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Abstract

The goal of this review is to outline advances

addressing the role that reactive species of

oxygen and nitrogen play in therapeutic

https://www.ncbi.nlm.nih.gov/pmc/
http://jap.physiology.org/


mechanisms of hyperbaric oxygen. The review

will be organized around major categories of

problems or processes where controlled clinical

trials have demonstrated clinical efficacy for

hyperbaric oxygen therapy. Reactive species are

now recognized to play a major role in cell signal

transduction cascades, and the discussion will

focus on how hyperbaric oxygen acts through

these pathways to mediate wound healing and

ameliorate postischemic and inflammatory

injuries.

THERAPEUTIC MECHANISMS OF action for hyperbaric oxygen (HBO2)

are based on elevation of both the partial pressure of oxygen and

hydrostatic pressure. Elevating the hydrostatic pressure increases

partial pressure of gases and causes a reduction in the volume of

gas-filled spaces according to Boyle's law. These actions have direct

relevance to treating pathological conditions in which gas bubbles

are present in the body, such as arterial gas embolism and

decompression sickness. The majority of patients who undergo

HBO2 therapy are not treated for bubble-induced injuries; hence

therapeutic mechanisms are related to an elevated O2 partial

pressure. A summary of these mechanisms is shown in Fig. 1.

It is well accepted that reactive oxygen species (ROS) mediate O2

toxicity, which for HBO2 encompasses pulmonary injuries, central

nervous system effects manifested by grand mal seizures, and ocular

effects such as reversible myopia (29). ROS and reactive nitrogen

species (RNS) also serve as signaling molecules in transduction

cascades, or pathways, for a variety of growth factors, cytokines, and



hormones (4, 25, 82, 123). As such, reactive species can generate

either “positive” or “negative” effects depending on their

concentration and intracellular localization. Although more is still to

be learned about the role ROS and RNS play in therapeutic

responses of HBO2, this review will take stock of how far the field

has progressed. The review will be organized around major

categories of problems or processes where controlled clinical trials

have demonstrated clinical efficacy for HBO2.

ROS are generated as natural by-products of metabolism and they

include superoxide (O2
•−), hydrogen peroxide (H2O2),

hypochlorous acid (HClO), and hydroxyl (HO•). ROS are increased

in many organs by hyperoxia (60). Scavenging antioxidants combat

the overproduction of reactive species. Enzymatic antioxidants

include superoxide dismutase, catalase, and thioredoxin- and

glutathione-dependent peroxidase(s) and reductase(s). Acting in

conjunction with these enzymes are the nonenzymatic antioxidants

vitamin C, vitamin E, thioredoxin, glutathione, uric acid, β-carotene,

and carotene (124). Because exposure to hyperoxia in clinical HBO2

protocols is rather brief (typically ∼2 h/day), studies show that

antioxidant defenses are adequate so that biochemical stresses

related to increases in ROS are reversible (33, 34, 89, 97).

RNS include nitric oxide (NO) and agents generated by reactions

between NO, or its oxidation products, and ROS. There are three NO

synthase enzymes responsible for synthesizing .NO while converting

L-arginine to L-citrulline: NOS-1 (neuronal NO synthase, nNOS),

NOS-2 (inducible/inflammatory NO synthase, iNOS) and NOS-3

(endothelial NO synthase, eNOS). Peroxynitrite (ONOO−) is the

product of a reaction between O2
•− and NO (10). Additionally,



peroxide enzymes, and especially myeloperoxidase, can catalyze

reactions between nitrite (NO2), a major oxidation product of NO,

and hydrogen peroxide, or HClO to generate oxidants such as nitryl

chloride and nitrogen dioxide that are capable of nitration and S-

nitrosylation reactions (18, 72, 99).

WOUND HEALING

HBO2 is used in current practice to treat refractory diabetic wounds

and delayed radiation injuries. A typical treatment protocol is daily

exposures to 2.0–2.4 atmospheres absolute (ATA) for 90–120 min

for 20–40 days. Treatments often include so-called air breaks, where

a patient breathes just air for 5 min once or twice through the course

of a treatment. This intervention has been demonstrated to enhance

pulmonary O2 tolerance (52).

Discussion of the pathophysiology of diabetic wounds and delayed

radiation injuries is beyond the scope of this review, and the reader

is referred to several recent publications (32, 42). Common elements

shared by both disorders include depletion of epithelial and stromal

cells, chronic inflammation, fibrosis, an imbalance or abnormalities

in extracellular matrix components and remodeling processes, and

impaired keratinocyte functions (17, 32, 42, 79, 109, 121). Diabetic

wound healing is also impaired by deceased growth factor

production, whereas in postradiation tissues there appears to be an

imbalance between factors mediating fibrosis vs. normal tissue

healing (17, 32, 121).

The effectiveness of HBO2 as an adjuvant therapy for the treatment

of diabetic lower extremity ulcerations is supported by six

randomized trials and evaluations from a number of independent

evidence-based reviews (6, 7, 49, 53, 69). The pathophysiology of



radiation injury is obviously different from diabetic wounds, but the

varied tissue abnormalities have been likened to a chronic wound

(32). The benefit of HBO2 for radiation injury also has been shown

in randomized trials, and its utilization supported by independent

evidence-based reviews (11, 30, 81). It is important to state that for

both diabetic wounds and radiation injuries, HBO2 is used in

conjunction with standard surgical management techniques. That

was the format followed in clinical trials demonstrating its efficacy.

By itself, or if used only in a postoperative period, HBO2 is

frequently inadequate treatment (5, 76). Animal trials have also

documented benefits of HBO2 (45, 46, 80, 138). The basis for its

efficacy is only partially understood, but appears to be a combination

of systemic events as well as local alterations within the wound

margin (see Fig. 1).

Neovascularization occurs by two processes. Regional angiogenic

stimuli influence the efficiency of new blood vessel growth by local

endothelial cells (termed angiogenesis), and they stimulate the

recruitment and differentiation of circulating stem/progenitor cells

(SPCs) to form vessels de novo in a process termed vasculogenesis

(27, 51, 112). Clinical HBO2 has effects on both these processes.

HBO2 reduces circulating levels of proinflammatory cytokines under

stress conditions [e.g., endotoxin challenge (43)], and in wounded

tissues or isolated cells, HBO2 increases synthesis of many growth

factors. HBO2 does not alter circulating levels of insulin, insulin-like

growth factors, or proinflammatory cytokines [e.g., tumor necrosis

factor-α, interleukin (IL) -6, and IL-8] in normal healthy humans

(28, 43). Vascular endothelial growth factor (VEGF) and

angiopoietin, as well as stromal-derived factor-1 (SDF-1) influence

SPCs homing to wounds and SPCs differentiation to endothelial



cells (55, 92). Synthesis of VEGF has been shown to be increased in

wounds by HBO2, and it is the most specific growth factor for

neovascularization (107). HBO2 also stimulates synthesis of basic

fibroblast growth factor and transforming growth factor-β1 by human

dermal fibroblasts (64), angiopoietin-2 by human umbilical vein

endothelial cells (74), and it upregulates platelet-derived growth

factor receptor in wounds (14). Extracellular matrix formation is

closely linked to neovascularization, and it is another O2-dependent

process (57). Enhanced collagen synthesis and cross-linking by

HBO2 have been described, but whether changes are linked to the

O2 dependence of fibroblast hydroxylases, which have a Km for O2

of ∼25 mmHg, well below that achieved in the presence of HBO2

vs. some alteration in balance of wound growth factors,

metalloproteinases and inhibitors of metalloproteases, is as yet

unclear (36, 57, 135).

Oxidative stress at sites of neovascularization will stimulate growth

factor synthesis by augmenting synthesis and stabilizing hypoxia-

inducible factor (HIF)-1 (58, 87). Hypoxia inducible transcription

factors are heterodimers of HIF-α and a constitutively expressed

HIF-β (also called the aryl hydrocarbon receptor nuclear translocator

subunit). Enhanced growth factor synthesis by HBO2 is due at least

in part to augmented synthesis and stabilization of HIFs (107, 115,

116). Although this clearly sounds paradoxical, even under

normoxic conditions HIF activity is regulated by a variety of cellular

microenvironmental modifications. It is well recognized that

expression and activation of HIF-α subunits are tightly regulated,

and their degradation by the ubiquitin-proteasome pathway typically

occurs when cells are replete with O2 (98, 103). However, whether

hypoxic or normoxic conditions prevail, free radicals are required for

HIF expression (16, 39, 100, 102, 103). In addition to ROS,



synthesis of NO is required for VEGF-mediated angiogenesis (44),

and many downstream effects of VEGF are stimulated via NO (8,

91).

There are three distinct HIF-α proteins: HIF-1α, -2α, and -3α. HIF-1

and -2 coordinate many cell responses involved with

neovascularization by regulating gene transcription, and, although

there is substantial overlap in their activity, there are also a number

of genes preferentially regulated by either HIF-1 or -2 (126). The

biological function of HIF-3 is unclear, and at least one splice

variant negatively modulates HIF-1α and -2α, although its

expression is restricted to specific tissues and subject to hypoxic

conditions (77, 83).

The influence HBO2 has on HIF isoform expression appears to be

conflicting, and further work is needed to elucidate what are likely to

be variations based on tissue-specific responses. Additionally, higher

or lower levels of HIF isoforms may vary based on chronology (e.g.,

looking early or late after wounding or an ischemic insult). One

recent model showing accelerated wound healing by HBO2 reported

lower HIF-1 levels at wound margins, along with reduced

inflammation and fewer apoptotic cells (138). In contrast, higher

levels of HIF-1 have been linked to elevated VEGF in wounds in

response to hyperoxia (58, 107). Recently, exposure to HBO2 was

shown to elevate HIF-1 and -2 levels in vasculogenic SPCs. The

basis for this effect is augmented production of the antioxidant,

thioredoxin and one of its regulatory enzymes, thioredoxin

reductase, in response to oxidative stress (115). Among other

actions, thioredoxin has been shown to promote the expression and

activity of HIFs (40, 62, 130). HIF-1 and -2 then secondarily can

stimulate transcription of many genes involved with

neovascularization, including SDF-1 and its counterpart ligand,



CXCR4, as well as VEGF. A physiological oxidative stress that

triggers the same pathway is lactate metabolism (87).

Bone marrow NOS-3 activity is required for SPCs mobilization (4).

SPCs mobilization is compromised by diabetes, apparently because

NOS activity can be impaired due to responses related to

hyperglycemia and a reduced presence of insulin (13, 22, 37, 38). In

addition, radiation and chemotherapy, along with other factors such

as age, female sex, and coronary artery disease, are known to

diminish SPCs mobilization (59, 94, 101, 125). By stimulating NO

synthesis in bone marrow, HBO2 mobilizes SPCs in normal humans

and patients previously exposed to radiation (118), and preliminary

observations suggest the same is true for diabetic patients (116,

133). In animal models, SPCs mobilized by HBO2 home to wounds

and accelerate healing (45, 46, 115). HBO2 also improves clonal cell

growth of SPCs from humans and animals (118). Functional

enhancements of SPCs by HBO2 appear to be related to

augmentation of HIF-1 and -2 levels (115).

Therefore, to summarize, HBO2 can stimulate healing in refractory

wounds and irradiated tissues. One oxidative stress response that

triggers improved function, at least for SPCs, involves elevations of

thioredoxin and thioredoxin reductase, which secondarily increase

HIF-1 and HIF-2. The influence of HBO2 on HIFs in other cell types

or tissues is variable. Increased synthesis of growth factors and

collagen has been demonstrated. A separate free radical-based

mechanism for augmentation of neovascularization by HBO2 is bone

marrow SPCs mobilization, which increases the number of

circulating SPCs that may home to injured tissues.



REPERFUSION/INFLAMMATORY INJURIES

AND HBO2

For this review, we will group a variety of disorders together to

facilitate the discussion on mechanisms of HBO2, although we

admit this approach grossly simplifies complex pathophysiological

processes. Clinical HBO2 protocols for these conditions are much

shorter than for wound healing. Treatments occur for just a few days

rather than weeks; they are performed at higher O2 partial pressures

(∼2.5–3.0 ATA) and may occur multiple times in the same day.

Skin graft and flap failures may be due to ischemia-reperfusion

injuries. A prospective, blinded clinical trial found that

administration of HBO2 before and for 3 days following the

procedure led to a significant 29% improvement in graft survival

(93). This is the only randomized clinical trial on skin grafts, but

numerous animal studies support its conclusions (see citations in

Ref. 67). Clinical studies have also documented significant survival

enhancement with HBO2 for extremity reimplantation and free

tissue transfer, and following crush injury (15, 127). Other clinical

trials have shown reductions in coronary artery restenosis after

balloon angioplasty/stenting (105, 106), decreased muscle loss after

thrombolytic treatment for myocardial infarction (31, 104, 108),

improved hepatic survival after transplantation and more rapid

return of donor liver function (84, 110), and reduced incidence of

encephalopathy seen after cardiopulmonary bypass and following

carbon monoxide poisoning (3, 128).

As is the case with wound healing, there appear to be complex and

perhaps overlapping mechanisms for therapeutic effects of HBO2

(see Fig. 1). An early event associated with tissue reperfusion is



adherence of circulating neutrophils to vascular endothelium by β2-

integrins. When animals or humans are exposed to HBO2 at 2.8–3.0

ATA (but not to just 2.0 ATA O2), the ability of circulating

neutrophils to adhere to target tissues is temporarily inhibited (63,

70, 117, 120, 137). In animal models, HBO2-mediated inhibition of

neutrophil β2-integrin adhesion has been shown to ameliorate

reperfusion injuries of brain, heart, lung, liver, skeletal muscle and

intestine, as well as smoke-induced lung injury and encephalopathy

due to carbon monoxide poisoning (9, 65, 111, 114, 117, 122, 132,

134, 137). It also appears that benefits of HBO2 in decompression

sickness are related to the temporary inhibition of neutrophil β2-

integrins, in addition to the Boyle's law-mediated reduction in

bubble volume as discussed in the introduction (78).

Exposure to HBO2 inhibits neutrophil β2-integrin function because

hyperoxia increases synthesis of reactive species derived from NOS-

2 and myeloperoxidase, leading to excessive S-nitrosylation of β-

actin (113). This is a highly localized process occurring within

neutrophils and not observed in other leukocytes, probably because

of a paucity of myeloperoxidase. This modification increases the

concentration of short, non-cross-linked filamentous (F)-actin, alters

F-actin distribution within the cell, and it inhibits β2 integrin

clustering on the membrane surface. HBO2 does not reduce

neutrophil viability and functions such as degranulation,

phagocytosis, and oxidative burst in response to chemoattractants

remain intact (61, 117, 120). Inhibiting β2-integrins with

monoclonal antibodies will also ameliorate ischemia-reperfusion

injuries, but in contrast to HBO2, antibody therapy causes profound

immunocompromise (85, 86). Probably the most compelling

evidence that HBO2 does not cause immunocompromise comes



from studies in sepsis models, where HBO2 has a beneficial effect

(23, 96, 119). HBO2 does not inhibit neutrophil antibacterial

functions because the G protein-coupled “inside-out” pathway for

activation remains intact, and actin nitrosylation is reversed as a

component of this activation process (113). The “denitrosylation”

mechanism in neutrophils is an area of current investigation.

Monocyte-macrophages exhibit lower stimulus-induced

proinflammatory cytokine production after exposure to HBO2. This

is seen with cells removed from humans and animals exposed to

HBO2 and also when cells are exposed to HBO2 ex vivo (12, 71,

129). The HBO2 effect on monocyte/macrophages may be the basis

for reduced circulating cytokine levels after endotoxin stress, as was

mentioned above (43). The mechanism is unknown, but could be

related to HBO2-mediated enhancement of heme oxygenase-1 and

heat shock proteins (HSP; e.g., HSP70) (35, 97). Hence, once again,

an oxidative stress response seems to occur. There are additional

mechanisms involved with beneficial HBO2 effects in reperfusion

models. HBO2 augments ischemic tolerance of brain, spinal cord,

liver, heart, and skeletal muscle by mechanisms involving induction

of antioxidant enzymes and anti-inflammatory proteins (24, 47, 56,

66, 90, 136).

HIF-1 is responsible for induction of genes that facilitate adaptation

and survival from hypoxic stresses (103), and so it has been a focus

of interest when examining HBO2 therapeutic mechanisms in

ischemia-reperfusion models. HIF-1 is involved with pro- as well an

antiapoptotic pathways and in brain, promotes astrocyte mediated-

chemokine synthesis (1, 88). In several models, exposure to HBO2

appears to ameliorate postischemic brain injury by decreasing HIF-1

expression (26, 73). When HBO2 is used in a prophylactic manner to



induce ischemic tolerance, however, its mechanism appears related

to up-regulation of HIF-1 and at least one of its target genes,

erythropoietin (48). Thus, as was the case in wound healing models,

timing of HBO2 application appears to influence cellular responses.

There has been a long tradition of considering HBO2 therapy for a

variety of highly virulent infectious diseases, such as necrotizing

fasciitis and clostridial myonecrosis, with a view that the

microorganisms involved were particularly sensitive to elevated

partial pressures of O2. Several retrospective cohort trials indicate

there is a benefit to including HBO2 with antibiotics and surgery for

necrotizing fasciitis (41, 95, 131). There is only one multicenter

retrospective study where a trend toward increased survival was seen

in the HBO2 group [30% mortality (9 of 30 patients) with HBO2 and

42% (10 of 24 patients) without HBO2], but this was not statistically

significant. Despite this observation, the authors stated support for

use of HBO2 because of apparent selection bias between groups

(19). Retrospective comparisons examining efficacy of HBO2 in

clostridial myonecrosis support its use, but again there is ongoing

debate (50).

With regard to mechanisms, most clinically significant anaerobic

organisms are actually rather aerotolerant and thus tissue O2

tensions, even those achievable with HBO2, are expected to be only

bacteriostatic for these organisms (68). More likely therapeutic

mechanisms include impairment of exotoxin production, which is

O2 sensitive and can be inhibited at tissue partial pressures

achievable with HBO2 (50), and leukocyte killing, which is improve

at progressively higher O2 tensions (75). We suggest that a broader

focus may be required to elucidate the as yet unclear



pathophysiology of these serious infections and the role of HBO2. A

recent study of streptococcal myonecrosis showed that host

responses to even minor traumatic injuries increase expression of

vimentin in muscle tissue, which mediates adhesion/sequestration of

microorganisms (21). There is also a role for intravascular platelet-

neutrophil aggregation with vascular occlusion in these infectious

processes (20, 54). These issues are much closer to the

pathophysiological events seen with disorders such as ischemia-

reperfusion injuries than traditional ideas in infectious diseases.

There is ample room for further investigation.

In review, oxidative stress responses triggered by HBO2 improve

outcome from a wide variety of postischemic/inflammatory insults.

HBO2 also improves ischemic tolerance when used in a prophylactic

manner. The basis for these effects is only partially understood.

Augmented synthesis of reactive species temporarily inhibits

endothelial sequestration of neutrophils by inhibiting β2-integrin

function and in many tissues HBO2 will induce antioxidant enzymes

and anti-inflammatory proteins.

SUMMARY

This review has highlighted some of the beneficial actions of HBO2

and the data that indicate oxidative stress brought about by

hyperoxia can have therapeutic effects. Figure 1 provides a summary

of mechanisms, all of which appear to stem from elevations in

reactive species. Although there has been substantial advancement

of the field in recent years, more work is required to establish the

breadth of HBO2 utilization in 21st century medicine. Investigations

of fundamental mechanisms are still needed, and on the clinical



front, patient selection criteria must be clarified to truly make HBO2

a cost-effective treatment modality.
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View larger version

Fig. 1. Overview on therapeutic

mechanisms of hyperbaric oxygen (HBO2). The two

primary effects of HBO2 are to reduce the volume of

bubbles in the body and elevate tissue oxygen tensions.

The figure outlines effects that occur due to increased

production of reactive oxygen species (ROS) and reactive

nitrogen species (RNS) because of hyperoxia. GFs, growth

factors; VEGF, vascular endothelia growth factor; HIF-1,

hypoxia inducible factor-1; SPCs, stem/progenitor cells;

HO-1, heme oxygenase-1, HSPs, heat shock proteins;

Syn'sis, synthesis.
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Fig. 1.

Overview on therapeutic mechanisms of hyperbaric

oxygen (HBO2). The two primary effects of HBO2 are to

reduce the volume of bubbles in the body and elevate

tissue oxygen tensions. The figure outlines effects that

occur due to increased production of reactive oxygen

species (ROS) and reactive nitrogen species (RNS)

because of hyperoxia. GFs, growth factors; VEGF,

vascular endothelia growth factor; HIF-1, hypoxia

inducible factor-1; SPCs, stem/progenitor cells; HO-1,

heme oxygenase-1, HSPs, heat shock proteins; Syn'sis,

synthesis.
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