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In the 1940s, Scholander and Irving revealed fundamental physiological
responses to forced diving of marine mammals and birds, setting the stage
for the study of diving physiology. Since then, diving physiology research
hasmoved from the laboratory to the field.Modern biologging, with the devel-
opment of microprocessor technology, recorder memory capacity and battery
life, has advanced and expanded investigations of the diving physiology of
marine mammals and birds. This review describes a brief history of the start
of field diving physiology investigations, including the invention of the time
depth recorder, and then tracks the use of biologging studies in four key
diving physiology topics: heart rate, blood flow, body temperature and
oxygen store management. Investigations of diving heart rates in cetaceans
and O2 store management in diving emperor penguins are highlighted to
emphasize the value of diving physiology biologging research. The review
concludes with current challenges, remaining diving physiology questions
and what technologies are needed to advance the field.

This article is part of the theme issue ‘Measuring physiology in
free-living animals (Part I)’.
1. Introduction
The depths to which marine animals can dive and the length of time they remain
submerged have intrigued researchers for decades, including, in the early 1930s, a
young Per Scholander. Scholander, who observed diving seals and birds while he
was researching lichens in the Artic, became interested in how these animals had
enough oxygen to perform long dives and how they avoided pressure-related dis-
eases from repetitive and deep diving. Developing new techniques to measure
respiratory gas exchange, Scholander studied the cardiorespiratory responses to
forced diving in a variety of marine divers revealing a range of adaptations to
cope with hypoxia and anoxia. At about the same time, Lawrence Irving had
begun similar research on diving mammals in Canada. Scholander and Irving’s
research on marine mammals and birds before, during and after submergences
in the laboratory demonstrated physiological changes that decreased oxygen
consumption, including (i) a reduction in heart rate (diving bradycardia)
and (ii) selective redistribution of the circulation away from muscles and to the
brain and heart (demonstrated in part by a delayed increase in blood lactate
compared to muscle lactate) [1–3]. Additional studies of diving animals revealed
a reduction in body temperature during forced diving, which they concluded also
contributed to a lower diving metabolic rate [4].

The majority of these studies took place in the laboratory on animals that were
immobile and immersed in very shallow water for durations unknown to the
animal.While avarietyof physiological responses couldbe simultaneously recorded
in real time during forced submersions, the conditions in these studies were far
removed from conditions in the wild. Animals were not subject to hydrostatic
pressure, had no control over the start and end of a forced submersion, and did no
locomotory work. Thus, physiological responses affected by or related to pressure,
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exercise or anticipatory preparations before diving could not be
measured. Further, results probably represented the most
extreme response because submersion duration was unknown.

Examining the physiological responses that occur during
diving and the contributions of those responses to diving
behaviour and ecology are best understood by measuring par-
ameters in freely diving animals. In this review, we focus on
how biologging techniques have been used to investigate
diving physiology. This topic is particularly appropriate for
this special issue, which is dedicated to recent advances and
technological developments in the field of physiological bio-
logging. Our examination of prior biologging research in
diving physiology provides a background for readers to
appreciate how biologging has contributed to a better
understanding of diving physiology, and, vice versa, how
questions in diving physiology have led to the development
of biologging techniques. This review is not a comprehensive
presentation of diving physiology, nor is it an all-inclusive
listing of every biologging study in the field of diving physi-
ology. For those purposes, we refer readers to prior
publications [5–9]. In this paper, after a brief summary of
diving physiology before biologgers, we specifically examine
how past biologging research has been used to measure,
directly or indirectly, key diving physiology parameters:
(i) heart rate; (ii) blood flow; (iii) body temperature; and
(iv) oxygen store management. Next, we illustrate how biolog-
ging has advanced our understanding of diving physiology
with two examples.We then discuss current challenges includ-
ing remaining key unanswered questions in diving physiology
and the problem of retrieving biologgers. Finally, we conclude
with a brief description of technological advances needed to
push the field forward.
2. Early diving physiology field studies
(a) Time depth recorder, a game changer in the 1960s

and 1970s
To study physiological changes and adaptations of diving
animals in their natural environment, researchers faced a
number of challenges. In the 1960s, diving depths and dur-
ations were completely unknown for most marine animals.
Anecdotal observations offered rare glimpses into diving
behaviour, such as the 355 m depth of a harpooned fin
whale measured by a capillary tube attached to the harpoon
[1]. However, a more complete understanding of an animal’s
routine diving behaviour is key to interpreting associated
physiological responses. For example, knowing an animal’s
routine and maximum dive durations is vital for understand-
ing when and how oxygen-conserving mechanisms are used.
Similarly, an animal’s regular diving depth is relevant to
Scholander’s hypothesis of alveolar collapse at depth and
the cessation of gas exchange as a mechanism to protect
against decompression sickness [1].

However, the ability to study routine and extreme diving
behaviour of marine mammals and birds was not technologi-
cally feasible until Jerry Kooyman developed the first time
depth recorder (TDR) in 1963. Kooyman was interested in
the behavioural and physiological responses of seals diving
at sea, not in the laboratory. To investigate Weddell seals
diving in Antarctica, he took an ordinary kitchen timer, com-
bined it with a smoked glass disc and bourdon tube to make
a TDR [10]. A bourdon tube is a curved, hollow tube that
deforms or uncoils when the fluid in the tube is subjected to
increased pressure. The pressure can be determined from the
mechanical displacement of a pointer connected to the bour-
don tube. In the TDR, the pointer was converted to a pin to
write on the smoked glass (figure 1). The device was attached
to Weddell seals diving through an isolated hole allowing
Kooyman to obtain the first routine diving records of a
marine mammal and demonstrating seals could dive to at
least 600 m [10,12]. Later versions of the TDR measured
depth and time by means of a gear drive mechanism that
scrolled photographic film past a light-emitting diode (LED)
attached to the arm of a pressure-sensitive bourdon tube [13].

Since its first use on Weddell seals in the 1960s, the TDR
or its electronic derivative has provided the behavioural con-
text for all field diving studies using physiological biologgers.
The TDR has been used in hundreds of studies of marine and
aquatic animals across the world, revealing remarkable dive
durations and surprising dive depths (e.g. [14–17]). Commer-
cial TDRs that can record diving behaviour for months at a
time are available from a number of companies today.

(b) Challenges of field physiological studies
(1970s–1980s)

Once investigators began to understand diving capacities and
extremes ofmarine divers, researchers came upwith innovative
ways to investigate questions about physiological responses to
diving, as well as non-diving, in wild marine mammals and
birds. Some of these methods included constructing very long
breakaway leads attached to a laboratory instrument to
measure heart rate in diving seals [18], implanting transducers
to measure blood flow and heart rate in penguins tethered to a
float [19], epoxying external transmitters to seals to measure
heart rate and/or temperature by acoustic telemetry and then
following seals at sea using radio telemetry [20,21] and using
a combination of acoustic and radio telemetry to measure
heart rate in cormorants and Canada geese during diving and
non-diving [22]. However, there are limitations to each of
these approaches. The use of tethers or breakaway leads
limits the distance or depth the animal can travel or measur-
ments that can be made during diving. Acoustic telemetry
has limited bandwidth for transfer of data and signal reception
is limited to shorter distances than diving animals travel [9].
Because radiowaves do not travel well inwater, radio telemetry
is limited to land studies or diving physiology studies where it
is used to locate animals. Acoustic waves travel well in clear
water, but can be obscured by rocks, fast-moving water or
other obstructions. These challenges restricted diving physi-
ology studies to specific situations, species or locations.

The answer to these limitations was to store data, rather
than transmit it to a receiver. This is particularly relevant for
physiological measurements that require high sampling rates,
such as electrocardiograms (ECGs). This solution arrived in
the form of the biologger. Modern biologging was first intro-
duced in the 1980s when solid-state electronics were used by
researchers studying physiological responses to diving inWed-
dell seals at an isolated dive hole. Roger Hill developed a
physiological instrument that used a microprocessor to
control a peristaltic pump for collecting blood samples at
depth, to calculate heart rate and to store measurements of
heart rate, temperature and swim velocity during dives
[23,24]. The microcomputer stored up to 36 h of collected



Figure 1. The first TDR was developed to measure diving depths of Weddell seals in Antarctica. The initial TDR design is shown with key parts including housing (1),
kitchen timer housing and shaft (2 and 3), smoked glass disc (6), pressure indicator arm with flexible needle (10), bourdon tube with external opening (11 and 14),
O-ring (12) and housing brass cover (13). Reprinted with permission [11].
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data in random access memory (54 kB) and battery life was
7 days. The use of solid-state electronics started a new era of
biologging studies.
3. Biologging studies of diving physiology
The basic biologger design includes a microprocessor that
(i) receives and, in some cases, processes data, (ii) stores col-
lected data on the logger itself, and (iii) uses battery power.
Since Hill’s biologger in the 1980s, continued advances in
solid-state electronics and major breakthroughs in miniaturi-
zation of components meant biologgers were smaller and
lighter and could collect data longer, which dramatically
expanded the range of study designs and subjects. The pri-
mary variable component of the biologger is the sensor,
which determines the type of data and how it is collected.
The desire to explore diving physiology in marine mammals
and birds has pushed the development of sensors forward,
yielding surprising results in some cases, and confirming
the early findings of Scholander and Irving in others.

While there are many diving physiology-related research
areas, we focus on four parameters key to understanding the
mechanisms underlying extended dives and repetitive
diving: (i) heart rate; (ii) blood flow; (iii) body temperature;
and (iv) oxygen store management.
(a) Heart rate studies
The most recognized physiological response to diving is the
reduction in heart rate. Heart rate is a key determinant of
oxygen consumption and, as a result of lowering heart rate,
dive duration can be extended. The explanation for this is
twofold. First, cardiac output (CO) drops owing to a
reduction in heart rate (HR), assuming stroke volume (SV)
remains constant (CO =HR × SV) and this reduction in CO
means blood flow must be reduced somewhere in the body
to maintain stable blood pressure. Second, oxygen is deliv-
ered to the body via blood flow and the reduction in blood
flow during diving occurs in working muscle and per-
fusion-dependent organs [25]. This reduces overall oxygen
consumption because when blood flow slows in perfusion-
dependent organs, these organs consume less oxygen. In
working muscle, when blood flow is reduced or stopped,
muscle relies on its own oxygen store and then uses anaerobic
metabolism [3].

The sensors typically used to collect heart rate data are
external or subcutaneous electrodes placed on either side of
the heart, which are used to record the electrical activity of
the heart. This recording is an ECG. After identifying the
waves that represent depolarization of the ventricles (R
waves), heart rate is calculated from the interval between
the R waves. To reduce memory usage, instead of recording
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the entire ECG, initial heart rate biologgers processed ECG
data and then recorded only the R-wave. The R-wave typi-
cally has the tallest peak and is detected by its height
relative to the rest of the ECG record, including the P-wave
(depolarization of the atria) and the T wave (repolarization
of the ventricles). Using R-wave detectors, the heart rates of
animals diving at sea were recorded for the first time in Wed-
dell seals [23,24], northern elephant seals [26], southern
elephant seals [27] and emperor penguins [28]. Heart rate log-
gers have also been used to measure heart rates of Humboldt,
gentoo, macaroni and king penguins, shags, eiders and alba-
tross [29–35]. There are challenges to using R-wave detectors.
Placement of electrodes and testing of the biologger are
critical to avoid detection of non-R-wave peaks because
ground-truthing of the signal is typically unavailable once
the instrument is deployed [5,23]. The user must set a maxi-
mum heart rate to minimize mistaking other waves in the
ECG for an R-wave, which requires the user to anticipate
the species’maximum heart rate. Heart rates will not be accu-
rate if a user underestimates the maximum heart rate [18,36].
In addition to using electrodes to record cardiac electrical
activity, acoustic biologgers that detect the sounds of the
heart’s mitral and aortic valves closing have been used
during post-dive intervals in northern and southern
elephant seals [37–40]. However, this approach has been
limited to surface heart rate detection owing to water flow
noise during underwater swimming obscuring the sounds
of the valves closing [37–40]. An early alternative to the
R-wave biologger was the Holter monitor, a longer-term
biologger that typically used an audio cassette tape to
record the entire ECG. In the 1990s, Holter monitors were
waterproofed and successfully used to record ECG for up
to 48 h in elephant seals, Baikal seals, California sea lions
and a grey whale calf [26,41–43].

As memory capacity increased, researchers were able to
record the entire ECG at higher sampling rates for days at a
time in free-ranging, as well as captive, marine endotherms
including emperor penguins [36,44], cormorants [45], Califor-
nia sea lions [46], dolphins and Weddell seals [47], and small
and large whales [48,49]. The sensors used for these ECGs
included, not only subcutaneous electrodes, but also suction
cup electrodes [48,49].

The use of biologgers to study heart rate have revealed
key insights into physiological responses including the
variability in diving heart rate depending on the dive
duration, depth and activity level [26,29,50–52]; an ascent
tachycardia which may facilitate a faster recovery at the
surface for quick, repetitive diving [46,52]; high pre-dive
heart rates to enhance oxygen loading before diving [36],
dramatic drops in heart rate after a disturbance [53]
and relationships between heart rate and metabolic rate/
energetics [54–57].

Heart rate has been one of the most studied physiological
variables. The recent use of suction cup electrodes is a
particularly important development because it allows for
non-invasive heart rate studies, dramatically increasing the
number and types of species that can be studied. In this
special issue, suction cup electrodes have been used to
obtain heart rates of captive Risso’s dolphins and false
killer whales [58]. Additional innovation in signal processing
would also advance this area as ECG records are often
obscured by other signals, including muscle electrical activity
(electromyogram signals).
(b) Blood flow
As described above, the second aspect of the dive response is
the redistribution of blood flow away from non-essential
organs, such as working muscle, and to the brain and heart.
Scholander termed this ability to redistribute blood flow to
vital organs the master switch of life, as it provides a defence
to asphyxia [59]. Although a key aspect of the dive response,
to date, to our knowledge, no field studies of blood flow or
blood pressure in diving animals have been undertaken
using biologgers. In fact, the only blood flow field study on a
diving animal was a study on penguins modelled after blood
flow telemetry studies on baboons and giraffes [60–62]. Millard
et al. [19] found blood flow reduction in the femoral artery was
much greater than in the carotid artery during voluntary dives
of tethered penguins. In 2007, a fully implantable telemetry
system for measuring blood flow and pressure was demon-
strated in alligators [63]. Although this device holds promise
for future field studies of blood flow and/or blood pressure
in diving animals, its use in the field has not been reported in
any diver and it has not yet, apparently, been converted to a
biologging system.

(c) Temperature
Reduced body temperature during diving has also been
suggested as an additional mechanism to conserve oxygen
by slowing metabolic processes via the Q10 effect. The sensor
used in most temperature biologging studies is the thermistor,
which, when supplied with a constant current, experiences a
drop in voltage owing to decreased resistance in response to
a change in temperature. The placement of the thermistor is
key because studies have revealed high regional heterothermy
in diving animals, including the emperor penguin andWeddell
seal [9,64,65].

The proposition that lower body temperatures reduce
oxygen consumption during dives has found some support
in biologging studies. For example, in king, macaroni and
gentoo penguins diving in 2–4°C waters, implanted loggers
with embedded thermistors revealed abdominal and/or
stomach temperature reductions during diving that suggested
hypothermia-induced reductions in metabolic rates [34,66,67].
Similar results were found in aortic temperature of diving
Weddell seals with a reduction in temperature at the beginning
of diving bouts [23]. However, in emperor penguins diving in
the −0.2°C water of Antarctica, thermistors, attached to an
external biologger, implanted in the aorta, deep veins, muscle
tissue and stomach revealed stable and mildly elevated
temperatures [64,68]. External biologgers with implanted
thermistors were also used to measure the relatively constant
arterial temperature in diving juvenile northern elephant
seals [69], venal caval temperatures between 36°C and 38°C
in adult female, California sea lions [70] and muscle tempera-
tures near 37°C in diving Weddell seals [71]. In guillemots,
data loggers with an embedded thermistor implanted below
the liver (core) or under the abdominal skin (periphery)
demonstrated core body temperature increased during dives,
while periphery temperatures decreased [72].

Although regional heterothermy has been documented in
diving animals, direct linkage of changes in temperature to
changes in metabolic rate or oxygen consumption have yet to
be investigated. Future studies combining physiological par-
ameters may be able to shed more light on this question,
including whether temperature-induced metabolic reductions
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are specific to different species, activities or times. Understand-
ing how heat is released may also shed light on this question.
Several methods for measuring heat exchange using heat flux
sensors (thermopiles) attached to a biologger have been
described for marine mammals [65,73,74]. Future studies that
combine heat flux sensors and intravascular temperature
could, theoretically, provide insight into whether heat dissipa-
tion is associatedwith reduced core body temperature. Further,
body temperature changes may also be used as a proxy to
peripheral blood flow changes [75].
rnal/rstb
Phil.Trans.R.Soc.B

376:20200211
(d) Oxygen store management
Marine mammals and birds have increased body oxygen
stores, particularly in the muscle and blood, that also play a
role in increased dive durations. Understanding the manage-
ment of these stores can elucidate the effectiveness of oxygen-
conserving strategies of the dive response and provides insight
into oxygen consumption duringdives [76–78]. Further, relative
changes in the rate of myoglobin desaturation in the muscle
may indicate muscle blood flow changes during dives.

Blood oxygen levels have typically been measured in the
laboratory with specialized equipment. The ability to measure
oxygen in a diving animal required finding novel sensors that
could be coupledwith biologgermicroprocessors. The solution
came in the form of an electrode used to monitor human brain
oxygen levels. In the mid-2000s, Paul Ponganis developed an
oxygen biologger by modifying a commercial PO2

electrode
(Licox, Integra LifeSciences, Plainsboro, NJ, USA) and integrat-
ing it with a microprocessor. Since that time, blood oxygen
measurements have been made in diving emperor penguins,
northern elephant seals and California sea lions [70,77–81].
These studies have highlighted differences in patterns of
oxygen use in elephant seals and emperor penguins [6],
demonstrated extreme hypoxemic tolerance in seals [79] and
provided insight into lung collapse in California sea lions
[80]. Because of the complexity of procedures required to
implant the PO2

electrode in the location of interest, usually a
vein or artery,PO2

measurements in diving animals remain rare.
With regard to the respiratory oxygen store, while measur-

ing oxygen levels in the lungs ofmarinemammals has not been
possible, the Ponganis biologger has been used to measure res-
piratory oxygen management in the air sac of diving emperor
penguins [82,83]. Further, although the respiratory oxygen
store is not elevated above terrestrial animals, the volume
in the respiratory system may vary during diving. Using
biologgers with velocity meters and accelerometers, novel esti-
mations of diving respiratory air volume (DRAV) have been
made in penguins and sperm whales [84–86]. This technique
is based on buoyancy–velocity calculations during gliding
ascents to the surface at the end of a dive and has, more
recently, been applied to northern bottlenose whales, pilot
whales and humpback whales [87–90]. However, there are
limitations and special considerations to this approach, includ-
ing (i) the need for accurate measurements of velocity and
depth and estimations of body density and buoyancy,
(ii) knowledge of the animal’s drag coefficient, and (iii) the
inclusion of air in the feather or fur layer of birds and fur
seals, respectively. Further, there is the potential to underesti-
mate the DRAV due to the depletion of lung O2, absorption
of N2, and only partial exchange of carbon dioxide and N2

back into the lung during a dive [91,92] or exhalation under-
water prior to final ascent. Despite these limitations and the
need to refine estimates, this approach represents a non-inva-
sive measure of a key physiological variable during diving.

Respiratory rates and tidal volumes of penguins at sea have
been estimated from measurements of beak angle with the use
of a Hall sensor and magnet attached to the beak [93]. Voltage
output of the Hall sensor varies with magnetic field strength,
and changes as the magnet on one half of the beak moves
away from the sensor on the other half of the beak. This allowed
both detection of breaths and estimation of tidal volume based
on spirometry calibrations. Respiration rates after dives have
also been detected with acoustic recorders in northern elephant
seals [37–39]. Recent advances in miniaturization and suction
cup attachment techniques have enabled measurements of res-
piratory rates in free-ranging cetaceans with animal-borne
video cameras and acoustic recorders [90,94–96].

The respiratory oxygen studies of diving penguins have
demonstrated exchange between posterior and anterior air
sacs during dives [82], highlighted how the respiratory
oxygen store may differ depending on dive variables, such
as duration or depth [84,85] and provided insight into surface
interval respiratory patterns [93].

Muscle oxygen depletion has beenmeasured in twomarine
species, the Weddell seal [97] and emperor penguin [76]. Both
studies used custom-built biologgers with sensors based on
near-infrared (NIR) reflectance spectroscopy to determine
oxygen saturation percentage of myoglobin. Custom-designed
sensors included LEDs with specific NIR wavelengths, and
photodetectors to measure the reflectance of the light from
the muscle and derive the light absorption in the tissue. The
absorption of specific NIR wavelength light is proportional to
oxygen saturation levels of muscle myoglobin. Because
probes had to be applied directly to the muscle and muscle
samples had to be excised for calibrations, procedures for
these studies were invasive and required surgical implant
and removal of the sensors and tissue. These two studies
demonstrated differences in muscle oxygen depletion between
seals and penguins and suggested a level of plasticity ofmuscle
blood flow during dives [76,97].

The studyof oxygen storemanagement couldbe significantly
advanced with the development of less invasive methods. For
measuringmuscle oxygen saturation studies, a custom-designed
instrumentwhichdoes not requiremuscle tissue excision for cali-
brationhasbeendeveloped, although there arenopublished field
studieswith this instrument [98]. Further, this devicemust still be
implanted, which will limit the number of researchers who can
use the device. Recently, a non-invasive approach to oxygen
measurement, also derived from the medical field, has been
developed. After modifying a commercial, wearable NIR spec-
troscopy (NIRS) system (PortaLite mini, Artinis Medical
Systems BV, Einsteinweg, theNetherlands), cerebral and blubber
blood volume and haemoglobin saturation were estimated in
captive harbour seals during dives [99]. This non-invasive
sensor shows promise for future investigations of cerebral
oxygenation of animals diving at sea.
4. The value of biologging in diving physiology
research: two examples

(a) Heart rates in cetaceans
As already emphasized, regulation of heart rate is a crucial
component of breath-hold diving physiology. The bradycardia
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Figure 2. With the development of electronic biologging devices and suction cup attachment techniques, investigations of diving heart rate from among the
smallest to the largest of oceanic cetaceans have been accomplished under a variety of research protocols. Examples include a spontaneous dive in a tank by
a harbour porpoise, a trained dive at sea to 100 m by a bottlenose dolphin, a 250 m deep dive of a narwhal at sea after capture/release and a 176 m dive
of a blue whale after unrestrained recorder deployment at sea. Heart rate profiles are 20 s averages for the narwhal; all other profiles are beat-to-beat heart
rates. Gaps in the blue whale heart rate profile are secondary to artefact on the electrocardiogram record. Adapted from [49,53,101,102].
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of diving contributes to cardiac output and blood flow distri-
bution, which, in turn, affect pulmonary gas exchange, the
rate and pattern of oxygen store utilization, end organ
metabolism, tissue nitrogen kinetics and thermoregulation.

The ability to examine heart rates in cetaceans is now
especially relevant to the understanding of the physiological
effects of anthropogenic stress and to the protection and
conservation of these species. For example, the behaviours
and well-being of individual species are potentially affected
by ship noise, seismic surveys and naval sonar. In particular,
the aetiology of the beaked whale strandings associated with
naval sonar exercises may be ultimately related to changes
in heart rate. It has been suggested that (i) changes in dive
behaviour and heart rate may alter nitrogen uptake and
distribution, predisposing the whales to decompression sick-
ness [100], and (ii) stress-induced changes in dive behaviour
may lead to arrhythmias (irregular heart rate patterns) and
subsequent cardiovascular collapse [47].

However, recording heart rate in wild, freely diving ceta-
ceans has been difficult because (i) retrieving biologgers is
primarily limited to recovering devices that have come off
at sea; and (ii) attachment of biologgers has always been
more difficult in cetaceans than in pinnipeds or seabirds.
Initially, attachment of heart rate biologgers was facilitated
in pinnipeds by application of epoxy glues to fur, and,
in seabirds using glue and cable ties to feathers, and even
by implantation. In cetaceans, flipper straps, neoprene stretch
harnesses and, eventually, suction cups allowed investi-
gations in trained animals. The continued refinement of
suction cup technology for biologger attachment and embed-
ding ECG electrodes has now allowed examination of heart
rates even in wild cetaceans, including the narwhal and the
blue whale [49,53].

The remarkable progress in biologging studies of cetacean
heart rates is illustrated by the profiles of diving heart rates in
cetaceans ranging from 54 kg to an estimated 70 000 kg in
body mass (figure 2). Application of these techniques
allows for the investigation of the neuroregulation of heart
rate in trained animals, for evaluation of heart rate allometry
in cetaceans, as well as for the examination of heart rate pro-
files of wild cetaceans in both the absence and presence of
anthropogenic/environmental disturbances [48,49,53,103].

(b) Emperor penguins: diving physiology and the
aerobic dive limit

The aerobic dive limit (ADL, dive duration associated with
the onset of post-dive blood lactate accumulation) is a most
fundamental concept to the interpretation of the diving
physiology and ecology of marine mammals and seabirds
[104–106]. The physiological responses that underlie the
ADL have been most thoroughly investigated in emperor
penguins diving at an isolated hole on the sea ice of
McMurdo Sound, Antarctica. In fact, among all marine mam-
mals and seabirds, the emperor penguin is the only species in
which oxygen levels in the respiratory, blood and muscle
oxygen stores have been monitored during spontaneous,
unrestrained free dives.

Although the predominant depths of these dives at the iso-
lated dive hole (less than 100 m) are at the shallow end of the
emperor penguin’s dive spectrum (maximum depth at sea,
563 m), dive durations of 5–10 min cover the common range
of dives at sea [68,77,78,107,108]. Furthermore, an ADL of
5.6 min has been documented with actual measurements of
post-dive blood lactate concentrations at the isolated dive
hole [109]. The spontaneous dives of these penguins under
the sea ice, their routine foraging on sub-ice fish and their guar-
anteed return to the isolated dive hole have allowed complex
biologging studies of diving physiology. Investigations of
heart rate, stroke rate, body temperatures, the partial pressure
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Figure 3. Emperor penguins diving at an isolated dive hole make routine dives of 5–6 min duration, near the 5.6 min measured aerobic dive limit (ADL, dive
duration associated with the onset of post-dive blood lactate concentration) [109]. Biologging investigations of such dives have revealed (a) a moderate bradycardia
(decline in heart rate) and predominantly low stroke rates, (b) conservation of core temperatures and cooling of the periphery, (c) compression hyperoxia and then a
gradual, but incomplete decline in the partial pressures of oxygen (PO2) in air sacs and blood, and (d ) incomplete arterial and venous haemoglobin desaturation but
near complete depletion of the myoglobin-bound oxygen store in muscle. These findings support the concept that the ADL is secondary to depletion of the muscle
oxygen store and subsequent glycolysis in muscle. The illustrated profiles in (a) are from the same dive; data profiles in the other figures are from individual dives of
about 6 min duration in different birds. Adapted from [36,64,68,76,78,82,111,112].
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of oxygen (PO2
) and myoglobin saturation have been

conducted [28,36,64,76–78,83,110,111].
During shorter duration dives at the isolated dive hole

(durations < ADL), the bradycardia during a dive is moderate
and variable (figure 3a) [36]. Heart rate slows more in longer
dives, and also appears independent of stroke activity,
especially in longer dives [36]. Similar declines in heart rate
also occur during dives at sea with bradycardias as low as
5–10 beats min−1 during 500 m dives [44].

Hypothermic reduction of metabolic rate in central organs
does not appear to be a mechanism for extending aerobic
metabolism in diving emperor penguins. Aortic, vena caval,
and pectoral muscle temperatures are all maintained during
the typical aerobic 6 min dive (figure 3b) [64,68]. Vena caval
temperature was even maintained during the longest dive
(23.1 min) ever recorded at the isolated dive hole [81], and, in
the deepest dive recorded at the isolated dive hole (230 m),
aortic temperature remained above 38°C [68]. Regional hetero-
thermy, however, does occur in diving penguins. In contrast
with core temperatures, peripheral temperatures routinely
decrease during dives (figure 3b) [64].

PO2
profiles obtained with indwelling oxygen electrodes

have documented initial compression hyperoxia in the cervical
and posterior thoracic air sacs and aorta followed by a pro-
gressive decline in PO2

later in the dive, especially during
ascent (figure 3c) [82,83]. Mixing of air between the cervical
and posterior thoracic air sacs during a dive appears to occur
because simultaneous oxygen profiles in both air sacs often
equilibrate and overlap (figure 3c, [82]). Venous PO2
often

increases during early descent, possibly secondary to arterio-
venous shunting during that portion of the dive (figure 3c) [78].

Conversion of blood PO2
profiles to haemoglobin satur-

ation with use of the O2–haemoglobin dissociation curve
has demonstrated that the blood oxygen store is usually
not depleted at the 5.6 min ADL (figure 3d ) [112]. By contrast,
complete desaturation of myoglobin can occur in dives as
short as about 5.5–6 min (figure 3d ) [76]. Although myoglo-
bin desaturation patterns are variable in different
dives, these findings support the hypothesis that the ADL
is owing to myoglobin-bound oxygen depletion and
subsequent anaerobic metabolism in muscle.
5. Current challenges in diving physiology
biologging studies

(a) Unanswered questions
Despite the advances in the past 40 years, a number of unan-
swered questions in diving physiology remain, including how,
when and where peripheral vasoconstriction and blood flow
change during dives and the roles of metabolites, such as lactate,
hormones, pH and blood gases, such as nitrogen and CO2,
during dives and post-dive surface intervals. All of these
measurements in freelydivingmammals or birds await thedevel-
opment and application of new biologging sensors. Sensors that
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have been introduced in the laboratory and may help address
these questions include fluorescence quenching optodes for the
measurement of pH, PO2

, and PCO2
[113], in vivo metabolite sen-

sors (e.g. lactate sensors [114]) and intravascular or tissue blood
flow sensors [63,115].Althoughnot technicallya biologger, refine-
ment of backpack blood samplers to provide intra-dive samples
for analyses of blood gases (including nitrogen levels), pH,
hormones and metabolites would also provide insight into
these and other questions [24,77,116–119].

(b) Retrieving biologging devices
One of the key ongoing challenges for biologging studies is
how to retrieve the biologger. Biologging studies typically
require animals to be captured and then released after attach-
ment. However, many diving animals do not remain in the
same general area and recapturing the specific animal with
the biologger can be a significant hurdle. Thus, for most
studies, the requirement to retrieve instruments or recapture
animals has limited the environments and animals in which
physiological studies can be performed. The following five
approaches that facilitate recovery of instruments or animals
have been successfully used in diving physiology studies.

(i) The isolated hole protocol
After seeingWeddell seals in Antarctica diving through a natu-
ral crack in the sea ice, Jerry Kooyman developed the isolated
hole protocol (IHP) in the 1960s [120]. This approach requires
a campsite on the sea ice that is at least 2 km away from the
nearest crack, and a dive hole that is drilled through the sea
ice. A seal (or penguin) is transported to the site, instrumented
with recorders while under anaesthesia or sedation, and then,
after recovery, allowed to dive through the dive hole at will.
Because there is no other breathing hole nearby, the animals
will return to the isolated hole where the instruments can
eventually be removed [10,120]. The IHP has been used in
numerous biologging studies of the physiology and behaviour
of Weddell seals and emperor penguins [23,24,36,47,71,76–78,
81–84,97,112,117–119,121–127].

(ii) Translocation model
During themoultingseason, sealswill return to theirnatalbeach if
they are captured at that beach, transported and then released at a
newbeach or at sea. This translocation provides an opportunity to
record physiological variables as these animals continuously dive
during the return. The translocation model was initially used in
northern elephant seal studies. Juvenile seals were picked up
fromAñoNuevo,CA, instrumentedwithsensors, and transported
and released in Monterey Bay, CA, USA [26,128]. The seals
returned to Año Nuevo in 2–5 days, diving across the deepMon-
terey Canyon along theway. This model has been used to explore
energetics and physiological responses to diving, as well as to
understand behaviour [26,37,38,69,79,129–132]. A successful
translocation study of dive behaviour has also been reported in
the Australian fur seal [133].

(iii) Reproduction-related returns
Some diving animals that make regular trips to sea will
reliably return to the same location for periods of up to sev-
eral months. In most cases, these are foraging trips in order to
feed offspring during the breeding season. Heart rate and
blood oxygen levels have been measured in California sea
lions and emperor penguins during foraging trips to sea,
where they dive for days before returning to feed their off-
spring [44,46,70,134]. This approach has also been used to
collect heart rate and/or body temperature data in other
seabirds at breeding colonies [29,31,35,66,135].

(iv) Trained animals
Animals that live under managed care, as well as animals that
were temporarily under such management during and after
rehabilitation, have provided another approach for investi-
gating diving physiology in voluntarily diving animals.
Animals in these studies experienced varying degrees of a
natural environment, from swimming in narrow flumes to
diving in open water. Biologging physiological studies have
been undertaken on a variety of such animals, including
bottlenose dolphins [101,136–138], Steller and California sea
lions [41,52,57,139–141], harbour seals [140], harbour porpoises
[102,142], grey seals [143], and tufted ducks, cormorants and
Humboldt penguins [33,50,144].

(v) Pop-off tags
Behavioural and location tracking tags that release on their
own have been used for years in a variety of species (e.g.
[145–147]). However, few diving physiology studies have
been able to capitalize on such non-invasive devices until
recently when ECG biologgers were attached to several
species of cetaceans using suction cups [49,53,58].

All of these approaches have provided the means to study
diving physiology using biologgers in a fairly wide range of
animals. However, the use of pop-off tags holds the most
promise for future studies of (i) cetaceans, (ii) pinnipeds
and birds not during the breeding or moulting season, and
(iii) other divers that do not reliably return to a specific area.
6. Conclusion
Biologging research in diving physiology has made remarkable
progress in the past 40 years. Investigations into heart rate and
body temperature have provided key insights into physiological
responses of diving mammals and birds. Improved techniques
andtechnologyhaveallowed forphysiologystudiesofwild ceta-
ceans. However, there have been relatively fewmulti-parameter
studies owing to technical considerations and limited blood and
muscle oxygenation studies owing to the complex implant tech-
niques required. Future advances thatwould expand research in
these areas include improved attachment techniques, multi-
sensor biologgers, decreased size of sensors and reduced drag
of biologgers. Additionally, because biologging studies allow
for the collection of high-resolution data, often resulting in extre-
mely large datasets, innovation in software analysis techniques
may uncover new patterns or cross-sensor relationships [148].
Much like the PO2

and the NIRS cerebral oxygen sensors
describedabove,manyadvances in sensor technologywill prob-
ably come from sensors developed for human health, including
wearable biosensors. Macdonald A et al. [149] review recent
advances inmedical sensing and biosensors in this issue. Finally,
the most important advance for expanding diving physiology
studies may lie in the continued development of new, non-inva-
sive approaches that can be used in awide variety of species and
by a large number of investigators.
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