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A B S T R A C T   

Objective: Breathing elevated oxygen partial pressures (PO2) prior to SCUBA diving increases the risk of devel-
oping central nervous system oxygen toxicity (CNS-OT), which could impair performance or result in seizure and 
subsequent drowning. We aimed to study the dynamics of electrodermal activity (EDA) while breathing elevated 
PO2 in the hyperbaric environment (HBO2) as a possible means to predict impending CNS-OT. To this end, we 
used machine learning to automatically detect and predict the onset of symptoms associated with CNS-OT in 
humans by using features derived from EDA in both time and frequency domains. 
Methods: We collected electrodermal activity (EDA) data from forty-nine exposures to HBO2 while subjects were 
undergoing cognitive load and exercise in a hyperbaric oxygen chamber. Four independent experts were present 
during the experiment to monitor and classify any symptoms associated with hyperbaric oxygen toxicity. We 
computed a highly sensitive time varying spectral EDA index, named TVSymp, and extracted informative fea-
tures from skin conductance responses (SCRs). Machine learning algorithms were trained and validated for 
classifying features from SCRs and TVSymp as CNS-OT related or non-CNS-OT related. Machine learning models 
were validated using a subject-independent leave one subject out (LOSO) validation scheme. 
Results: Our machine learning model was able to classify EDA dynamics related to CNS-OT with 100 % sensitivity 
and 84 % specificity via LOSO validation. Moreover, the median prediction time for CNS-OT symptoms was ~ 
250 s preceding the occurrence of actual symptoms. 
Significance: This study shows that EDA can potentially be used for early prediction of CNS-OT in divers with a 
high sensitivity and sufficient prediction time for countermeasures. While the study results are promising, in-
dependent validation datasets are warranted to confirm the findings. However, the current results are well 
corroborated in an animal study, which consistently showed seizure prediction time of 2 min prior to seizure.   

1. Introduction 

Hyperbaric oxygen (HBO2) therapy has been used for treatment of 
disorders such as carbon monoxide toxicity (CO) [1], decompression 
sickness [2], and treating wounds [3,4]. Hyperbaric oxygen therapy 
(HBO2T) exposes human body to 100 % oxygen (O2) at ambient pressure 
higher than one atmosphere (1 ATM) [5]. The ambient pressure in 

hyperbaric chambers can be increased to partial pressures of oxygen 
(PO2) exceeding 1 ATA because reactive oxidative species (ROS) and 
hydrostatic effects can improve wound healing and affect the bubble 
sizes in decompression sickness caused by high partial pressure of ni-
trogen (N2) [6]. 

Even though the toxic nature of oxygen is usually overlooked, there 
are several side effects of HBO2T including HBO2-induced seizure [7]. 
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Divers who are treated using prolonged hyperbaric oxygen exposure are 
very likely to develop symptoms related to HBO2 toxicity. Prolonged 
exposure to elevated PO2 increases the risk of both pulmonary and 
central nervous system oxygen toxicity (CNS-OT), which is character-
ized by decrease in pulmonary function, chest tightness, dyspnea, cough, 
headache, diaphoresis, nausea, tinnitus, lip twitching, and so on. Thus, 
autonomic nervous system activity, more specifically, sympathetic ac-
tivity, known to be elevated during the above-noted symptoms, can be a 
potential tool to predict CNS-OT symptoms. 

The risk of central nervous system oxygen toxicity is proportional to 
both partial pressure of oxygen (PO2) and exposure time. The higher the 
PO2, the higher the risk of CNS-OT [8]. Typically, 2–3 ATA is considered 
the threshold for CNS-OT risk, however, this could be even lower 
depending on concurrent activities such as exercise or cognitive load, 
and immersion [4,6]. Therefore, to maximize the potential benefits of 
HBO2T, determining the oxygen toxicity mechanisms and early predic-
tion of HBO2 toxicity symptoms are essential. 

Our recent studies involving animals and human subjects breathing 
HBO2 in a hyperbaric chamber have shown consistent seizure activities 
(in the animals) and symptoms related to oxygen toxicity due to CNS-OT 
induced by HBO2 [9,10]. As seizures are associated with elevated sym-
pathetic activity [9], a quantitative measure of sympathetic activity 
could be used to predict and detect seizure and its related symptoms. 

Electrodermal activity (EDA) has recently become a popular nonin-
vasive surrogate measure of sympathetic activity, and has been used in 
diverse applications such as stress and pain detection [11–17], autism 
examination [18,19], panic disorder studies [20], detection of depres-
sion [21], and recognition of emotional states [22,23]. EDA measure-
ments are collected by placing an electrode on each of two fingers, then 
injecting a small constant current through the electrodes and measuring 
the corresponding change in electrical conductance between the elec-
trodes[24,25]. 

Typically, EDA analysis is performed in the time domain by 
decomposing the signal into phasic and tonic components [26], where 
the tonic components represent the overall trend of the EDA and the 
phasic components represent skin conductance responses (SCRs) (shown 
in Fig. 1), which have faster dynamics and more visibly discernable 
responses than do the tonic components. While several studies used 
these time-domain features, some studies reported reproducibility issues 
with them [26–28]. 

Recently, our lab has developed a sensitive and consistent measure of 
EDA called the time-varying sympathetic (TVSymp) index [29], using 
time-varying spectral analysis. TVSymp characterizes the EDA signal 
components in the frequency band between 0.08 and 0.25 Hz in humans. 
TVSymp has been used successfully in different EDA applications, 
including stress during sleep deprivation [30] and pain detection 
[27,31]. 

A recent study on rats from our group has shown that there are large 
increases in TVSymp amplitudes on average 1.9 min before HBO2- 
induced seizures in rats [32]. We also observed significant increase in 
TVSymp amplitudes ~ 1 min prior to manifestation of CNS-OT symp-
toms in humans [26]. However, the specificity of symptom prediction 
was low (67 % specificity) in humans. Given that machine learning is 
adept at unraveling complex nonlinear patterns, we hypothesized that 
machine learning algorithms can potentially lead to better performance 
metrics in predicting symptoms related to CNS-OT in humans. 

To this end, we computed features from the individual SCRs and 
TVSymp-derived indices and applied a machine learning classifier to 
differentiate between “no symptoms” and “symptoms associated with 
CNS-OT.” The machine learning classification yielded 100 % sensitivity 
and 84 % specificity in classifying CNS-OT related symptoms. Pre-
liminary results of this study were presented at the IEEE EMBC confer-
ence in 2022 [26]. The conference paper contains a small portion of the 
dataset and limited analysis, while this paper includes data from a larger 
number of subjects with comprehensive details on the protocols with 
rigorous signal analysis and machine learning results. 

2. Materials and Methods 

2.1. Description of dataset 

Our dataset consists of simultaneously collected EDA and electro-
cardiogram (ECG) from 26 male subjects aged between 20 and 48 years 
of age. While every subject was expected to complete two exposures to 
HBO2, only twenty-three subjects completed both exposures, and three 
subjects completed one exposure. Thus, a total of forty-nine exposures 
were considered for this study. 

The experimental protocol was approved by Duke University’s 
Institutional Review Board and all volunteers executed a written 
informed consent form to participate in the study. The experiments were 
performed in the “foxtrot” chamber pool (as shown in Fig. 2) at the Duke 
University Hyperbaric Center, Duke University Hospital. During the 
experiment, subjects were immersed in 28 ± 1 ◦C water up to the 
shoulders, breathing 100 % O2 at 35 feet of seawater (oxygen partial 
pressure 2.06 ATA). Additionally, subjects exercised on an underwater 
cycle ergometer at approximately 100 W output and performed NASA’s 
Multi-Attribute Task Battery-II (MATB-II) [33] cognitive tests. The 
exposure lasted for a maximum duration of 120 min or until symptoms 
of CNS-OT were observed. For safety purposes, subjects were seated in 
water in a head-out position to avoid head submersion in the event of 
convulsion or loss of consciousness. We were able to rapidly, and safely, 
identify symptoms of oxygen toxicity by conducting this study one 
subject at a time. Convulsions are often preceded by warning signs, 
which were meticulously monitored by the safety diver in the water with 

Fig. 1. Example of EDA record and its components.  
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the subject. The protocol was terminated (exercise stopped, subject 
switched from 100 % oxygen to chamber air simply by removing the 
subject’s mouthpiece) upon the occurrence of ANY symptom, or a sud-
den decrease in cognitive performance on the MATB-II, or identification 
of EEG waveforms indicative of seizure or impending seizure. Some of 
the notable signs of CNS-OT include visual disturbances, headache, 
diaphoresis, nausea, tinnitus, twitching or tingling of the face or limbs. 
Due to potential harm to subjects and per the IRB regulations, any im-
mediate signs of symptoms related to oxygen toxicity led to stoppage of 
the experiments. Hence, all symptoms were ranked equally and any 
appearance of them resulted in immediate stoppage of the experiment. 
This is the reason why, in some cases, it was not crystal clear if oxygen 
toxicity symptoms occurred, therefore, the experts rated these as 
probable. 

EDA and ECG signals were collected simultaneously at a sampling 
frequency of 100 Hz. EDA was collected using dry (no-hydrogel) 
stainless-steel electrodes and using galvanic skin response module 
FF116 (ADInstruments, Sydney, Australia) while ECG signals were 
collected using Ag/AgCl electrodes and a Hewlett-Packard ECG monitor 
(Palo Alto, CA, USA). 

Each exposure was annotated by four independent experts as “defi-
nite” CNS-OT, “probable” CNS-OT, or “non-CNS-OT” which is when 
subjects either did not exhibit any symptoms or their symptoms were 
concluded by experts to be not associated with CNS-OT. Finally, a ma-
jority voting poll was used to create the final adjudication. In the case of 
50/50 decision splits (two annotations as “definite” and two as “prob-
able”), the exposure was labeled as “probable.” Hence, we have eighteen 
“Definite CNS-OT,” thirteen “Probable,” and eighteen “non-CNS-OT” 
labeled exposures. 

2.2. EDA signal processing 

2.2.1. Preprocessing 
Like most biosignals, EDA can be affected by occasional motion ar-

tifacts (MA), which may result in lower specificity for detecting CNS-OT 
[34,35]. A previous study used an automatic MA detection algorithm 
[36] for detecting MA in EDA signals and excluded detected MA seg-
ments from the analysis. However, this method was developed using a 
different dataset that was not related to CNS-OT detection, hence, its 
performance on this CNS-OT dataset was suboptimal. For more reliable 
results, MA should be removed from the analysis since MA can be mis-
interpreted as peaks corresponding to the presence of CNS-OT. There-
fore, we used annotations from three independent EDA experts and 
applied a majority voting scheme to separate segments with MA from 
clean segments. A median filter (one second window) and a low pass 
finite impulse response filter with a cut-off-frequency of 1 Hz were 
applied to remove high frequency content of the signal. 

2.2.2. Time-varying spectral analysis of EDA: TVSymp 
TVSymp, which uses a time-varying spectral analysis approach, has 

been successfully applied in diverse applications involving stress, pain, 
fatigue, and dehydration detection [27,28,37] as these cases all involve 
increased sympathetic innervation. TVSymp has been found to be less 
intra-subject variant and more sensitive when compared to the time- 
domain measures of EDA (i.e., tonic and phasic components). 

TVSymp calculation involves decomposition of the EDA signal into 
multiple frequency bands using a high resolution time–frequency 
decomposition called variable frequency complex demodulation 
(VFCDM) [38]. VFCDM provides both high time and frequency resolu-
tion, while retaining accurate amplitude distribution of the signal. This 
method then uses only the frequency bands within the range of 
0.08 − 0.25Hz to reconstruct the signal. Finally, an envelope of the 
instantaneous amplitude of the signal is computed using the Hilbert 
transform [39]. This sequence of computations is described using the 
following equations. 

The original EDA signal y(t) can be expressed as a summation of N 
(=12 in our case) different VFCDM components as follows: 

y(t) =
∑N

i=1
Ci(t) (1)  

where Ci represents the ith VFCDM component. Considering a sampling 
frequency of 2Hz and 12 equally divided sub bands, components 2–3 
contain the frequency range 0.08 − 0.25Hz. Thus, we reconstruct the 
EDA signal y′(t) by summing components 2 and 3 of the VFCDM 
decomposition: 

y′(t) = C2(t)+C3(t) (2)  

we then compute the envelope of the signal y′(t) using the Hilbert 
transform. An analytic signal, A(t) of the y′(t), can be expressed as fol-
lows: 

A(t) = y′(t)+ jY′(t) (3)  

where Y′(t) is the Hilbert transform of the original signal y′(t) which can 
be obtained by the following equation: 

Y′(t) =
1
π P

∫ ∞

− ∞
y′(τ)/(t − τ)dτ (4)  

where P refers to the Cauchy principal value. 
The instantaneous amplitude and phase of the analytic signal A(t)

can be obtained as below. 

a(t) =
[
y′2(t) + Y′2(t)

]1/2 (5) 

Fig. 2. Experimental setup for data collection.  
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θ(t) = arctan(Y′(t)/y′(t) ) (6) 

The instantaneous amplitude a(t) is considered the TVSymp time 
series. Fig. 3 shows the representative TVSymp time series for a‘CNS-OT’ 
and a ‘No Symptom’ subjects. 

As shown in Fig. 3, preceding CNS-OT symptoms, there are signifi-
cant increases in TVSymp amplitudes. Annotations for MA are also 
plotted (thick red rectangular box) to designate large TVSymp ampli-
tudes due to the MA. For non-CNS-OT there is no significant sudden rise 
in TVSymp values as compared to the CNS-OT case. 

2.3. Data preparation for Machine learning 

Our previous study reported significant and sudden increase in 
TVSymp amplitudes preceding the CNS-OT symptoms compared to the 
first five minutes (baseline) of the recording, where we would not expect 
to have any CNS-OT symptoms. However, for more accurate and auto-
mated prediction of seizures, we analyzed the entire data recording to 
identify the earliest possible onset of the sudden and large increases in 
TVSymp amplitudes prior to the experts’ adjudication of when CNS-OT 
related symptoms occurred. 

Based on our observations, TVSymp amplitudes increase signifi-
cantly preceding CNS-OT related symptoms. Moreover, during the first 
five minutes there were no seizure-related activities, as we did not 
observe any sudden and large increase in TVSymp amplitudes. This 
observation is buttressed by the histogram shown in Fig. 4, which shows 
TVSymp amplitudes in both the last (for those defined as ‘CNS-OT’ 
subjects) and first five minutes of EDA. For the first five minutes, 95 % of 
TVSymp amplitudes are less than ~ 4. However, in the last five minutes 
of the recordings (for CNS-OT subjects only) TVSymp amplitudes far 
exceed 4 and in some cases they are as large as 19 when symptoms of 
CNS-OT tend to occur. 

2.3.1. Feature extraction 
We computed 4 different features from each of the SCRs, including 

peak TVSymp amplitude, rising and falling slopes of the SCRs, and width 
of the SCRs. 

2.4. Machine learning 

We examined multiple machine learning classifiers, including linear 
discriminant analysis (LDA), logistic regression, linear support vector 
machine (SVM), decision tree, random forests, and gradient boosting 
classifiers. Since we have a limited dataset, we used a subject- 
independent leave-one-subject-out (LOSO) validation strategy to eval-
uate our machine learning models. We computed sensitivity and speci-
ficity by averaging the predictions from each test fold. 

2.4.1. Data balancing 
After annotation, a total of 217 samples were related to CNS-OT and 

9100 samples were not related to CNS-OT. Thus, we have a highly 
imbalanced dataset with more negative samples. Therefore, to avoid 
biased training, we used the synthetic minority oversampling technique 
(SMOTE) [40] to oversample the examples in the minority class. 

2.4.2. Hyperparameter optimization 
For each fold of the LOSO validation, we optimized the hyper pa-

rameters of the classifiers using the grid-search cross-validation tech-
nique with group K-fold (k = 5) cross validation on the training data. For 
linear SVM, we varied the parameter C from 0.01 to 1000 using multi-
ples of 100. For random forests and gradient boosting classifiers, we 
varied the maximum depth of the trees from 3 to 6, and the number of 
estimators between 40 and 100 with a step size of 20. 

2.4.3. Training Machine learning algorithms 
To train the machine learning algorithms, we only used the first and 

last five minutes of the data, as supported by the histogram plot shown 

Fig. 3. Representative examples of EDA and the corresponding TVSymp for CNS-OT and non CNS-OT exposures. The thick rectangular red line represents motion 
artifact detection using our algorithm. 
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in Fig. 4. However, note that for validation we considered data from the 
entire exposure to assess how early our model detects symptoms asso-
ciated with CNS-OT. 

3. Results 

For evaluating the machine learning models, we used the LOSO 
validation strategy and compared the ML models in terms of sensitivity 
and specificity, which are defined as: 

Sensitivity =
TP

TP + FN
(7)  

Specificity =
TN

TN + FP
(8)  

where, TP,TN, FP, andFN represent the number of true positive, true 
negative, false positive, and false negative samples, respectively. In our 
case, the positive class represents SCRs related to CNS-OT symptoms and 
the negative class represents no symptoms associated with CNS-OT. 

As previously mentioned, each experimental session was annotated 
by four independent experts, and we considered majority voting for the 
final adjudicated labeling. However, for some symptomatic cases, half of 
the experts labeled the symptoms as “Definite CNS-OT” and the other 
half were unsure, hence, these cases were labeled as “Probable.” At first, 
we excluded all the probable cases, however, most of them had similar 
EDA signatures as “Definite CNS-OT.” Given that we have limited data 
samples for CNS-OT, additional positive cases of CNS-OT are beneficial 
for better training of machine learning models. Hence, we included cases 
with “Probable” CNS-OT in the CNS-OT cases, when at least two experts 
(≥50 %) annotated them as “Definite CNS-OT.” This led to an additional 
seven definite CNS-OT cases. However, we report results by including 
and excluding probable cases, as shown in Table 1. 

Table 1 summarizes the machine learning results on predicting CNS- 
OT associated symptoms. We considered six different machine learning 
models, as listed in the table. The table shows results for both regular 
labeling without including “Probable” symptoms and including ≥ 50 % 
“Probable” CNS-OT symptoms. Almost all of the machine learning 
models provided improved performance after including the ≥ 50 % 
“Probable” subjects. 

The linear SVM showed the maximum sensitivity of 98.84 % with a 
good specificity of 81.40 %. However, the performance of the linear 
SVM did not improve significantly after adding probable cases. Even 
though LDA provided high specificity, the sensitivity was much lower 

than for the other classifiers. The logistic regression classifier provided 
more consistent results both before and after including ≥ 50 % “Prob-
able” data; for the latter case, it showed 100 % sensitivity with 82.13 % 
specificity. The performance of the tree-based algorithms such as the 
decision tree, random forests, and gradient boosting classifiers, were 
comparable; all of them showed improved results after including prob-
able cases of CNS-OT. In order to evaluate individual feature’s impor-
tance, we used permutation feature importance technique [41,42], 
which measures the contribution of each feature to the statistical per-
formance of a fitted model. The feature importance score for the SCR 
width, rising time, falling time, and the TVsymp amplitude were 
(mean ± std) 0.0009 ± 0.003, 0.0167 ± 0.003, 0.0131 ± 0.002, and 
0.2564 ± 0.009 respectively. This suggests that the TVsymp amplitude is 
the most important feature out of the four features used by the model. 

The fact that the machine classifiers’ performance improved after 
including probable cases can be visualized from EDA characteristics. For 
example, Fig. 5 shows TVSymp series for a representative “definite” 
CNS-OT case and a “Probable” case. As shown in Fig. 5, both cases 
showed a sudden and significant rise in the TVSymp signal, which is the 
key signature for CNS-OT symptoms, in our observation, albeit the 
amplitudes in the definite CNS-OT case were much greater than in the 
probable CNS-OT case. Given the limited number of definite CNS-OT 
cases, and the fact that probable CNS-OT cases have similar significant 
increases in amplitudes of TVSymp values compared to baseline, our 
decision to include more data from training and testing is justified and 
consequently led to better classification results. 

Fig. 4. Histogram of TVSymp peaks in the first and last five minutes of EDA recordings.  

Table 1 
Machine Learning Results on seizure detection.  

Excluding “Probable” Classifier Sensitivity  Specificity 
LDA 74.42  89.61 
SVM (linear) 98.84  81.40 
Logistic Regression 98.26  82.97 
Decision Tree 87.79  83.98 
Random Forest 91.86  83.98 
Gradient Boosting 94.77  83.00 

Including ≥ 50 % “definite” LDA 80.51  86.49 
SVM (linear) 97.88  83.28 
Logistic Regression 100  82.13 
Decision Tree 95.33  83.27 
Random Forest 95.33  83.27 
Gradient Boosting 96.61  82.65  
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3.1. Prediction time 

We computed the prediction time of CNS-OT symptoms by consid-
ering the first significant increase in TVSymp detected as CNS-OT. The 
median prediction time as shown in Fig. 6, is slightly above 250 s while 
the 95 % confidence interval around the mean is 199 ± 98(mean ± sd). 
This suggests that prediction of CNS-OT symptoms can be on average 
200 s preceding the symptoms, which is greater than 4 min. 

4. Discussion 

This work is one of the first studies about prediction of CNS-OT 
symptoms in humans using EDA signals. The performance of the ma-
chine learning models showed promising results. The study outcome 

corroborates our recent findings in which we also observed significant 
increase in EDA activity prior to onset of seizures in rats undergoing 
HBO2 exposure [32]. Specifically, there were significant and sudden 
increases in TVSymp amplitudes > 2 min preceding seizure onset; the 
onset was verified via both EEG and video recordings of seizure-related 
convulsions in the rats. The rats were exposed to HBO2 at 5 ATA and 
sudden decompression led to seizures in all 10 rats. Hence, the sensi-
tivity and specificity were both found to be 100 %. However, for ethical 
and safety reasons for humans, the partial pressure of oxygen in this 
study was not increased beyond 2 ATA, and the subjects were removed 
from the experimental chamber as soon as mild symptoms associated 
with CNS-OT appeared. Hence, for the current work, prediction was 
based on the presence of symptoms associated with CNS-OT rather than 
predicting seizures. Since symptoms related to CNS-OT are precursors to 

Fig. 5. TVSymp characteristics for “Definite” CNS-OT exposure and ≥ 50 % “Probable” exposure.  

Fig. 6. Prediction time using machine learning (the redline shows the median value).  
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seizures, it is reasonable to expect that our prediction time would be 
even longer before actual seizures. When comparing humans to rats, 
however, we did find a greater prediction time opportunity before the 
appearance of symptoms associated with CNS-OT in humans than sei-
zures in rats. The average prediction time was > 3 min in humans before 
symptoms associated with CNS-OT, whereas the average prediction time 
was ~ 2 min in rats before the onset of seizures. Approximately 3 min of 
warning time is sufficient for preparation of countermeasures such as 
alerting dive buddies and alerting the diver of impending seizures. 

While this study presented evidence for prediction of CNS-OT 
symptoms in humans, there are some limitations of this study. First, 
because of the limited dataset, the machine learning models could not be 
validated on an independent dataset. Also, the fact that including more 
subjects (e.g., including probable CNS-OT cases) improved the classifi-
cation for most of the machine learning models, shows that more diverse 
sets of training data for machine learning models can lead to better 
characterization of the signal dynamics to discriminate SCRs that 
correspond to CNS-OT symptoms. Therefore, more validation using 
other independent datasets is necessary to further confirm the results of 
this study. 

Another possible limitation of the dataset is the annotation of EDA. 
While we conservatively assumed that EDA disturbances in the last five 
minutes were related to the CNS-OT symptoms, in reality, we do not 
know when an EDA signal exhibits CNS-OT signatures. Thus, EDA ac-
tivities immediately before the last five minutes may be related to the 
CNS-OT symptoms as well, which could be one of the reasons for our 
relatively low specificity. 

Moreover, we used manual annotations for discarding data segments 
with motion artifacts, to provide more reliable and accurate prediction 
of CNS-OT symptoms. While manually discarding motion artifacts gives 
us the opportunity to train our machine learning models using more 
reliable signals, this is not suitable for an automated approach to predict 
CNS-OT symptoms in real time. For automated applications, we are 
planning to apply our recently developed automatic motion artifact 
detection and removal algorithms [34,35]. However, both algorithms 
may require additional training data to fully compensate for all possible 
scenarios involving motion artifacts, especially in water immersion. 
Currently, we are developing hardware to collect EDA data from the feet 
of divers, as the foot was found to be the best alternate location for EDA 
data collection when palmer sites are not available [43]. In addition, we 
will be implementing our machine learning model for CNS-OT detection 
along with automatic motion artifact detection and correction into the 
device to provide early warning of CNS-OT. 

Despite some limitations, this study showed the efficacy of machine 
learning in predicting symptoms associated with CNS-OT nearly 3 min in 
advance, to provide necessary warnings to the diver of possible 
impending seizures. Such impressive early prediction of symptoms 
associated with CNS-OT in humans has not been demonstrated prior to 
our current study. 

Ethical and integrity policies. 
Ethics and patient consent approval statement. 
The human study was approved by Duke University’s IRB and human 

consent was received prior to experiments. 
Key points:  

• Breathing elevated oxygen partial pressures (PO2) prior to SCUBA 
diving increases the risk of developing central nervous system oxy-
gen toxicity (CNS-OT).  

• Our work shows that CNST-OT symptoms can be predicted > 4 min 
prior to actual symptoms.  

• Machine learning using EDA features showed CNS-OT discrimination 
with 100 % sensitivity and 84 % specificity. 
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Álvarez-Mon MA, García-Honduvilla N, Monserrat J, Álvarez-Mon M, Bujan J, 
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