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Abstract/Résumé

In thè lasi decade thè study ofthe human brain and muscle energetics underwent a radicai
change, thanks to thè progressive introduction of noninvasive techniques, including near-
infrared (NIR) spectroscopy (NIRS). This review summarizes thè most recent lìterature about
thè principles, techniques, advantages, limitations, and applications of NIRS in exercise
physiology and neuroscience. The main NIRS instrumentations and measurable param-
eters will be reported. NIR light (700-1000 nm) penetrates superficial layers (skin, subcu-
taneousfat, skull, etc. ) and is either absorbed by chromophores (oxy- and deoxyhemoglobin
and myoglobin) or scattered within thè tissue. NIRS is a noninvasive and relatively low-cost
optical technique that is becoming a widely used instrument for measuring tissue O2 satu-
ration, changes in hemoglobin volume and, indirectly, brain/muscle bloodflow and muscle
O2 consumption. Tissue O2 saturation represents a dynamic balance between O2 supply and
O2 consumption in thè small vessels such as thè capillary, arteriolar, and venular bed. The
possibility of measuring thè cortical activation in response to different stimuli, and thè
changes in thè cortical cytochrome oxidase redox state upon O2 delivery changes, will also
be mentioned.

Dans la dernière dècade, l'étude du cerveau et le muscle humain énergique a subì un
changement radicai, gràce a l'introduction progressive de techniques non invasifs, y compris

The authors are with thè Department of Biomedicai Sciences and Technologies,
University of L'Aquila, 67100 L'Aquila, Italy.
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proche infrarouge (NIR) spectroscopy (NIRS). Cette revue résumé la littérature la plus
recente des principes, les techniques, les avantages, les limitations, et les applications de
NIRS dans la physiologie d'exercice et neuroscience. Les instrumentations principales de
NIRS et les paramètres mesurables seront rapportés. La lumière de NIR (700-1000 nm)
pénètre des couches superficielles (la peau, subcutaneous gros, le cràne, etc.) et ou est
absorbépar chromophores (oxy- et la deoxy hémoglobine et myoglobine) ou disperse dans
le tissu. NIRS est une technique non invasi/et relativement bone marche optique qui devient
un instrument largement utilisépour mesurer de tissu O2 saturation, les changements dans
le volume d'hémoglobine et, indirectement, le/lux de sang de cerveau muscle et le muscle
02 consommation. Le tissu O2 saturation représente un équilibre dynamique entre O2

consommation de provision et O2 dans les petìts vaisseaux tei que le capillaire, le Ut de
arteriolar et venular. La possibilité pour mesurer l'activation de cortical en réponse aux
stimuli différents, et les changements de l'état de redox de oxidase de cytochrome de corti-
cai sur O2 changements de livraison, seront aussi mentionnés.

Introduction

Starting with thè pioneering work of Jobsis over 25 years ago (1977), noninvasive
near-infrared (NIR) spectroscopy (NIRS) has been used first to investigate experi-
mentally and clinically brain oxygenation, and later muscle oxidative metabolism
in pathophysiology (for a review, see Boushel and Piantadosi, 2000; Boushel et
al., 2001; Ferrari et al., 1997; Madsen and Secher, 1999; McCully and Hamaoka,
2000; Owen-Reece et al., 1999). In thè lasi decade, NIRS has also been largely
used to investigate thè functional activation of thè human cerebral cortex (for a
review, see Hoshi, 2003; Obrig and Villringer, 2003). The aim of this review is to
summarize thè most recent literature about thè principles, techniques, advantages,
limitations, and applications of NIRS in exercise physiology and neuroscience.

The physical principles of NIRS have been reported previously in detail
(Delpy and Cope, 1997; Rolfe, 2000; Strangman et al., 2002a). Briefly, NIR light
(700-1000 nm) penetrates skin, subcutaneous fat/skull, and underlying muscle/
brain, and is either absorbed or scattered within thè tissue (Figure 1). The rela-
tively high attenuation of NIR light in tissue is due to: (a) O2-dependent absorption
from chromophores of variatale concentration, i.e., hemoglobin (Hb), myoglobin
(Mb) (in thè muscle only), and cytochrome oxidase; (b) absorption from chro-
mophores of fixed concentration (skin melanine); or (e) light scattering. Several
types of NIRS equipment, based on different NIRS methods, are commercially
available (Table 1). Table 2 reports thè parameters measurable by NIRS. Each type
of NIRS device has different characteristics, as outlined in Table 3. The choice of
thè NIRS device is determined by thè type of information requested.

The length that light travels through thè medium (optical pathlength) is longer
than thè distance between thè source and thè detector because of thè scattering
effects of different tissue layers. Single-distance continuous wave (CW) photom-
eters measure only thè changes in O2Hb and HHb when a Constant differential
pathlength factor (DPF) is included to calculate thè pathlength [DPF x (source-
detector separation)]. Some muscle and brain DPF values have been published
(Delpy and Cope, 1997; Zhao et al., 2002). Considering tìiat pathlength cannot
change more than 10% (Ferrari et al., 1992), single-distance CW photometers mea-
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Figure 1. Schematic representation of NIR light traveling through (A) thè head and (B)
thè muscle. Spatial distribution of light flux through thè different tissue layers of thè head
or limb (due to complex light scattering) is simulated using thè optical properties of skin,
skull, cerebrospinal fluid (CSF), gray matter, white matter, adipose tissue, etc. The de-
tected signal comes mainly from hemoglobin located in small vessels (< 1 mm diameter)
sudi as thè capillary, arteriolar, and venular bed (or from thè intracellular myoglobin in
thè case of thè limb). Panel B indicates thè penetration depth of NIR light depends on
adipose tissue thickness. In particular, thè light goes deeper in thè muscle tissue in thè
case of low subcutaneous fat (ATj) and reaches thè shallow region of thè muscle tissue in
thè case of high subcutaneous fat (AT2).
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Table 1 Main NIRS Instruments

Instrument

Photometers
RunMan*
HEO-100*
NIRO-500
OXYMON

Oximeters
NIRO-300
OM-100
INVOS
OxiplexTS
TRS- 10

Imagers
ETG-100
Imagent
Monstir
POLIMI
CT imager

Technique

Single-distance CW
Single-distance CW
Single-distance CW
Single-distance CW

Multi-dist. CW (SRS)
Multi-dist. CW (SRS)
Multi-dist. CW (SRS)
Multi-dist. PMS
TRS

CW
PMS
TRS
TRS
TRS

#of
chan. Company

1
1
1
a2

2
2
2
2
1

24
16
32

8
64

NIM, USA
OMRON, Japan
Hamamatsu, Japan
Artinis, Netherlands

Hamamatsu, Japan
Shimadzu, Japan
Somanetics, USA
ISS, USA
Hamamatsu, Japan

Hitachi, Japan
ISS, USA
UCL, London, UK
Politecnico, Milan, Italy
Shimadzu, Japan

Technical
reference

Chance et al, 1992
Shiga et al., 1995
De Blasi et al, 1994
Celierei al., 1995
van Beekvelt et al.,2002

Suzuki et al., 1999
Quaresima et al., 200 Ib
Thavasothy et al., 2002
Franceschini et al., 2002
Oda et al., 2000

Kennan et al., 2002b
Wolfetal., 2002b
Hebden et al., 2002
Cubeddu et al, 2002
Hoshi et al., 2000

Note: CW = continuous wave; PMS = phase modulation; SRS = spatially resolved spectros-
copy; * = wearable instrument; TRS = time-resolved spectroscopy

sure quite accurately thè changes in O2Hb and HHb. These instrumentations, how-
ever, cannot measure tissue C^Hb saturation. Spatially resolved spectroscopy (SRS),
time-resolved spectroscopy (TRS), and phase modulation spectroscopy (PMS) can
calcolate tissue O2Hb saturation.

The brain/muscle volume measured by thè different NIRS approaches is
stili controversial. However, it is generally accepted that, for a source-detector
separation of 3 cm, thè region of maximum brain/muscle sensitivity will be found
between thè source and detector fiber tip location, and roughly 1.5 cm below thè
surface of thè skin, though a banana-shaped region of sensitivity extends both
above and below this depth (Strangman et al., 2002a). Kohri et al. (2002), combin-
ing spatially- and time-resolved spectroscopy, estimated thè contribution ratio of
thè cerebral tissue to whole optical signals at thè source detector distance of 3 and
4 cm as 55 and 69%, respectively.

Different methods for NIRS signal quantification, NIRS advantages/limita-
tions, and applications have been extensively reviewed (Boushel and Piantadosi
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Table 2 Parameters Measured Directly and Indirectly by NIRS

Parameter Units Modali ty MDE Reference

A O2Hb A.U., [iMxcm,
A HHb [xM
AtHb
01
Tissue O2

saturation %

sVO2 %

Muscle BF mMOOmH-miir1

Muscle VO2 mMOOg-'-min-1

Recovery lime seconds
Muscle

compliance ml-L^-minHgr1

Cerebral BV ml-lOOml'1

Cerebral BF mi- 1 OOml-1 -min-1

D

D (by SRS)
D (by PMS)
D (by TRS)
I (by VOM)
D
I (by VOM)
I (by ICG)
I (by VOM)
I (by AOM)
D

I
I (by O2 swing)
I (by O2 swing)
I (by ICG)

yes
yes
yes
yes

yes
yes
yes
no
no
no
yes
no
no
no

no

Delpy and Cope, 1997
Delpy and Cope, 1997
Delpy and Cope, 1997
Grassi et al., 1999

Quaresima et al., 2002b
Franceschini et al., 2002
Oda et al., 2000
Yoxall et al., 1997
Franceschini et al., 2002
De Blasi et al., 1994
Boushel et al., 2000b
De Blasi et al., 1994
De Blasi et al., 1993
Chance et al., 1992

Binzoni et al., 2000
Owen-Reece et al., 1999
Owen-Reece et al., 1999
Owen-Reece et al., 1999

Note: A = relative changes from zero; tHb = A O2Hb+A HHb; OI = oxygenation index (A
O2Hb- A HHb); MDE = measurable during exercise; sVO2 = venous Ó2 saturation; BF =
blood flow; BV = blood volume; VO2 = oxygen consumption; A.U. = arbitrary units; D =
directly; I = indirectly; SRS = spatially resolved spectroscopy; PMS = phase modulation
spectroscopy; TRS = time resolved spectroscopy; VOM = venous occlusion method; AOM
= arterial occlusion method; ICG = indocyanine green.

2000; Boushel et al., 2001; Ferrari et al., 1997; McCully and Hamaoka, 2000;
Strangman et al., 2002a). Briefly, thè main limitations of NIRS measurements are
due to: (a) thè interference of skull thickness or adipose tissue thickness (ATT) on
brain or muscle measurements, respectively; (b) thè controversial unknown con-
tribution of myoglobin to thè muscle NIRS signal; (e) thè effect of blood volume
changes on thè tissue pathlength, and then on thè observed sample volume; (d) thè
difficulty of predicting how much of an observed NIRS signal change is due to
brain vs. scalp blood flow, or (e) simultaneous changes in flow and volume.

In a recent theoretical study of light propagation in aduli head models by
using a Monte Carlo simulation, Okada and Delpy (2003) studied thè effect of thè
superficial tissue thickness on thè partial optical pathlength in thè brain and on thè
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spallai sensitivity profìle. The mean optical pathlength (measurable by time-re-
solved spectroscopy and phase modulation spectroscopy) increases when thè skull
thickness increases, whereas thè partial mean optical pathlength in thè brain de-
creases when thè skull thickness increases. The partial optical pathlength (at a
source-detector distance of 3 cm) depends mainly on thè depth of thè inner skull
surface whereas thè spallai sensitivity profile is significanlly affected by Ihe Ihick-
ness of Ihe cerebrospinal fluid layer. Moreover, an analysis was developed by an-
olher group for changes in mean lime of flight (inslead of changes in allenualion)
lo reduce Ihe cross talk for Ihe layers of cortical activation (Uludag el al., 2002).

The influence of ATT on Ughi propagalion in leg muscles has been exam-
ined by a diverse number of researchers. More recently, Matsushila el al. (1998)
concluded Ihal NIR lighl penetrales shallow regions of muscle under Ihe skin and
subcutaneous fat even when thè ATT is 1.5 cm.

The NIRS technique is unable lo differentiale belween Ihe signal allenualion
due to Hb and Mb because Ihe absorbency signals of Ihese Iwo chromophores
overlap in Ihe NIR range. Wilhin a given volume of muscle Ihere are differences in
concenlralion of bolh Hb and Mb and in their binding capacilies (i.e., Hb has four
limes more oxygen binding siles Ihan Mb). Lillle data is available on Ihe Hb/Mb
ralio in Ihe human muscles. On Ihe basis of Ihese sludies, Mb is on average 4 mg/
g wet lissue in human gaslrocnemius (Mancini el al., 1994) and 4.5 mg/g in vaslus
laleralis (Masuda el al., 1999). Allhough thè NIRS sample volume is unknown,
considering a muscle blood volume of aboul 10% one can estimate its weighl as a
confounding faclor at 10% of Ihe whole Hb signal, an amounl Ihat may be consid-
ered negligible.

Tran el al. (1999) firsl demonstraled by 'H-magnelic resonance speclros-
copy (MRS) Ihal oxy-Mb desaturalion kinelics malches Ihe NIRS signal. Richardson
el al. (2002) found thal al resi Ihe inlramuscular O2 slores (measured by Ihe ap-
pearance of 'H-MRS -deoxy-Mb signal during suprasyslolic cuff occlusion) begin
lo decrease after 4 min, and Ihat maximal Mb desaluration is achieved after 8 min.
Conversely, at resi Ihe inlramuscular O2 slores, as measured by NIRS during
suprasyslolic cuff occlusion, begin lo decrease immedialely after Ihe beginning of
Ihe occlusion and Ihe maximal desaturation is achieved after 5-6 min (Komiyama
el al., 2001). During high inlensily exercise, Mb typically desaturales lo only 50%
of Ihe level attained during cuff occlusion (Willenberg & Willenberg, 2003), and
muscle oxygenation, as measured by CW NIRS, lypically desaturates lo about
90% of Ihe level atlained during Ihe cuff occlusion (Grassi el al., 2003).

Overall Ihese dala would suggesl Ihat, in thè case of a short quadriceps maxi-
mal volunlary contraction, Ihe measured value of Ihe vaslus laleralis O2 saturalion
reflecls predominanlly (al leasl 80%) Ihe weighled mean of arteriolar, capillary,
and venular O2Hb saturation. The remainder can be allribuled lo Ihe conlribulion
of Mb oxygen saturation. Nevertheless, more combined 'H-MRS and NIRS stud-
ies are needed to clarify not only Ihe issue of Ihe conlribulion of Mb lo Ihe NIRS
signal, bui also Ihe kinelics and Ihe amount of Mb desaluralion during exercises
wilh differenl workloads (Conley el al., 2000).

As discussed by McCully and Hamaoka (2000), noi ali published sludies
found a good correlalion between muscle oxygenalion by NIRS and venous blood
O2 saluralion (Costes et al., 1996; Hicks et al., 1999; MacDonald el al., 1999).
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During a prolonged exercise, venous blood O2 saturation initially decreased but
did not increase as muscle oxygenation did. McCully and Hamaoka proposed sev-
eral possible explanations, i.e., change in thè calibration curve due to blood vol-
ume changes, and a shift of thè weighted average of thè NIRS signal toward cap-
illaries. In support of thè effect of apparent sample volume during prolonged exer-
cise, some studies have shown that thè magnitudo of thè partial recovery in muscle
oxygenation during exercise was reduced during hypoxia (Costes et al., 1996;
MacDonald et al., 1999). This is because during hypoxia thè overall O2 saturation
and thè gradients along thè vascular trees are reduced, and thus thè shifts in blood
volume between compartments will affect fewer NIRS measurements (McCully
and Hamaoka, 2000).

NIRS Instrumentation and Measurable Parameters

Several types of NIRS equipment, based on different NIRS methods, are commer-
cially available (Table 1). The advantages and disadvantages of thè different NIRS
approaches have been reviewed (Delpy and Cope, 1997; Hoshi, 2003; Rolfe, 2000;
Strangman et al., 2002a). Most of thè commerciai instruments utilize CW light in
combination with a modified Lambert-Beer law (Delpy and Cope, 1997) to mea-
sure changes in O2Hb and HHb (Figure 2). In a scattering medium such as biologi-
cai tissue, quantification of thè NIRS signal is difficult and different methods have
been proposed; one of thè most reliable is thè spatially resolved spectroscopy (SRS).
SRS and time/phase-resolved instruments are thè only ones to provide thè mea-
surement of average tissue O2 saturation.

In SRS, which uses CW light and a multidistance approach, thè slope of NIR
light attenuation vs. distance is measured at a distant point from thè light input,
from which thè absolute ratio of O2Hb to thè total Hb content (tHb), and hence
average tissue O2 saturation (SRS-O2), can be calculated using thè photon diffu-
sion theory (Suzuki et al., 1999). SRS-O2 represents a dynamic balance between
O2 supply and O2 consumption in tissue capillaries, arterioles, and venules, be-
cause in larger blood vessels NIR light is fully absorbed by thè high hemoglobin
concentration. From anatomical studies of thè brain, thè ratio of venule to total
vessel volume ranges from 2/3 to 4/5 (van Lieshout et al., 2003). Because about
5% of thè blood is in thè capillaries and about 20% in thè arterioles, NIRS mea-
sures mainly thè locai venous O2Hb saturation.

NIRS instruments have been validated in vivo by several researchers using
different experimental modalities. Boushel et al. (2001) found that SRS-O2 of thè
vastus lateralis was inversely related with thè femoral arterio-venous O2 (a-vO2)
difference during dynamic knee extension exercise in normoxia, hypoxia, and
hyperoxia.

. Recently several groups have begun to use multichannel CW imaging sys-
tems that allow thè generation of images of a larger area of thè subject's head and
muscle with high temperai resolution (up to 10 Hz), and thereby thè production of
maps of cortical and muscle oxygenation changes (Miura et al., 2001; Obrig and
Villringer, 2003; Quaresima et al., 2001a, 2002a). The noninvasive cortical NIR
images can be obtained in straightforward setups that can be easily combined with
other functional methods, in particular EEG. Multichannel brain NIR imaging has
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Figure 2. Typical lime course of brachioradialis muscle oxygenation measured during
arterial occlusion by different NIRS technologies: (A) single-distance continuous wave
spectroscopy; (B) phase modulation spectroscopy and/or lime resolved spectroscopy; and
(C) spatially resolved spectroscopy. Vertical lines indicate thè duration of arterial occlu-
sion provoked inflating (250 mmHg) thè cuff positioned around thè arm. Time course of
concentration changes (expressed in uMxcm, when DPF is not included) in O2Hb, HHb,
and tHb measured by single-distance continuous wave photometers (Panel A). Time
course of tissue O2 saturation (TOI, %) measured by continuous-wave spatially resolved
spectroscopy, phase-modulation spectroscopy, and time-resolved spectroscopy (Panel C).
Time course of absolute concentration (expressed in |jM) of O2Hb, HHb, and tHb mea-
sured only by phase modulation spectroscopy and lime resolved spectroscopy (Panel B).
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two major advantages: it can address issues concerning neurovascular coupling in
thè human adult, and can extend functional imaging approaches to thè examina-
tion of thè diseased brain. Unfortunately, there are few commercially available
imagers, they are quite expensive, and most of them lack U.S. Food and Drug
Administration approvai.

Although many interesting studies bave been performed with multichannel
CW systems, thè lack of pathlength determination limits thè accuracy of thè re-
sults (Ferrari et al., 1992). Imagent (ISS Inc., Urbana, IL) is a new device that allows
thè measurement of O2Hb and HHb concentration maps in tissue via phase modu-
lation. The device works by emitting NIR light into tissue at known distances from
a detector. Light of two different wavelengths is used and thè light is modulated at
a radio frequency of 110 MHz. The collected light is measured and processed and
thè absorption and scattering coefficients of thè medium are determined. Once thè
absorption and scattering are determined, thè assumption that Hb is thè only sig-
nificant absorber is applied and thè O2Hb and HHb concentrations are calculated.

Absolute concentrations of O2Hb and HHb also can be measured by TRS.
Por this purpose, a number of companies and academic institutions have been
developing multichannel TRS systems (Cubeddu et al., 2002; Hillman et al., 2001 ;
Hoshi et al., 2000). Recently, an 8-channel portatale instrument based on TRS has
been developed and tested for monitoring spatial changes in calf O2Hb saturation
during dynamic plantar flexion exercise with a sampling lime of 200 ms (Cubeddu
et al., 2002). A 32-channel TRS optical imaging instrument has been developed by
thè University College of London principally to study functional parameters of thè
brain of a newborn (Hillman et al., 2001). Images representing thè internai scat-
tering and absorbing properties of thè arm, as well as images revealing physiologi-
cal changes during a simple finger flexion exercise, were presented (Hillman et
al., 2001). 3-D images of thè newborn infant brain with a cerebral haemorrhage
predominantly located within thè left ventricle have recently been generated
(Hebden et al., 2002).

However, there is a number of tradeoffs when using these multichannel sys-
tems, including poor spatial resolution (about 5 mm), difficulty with precise ana-
tomical localization, and relatively poor penetration and localization depth. Ali thè
parameters measurable directly and indirectly by thè NIRS devices, based on dif-
ferent approaches, are reported in Table 2.

MUSCLE O2 CONSUMPTION (VO2) AND BLOOD FLOW (BF)

The utility to measure VO2 has also been demonstrated. For example, VO2 can be
measured in thè arm or in thè leg by calculating thè rate of conversion of O2Hb to
HHb during a period of tourniquet-induced ischemia (De Blasi et al., 1993). VO2

can be measured at rest and during forearm maximal voluntary contraction (MVC)
achieved with and without vascular occlusion. The MVC, performed during vas-
cular occlusion, caused a complete desaturation in 10-15 sec, which was not fol-
lowed by any further desaturation when thè second contraction was performed.
No difference was found in VO2 measured during MVC with and without vascular
occlusion. The relationship between VO2 in thè soleus muscle and thè level of
isometric exercise expressed as % of MVC was investigated*by Colieret al. (1995).
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A linear relationship was found between thè VO2 and thè level of exercise. More
recently, Sako (2001) examined thè validity of thè VO2 method. Subjects per-
formed two bouts of dynamic handgrip exercise, once for thè NIRS measurement
and once for thè 31P-MRS measurement as a standard. There was a physiologically
significant correlation (r = 0.965) between thè VO2 values measured by thè two
methods.

Several recent studies have suggested that thè NIRS VO2 method could be
useful not only for examining regional differences, but also changes over time
between muscle groups as a function of training. NIRS in combination with 31P-
MRS was used to assess muscle bioenergetics (Binzoni et al., 1998; Boushel et al.,
1998). Energy metabolism and interstitial fluid displacement were studied in thè
human gastrocnemius during three subsequent 5-min ischaemia-reperfusion peri-
ods (Binzoni et al., 1998). VO2 in thè muscle region of interest, as estimated by
NIRS, was approximately 8 (imol/100g/min. Phosphocreatine (PCr) and ATP con-
centrations did not change over thè whole experimental period. Forearm flexor
muscle VO2 was measured during ischemia at rest and rhythmic handgrip at 15%
and 30% of MVC, postexercise muscle ischaemia, and recovery (Boushel et al.,
1998). The oxygenation of thè forearm flexor muscles closely reflected thè exer-
cise intensity and metabolic rate determined by 31P-MRS, but not thè rate derived
from flow and thè a-vO2 difference.

As suggested by Boushel et al. (1998), this discrepancy is due to thè limita-
tions in sampling venous blood representative of thè flexor muscle capillaries.
Using 31P-MRS and NIRS simultaneously, it was found that thè initial rate of fin-
ger flexor deoxygenation during immediate postexercise ischemia (exercise: 5-
min submaximal isotonic grip exercise at 10-40% of MVC) was a reflection of
muscle VO2 (Hamaoka et al., 1996).

NIRS has also been successfully applied for thè simultaneous measurement
of forearm BF (FBF) and VO2 (FVO2) by inducing a 50-mmHg venous occlusion
(De Blasi et al., 1994). FBF data were validated by strain-gauge plethysmography
(De Blasi et al, 1994: Homma et al., 1996). Therefore, NIRS provides thè particu-
lar advantage of obtaining thè concomitant evaluation of FBF and FVO2, allowing
a correlation between these two variables by a single maneuver without discom-
fort for thè subject. The FVO2 values obtained by using thè venous occlusion method
correlated with thè FVO2 values obtained by using thè arterial occlusion method
(r2 = 0.66, p < 0.01) (De Blasi et al., 1997). VO2 and BF in resting and exercising
forearm (sustained isometric handgrip exercise) were examined via NIRS and thè
results were compared with those via thè global muscle VO2 data and FBF derived
from thè Fick method and plethysmography (van Beekvelt et al., 2001b). This
study concluded that NIRS is an appropriate tool for providing information about
locai VO2 and locai FBF because both piace and depth of thè NIRS measurements
reveal locai differences that are not detectable by thè more established, but also
more global, Fick method.

These methods were also successfully used to estimate FBF and FVO2 dur-
ing venous occlusion imposed at rest and immediately after handgrip exercise with
incrementai loads (5-30% of MVC) (Homma et al., 1996). Quantitative measure-
ments of regional muscle BF at rest and during exercise were also possible using
NIRS and a light-absorbing tracer, indocyanine green (ICG). This invasive method
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has been applied to evaluate thè circulatory responses to exercise along with thè
assessment of SRS-O2 (Bangsbo et al., 2000; Boushel et al., 2000a, 2000b).

OTHER PARAMETERS MEASURABLE ON MUSCLES

Muscle venous saturation (SvO2) can be estimated with NIRS by applying a venous
occlusion and measuring changes in O2Hb vs. tHb (Yoxall et al., 1997). More
recently, another method for thè measurement of SvO2, based on thè respiration-
induced oscillations of thè NIR absorption in tissues, has been reported (Franceschini
et al., 2002). In thè vastus medialis and vastus lateralis muscles, a good agreement
was found between SvO2 measured with thè new method and SvO2 measured with
thè venous occlusion method (average deviation of 0.8%).

The recovery lime reflects thè balance of O2 delivery and O2 demand in thè
localized muscles following muscle work, and it can be interpreted as a measure oT
thè lime for repayment of O2 and energy deficits accumulated during intense exer-
cise by tissue respiration under ADP contro! (Chance et al., 1992). Recovery lime
can be measured also after tourniquet-induced ischemia (McCully et al., 1994;
Sahlin, 1992). McCully et al. (1994) investigated simultaneously PCr and muscle
oxygenation during thè recovery phase from isokinetic plantar flexion. Muscle
reoxygenation approximated submaximal PCr recovery and was not different be-
tween maximal and submaximal exercise, demonstrating that 31P-MRS measure-
ments of PCr recovery and NIRS measurements of recovery of muscle oxygen-
ation provide similar information.

A method has been developed to measure thè compliance of thè microvascu-
lar superficial venous System of thè lower limb by NIRS (Binzoni et al., 2000).
This method is complementary to strain-gauge plethysmography, which does not
allow compliance to be distinguished between deep and superficial venous or be-
tween venous and arterial compartments. Hydrostatic pressure (P) changes were
induced in a calf region of interest by head-up tilt of thè subject from alpha = -10
to 75 deg. For P s 24 mmHg, thè measured compliance, based on NIRS data of
tHb, HHb, and O2Hb, reflects essentially that of thè superficial venous System. For
P a 24 mmHg, no distinction can be made between arterial and venous volume
changes. However, by following thè changes in O2Hb and HHb in thè P range
from -16 to 100 mmHg, it seems possible to assess thè characteristics of thè vaso-
motor response of thè arteriolar System. These results were later explained by
Binzoni et al. (2003) in a study in which it was demonstrated (via a NIRS dye
dilution technique) that a reduction in blood flow is responsible for thè limited
O2Hb concentration increase during thè tilting maneuver from O to 60 deg.

Since adipose tissue interacts with thè NIR light, thè monitored muscle oxy-
genation changes are underestimated if adipose tissue thickness is not taken into
consideration. There are reports demonstrating that adipose tissue affects in vivo
quantitative NIRS, especially BF and VO2 in skeletal muscle (van Beekvelt et al.,
2001a). A negative correlation was found between VO2 and adipose tissue thick-
ness (also Binzoni et al., 1998). No correlation was found between MVC and VO2,
nor between MVC and adipose tissue thickness, indicating that thè contraction
force did not confound thè results. The main conclusion of these studies was that
adipose tissue thickness has a substantial confounding infkience on in vivo NIRS
measurements, and that it is essential to incorporate this factor into NIRS muscle
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studies in order to justify comparisons between different muscle groups. Recently
an algorithm capable of correcting for thè influence of thè subcutaneous fat layer
has been proposed (Niwayama et al., 2000); however, it is not included in thè
commerciai units.

TISSUE OXIMETRY

Madsen and Secher (1999) reviewed brain oximetry studies based on NIRS. Cave-
ats of cerebral oximetry include insufficient light shielding, optode displacement,
and a sample volume including muscle or thè frontal sinus mucous membrane.
The relative influence from thè extracranial tissue is minimized by optode separa-
tion and correction for an extracranial sample volume, or both. The naturai pig-
ment melatonin and also water are of little influence to spectroscopic analysis of
cerebral oxygenation, whereas bilirubin systematically lowers brain oxygenation
and attenuates thè detection of changes in cerebral oxygenation. The application
of intracranial NIRS in adults has been hampered by concerns over contamination
from extracranial tissues.

A typical SRS System like thè NIRO-300 (Hamamatsu Photonics, Hama-
matsu City, Japan) provides continuous online measurements of O2Hb and HHb
concentration changes and a calculated tissue O2 saturation named TOI. Al-Rawi
et al. (2001) confirmed thè anatomie source of TOI in thè adult cranium on pa-
tients undergoing carotid endarterectomy. A change in TOI was predominantly
associated with internai carotid artery clamping. When TOI changed during exter-
nal carotid artery clamping, there were significant changes in blood pressure, or
extracranial-to-intracranial anastomosis was evident. In thè absence of such vari-
ables, thè sensitivity of TOI to intracranial and extracranial changes was 87.5%
and 0%, respectively, and specificity was 100% and 0%, respectively.

Two SRS oximeters, NIRO-300 and OM-200 (Shimadzu, Tokyo, Japan),
were compared with regard to thè measurement of O2 saturation values in two
forearm muscle groups at resi and during arterial occlusion. There was a signifi-
cant correlation between thè muscle O2 saturation values obtained at rest using thè
two oximeters, whereas these values were significantly different during arterial
occlusion (Komiyama et al., 2001). Thus, although there was good agreement be-
tween muscle O2 saturation values measured using thè two oximeters, thè operat-
ing range (Le., thè interval within which thè instrument works reliably) of thè
tissue oximeters should be recognized and indicated. Thavasothy et al. (2002) com-
pared thè cerebral cortex oxygenation as measured by thè NIRO-300 and thè INVOS
5100 (Somanetics, Troy, MI). Both monitors demonstrated similar changes in re-
sponse to hyperoxia and hypocapnia (coefficient of variance for FiO2 0.45 = 10.0%,
FiO2 1.0 = 10.1%, hypocapnia = 14.5%).

Cerebral oximetry found several interesting clinical and physiological ap-
plications (for a review, see Madsen and Secher, 1999). For example, van Lieshout
et al. (2003) investigated cerebral oxygenation during syncope, and Imray et al.
(1998) studied cerebral regional O2 saturation in subjects ascending rapidly to
4,680 m. Also muscle oximetry found several interesting applications. For ex-
ample, Boushel et al. (2000a) investigated calf and peritendinous oxygenation
during dynamic exercise, and Quaresima et al. (2002b) studied oxygen resaturation
of thigh and calf muscles after two treadmill stress tests.
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CORTICAL CYTOCHROME OXIDASE REDOX STATE

NIRS assessment of thè redox state of mitochondrial cytochrome oxidase CuA

could be a valuable technique for monitoring intracellular O2 delivery. Although
thè NIRS hardware has been refined and thè algorithms (used to deconvolute thè
light absorption signal) have been improved, recent years have seen lively discus-
sion in thè literature on thè possibility of measuring cortical cytochrome oxidase
by NIRS. Conversely, this measurement cannot be doné on muscle tissue because
of thè Mb interference. Hoshi (1997) found in rats that O2-dependent redox changes
in cytochrome oxidase occur only when O2 delivery is extremely impaired.

To improve thè accuracy of this measureraent, most of thè recent studies
employed a multiwavelength detector. QuaresimàiCt al. (1998) determined thè re-
lationship between thè redox state of mitochondrial cytochrome oxidase CuA and
Hb oxygenation on newborn piglet brain. The large reductions in thè CuA redox
state during anoxia (1.8 ^M) were caused by a decrease in thè rate of O2 delivery
to thè cytochrome oxidase O2 binding site; thè small oxidations (0.2 |oM) during
hypercapnia were likely due to thè effects of metabolic changes on thè redox state
of CuA rather than to increases in thè rate of O2 delivery. In thè same experimental
animai model, Cooper et al. ( 1999) used mitochondrial inhibitors (cyanide) to dem-
onstrate that cytochrome oxidase NIRS can measure mitochondrial dysfunction.
The O2 dependency and precision of cytochrome oxidase signal from full spectral
NIRS of thè piglet brain was measured during brief anoxic swings at both normo-
capnia and hypercapnia (Springett et al., 2000a). A minimal interference between
thè Hb and CuA signals was found in this model, thè CuA oxidation state was inde-
pendent of cerebral oxygenation at normoxia, and thè oxidation after hypercapnia
was not thè result of increased cerebral oxygenation.

Changes in Hb oxygenation and oxidation state of cytochrome oxidase were
measured simultaneously with phosphorus metabolites using 31P-MRS by apply-
ing a transient anoxia (Springett et al., 2000b). During thè onset of anoxia, there
was no change in either PCr concentration or thè oxidation state of thè CuA centre
of cytochrome oxidase until a substantial fall in cerebral Hb oxygenation occurred,
at which point thè CuA centre reduced simultaneously with thè decline in PCr. The
concomitant reduction of CuA and decline in PCr can be explained in terms of thè
effects of thè falling mitochondrial electrochemical potential. From these observa-
tions it was concluded that, at normoxia, oxidative phosphorylation and thè oxida-
tion state of thè components of thè electron transport chain are independent of
cerebral oxygenation, and that thè reduction in thè CuA signal occurs when O2

tension limits thè capacity of oxidative phosphorylation to maintain thè phospho-
rylation potential.

De Visscher et al. (2002) demonstrated that nitric oxide does not inhibit
cerebral cytochrome oxidase after brief anoxia or during reoxygenation after a
brief anoxic period. Although these are very interesting results, thè validity of thè
cytochrome signal has been questioned as it could easily be overwhelmed by thè
Hb signal. Using a piglet model, Sakamoto et al. (2001) found that thè cytochrome
signal as presently measured by scanning NIRS is highly dependent on hema-tocrit.

Several human visual cortex cytochrome oxidase studies have been perfòrmed
by thè Villringer's group. For example, Wobst et al. (2001) mvestigated thè vascu-



Techniques and Limitations of NIRS • 477

lar and metabolic responso to brain activation in human primary and adjacent sec-
ondary visual cortex. Using NIRS they were able to measure concentration changes
in thè redox status of thè cytochrome-c oxidase. Predictions of cellular and vascu-
lar oxygenation responses to visual stimulation were good for 6- to 24-s stimuli
duration under thè assumption of a linear transfer characteristic.

CEREBRAL BLOOD FLOW AND CEREBRAL BLOOD VOLUME

Methods of using NIRS to achieve absolute quantification of cerebral blood flow
(CBF) and cerebral blood volume (CBV) by a transient hypoxia have been devel-
oped in neonatal intensive care and have also been applied in adults (see Owen-
Reece et al., 1999, for a review). However, these methods were questioned be-
cause, for example, they give systematically different CBV readings and large
intersubject variability (see Newton et al., 1997; van de Ven et al., 2001; Wolf et
al., 2002a). Therefore, these methods have found a scarce application in clinics.
Roberts (1998) described a novel noninvasi ve method for repeatedly measuring
CBF during cardiopulmonary bypass on children with NIRS using ICG, injected
into thè bypass circuii, as an intravascular tracer. The method was compared with
microsphere injection in piglets undergoing cardiopulmonary bypass.

More recently, CBF was estimated using NIRS and pulse dye-densitometry
after intravenous ICG injection (Gora et al., 2002). Arterial and cerebral changes
in ICG concentration were measured using pulse dye-densitometry and NIRS, re-
spectively. The precision was improved using a deconvolution algorithm (coeffi-
cient of variation of 10.1%). The precision of this method has been improved by
applying thè Fick principle in both integrai and differential forms using a linear
regression technique to improve thè precision of calculated values of CBF (Springett
et al., 2001). In addilion, thè differential method allowed thè venous outflow to be
calculated, giving further information on thè state of thè capillary bed.

The same group (Brown et al., 2002) more recently has developed a method
that allows, after ICG injection, quantitative measurement of CBF, CBV, and mean
transit time (MTT). Measurements of CBF, CBV, and MTT were made on piglets
in normocapnia, hypocapnia, and hypercapnia to test thè technique over a range of
hemodynamic conditions. The accuracy of thè new approach has been determined
by direct comparison with measurements made using a computed tomography tech-
nique. No significant difference was found between computed tomography and
NIRS measurements of CBF, CBV, and MTT (Brown et al., 2002).

Hopton et al. (1999) developed an integration method to measure CBV in
adults by using ICG. After bolus injection, concentration-time integrals of cere-
bral tissue ICG concentration measured by NIRS were compared with corresponding
integrals of thè cerebral blood ICG concentrations estimated by high-performance
liquid chromatography of peripheral blood samples. Multichannel NIRS with ICG
was preliminarly used to measure regional CBF in thè temperai lobes of infants
(Kusaka et al., 2001). Since thè application of ICG in thè aduli human critically
depends on differenlialion between extra- and inlracerebral vascular compartmenls,
Kohl-Bareis el al. (2002) invesligaled Ihe lalency and shàpe of thè change in ab-
sorption of a bolus of ICG Iraveling through Ihe cerebral vasculalure using fre-
quency-domain and multidistance measurements. Based on measuremenls of bolh
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thè photon's mean time of flight (phase) and thè intensity, thè results revealed thè
differentiation between an upper layer (skin and skull) and a lower layer (brain).
The bolus in thè deeper tissue layers had a peak of about a 10-s width, while thè
change in absorption in thè upper layers shows a much longer recovery time. This
was in qualitative agreement with magnetic resonance imaging results using a
gadolinium bolus (Kohl-Bareis et al., 2002).

Recently, changes in cerebral O2Hb and HHb were compared to correspond-
ing changes in CBF and CB V as measured by positron emission tomography (PET)
(Rostrup et al., 2002). Changes in CBV measured with both techniques were sig-
nificantly correlated to CO2 levels. However, ACBV(NIRS) was much smaller
than ACB V(PET). Rostrup et al. (2002) concluded that while qualitatively correct,
NIRS measurements of CBV should be used with caution when quantitative re-
sults are needed. s_ .^ •

Cortical Activation (Functional NIRS)

Neuroimaging techniques, such as functional MRI (fMRI) and PET, monitor task-
related neuronal activations in thè brain indirectly through thè associated neu-
rovascular/metabolic responses. fMRI and PET measure locai changes in brain
hemodynamics induced by motor, visual, cognitive, or perceptual tasks. More-
over, fMRI and PET measures are characterised by a uniform highly spatial reso-
lution (millimetres or less) and a poor temperai resolution (about 1 s). Conversely,
EEG, magnetoencephalography (MEG), and NIRS measure instantaneously thè
current flows induced by synaptic activity or thè cortical hemodynamics. Recently
techniques nave been developed that, in thè context of brain anatomy visualized
with structural MRI, use both hemodynamic and electromagnetic measures to ar-
rive at estimates of brain activation with high spatial and temporal resolution. These
methods range from simple juxtaposition to simultaneous integrated techniques.
Their application has already led to advances in our understanding of thè neural
bases of perception, attention, memory, language, etc. Further advances in multi-
modality integration will require a better understanding of thè coupling between
thè physiological phenomena underlying thè different signal modalities.

NIR optical topography is thè simultaneous acquisition of O2Hb and HHb
changes from an array of optical fibers on thè scalp to construct maps of cortical
activity. The oxygenation response typically expected over an activated cortical
area consists of a decrease in HHb accompanied with an increase in O2Hb pttwo-
to threefold of magnitude. NIRS and fMRI both allow noninvasive monitoring of
cerebral cortical HHb responses to various stimuli. Kleinschmidt et al. (1996) first
measured simultaneously cerebral oxygenation changes during human brain mo-
tor activation by fMRI and one-channel fNIRS. fNIRS and fMRI measurements
showed good correlation in young and elderly subjects during a motor task
(Mehagnoul-Schipper et al., 2002).

Toronov et al. (2001) investigated human brain hemodynamics by simulta-
neous NIRS and fMRI mapping during a periodic sequence of stimulation by fin-
ger motion and rest. Both methods revealed a good co-location of thè brain activ-
ity centers. While rough spatial correspondences with maps generated from fMRI
were found in these experiments, thè amplitude correspon8ences between thè two
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recording modalities have not been fully characterized. Recently, strong correla-
tions were found between fMRI changes and ali optical measures, with O2Hb pro-
viding thè strongest correlation (Strangman et al., 2002b).

NIRS has been used to monitor child and aduli brain function in a wide
variety of tasks. A recent review covers thè literature on intrinsic optical signal and
thè functional brain NIRS imaging studies of thè past few years (Obrig and
Villringer, 2003). In this research field, Kennan et al. (2002b) demonstrated that
optical topography could be used to determine lateralization of prefrontal areas to
a language task that has been validated by fMRI. Kennan et al. (2002a) also dem-
onstrated that optical topography can be used to simultaneously detect and charac-
terize thè hemodynamic responses associated with an "oddball" auditory stimulus,
and that corresponding electrical event related potentials (ERP) could be acquired
simultaneously using conventional scalp recordings. In addition to thè measured
electrical responso, thè hemodynamic localization was consistent with fMRI stud-
ies, which showed significant activation in thè temperai and parietal cortical re-
gions.

This study showed thè regions of peak hemodynamic activity that were in
closest proximity to areas of peak electrical activity. This was thè first demonstra-
tion of simultaneous ERP electrical recording and noninvasive optical mapping in
human subjects. The sanie group also demonstrated, by using a global hyperoxic
or mild hypoxic challenge, that it is possible to normalize thè activation response
in terms of thè fractional changes in CBV, tissue oxygenation index, and Ó2 ex-
traction ratio, which are independent of thè optical pathlength (Kennan and Behar,
2002).

Maps of concentration changes in O2Hb, HHb, and tHb of thè visual and
motor cortices were generated via a frequency-domain NIRS during stimulation
using a reversing checkerboard screen and palm-squeezing, respectively (Wolf et
al., 2002c). In thè visual cortex thè patterns of O2Hb and HHb were linearly corre-
lated in 13 of 24 locations. The patterns of thè O2Hb and HHb traces over thè
motor cortex looked different. The O2Hb reached its maximum change a few sec-
onds before thè HHb reached its minimum. Patterns of O2Hb and HHb differed
among cortex areas. This implies that thè regulation of perfusion in thè visual
cortex differs from that in thè motor cortex. There is evidence that thè cerebral
metabolic rate for O2 increases substantially in thè visual cortex, while this is not
thè case for thè motor cortex (Wolf et al., 2002c).

The literature on thè fasi intrinsic optical signal is quite controversial (Obrig
and Villringer, 2003). Millisecond changes in thè optical properties of thè human
brain during motor stimulation were recently detected using frequency-domain
NIRS (Wolf et al., 2002b). During a motor stimulation task, highly significant
signals were found which were directly related to neuronal activig and exhibited
much more localized patterns than thè slow hemodynamic signals.

Chance et al. (1993) first reported observations of NIR absorbance changes
attributable to repetitive tHb changes in response to stimulation in thè human brain
frontal region by a cognitive process. These responses were observed as low-fre-
quency recurrence of changes by Fourier transform analysis. Toronov et al. (2000)
studied thè motor cortex hemodynamics in human subjects at rest and under motor
stimulation conditions using a multichannel near-infrared tissue spectrometer (ac-
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quisition lime of 160 ms per map). The main findings were: (a) thè amplitude of
thè hemodynamic response to thè motor stimulation was comparatale to thè ampli-
tude of thè fluctuations at resi; (b) thè spadai patterns of thè O2Hb and HHb re-
sponses to thè stimulation were differenti and (e) thè hemodynamic response to
stimulation showed a spatial localization and a level of phase synchronization with
thè motor stimulation that depended on thè stimulation period.

Obrig et al. (2000) investigated slow spontaneous oscillations in cerebral
oxygenation in thè human adult's visual cortex. Both thè spectral power and thè
phase relationship between O2Hb and HHb were analysed. Spontaneous vascular
and metabolic low frequency oscillations (LFO) centered around 0.1 s"1 and very
LFO (VLFO) centered around 0.004 s"1 were reproducibly detected by NIRS in
thè human adult brain. Their respective power differed between O2Hb and HHb.
Either frequency (LFO and VLFO) was altered in magnitude by functional stimu-
lation of thè cortical area examined. Their spectral characteristics and their re-
sponse to hypercapnia corresponded to findings with transcranial Doppler
sonography and fMRI.

Kecently Fantini (2002) presented a model that describes thè effect of physi-
ological parameters such as thè speed of BF, locai O2 consumption, capillary re-
cruitment, and vascular dilation and constriction on Hb concentration and O2 satu-
ration in tissue. This model suggests that thè superposition of asynchronous con-
tributions from thè arterial, capillary, and venous Hb compartments may be at thè
origin of observed out-of-phase oscillations of thè O2Hb and HHb concentrations
in tissue.

Perspectives

On average, one article a day is reported on MEDLINE about thè in vivo applica-
tions of NIRS. Most are clinical studies. However, many researchers have been
using NIRS in exercise physiology (see accompanying symposium papers by
Bhambhani and by Neary) and neuroscience. Since oxidative metabolismi is thè
dominant source of energy for skeletal muscle, thè possibility of investigating it
noninvasively in exercising muscles and following its modification in response to
specific training or rehabilitation programs is of great interest. Recently thè com-
bination of 31P-MRS with NIRS has enhanced thè opportunity to measure locai
muscle oxidative metabolism noninvasively during exercise (Binzoni et al., 1998;
Boushel et al., 1998; Cerretelli et al., 1997). Moreover, NIRS in combination with
surface electromyography can shed light on one of thè possible causes of muscle
fatigue (Miura et al., 2000). Human brain mapping is one of thè key areas of neu-
roscience research. From this point of view, functional NIRS is giving a unique
contribution considering that it has several advantages over existing technologies
(MRI, PET, etc.) for brain imaging (Hoshi, 2003; Obrig and Villringer, 2003).
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