of dispersal) that 

marine pests use (Lafferty and Armand, 1996, Perrings et al., 2005). In 2009, the Australian 

Government started The National Introduced Marine Pests Coordination Group (NIMPCG), 

with the purpose of leading the implementation of the National System for the Prevention 

and Management of Marine Pest Incursions (NSPMMPI) to address the management of 

NIMS. The NSPMMPI is a group of measures aimed at: 1) preventing or minimising the 

arrival of marine pests; 2), providing an emergency response; and 3) managing and 

controlling established marine pests (NSPMMPI, 2009). Supporting the major components 

of the NSPMMPI are four aspects; an ongoing national monitoring program to provide early 

detection of new pests, industry and community targeted communication and education, 

targeted research and development of policy and new management measures, and finally 

continual evaluation of the effectiveness of the National System. Whilst this is a great step 

forward in the prevention of invasive alien species the guidelines for commercial vessels are 

voluntary and are lacking in rigour or have been shown not to be completely effective 

(Coutts and Dodgshun, 2007).  

 

Vectors for Non-indigenous Marine Species 

 

NIMS are transported internationally in a variety of ways (Table 2) including shipping, 

recreational boats and fishing, aquaculture and the aquarium trade (Bax et al., 2003b, 

Carlton, 1987, Jousson et al., 1998). Marine shipping has long been known to be a vector of 

NIMS (Allen, 1953), and is considered to have been the greatest contributor to unintended 

marine invasions (Carlton, 1987). Biofouling is the major mechanism by which NIMS are 

introduced, around 46.2% of all marine incursions are a result of marine vessel biofouling 

(Hewitt and Campbell, 2008). As well as environmental costs of biofouling there are also 

major economic costs. Increased fuel consumption has been noted to be the primary 

economic cost attributed to biofouling as increased friction on the ship means the engine 

has to be run harder and for longer to maintain the same speed. It is estimated that for 

Arleigh Burke-class destroyer DDG-51 the US navy will spend over $56 million per annum as 

a result of increased fuel costs due to biofouling (Schultz et al., 2011). The increased cost 

estimated by the Office of Naval Research for the entire US naval fleet is $500 million USD. It 
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is clear that there are both environmental and economic reasons for the management of 

vessel biofouling. 

 
 
 
 
 
Table 2: Vectors for NIMS relocation 

Source Vector 

Commercial 
Shipping 

Ballast Water 

  Hull Fouling 

  Niche Areas 

Aquaculture and 
Fisheries 

Intentional Release for Stock Management 

  Gear, Stock or Food movement 

  Discarded nets, floats, traps. Trawls, etc 

  Discarded live packing materials 

  Release of Transgenic Species 

Drilling Platforms Ballast Water 

  Hull Fouling 

Canals Movement of species through locks due to water 
motion or active swimming 

Aquarium Industry Accidental or intentional release 

Recreational Boating Hull Fouling 

Dive Practices Snorkelling and scuba gear 

Floating debris Discarded Plastic debris 

(adapted from Bax et al., 2003b) 
 
 

The Australian Government has classified three stages of biofouling: primary, secondary and 

tertiary. Primary biofouling is the formation of a slime or biofilm consisting of bacteria and 

microscopic algae. Secondary biofouling usually includes hard encrusting animals such as 

barnacles, bryozoans, serpulid polychaets and may also include algal tufts and mobile 

amphipods (NIMPCG, 2009). Tertiary biofouling builds up on the secondary layer and 

generally consists of larger, more competitive organisms, such as sponges, large ascidians, 

bivalves and large algae. This system is used to determine the risks of biofouling 

communities containing NIMS.  
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Within commercial shipping there are a variety of mechanisms and biofouling points that 

are known to facilitate NIMS incursions (Table 2), including ballast water and hull biofouling 

(Carlton and Geller, 1993) as well as some cryptic niche areas. Historically, the majority of 

work being undertaken to prevent marine incursions has focused on the management of 

marine pests transmitted via ballast water and biofouling, and included management 

practises of shipping routes and harbour ports, ballast water exchange and hull cleaning 

regulations (ANZECC, 1997, AQIS, 2008) as well as the NIMPCG management practises 

described above. Less attention has been given to the perceived threat of many other 

vectors (Table 2) and ship niche areas (Bax et al., 2003b), nor biosecurity strategies to 

reduce those threats. Niche areas are parts of the ship considered to be protected or a 

refuge that can provide suface for the settlement and survival of marine organisms. They 

include internal water systems, sea chests, the rudder hinge, propeller, bilge keel, bow 

thrusters and dry-docking support strips(Coutts and Taylor, 2004, NIMPCG, 2009).  

 
 
Niche areas on ships can provide significantly different conditions as a vector for NIMS 

compared to ballast water or hull surfaces. The enclosed small spaces, lack of effective 

antifouling paints and elevated temperatures provide many niche areas with suitable 

conditions for a variety of species and larger organisms that might not survive on a hull 

surface or in ballast water. For example the European Green Crab, Carcinus maenas, has 

been observed to be present within sea chests at the adult stage of its lifecycle (Coutts et 

al., 2003). The transport of adult organisms is particularly hazardous due to their ability to 

release gametes or viable larvae into the surrounding environment (Godwin, 2003). An 

organism whose propagules may not survive the transportation process in ballast water may 

be able to be transported to new areas in the adult stage via a ship’s niche areas.  

   

Sea Chests  
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A prodominant nich area are the sea chests – recesses built into a ship’s hull below the 

waterline for the purpose of increasing water pumping efficiency for ballast, engine cooling 

and fire fighting purposes (Figure 1). The size, shape and number of sea chests vary, as a  

 

general rule the larger the ship the greater the size and number of sea chests required, with 

many large vessels having multiple upper and lower sea chests. Sea chests are covered with 

a steel grate to prevent large debris from entering the sea chest during ballast pumping 

when close to the substrate. This grate however, does not prevent the uptake of marine 

organisms. Seachests are a high biosecurity risk for the marine shipping industry, due to the 

inherant difficulties with treating an enclosed and often inaccesible space (Coutts et al., 

2003). Sea chests are a niche area that provides a harbour for both planktonic and 

sedentary species (Coutts et al., 2003). In 2006 large populations of the invasive mussel, 

Mytilis galloprovincialis were found in the sea chests of the South African National Antartic 

Programme supply vessel, the SA ‘Agulhas’ whilst the vessel was dry docked (Lee and 

Chown, 2007).  

 
 

 
Figure 1: Schematic diagram of a vessel’s sea-chest system (Coutts and Dodgshun, 2007). 
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In 2007 Coutts and Dodgshun identified some 150 different organisms within sea chests 

from a variety of vessel types, routs and geographic regions. The swimming crab Carupa 

tenuipes was found inside a ship’s sea chest. Whilst this crab in usually known to inhabit 

coral reef and rubble in the western indo-pacific area it is not native to New Zealand where 

it was observed in a sea chest. Carupa tenuipes is now recognised to be established in the 

eastern Mediterranean where it inhabits rocky bottoms (Pancucci-Papadopoulou et al., 

2009). The great number of species found in sea chests can be attributed to; 1) the fact that 

organisms are usually sucked into the sea chest from the water column, neighbouring 

wharfs or even the seabed; and 2) Larvae also seek out dark areas with increased water 

flow. Sedimentary organisms sucked up from the surrounds of the ship do not always settle 

as larvae, as such they may be more resilient to the affects of anti-fouling measures. As a 

result pseudo-communities can exist within the sea chest with multiple species, at varying 

stages of their lift cycle with varying life histories being transported. 

 

The presence of adult mobile organisms within sea chests is particularly concerning and may 

indicate that sea chests are of greater importance than ballast water or hull fouling for 

dispersing certain marine species (Coutts and Dodgshun, 2007). For some NIMS transport by 

conventional mechanisms (ballast water and hull-fouling) does not fully explain their 

presence in new communities, particularly mobile holo-planktonic organisms. Sea chests 

have been put forward as a possible vector for animals who could not have survived 

transport via a ship’s hull or ballast water. The age of the M. gallaprovincialis inside the sea 

chest of the south african antartic supply vessel showed that they had survived multiple 

travels to the antartic (Lee and Chown, 2007). This tells us that M. gallaprovincialis is 

capable of short-term survival in polar condictions or that whilst contained within a ship’s 

sea chest fouled organisms are protected from the conditions outside of the ship. Within 

sea chests organisms are provided with continuous renewal of food and oxygen, elevated 

temperatures (as a result of heat transfer from the engine) as well as the complete lack of 

hydrodynamic forces experienced on the ship’s hull (Coutts and Dodgshun, 2007). These 

factors make the sea chest a particularly hospitable place for organisms to settle or seek 

refuge and then in turn are transported all over the world.  
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Biofouling Management in Sea chests 

 

Table 3 shows the key advantages and disadvantages of past and present biofouling 

management strategies for the hull of a ship. Current Australian guidelines for treating sea 

chests recommend the use of anti-fouling paints and the use of steam blow-out pipes where 

applicable (NIMPCG, 2009). In certain circumstances mechanical systems (scraping or 

rotating brushes) are also allowed for sea chests. Scrapping or brushing has two major 

environmental issues; 1) the organism is not retained and if viable it can settle and 

successfully establish, and 2) it does not account for propagule release that may occur 

during organism disturbance. Anti-fouling paints do not perform as they do on external 

structures like the hull. This is due to the paint being subject to both minimum and 

maximum extremes of water-flow. Accordingly organisms can establish themselves on areas 

of premature paint degradation or in pockets of the sea chest where water movement is 

minimal and the paint is ineffective (Coutts and Dodgshun, 2007). Mechanical defouling 

systems may also increase the rate at which the paint degrades. Research also suggests that 

whilst antifouling paints are effective against sedentary organisms they are less effective 

against the mobile and adult organisms experienced in sea chests (Coutts and Dodgshun, 

2007).  
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Table 3: Key Advantages and disadvantages of past and present biofouling management systems 

Anti-fouling 
system 

Key advantages Key disadvantages 

Dry Docking Arguably the Safest-  
Removes vessel from 
water, ensuring fouling 
organisms and propagules 
are retained (Yebra et al., 
2004). 

Extremely difficult and expensive. Must be 
planned in advance and can mean months out of 
the water. May inadvertently introduce marine 
pests when ship is removed from water (Coutts 
et al., 2010).    

In-water 
defouling 
(Scraping and 
Brushing) 

Cheaper than dry-docking, 
saves on time. Fouling 
retention techniques can 
retain over 90% of fouling 
mass. 

The biofouling organism is not retained and is 
then left to settle(Woods et al., 2005). Does not 
account for propagule release. Banned in 
Australia for hull use. Can damage antifouling 
paints.  

Hot Water 
Treatments (e.g. 
HST) 

Relatively cheap, can be 
undertaken when ship 
arrives in port, 
“environmentally friendly”, 
doesn’t release organisms. 
Doesn’t affect paints. 

Time consuming – around two days (one day if 
two units used) to treat a whole ship. Treatment 
of particular niche area required diver 
intervention.    

TBT self-
polishing 
copolymer (SPC) 
coatings 

Most effective broad 
spectrum AF biocide 
developed, long lifetime (5 
years) 

Impacts on non-target species, human health 
risks, half-life of days in seawater, but months – 
years in sediments depending on environmental 
conditions. Now banned in Australia 

Tin-free SPC 
coatings 

Effective against range of 
invertebrate foulers, long 
lifetime (5 years) 

Cu and booster biocide impacts on non-target 
species, Cu persistent in marine environment 
(depends on pH, salinity and dissolved organic 
matter – also determines toxicity) 

Tin-free 
conventional 
coatings 

Effective against range of 
invertebrate foulers 

Short lifetime (12– 18 months), Cu and booster 
biocide impacts on non-target species, Cu 
persistent in marine environment (depends on 
pH, salinity and dissolved organic matter – also 
determines toxicity) 

Booster biocides Effective against a range of 
bacterial, algal and fungal 
foulers 

Impacts on non-target species, e.g., algae, 
seagrasses, corals, invertebrates, some persistent 
in marine environment 

Foul-release 
coatings 

strength of fouling 
attachment, do not leach, 
no or low toxicity, 
potential long life (10 
years) 

Only self-clean on high speed (>15 knots)/high 
activity vessels, or otherwise require regular 
cleaning, susceptible to abrasion damage 

Biomimetics Natural alternatives 
‘‘environmentally friendly’’ 

Not commercially available yet, difficult to source 
adequate supply of compound  
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Heated water treatments are seen as a practical way forward for the biofouling 

management of not only sea chests but of other niche areas on a ship where antifouling 

paint is impractical or unfeasible (Flemming, 2002, Coutts and Dodgshun, 2007). The idea of 

heated water treatments to act against biofouling is not completely new (Graham et al., 

1977), however most of the research addresses tertiary biofouling on the cooling systems of 

coastal power stations (Rajagopal et al., 1995, Thiyagarajan et al., 2000). Heat treatments in 

the form of sprays are unlikely to be effective against thick shelled organisms such as 

mussels or oysters. Nel et al. (1996) found that when exposed to 70⁰C for 40 seconds did 

not raise the core temperature of the invasive Pacific Oyster, Crassostrea gigas, above 24⁰C. 

However experiments by Rajagopal (2005) observed C. gigas experienced 100% mortality 

when immersed in 42⁰C water after 60 minutes. Rajagopal (1995) also found that at a 

temperature of 39⁰C, the tropical green mussel Perna viridis showed 50% mortality after 59 

minutes and 100% mortality after 73 minutes. The age and size of P. viridis strongly affected 

the mortality rate. Heated water has been used to treat the Asian Clam Corbucula Fluminea 

around power and chemical plants (Jenner and Janssen-Mommen, 1993). The invasive 

stalked ascidian Styela clava was killed after immersions in 60 and 70°C for 15 and 10 

seconds respectively (Minchin and Duggan, 1988). Forrest and Blakemore (2006) whilst 

treating U. pinnatifida also described the hot water tolerance of the greenlipped mussel 

Perna canaliculus. Measuring mussel mortality as “mussel attachment” it was found that 30 

mins at 55 C was sufficient to ensure 0% mussel attachment. Hot seawater hasn’t been 

typically applied to ships because heat treatment is difficult to implement in maritime 

conditions unless the fouling environment can be isolated e.g. ballast water.  

 

Heated seawater has been tested for its application to ballast water (Mountfort et al., 1999, 

Rigby, 1997), with the majority of research focused on heat trials lasting hours. The results 

of these surveys found that to successfully treat ballast water a minimum temperature of 

35 C for 20 hours is required. Mountfort et al. (1999) recommended to treat larvae of C. 

gigas, 50 C for 2.7 minuets would be required. The short term treatment at higher 

temperatures (50-80⁰C) has been found to achieve 100% mortality for zooplankton that 

(Quilez-Badia et al., 2008). Hot water treatments have been shown to be particularly 

effective for the treatment and eradication of the internationally recognised pest The Asian 

Kelp, Undaria pinnatifida (Wotton et al., 2004, Forrest and Blakemore, 2006). The sea chest 



Andrew Leach 2011 
 

21 
 

is especially problematic as it can also harbour mobile juvenile and adult organisms; as such 

any heat treatment regime applied would have to ensure the mortality of tertiary fouling 

and mobile organisms such as adult shell fish and crabs. When some invertebrates 

experience a temperature increase they are inclined to release gametes (Minchin, 1987), as 

a result any heating technology will have to seal the sea chest during treatment to ensure 

no propagules are released. If hot water treatments are to be used to treat the biosecurity 

risks posed by sea chests then the development of technologies and protocols that can 

both: 1) maintain a high temperature within a sea chest for an extended period of time and 

2) be able to ensure nothing is released during treatment application.  

 

Hull Surface Treatment (HST)  
 

One of the current heated seawater technologies developed to treat hull surfaces is Hull 

Surface Treatment (HST). HST is a patented technology and a registered trademark owned 

by Commercial Diving Services (Australia) Pty Ltd. HST uses thermal shock to treat primary 

biofouling, such as copper resistant algae, on ship hulls that is predominately responsible for 

significantly increased hydrodynamic drag (Thomas & Coffey Marine, 2010). HST works by 

using a specially designed applicator (Figure 2) which forms a soft seal on the hull and 

applies heated seawater to the ships hull provided by a larger boiler placed on a small 

neighbouring vessel. The applicator is moved up and down the ship’s vertical hull until the 

majority of the vertical hull has been treated (Figure 3). HST does not clean hulls by physical 

disturbance like traditional rotating brush systems do; but rather it kills the biofouling 

organisms in situ. Dead primary biofouling remains on the hull until the ship leaves port and 

is ground down in open water (Thomas & Coffey Marine, 2010). 

As stated above the biosecurity risks posed by sea chests are notoriously hard to manage. 

The proposed technique for HST treatment is to place the applicator over the grill of the sea 

chest and fill the sea chest with heated sea water for a prolonged period of time (Figure 4). 

HST is a promising new hot water technology for the treatment of biofouling, however 

whilst hot water is adept at controlling the biosecurity risks associated with biofouling on 

vessel hulls no research has been conducted on heated seawater’s ability to treat biofouling 

within sea chests.    
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Figure 3: HST applicator with inhalant and exhalent hoses attached. 

Figure 2:  HST Vessel and Applicator treating a ship. 
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Project Objectives 
 

To address the limitations of effective treatment for secondary and tertiary biofouling of sea 

chests identified above, the objectives of this study included: 

1) To establish and identify biofouling taxa from a commercial shipping port in a shaded 

environment that would be reflective of biofouling in commercial vessel sea chests. 

2) To determine the most effective exposure time and temperature of heated water to 

cause 100% mortality to biofouling on settlement plates.  

3) To test the application of selected temperature and time exposures to hot water in a 

mock sea chest to cause 100% mortality of both secondary and tertiary biofouling 

species. 

The research in this thesis contributes to the research and development effort to strengthen 

the first strategy of the National System for the Prevention and Management of Marine Pest 

Incursions – prevention of marine pest incursions.  

 
  

Figure 4: Proposed HST applicator placement for the treatment of sea chests. 
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Chapter 2: Temperature and time exposure tolerance of primary and 

secondary biofouling taxa from shaded environments 

Methods 

Settlement Plate Deployment  

 

For the first objective of establishing a representative community of biofouling organisms 

from shaded environments on experimental units, both site and settlement unit substrates 

were considered. 174 Perspex settlement plates (200 x 160 x 3mm) were deployed in Port 

Kembla Harbour under Jetty Number 4 (-34⁰28’32”, 150⁰54’40”) (Figure 6) on  April, 4 2011.  

 

In temperate regions of Australia’s east coast, biofouling organisms that can exist in shaded 

environments include bryozoans, sponges, colonial and solitary ascidians, algae, barnacles 

and tube polychaetes (Glasby, 1997). These organisms readily settle on artificial substrates 

such as Perspex (Perrett et al., 2006). The Perspex plates had been aged in previous 

settlement studies and were acid washed in 10% hydrochloric acid to remove any influence 

of previously settled organisms. To ensure that only one side of the settlement plates were 

settled, paired plates were secured back to back and secured with cable ties at 4cm intervals 

along specially constructed PVC pipe racks (Figure 5). The plates were orientated vertically, 

this aided in minimising the presence of algae (personal statement, Johnston). In total, three 

rectangular racks were constructed (1800 x 2000mm) with a cross pipe for added rigidity. 

Holes were drilled in the pipes to allow the racks to flood and sink and also be easily pulled 

out of the water. 

 

The racks of settlement plates were in a shaded environment under a commercial jetty (# 4) 

in Port Kembla Harbour, to mimic the shaded environment of sea chests. The racks were 

suspended with the vertical plates approximately 2 meters below the low water mark and 

approximately 6 meters above the sediment – a relevant depth to reflect the depth of sea 

chest grates on ship hulls. The settlement plates were then left to foul for approximately 

three months; however plates were checked fortnightly to ensure plates were retained and 

to make qualitative assessments of organism growth. The 12 control plates used for the 
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temperature and exposure treatments were used to quantify the relative abundance and 

composition of phyla that had settled on the plates. Organism identification was undertaken 

during the survivorship assessment (below). 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 Figure 6: Jetty Number 4, Port Kembla Harbour (-34⁰28’32”, 150⁰54’40”) (Google Earth 6.0, 
2011 ) 

Jetty Number 4 

Figure 5: Settlement plate racks before deployment. 
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Time and Temperature Exposure  
 
Settlement plates were recovered after three months of immersion on July 1, 2011 and 

prepared for exposure to temperature exposure trials. Eight temperature and time regimes 

were chosen (Table 4) based on the review of temperature tolerance ranges of biofouling 

organisms from the literature as well as the hull application temperatures of the Hull 

Surface Treatment commercial applications. 

 

Table 4: Table 3: Treatments, Controls and Replications of Temperature Study (C = Control Temperature, 15 or 30 = 
treatment time, RSP = Control Temperature and Control Time and P# = plate number) 

Treatment 
Number 1 2 3 4 5 6 7 8 

  

C30 RSP C15 

Temperature 
(°C)° 30 30 40 40 60 60 70 70 Control Control Control 

Time (min) 15 30 15 30 15 30 15 30 15 30 Control 

Replications 4 4 4 4 4 4 4 4 4 4 4 

 

In an effort to minimise disturbance to the biofouling organisms before treatment, all 

treatments were undertaken on site under Jetty number 4 in Port Kembla Harbour (Figure 

6). Plates were removed from racks, photographed, tagged then placed in a shaded, holding 

tub filled with seawater of ambient temperature. Plates were submerged into one plastic 

tub used for each treatment of temperature and time exposure. To ensure a steady and 

controlled temperature supply of hot seawater water, the boiler on T&C Marine’s HST vessel 

was used to deliver heated seawater with a hose attached. When the desired water 

temperature was achieved in the treatment bath the plates were submerged for the 

allocated treatment time. Water temperature was monitored using the live thermocouples 

at the end of the HST hose, and was also verified using digital temperature loggers inside 

the treatment tub. Controls were exposed to unaltered seawater inside the treatment tubs 

for the allotted amount of time, and were used to establish any effects on survival from the 

handling process.  

After treatment, settlement plates were re-attached to the racks and resuspended over 

night to simulate real world conditions where the animals would be exposed to ambient 
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seawater again after treatment. This also allowed organisms that may have survived the 

treatment a chance to recover before being transported. The “RSP” plates were collected 

from the settling racks, photographed, tagged then resuspended to control for the effects of 

disturbance as a result of transportation to the lab.  The following day (2/7/11) the treated 

plates were collected from the settling racks and transported to the Shoalhaven Freshwater 

and Marine Centre where they were suspended in aquaria in preparation for survivorship 

assessment. 

Survivorship Assessment 
 

The survivorship of biofouling organisms on the treated settlement plates was assessed 

using a rapid visual technique (Woods et al., 2005). Plates were chosen at random from the 

aquaria system, and 4 quadrates (50 x 40 mm, 6.25% of the plate surface area) were 

randomly chosen for analysis. A Leica M26 dissecting microscope at 2.0X optical zoom was 

used to identify and quantify each organism greater than 2mm in length to the level of phyla 

or class and assessed for viability using the same guidelines used by Woods et al. (2005) 

(Appendix 1). Due to the plates being places in aquaria and the inherent difficulties with 

counting, mobile organisms were observed but not quantified.  

Statistical Analyses  

 

Relationships between organism viability and temperature/time were tested using a one-

way ANOVA. The effect of temperature on organism viability meant that no interaction was 

tested. Control data was explored for homogeneity and normality using SPSS Statistics 17, 

Release Version 17.0.1 (SPSS Inc., 2008, Chicago, IL, www.spss.com). Species richness and 

diversity measures were carried out using PRIMER, Release Version 6 (PRIMER-E, 2006, 

Plymouth). Multivariate analyses of community structure between control plates, as well as 

analysis of community structure changes due to temperature were tested using PRIMER-E 

(Clarke, 1993).        

 

  

http://www.spss.com/
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Results 

Ecological Findings 

 

Figure 7: Total number of each taxa identified across all plates in the temperature and time exposure tolerance trials 

 

1619 organisms or colonies in total were counted across all treatment plates (Figure 7).  An 

average of 2.3 phyla (SE = +/- 0.38) were identified in each of the 36 quadrats across the 12 

control plates (Figure 10). Bryozoans made up over a half (57%) of organisms with 935 

individuals or colonies identified across all plates. Further taxa included polychaeta, 40% 

(648) and the remaining 3% of organisms comprised of cirripedia (12), bivalvia (4), ascidians 

(8) and porifera (12). Per quadrate on control plates bryozoans averaged 60% (S.E. ± 4.6) of 

organisms observed whilst polychaetes averaged 22% (S.E. ± 4.2) of organisms per quadrate 

(Figure 8). Table 5 shows examples of the 6 taxa identified during the survivorship 

assessment.   

  

935 

648 

12 4 8 
12 

Bryozoans (935)

Polchaetes (648)

Cirripedia (12)

Bivalvia (4)

Ascidian (8)

Porifera (12)
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Table 5: Observed examples of each taxa identified in time and temperature trials.  

Organism Observed Example Organism Observed Example 

Bryozoa 
(Red 
bryozoan 
species is 
Watersipora 
arcuata) 

 

Bivalvia 

 

Polychaeta 

 

Ascidia 
(Ascidian Test, 
no alive 
ascidians 
photographed) 

 

Cirripedia 
(no photo of 
Cirripeda 
taken, 
example 
photo 
provided- 
Tesseropora 
rosea)  

Porifera 

 
(Barnacle photo taken from Davey, 2000) 
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Figure 8: Average percentages of organisms of each phylum that settled on control plates after three months of fouling 
time between April and June 2011 (±S.E.). 

 

Biofouling assemblages were consistent across the plates with no significant differences in 

their abundance (Figure 9) (f = 1.542, p = 0.159) taxonomic richness (Figure 10) (F = 1.479, p 

= 0.184) or diversity (Shannon H’loge) (Figure 11) of organisms settling on settlement plates 

(F = 1.472, P = 0.185). Multivariate assemblage analysis (Figure 12) also showed that there 

was no significant difference in assemblage abundance and relative composition between 

the control plates (ANOSIM Global R = 0.059, sig = 15%). 
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Figure 9: Average total organism abundance on control plates (±S.E.). 

 

 

Figure 10: Average Taxonomic richness across control plates (±S.E.). 
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Figure 11: Average H’ loge measure of diversity of control plates (±S.E.). 
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Figure 12: Multidimensional scaling ordination of plate averages assemblages on control 
settlement plates. No transformation applied to data and the comparison represents both 
composition and relative abundance of assemblages. 
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Temperature Effects on Viability 

 
Temperatures of 40⁰C and above had 100% effective mortality impact on organism viability 

(F = 508.805, p < 0.0001) (Figure 13). There was no significant impact of 30⁰C treatments on 

any of the assemblage taxa (F = 2.6, p = 0.115). At the higher temperatures, even the 

shortest time exposure of 15 minutes resulted in total mortality. Polychaetes were observed 

to have time to release propagules when disturbed during survivorship assessment at 30⁰C 

and control temperatures. Many polychaete tubes were empty, whilst some had the bodies 

of the worm hooked to the point at the opening of the tube, possible evidence of some 

animals trying to escape at the 40⁰C temperature range. Mobile amphipods were present 

during some plate assessments. There was no difference between assemblages found on 

control plates and plates treated with 30⁰C water (Figure 14). There was no significant 

difference in survivorship for control plates subject to treatment methods and those plates 

resuspended after photographing and tagging (Figure 13).  

 

 

Figure 13: Average viability of organisms after treatment regimes (±S.E.). 
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Figure 14: Multidimensional scaling ordination of assemblages in each quadrat on 30⁰C treatment and control 
settlement plates. No transformation applied to data and the comparison represents both composition and relative 
abundance of assemblages. 
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Chapter 3: Sea chest trials 
 

Methods 
 

Mock Sea Chest Construction 
 

To determine if HST has the ability to ensure that the required elevated water temperatures 

can be achieved and maintained throughout the sea chest the construction of a mock sea 

chest was necessary. The sea chest was 1 x 1 x 0.75m (W x H x D) and constructed from mild 

steel sheets welded into a cube (Figure 15). The grate or grill was approx. 0.45 x 0.45 m and 

positioned in the centre of the front-facing side. The front-facing side was also hinged to 

allow access to the inside of the sea chest and to allow the sea chest to be opened in the 

water (Figure 15). The front facing panel was also fitted to a latch to ensure a watertight 

seal (Figure 19). Both the steel sheets and welds were constructed from mild steel and were 

painted in order to reduce corrosion. The paint was applied by first using a galv etch (a non-

corrosive liquid that leaves the surface of metals rough for paint to adhere without the need 

of a primer), then all surfaces were coated with an enamel-based paint. On the top side of 

the sea chest two exhalent valves were welded, this allowed for the sea chest to be 

completely flooded with seawater before the treatments began (Figure 19).  

 
In reality sea chests are on the sides of maritime vessels, the inside of the sea chest is 

submerged in water whilst the five external sides are usually surrounded by air within the 

engine room of vessels. As such 20 mm marine play was screwed to the outside of the sea 

chest for insulation in an attempt to simulate real world conditions (Figure 19). Twelve 

screws, 150 mm were screwed into the corners and sides of the front facing and back facing 

panels of the sea chest; these were used to fasten the settling plates and temperature 

loggers to the sea chest (Figure 14, 16). Hooks were placed in the in the sea chest to fasten 

mussel bags during the trials.  
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Figure 15: Sea Chest after paint with screws for settlement plates and temperature logger 
placement. 

Figure 16: Placement and Locations for plates, temperature loggers and mussel bags within mock sea 
chest. 
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Replica Applicator Construction 

 

A model replica of the HST technology applicator was constructed. The applicator was 

constructed using marine play with valves used to and sealed holes cut into allow for the 

attachment of inhalant and exhalent hoses as well as the insertion of thermo couples to 

allow for live temperature readings (Figure 17, Figure 19). The applicator was fastened to 

the front wall using 6 magnets (as with the real world applicator) (Figure 17, 19). The 

applicator was sealed around the grill to allow ensure no hot water escaped from the grill. 

An extendible hose was delivered into the sea chest without the grill impeding the hot 

water flow in anyway (Figure 18). Handles were also fastened to the replica applicator to 

ensure the hinged front facing side of the sea chest can be easily opened and accessed to 

attach treatment plates internally (figure 17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 17: Replica applicator with handles, hose valves and thermo couple inlets 
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Figure 19: Finished mock sea chest with replica applicator attached 

Marine Ply 
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Exhalent Hoses 
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Figure 18: Inside of replica HST applicator through inside of mock sea chest grill 
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Hot water treatment application to biofouling organisms  
 

Sea chest trials were undertaken in situ under Jetty number 4 in Port Kembla harbour (-

34⁰28’32”, 150⁰54’40”). The trial took advantage of the settlement plates from the 

settlement racks in Chapter 2. Trials took place on August, 4 2011- four months of 

biofouling. The mock sea chest completely filled with 750 litres of water was too heavy for 

manual handling; as a result a sea crane was required for lifting and submerging the sea 

chest.  

 

 
To test the HST technology’s ability to treat biofouling that may be present in sea chests, 

mussels were used. On the support beams and ropes under Jetty Number 7 in Port Kembla, 

two mussel species were growing, Mytilus edulis (a NIMS itself) and Trichomya hirusta. A 

week before the main trial day, 15 each of M. edulia and T. hirusta were collected and 

placed in onion bags then resuspended on the settlement racks. This would allow the byssal 

threads of the mussels to attach to the onion bags and be used for the trials. Due to some 

Figure 20: Sea crane provided by Thomas & Coffey 
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changes in the number of trials and number of mussel bags used in each trial more mussels 

were collected on the trial day. This meant that for many mussels used in the trail the byssal 

threads had not attached to the onion bag used in treatment. As the mussels are not 

ingesting a biocide it was assumed that the lack of byssal thread attachment would not have 

an affect on heated seawater trials. In total 30 M. edulia and 55 T. hirusta were collected. At 

least 4 mussels were placed into each bag, 4 bags were used in each trial, placed on screws 

throughout the sea chest as shown in Figure 14. The mussel viability was assessed using the 

guidelines used by (Woods et al., 2005). When mussel’s viability was questionable, a biopsy 

of the mussel’s gill was examined under a microscope. The mussel was determined to be 

alive if cilia movement was observed.  

 

Figure 21: Cilia movement as observed under an optical microscope durig mussel survivorship assessment. 

 

Four temperature regimes were selected based on the pilot temperature and time of 

exposure trials and applications of the commercial HST technology. The temperature 

regimes were; 70C and 60C at 10 minutes each and 40C for 15 and 30 minutes. Controls 

Cilia Movement 
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for this trial were placed inside the sea chest and submerged for the maximum treatment 

time (30 minutes), the sea chest being flooded with untreated seawater.  

 
An initial run was undertaken with temperature loggers placed in each corner of the sea 

chest to determine the temperature variability within the sea chest and the maximum 

temperature sustainable. In addition, thermocouples were also used to obtain a live reading 

of the temperatures achieved. The onboard boiler heated the seawater to its maximum 

temperature (approximately 85C), the sea chest was then submerged, and all air was 

released. After the sea chest was submerged for 5 minutes the HST unit was initiated, when 

the maximum temperature was reached inside the sea chest it was maintained for 20 

minutes. The sea chest was then lifted to the surface, opened in the water and brought 

aboard the HST boat and temperature logger data was analysed.  

 

To apply the hot water treatment to plates inside the mock sea chest, the settling plates and 

mussels were brought up from settlement racks, photographed and tagged for treatment 

identification and then placed in a pre-treatment holding tub in ambient seawater. The sea 

chest was placed onboard the HST vessel and the temperature loggers, settlement plates 

and mussel bags were then secured inside the sea chest (Figure 16). The sea chest was then 

lowered into the water with the top exhalent valves open to release all air inside the sea 

chest. The valves were then closed and the sea chest was submerged for 5 minutes before 

the treatment started. This ensured all settlement plates, loggers and mussels’ experienced 

the same water temperature before treatment. After the 5-minute rest period, the sea 

chest was heated until desired temperature was achieved on the live reading from the HST 

unit, this was maintained for the specific treatment time. When the treatment was 

complete, the sea chest was brought to the surface, opened by a diver and then brought 

aboard the HST vessel for the next treatment. At the end of each treatment, mussel bags 

and settlement plates were placed in a post-treatment tub in ambient seawater awaiting 

transport back to the laboratory at the end of all treatments. After the settlement plates 

and mussel bags were transported to the laboratory they were suspended in marine aquaria 

at 18C with aeration. No nutrients were added to the water and the tanks were kept out of 

direct sunlight whilst the organisms were assessed for viability following the same 
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survivorship assessment procedure for the pilot temperature and time of exposure trials 

(Chapter 2). 

 

Statistical Analysis  
 
Mussel species numbers were not equal nor were there always the same number of mussels 

in each bags, as such; no analysis of the relationship between mussel species and mortality 

was explored. Relationships between mussel viability and temperature and time were 

tested using a one-way ANOVA. The effect of temperature on mussel viability meant that no 

interaction was tested. Control data was explored for homogeneity and normality using 

SPSS Statistics 17, Release Version 17.0.1 (SPSS Inc., 2008, Chicago, IL, www.spss.com). 

Species richness and diversity measures were carried out using PRIMER, Release Version 6 

(PRIMER-E, 2006, Plymouth). Multivariate analyses of community structure between control 

plates, as well as analysis of community structure change from 3 to 4 months were 

undertaken using PRIMER-E (Clarke, 1993).  

 
During the course of these trials concessions were made to account for the added cost of 

this study. This meant that one trail day was available to conduct the main mock sea chest 

trials. The decision was made to test a variety of temperatures and use multiple settlement 

plates within the sea chest as the replicates within the sea chest. This meant that only one 

plate experienced one treatment in one corner of the sea chest, essentially the trails were 

pseudo replicated. Ideally a minimum of three runs of each temperature regime would have 

been conducted to ensure a maximum confidence. These added trails would have exceeded 

the allowable budget for an honours project. 

 

 

 

 

 

 

http://www.spss.com/
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Results  

Ecological Findings  
 

 

Figure 22: Total number of taxa identified across all plates for the Sea Chest Trails. 

 

A total of 1497 organisms were counted across all plates used in the sea chest trials.  

Bryozoans made up approximately half (49%) of organisms with 714 individuals or colonies 

identified (Figure 22).  Polychaetes made up a larger percentage of the organisms compared 

to pilot control plates with 651 (43%) individuals identified.  The remaining 8% of organisms 

were again distributed across Cirripedia (58), Bivalvia (49), Ascidia (18) and Porifera (7). On 

the control plats bryozoans averaged 48.5% (S.E. ± 3.25) of organisms observed per 

quadrate whilst polychaetes averaged 42.4 (S.E. ± 2.99) (Figure 23).    
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Figure 23: Average percentages of organisms of each phylum that settled on control plates after four months of fouling 
time between April and July 2011 (±S.E.). 

As for Chapter 2, all ecological analysis was undertaken using the control plates of the main 

trial. Over 95% (S.E. ± 1.44) of organisms survived on the control plates (Figure 24) and there 

was no significant difference between percentages of organisms across the control plates (f 

= 0.760, p = .625). This confirmed consistent and appropriate handling of the settlement 

plates throughout the experiment. Average taxa abundance was 9.03 (S.E. ± 1.2), no 

difference in taxa abundance (Figure 25) was observed between control plates (f = 0.28, p = 

0.868). Average taxonomic riches was 2.4 (S.E. ± 1.2) however there was a significant 

difference in taxonomic richness between control plates (F = 2.727, p = 0.031) (Figure 26). 

This difference was primarily due to the statistical difference between plates C5 and C6, 

these two plates are not significantly different to any other control plate (average difference 

= 1.250, p = 0.021). There was a statistically significant difference in diversity (Shannon 

H’loge) (Figure 27) of organisms settling on control settlement plates that reflected the 

taxonomic richness patterns (F = 3.377, P = 0.012). There was no overall significant 

difference in assemblage composition and abundance across the control plates (ANOSIM 
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Global R = 0.084, sig = 12.4%) (Figure 28). There was no significant difference between 

assemblages with three months of biofouling and assemblages after 4 months of biofouling 

(Figure 29).  

 

 

Figure 24: Percentage organism survival across control plates (±S.E.). 

 

Figure 25: Average total organism abundance across control plates for main trial (±S.E.). 
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Figure 26: Average taxonomic richness of quadrates on control plates (±S.E.). 

 

 

Figure 27: Average Shannon H' loge diversity measure of quadrates on control plates for main trial (±S.E.). 
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Figure 28: Multidimensional scaling ordination of assemblages on control settlement plates of sea chest trial. 
No transformation applied to data and the comparison represents both composition and relative abundance of 
assemblages. 

Figure 29: Multidimensional scaling ordination of assemblages on control settlement plates of sea chest trial 
compared to the assemblages on control plates of the temperature and time pilot trial. 
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Temperature Effects on Viability 
 
As was observed in the time and temperature pilot trials, 100% mortality across biofouling 

on settlement plates was observed. In contrast, there was no significant difference between 

the 40C treatments and the controls for mussels (Figure 30) (f = 3.000, p = 0.114). Both 

60C and 70C treatments significantly affected mussel mortality (f = 13.102, p < 0.0001), 

showing 100% mortality. It appears that hot water reached the corners of the sea chest 

whilst the top and middle of the front facing panels did not reach the maximum 

temperature during the two 40C treatments (Figure 31). There was only 2 replicates of this 

data, as such no multiple comparison tests were conducted. 

 

Figure 30: Percentage viability of mussels placed within the sea chest and exposed to temperatures of 40, 60 and 70 

degrees for 30, 15 and 10 minutes respectively (S.E.). 
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Figure 31: Percentage mussel viability by placement within sea chest at 40°C (±S.E.).There is a trend towards the corners 
(Bottom Right Back and Top Left Front) experiencing higher temperatures than the front panel of the sea chest. 

 

Temperature Variability  
 

Temperature varied throughout the sea chest in all trials. The maximum temperature initial 

run showed a difference of 12.5°C after maximum temperature was reached on the live 

reading from the HST unit (Figure 32). The differences in temperature experienced 

throughout the sea chest declined rapidly during the 40°C treatments, with only a 4°C 

difference experienced. Even at the lowest recorded temperature of 37.5°C there was a 

100% mortality rate at the effective exposure time of 15 minutes on the settlement plate.  
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Figure 32: Temperature change in each corner of the sea chest during initial trial. 
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Chapter 4:  Discussion 
 

This study found that a suite of taxa that fouled hard surfaces in shaded environments did 

not survive exposure to 40C, and that these conditions were effectively applied in a mock 

sea chest using hot water treatment technology (HST). The findings establish for the first 

time that cryptic niche areas of ship hulls can potentially be effectively managed with 

existing technology and contribute to the preventative strategies of national and 

international marine pest management systems. 

 

Ecological Findings 
 

There was no overall significant difference in assemblage composition and abundance 

across the control plates for the temperature and time efficiency trials and the sea chest 

trials. This tells us that all mortality differences on treated plates are as a direct result of the 

hot water treatments and treatments within the mock sea chest. The figures 20, 21, 22, 23 

and 24 show that plate fouling was relatively uniform across the control (and by extension 

treatment) plates, with only one plate (C6) showing any statistical difference. 30⁰C water 

does not have an effect on non-algal temperate biofouling organisms found in Port Kembla 

harbour (Figure 14). The plot (Figure 14) also confirms that handling and transportation 

played no role in changing the assemblages observed on the plates. Comparison of 

assemblages found on control plates from the temperature and time pilot trail described in 

Chapter 2 and the control plates of the main mock sea chest trial described in Chapter 3 

(Figure 25) found no significant difference in assemblage structure. From this we can infer 

that non-algal temperate fouling assemblages found in Port Kembla harbour do not 

significantly change from 3 to 4 months.  

 
Assemblages around marinas have been shown to differ to controls placed in less disturbed 

environments (Glasby, 1997, Turner et al., 1997). Turner et al. (1997) translocated 

established assemblages growing on settlement plates from a control location to sites 
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around marinas. The plates at sites closest to the marinas were found to diverge from the 

control location. The most recognisable change was the loss of cover by abundant and 

spatially dominant solitary ascidians; the plates then exhibited an increase in space 

availability, and a small increase in the cover of sponges, hydroids, bryozoans and colonial 

ascidians. This differs in assemblage from Glasby (1997) as Turner’s (1997) was conducted in 

New Zealand, assemblage difference is expected, however the observations of an increase 

in free space, sponges and bryozoans does coincide. It was also observed that assemblage 

difference coincided with difference in the concentration of heavy metals in suspended 

sediments (Turner et al., 1997). Port Kembla in the past has been linked with fewer 

bryozoan species Bugula nertina and Tricellaria porteri due to increased levels of heavy 

metals. The development of the polychaete Galeolaria caespitosa and the byrozoan 

Watersipora arcuata (an invasive species)  were not affected greatly (Moran and Grant, 

1993). These species were observed during the survival assessment of both trials however 

they were not quantified. In an effort to increase the sample sizes more plates had to be 

analysed, the speed at which the plates had to be analysed to ensure no organism death 

whilst in aquaria mean the ability to identify organisms to a higher taxonomic resolution 

was sacrificed. As a result of the added disturbance due to the plates being located on a 

working jetty and subject to higher heavy metal concentrations the assemblages described 

in this study may not be indicative of natural fouling assemblages outside of Port Kembla 

harbour. 

Similar to other studies, the assemblages observed fouling on shaded settlement plates 

were primarily comprised of bryozoans and polychaetes. Glasby (1999) found that free 

space, number of organisms, polychaetes, sponges, barnacles and hydroids all increased in 

number in shaded areas. Distance from the sea floor has also been found to interact with 

shading to have a significant effect on fouling assemblages (Glasby, 1999). The closer the 

settlement plate was to the sea floor the less light available to the plate, in turn less algae 

present on the settlement plate. Glasby (1999) saw dramatic decreases in algae numbers in 

shaded areas near and far from the sea floor when compared to control (light available) 

areas. Sea chests are completely dark areas as a result no algal species grow within sea 

chests. The complete lack of algae on settlement plates in this study increases the likelihood 
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of the assemblages observed being representative of fouling communities inside sea chests 

of ships in Port Kembla Harbour.    

 

The taxa subject to treatment in this study are largely representative of taxa previously 

observed inside sea chests. Coutts and Dodgshun (2007) observed a large number of 

Mytilidae (marine mussels) within sea chests during a survey conducted in New Zealand. 

Large numbers of Mytilus galloprovincialis were observed within the sea chest of a South 

African Antartic research supply vessel in 2006 (Lee and Chown, 2007). Other sessile and 

sedentary taxa observed in sea chests were Porifera, Cnidaria, Bivalvia, Bryozoa, Serpulid 

and Spirorbid polychaets, Balanidae (Barnacles) and Ascidia. With the exception of Cnidaria 

all of the taxa observed to settle within sea chests in Coutts and Dodgshun (2007) were 

represented during the course of these trials. Considering this, the taxa represented on the 

settlement plates in this study would likely be indicative of taxa settling within the sea 

chests of maritime vessels in Port Kembla Harbour.  

 

Heated Water Applications 
 

The heated seawater technology tested in this thesis has the ability to achieve and maintain 

a temperature for the required duration to ensure 100% mortality of biofouling organisms. 

The temperature and time exposure pilot trials (Chapter 2) in this study established that 3-

month-old biofouling was susceptible to treatment of 40°C. This is consistent with Rajagopal 

(1995) and the observation that a temperature of 39⁰C was able to deliver 100% mortality 

of the bivalve Perna viridis after 73 minutes. Rajagopal (2005) also observed that 

Crassostrea gigas experiences 100% mortality after 62 minutes at 42⁰C. The Rajagopal 

(2005) study only examined oysters larger than 10mm and had no estimates of age. No 

bivalves were able to grow to that size on the settlement plates in this study, as such it is 

expected that the assemblages in this study were younger than the organisms tested in the 

Rajagopal study and thus it was expected that the fouling organisms would expire at lower 

temperatures and times. However, the results show that 30⁰C seawater treatments do not 

significantly affect the mortality of fouling organisms.  
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Building on these findings, the mock sea chest trials also confirm the susceptibility of 

tertiary biofouling to heated sea water treatments. Mytilus edulis and Trichomya hirusta 

both showed 100% mortality after treatments of 60 and 70°C. This supports previous mussel 

thermal tolerance research which showed that 30 mins at 55 C was sufficient to ensure 0% 

attachment from the mussel Perna canaliculus (Forrest and Blakemore, 2006). 40°C 

seawater treatments were not enough to significantly affect the viability of tertiary fouling 

organisms. This study supports findings by Rajagopal (2005) who found that the C. gigas (a 

species capable of surviving in tropical and temperate climates) at 10.7±1.3mm was able to 

survive at temperatures of 40°C and 41°C for over an hour. The findings of the mock sea 

chest trial also concur with Morse (2009) who found that heated water treatments greater 

than 60°C for 10 seconds or 80°C for 5 seconds were able to achieve 100% mortality in the 

Zebra Mussel, Dreissena polymorpha. These treatments were not mimicked in this study as 

in the Morse study involved aerial exposure of the mussel the heated spray treatment, not 

immersion. Longer time periods of complete hot water immersion were tested.  

 

The addition of chlorine or oxidants to heated water was suggested as a possible way to 

treat for D. polymorpha (Harrington et al., 1997). The idea being that the addition of 

oxidants would mean that the temperature of the water would not need to be raised as high 

or maintained for as long to ensure 100% mortality. When combined the use of heat and 

oxidants decreased the time to 95% mortality by more than 95% at 30°C (Harrington et al., 

1997). At 36°C however, the differences between the combined treatment strategies over 

heat alone were minimal. Considering the risks the addition of chlorine may pose to the 

local environment and that the use of 40°C does significantly slow down the HST unit or 

slow its output the addition of oxidants for the treatment of biofouling is unnecessary. 

 

Optimum temperature treatments and times identified in this study were 40°C at an 

exposure time of 15 minutes for all secondary biofouling and 60 and 70 °C for 10 minutes 

for tertiary biofouling.  Thermal shock has been shown to induce mortality of many marine 

species (Rajagopal et al., 1995, Thiyagarajan et al., 2000, Rajagopal et al., 2005, Morse, 

2009), however at 40oC, exposure for longer than 15 minutes may be required to avoid 

propagule or organism escape. It was observed anecdotally that at 40°C, treatments 

polychaetes may have tried to escape. There was no evidence of escape at higher 
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temperatures (60°C and 70°C). The slow heating times in a sea chest will require the sea 

chest to be sealed to prevent propagule release or mobile adult organism escape. When 

applying hot water treatments to other parts of vessel higher temperatures (greater than 

60°C) will have to be used to ensure the biofouling organism has expired before it has a 

chance to escape the hot water or spawn. This would apply to hot water treatments on 

surfaces where sealing the water would be impossible, such as other niche areas of a vessel, 

including the rudder hinge, propeller, bilge keel and bow thrusters. 

 

Marine Pest Applications 

 

The biofouling taxonomic groups represented in this survey represent many marine pest 

species that are known to have invaded new areas. The invasive bryozoans Watersipora 

arcuata and Bugula nertina were observed fouling settlement plates throughout this study. 

W. arcuata, a Mexican-Pacific native has been spread to Australia and Hawaii due to its 

ability to rapidly colonize surfaces of degraded antifouling paint on ship hulls (Mackie et al., 

2006 and references there in). Bugula neritina, an upright-branching bryozoan, was 

considered cosmopolitan at the time of first taxonomic identification; however further 

genetic and bacterial-symbiont diversity analysis has shown that the taxon is the three 

cryptic species. The Type S species has found to be widespread throughout Australia, Hong 

Kong, Curacao, Hawaii and England (Mackie et al., 2006 and references there in). A famous 

example of an invasive polychaete is the European fanworm, Sabella spallanzanii, 

introduced into Port Phillip Bay, Victoria in the late 1990s it is now a prominent part of most 

benthic communities. A 1998 dive survey showed S. spallanzanii has extended its range to 

cover the entire 2000 km2 embayment and had invaded most sub tidal habitats (Currie et 

al., 2000). The primary methods of transport for S. spallanzanii is biofouling on ships and 

inside internal seawater systems (NSPMMPI, 2009), and in sight of its current abundance, 

high fecundity and long spawning periods, there is a high risk of future expansions (Currie et 

al., 2000). Although this species was not found on settlements plates in this study, it is of 

similar size and habitat to the biofouling polychaets identified in this study as well the 

temperate distribution of invasion, these factors indicate that at least the biofouling life 

stages would  of S. spallanzanii be susceptible to temperatures of 40°C and above, however 
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further testing on adult stages of the polychaete would be required to establish species 

specific susceptibility heated sea water treatments.  Future work might consider testing 

temperatures between 30°C and 40°C to find the minimum temperature and time exposure 

required to eliminate primary and secondary biofouling, which might benefit the efficiency 

of application in commercial practice. 

 

Based on the results of this study, HST at elevated temperatures of 60 or 70°C for a period 

of 10 minutes is capable of inducing 100% mussel mortality inside sea chests.  HST is a 

potential tool for mitigating the transfer of tertiary biofouling NIMS via sea chests. A mussel 

species known the inhabit sea chests is the Mediterranean mussel, Mytilus galloprovincialis. 

Native to the Black, Adriatic and Mediterranean Sea this species has successfully established 

itself widely around the world in temperate regions where there are large shipping ports 

(Branch and Nina Steffani, 2004).  One particularly concerning report of M. galloprovincialis 

biofouling was its presence in large numbers within the sea chests of the South African 

National Antartic Programme supply vessel, the SA ‘Agulhas’ (Lee and Chown, 2007). This is 

particularly worrying as the size of the mussels indicated that they had survived 

transportation to the Antartic region on multiple occasions. Whilst the mussel hasn’t been 

recored in the antartic region there is the very real posibilty that this species could inhabit 

areas such as Marion Island and Gough Island (Lee and Chown, 2007). To test heated 

seawater’s abilty to treat tertiary biofouling the species Mytilus edulis was used. M. edulis 

and M. galloprovincialis both being from the same genus and native to similar climates it is 

expected that the time and temperature treatments used to treat M. edulis will also be 

effective to treat the biosecurity risks posed by M. galloprovincialis. 

 

Hull Surface Treatment Viability 
 

An observation made during this study was that at higher temperatures there is a fairly large 

variability of temperatures experienced at different places within the sea chest. Considering 

the maximum flow rate (38 litres per minute at time of trials) at which the HST unit can 

operate and the size of the mock sea chest it is predicted that larger sea chests will 

experience even greater variability, compensations will need to be made during for the 
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technology’s application. At the time of writing a new two-stage pump has been added to 

the HST unit delivering 120 litres per minute at a temperature up to 98°C. Similar trials will 

need to be undertaken with a larger mock sea chest (e.g. 2 x 1 x 1m) or by placing 

temperature loggers in a real world and larger sea chest during a HST application. This 

would inform HST’s application to larger vessels as well as help determine a relationship 

between sea chest size and temperature variability. Rajagopal (2005) was able to induce a 

higher thermal tolerance in C. gigas by exposing the oysters to 1 hour treatments of 37 and 

39°C 14 days before treating the oysters. For example at 40°C oysters exposed after 

previous thermal shock and oysters exposed without previous thermal shock took 156 and 

123 min, respectively to achieve 100% mortality. This could have a dramatic effect on the 

application of HST. The temperature variability within the sea chest is such that if a tertiary 

fouling organism is exposed to temperatures lower than 40˚C it could mean the next time it 

is treated at a higher temperature it may have a acquired a thermal tolerance high enough 

to survive the new treatment. Considering this and the temperature variability experienced 

inside the sea chest means higher temperatures (60 of 70°C) should be used to treat tertiary 

biofouling.   

 
During the survivorship assessment it was observed that when some polychaetes’ tubes 

were disturbed in anyway the worm would release propagules. Mobile amphipods were also 

observed on plates during the survival assessment phase of the time and temperature trials. 

HST has a specific advantage when it comes to managing marine pest incursions resulting 

from sea chest transport, which is the applicator’s ability to form a soft seal around the 

grate of the sea chest. It has been observed that any active treatment of sea chest will have 

to account for both mobile organisms and propagule release (Coutts and Dodgshun, 2007, 

Coutts et al., 2003). The seal formed means that mobile organisms and propagules will not 

escape during treatment when the organism is first disturbed. It was also observed at during 

the survivorship assessment of 40°C plates that many polychaete tubes were empty or had 

the remains of the worm caught on the points at the entrance of the tube, this could be 

indicative of organisms trying to escape the heated water. Due to temperature variability 

within the sea chest at higher temperatures some organisms may not experience the 

maximum temperature within the sea chest. This is particularly problematic when trying to 

treat adult mobile organisms, because heating is not uniform, mobile taxa could seek refuge 
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in cooler parts of the sea chest, survive the treatment then escape afterwards. As a result, 

not only will the biofouling have to be isolated during treatment but higher temperatures 

maintained (60 or 70°C) to ensure mobile taxa are treated to a lethal exposure to heated 

seawater.  

The power of the results in Chapter 3 make up for the pseudo-replicatory effects of using 

multiple plates within the sea chets as replicates each temperature treatment once. Future 

studies however may use more then one run of each temperature and time regime. The 

temperate bryozoan dominated assemblages found in Port Kembla harbour during the 

course of this study are not indicative of biofouling assemblages found in other tropical or 

other temperate zones (Turner et al., 1997, Satheesh and Wesley, 2011). Testing the 

temperature tolerances of different biofouling assemblages will be required to determine 

this technology’s efficacy for use around the world. Key to this may be the thermal 

tolerances of organisms in tropical regions that routinely experience warmer temperatures, 

in this situation 40˚C may not be high enough to induce 100% mortality of biofouling 

organisms (Rajagopal, 2005). The ambient temperature of the water which the HST unit will 

have to heat in tropical conditions, the temperature variability within the sea chest will be 

affected. The higher ambient water temperature will mean that the HST unit will be able to 

heat the water faster and deliver higher temperatures more effieciently to the sea chest as 

less heat will be drawn from the hose, applicator or sea chest to the outside water. Ideally 

the trails conducted in this study should be conducted in tropical waters. 

 
The three and four month non algal temperate epibiotic assemblages recorded in this study 

may not be indicative of three and four month from other times of the year. It has been 

known for the better part of a century that on the New South Wales coastline organisms 

experience settlement and different rates throughout the year (Allen and Wood, 1950). 

There is the possibility that the different fouling assemblages from different times of the 

year will have different thermal tolerances. Due to time constraints of an honours project 

this study was only able to assess winter fouling assemblages (1 April to 4 August 2011). 

Future studies should also  test HST’s ability to effectively treat 3-4 month assemblages from 

the three other seasons of the year (Spring Aug – Nov, Summer Nov – Feb and Autumn Feb-

Apr).      
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Biofouling may show a faster rate of recruitment after HST treatment. Fouling, or the 

remains of, on a vessel following treatment may also provide a refuge for newly settling 

fouling taxa. The invasive bryozoan Watersipora subtorquata is known to act as a 

foundation species for fouling assemblages colonising areas treated with anti-fouling paint 

(Floerl et al., 2004). During this survey the hard remains of bryozoans and ascidians as well 

as the calcareous tubes of polychaetes were present on settling plates long after treatment. 

Whilst the extreme water flow experienced within sea chests may mean some of the 

remains will be removed, areas of low water flow may show higher rates of recruitment 

after HST treatment. This means that although HST has the ability to treat tertiary biofouling 

within sea chests it would be most effective as part of continual antifouling maintenance 

regime. Three months was observed to accumulate a 15 - 40 % cover of biofouling 

organisms on tin free copper based antifouling paints (Jelic-Mrcelic et al., 2006). Notable 

animal taxa included Serpulid polycheates, Encrusting Bryozoans and Barnacles. After just 6 

months Mussels began to dominate the assemblages. Once secondary biofouling has 

initiated within the sea chest treatment HST treatment will have to become more regular to 

mitigate the biosecurity risks posed by higher recruitment rates. The complete prevention of 

biofouling is the untimate goal of all antifouling strategies. To ensure a biofouling free sea 

chest regular treatments at regular intervals less than 3 months (e.g., monthly) after dry-

docking is required.  

 

Ideally vessels would be regularly treated (e.g., monthly), thus preventing tertiary 

biofouling. However, HST could be used to treat maritime vessels already expressing tertiary 

biofouling before they enter a port. The treatment before the ship enters port would mean 

that any biosecurity risks inside the sea chest will accounted for before the vessel reaches a 

shallow environment suitable for organism escape or settlement. The biofouling remains 

within the sea chest may then increase the recruitment of more fouling organisms (Floerl et 

al., 2004), however any in-water cleaning of an antifouling painted surface is illegal in 

Australian waters (NIMPCG, 2009). Sea chests are occasionally allowed to be defouled in-

water however this is at the discretion of the appropriate state or territory regulator. 

Hopkins (2010) described 3 situations where the biosecurity risks of in-water defouling are 

likely to be low: 1) The defouling method retains close to 100% of defouled material; 2) 
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Biofouling has been previously treated and is no longer viable; and 3) Defouling is carried 

out over sub-optimal habitat (e.g. open ocean) to minimise survivorship. If the vessel’s sea 

chests are treated with HST before entering a port then the biological risks associated with 

in-water fouling would be insignificant so long as the antifouling paint coat remains 

undamaged. Currently it is not standard practice for vessel owners/companies to examine 

their vessel’s fouling levels to determine the NIMS risk. Surface observations of vessel 

fouling are not a useful predictor of sub-surface fouling (Hopkins, 2010. As such, a 

precautionary approach should be taken and all vessels that have not received a defouling 

treatment within the previous three months should be treated with HST before they enter 

port.  

 
In an ideal world the HST applicator will be applied to the side of the hull and when, during 

the course of its hull application, it comes across a sea chest the applicator will be placed 

over the grill of the sea chest and initiated (Figure 4). For hull treatment the HST unit is 

usually heating water to temperatures of >70C. For the course of its application to the sea 

chest, this temperature should be maintained in the boiler whilst the sea chest should be 

heated to a minimum of 60C for 10 minutes to ensure total biofouling mortality. The HST 

applicator is not applicable to other vessel niche areas such as dry docking support strips, 

rudder hinge, propeller, bilge keel and bow thrusters. This reinforces that notion that HST is 

just one tool availiable for the treatment of vessel biofouling. To minimise the biosecurity 

risks associated with vessel biofouling HST should be used in conjunction with properly 

applied and maintained anti-fouling paint, and regular dry-dockings. HST is a viable tool for 

the first strategy of the National System for the Prevention and Management of Marine Pest 

Incursions – prevention of marine pest incursions.        

 

Conclusion and Future Research 

 

In conclusion, the application of 40˚C sea water that was maintained for 15 minutes was 

shown to be an effective treatment either by immersion of the use of HST technology to 

eliminate all secondary biofouling organisms in this study. For tertiary biofouling higher 

temperatures of at 60˚C for 10 minutes are required within the sea chest to ensure all 
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tertiary biofouling and adult mobile organisms have expired within the sea chest. The 

temperate non-algal epibiotic assemblages present on settlement plates used for the course 

of this study are likely to be reflective of the biofouling within commercial vessels of Port 

Kembla Harbour. The taxa exposed in this treatment were NIMS themselves, or 

representative of taxa that have currently invaded marine habitats in Australia or around 

the world. HST has the ability to isolate the sea chest and ensure all biofouling is treated 

before propagules or mobile organisms have a chance to escape. These results show that 

HST is a viable option for treating the biosecuirty risks associated with biofouling within sea 

chests.There was a significant temperature variability observed throughout the sea chest 

during treatment HST should be trialled on larger sea chests. Assemblages and thermal 

tolerances of organisms are different in other regions and climates of the world ideally this 

study should be repeated in tropical waters. Currently HST cannot treat other vessel niche 

areas, as such HST should be used in association other antifouling and defouling measures 

and maritime regulatory practices to prevent future NIMS incursions.       
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Appendices  
Appendix 1: Guidelines used to assess viability of fouling taxa on treated settling plates.  

 Indicators for live and viable 
individuals/colonies 

Indicators for non-viability of 
individuals/colonies 

   
 

Barnacles  
 

 
Structure: All shell plates present and 
intact, opercular plates present (acorn 
barnacles only – gooseneck barnacles 
have no opercular plates).  
Feeding/movement: Feeding structures 
(cirri) protrude out of the test and 
perform sweeping feeding movements. 
Or opercular shells closed by muscular 
action.  

 

 
Structure: Shell/opercular plates 
and/or feeding structures (cirri) broken 
or missing.  
Feeding/movement: Feeding structures 
visible but motionless and slack and/or 
no reaction when poked.  

 

 
Bivalves  

 

 
Feeding/movement: Shells may be 
locked by muscular action (i.e. this 
bivalve lives). Shells may also be open 
(feeding), exposing mantle tissue and 
siphons (or gaps in mantle), but will 
close when poked (reaction).  
Structure: Both shells present and 
intact.  

 
 

 
Structure: One shell missing or 
one/both shells cracked or fragmented.  
Feeding/movement: Shells open but no 
reaction to touch.  

 
 
  

 
Encrusting bryozoans  

 

 
Structure: Colony/fragment contains 
several intact zooids (check for animal 
inside against light).  
Feeding/movement: Filtering 
apparatus (lophophore) protrude 
through opening in zooid.  

 

 
Structure: All zooids 
damaged/smashed, no soft tissues 
visible. And/or: all colonies dried out, 
loss of all moisture. And/or loss of 
pigmentation.  
Feeding/movement: Zooids’ soft 
tissues and/or feeding structures may 
be visible but no movement or reaction 
to touch.  

 

 
Erect bryozoans  

 

 
Structure: Colony/fragment contains 
several intact zooids (check for animal 
inside against light).  
Feeding/movement: Filtering 
apparatus (lophophore) protrude 
through opening in zooid.  

 

 
Structure: All zooids 
damaged/smashed, no soft tissues 
visible. And/or: all colonies dried out, 
loss of all moisture.  
Feeding/movement: Feeding structures 
may be visible but no movement or 
reaction to touch.  

 

 
Colonial ascidians  

 

 
Structure: Colony/fragment in 
reasonable ‘shape’, moist to the touch 
(not dried) and not entirely crushed. 
Several polyps intact.  
Feeding/movement: Inhalant and/or 
exhalant siphons open but close when 
poked.  

 

 
Structure: Shredded or crushed so that 
badly damaged. No polyps visible 
(polyps may have ‘popped out’ from 
mechanical pressure on colony). 
And/or colony dried out, loss of all 
moisture.  
Feeding/movement: Siphons open but 
no reaction to touch.  

 

 
Solitary ascidians  

 

 
Structure: Test (body) intact, no holes 
or gashes, not crushed flat or severely 
deformed. Moist, not dried.  
Feeding/movement: Inhalant and/or 
exhalant siphons open but close when 
poked (reaction).  

 

 
Structure: Test badly damaged, 
crushed or deformed. Branchial basket 
exposed and/or damaged, guts hanging 
out. And/or colony dried out, loss of all 
moisture.  
Feeding/movement: Siphons open but 
no reaction to touch.  
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Hydroids  
 

 
Structure: Body reasonably intact, 
feeding polyps (often at distal ends of 
braches) present.  
Feeding/movement: Feeding tentacles 
exposed.  

 

 
Structure: All polyps 
damaged/smashed. And/or colony 
dried out, loss of all moisture.  
Feeding/movement: Feeding structures 
may be visible but no movement or 
reaction to touch.  

 

 
Tubiculous polychaetes  

 

 
Structure: Intact (body within 
tube), not crushed, no holes or 
gashes.  
Feeding/movement: Worm 
retracts into tube when poked 
(reaction), and/or feeding 
structures (tentacular crown) 
visible and moving.  

  

 
Structure: Tube missing, loss of 
tentacular crown, body badly 
crushed or lacerated. And/or dried 
out, loss of all moisture.  
Feeding/movement: Feeding 
structures may be visible but no 
movement or reaction to touch.  

  

 
Sponges (assessment of viability very 
difficult or impossible)  

 

 
Structure: Fragments retain natural 
colour, firm texture (don’t fall apart). 
Sponges retain a 
“fleshy/translucent/shiny” appearance. 
Look for “translucent” tissue between 
fibres  
Feeding/movement: Impossible to 
observe.  

 

 
Structure: Colony/fragment faded and 
bleached, falling apart. Sponge a mass 
of golden fibres/hair-like structures 
without “translucent fleshy tissue” 
between the fibres. And/or colony 
dried out, loss of all moisture. Usually 
no chance for survival if removed from 
water for more than 3 hours.  

 

 
Macroalgae  

 

 
Structure: Contain pigment and have 
natural colour. Dryness often not a 
good indicator as some species are 
intertidal. Look out for and preserve 
reproductive structures.  
Feeding/movement: n/a  

 

 
Structure: Badly crushed, fragmented, 
or faded (loss of pigments).  
Feeding/movement: n/a  

 

 Indicators for live and viable 
individuals/colonies 

Indicators for non-viability of 
individuals/colonies 

 
 

  

 
Barnacles  

 

 
Structure: All shell plates present and 
intact, opercular plates present (acorn 
barnacles only – gooseneck barnacles 
have no opercular plates).  
Feeding/movement: Feeding structures 
(cirri) protrude out of the test and 
perform sweeping feeding movements. 
Or opercular shells closed by muscular 
action.  

 

 
Structure: Shell/opercular plates 
and/or feeding structures (cirri) broken 
or missing.  
Feeding/movement: Feeding structures 
visible but motionless and slack and/or 
no reaction when poked.  

 

 
Bivalves  

 

 
Feeding/movement: Shells may be 
locked by muscular action (i.e. this 
bivalve lives). Shells may also be open 
(feeding), exposing mantle tissue and 
siphons (or gaps in mantle), but will 
close when poked (reaction).  
Structure: Both shells present and 
intact.  

 
 

 
Structure: One shell missing or 
one/both shells cracked or fragmented.  
Feeding/movement: Shells open but no 
reaction to touch.  

 
 
  

 
Encrusting bryozoans  

 

 
Structure: Colony/fragment contains 
several intact zooids (check for animal 
inside against light).  
Feeding/movement: Filtering 
apparatus (lophophore) protrude 
through opening in zooid.  
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Structure: All zooids 
damaged/smashed, no soft tissues 
visible. And/or: all colonies dried out, 
loss of all moisture. And/or loss of 
pigmentation.  
Feeding/movement: Zooids’ soft 
tissues and/or feeding structures may 
be visible but no movement or reaction 
to touch.  

 

 
Erect bryozoans  

 

 
Structure: Colony/fragment contains 
several intact zooids (check for animal 
inside against light).  
Feeding/movement: Filtering 
apparatus (lophophore) protrude 
through opening in zooid.  

 

 
Structure: All zooids 
damaged/smashed, no soft tissues 
visible. And/or: all colonies dried out, 
loss of all moisture.  
Feeding/movement: Feeding structures 
may be visible but no movement or 
reaction to touch.  

 

 
Colonial ascidians  

 

 
Structure: Colony/fragment in 
reasonable ‘shape’, moist to the touch 
(not dried) and not entirely crushed. 
Several polyps intact.  
Feeding/movement: Inhalant and/or 
exhalant siphons open but close when 
poked.  

 

 
Structure: Shredded or crushed so that 
badly damaged. No polyps visible 
(polyps may have ‘popped out’ from 
mechanical pressure on colony). 
And/or colony dried out, loss of all 
moisture.  
Feeding/movement: Siphons open but 
no reaction to touch.  

 

 
Solitary ascidians  

 

 
Structure: Test (body) intact, no holes 
or gashes, not crushed flat or severely 
deformed. Moist, not dried.  
Feeding/movement: Inhalant and/or 
exhalant siphons open but close when 
poked (reaction).  

 

 
Structure: Test badly damaged, 
crushed or deformed. Branchial basket 
exposed and/or damaged, guts hanging 
out. And/or colony dried out, loss of all 
moisture.  
Feeding/movement: Siphons open but 
no reaction to touch.  

 
 
 

 
Hydroids  

 

 
Structure: Body reasonably intact, 
feeding polyps (often at distal ends of 
braches) present.  
Feeding/movement: Feeding tentacles 
exposed.  

 

 
Structure: All polyps 
damaged/smashed. And/or colony 
dried out, loss of all moisture.  
Feeding/movement: Feeding structures 
may be visible but no movement or 
reaction to touch.  

 

 
Tubiculous polychaetes  

 

 
Structure: Intact (body within 
tube), not crushed, no holes or 
gashes.  
Feeding/movement: Worm 
retracts into tube when poked 
(reaction), and/or feeding 
structures (tentacular crown) 
visible and moving.  

  

 
Structure: Tube missing, loss of 
tentacular crown, body badly 
crushed or lacerated. And/or dried 
out, loss of all moisture.  
Feeding/movement: Feeding 
structures may be visible but no 
movement or reaction to touch.  

  

 
Sponges (assessment of viability very 
difficult or impossible)  

 

 
Structure: Fragments retain natural 
colour, firm texture (don’t fall apart). 
Sponges retain a 
“fleshy/translucent/shiny” appearance. 
Look for “translucent” tissue between 
fibres  
Feeding/movement: Impossible to 
observe.  

 

 
Structure: Colony/fragment faded and 
bleached, falling apart. Sponge a mass 
of golden fibres/hair-like structures 
without “translucent fleshy tissue” 
between the fibres. And/or colony 
dried out, loss of all moisture. Usually 
no chance for survival if removed from 
water for more than 3 hours.  
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Macroalgae  

 

 
Structure: Contain pigment and have 
natural colour. Dryness often not a 
good indicator as some species are 
intertidal. Look out for and preserve 
reproductive structures.  
Feeding/movement: n/a  

 

 
Structure: Badly crushed, fragmented, 
or faded (loss of pigments).  
Feeding/movement: n/a  

 

(Woods et al., 2005) 
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