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Gas embolic lesions linked to military sonar have been described in stranded cetaceans
including beaked whales.These descriptions suggest that gas bubbles in marine mammal
tissues may be more common than previously thought. In this study we have analyzed gas
amount (by gas score) and gas composition within different decomposition codes using
a standardized methodology. This broad study has allowed us to explore species-specific
variability in bubble prevalence, amount, distribution, and composition, as well as mask-
ing of bubble content by putrefaction gases. Bubbles detected within the cardiovascular
system and other tissues related to both pre- and port-mortem processes are a common
finding on necropsy of stranded cetaceans. To minimize masking by putrefaction gases,
necropsy, and gas sampling must be performed as soon as possible. Before 24 h post
mortem is recommended but preferably within 12 h post mortem. At necropsy, amount
of bubbles (gas score) in decomposition code 2 in stranded cetaceans was found to be
more important than merely presence vs. absence of bubbles from a pathological point of
view. Deep divers presented higher abundance of gas bubbles, mainly composed of 70%
nitrogen and 30% CO2, suggesting a higher predisposition of these species to suffer from
decompression-related gas embolism.
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INTRODUCTION
Marine mammals moved from land to water around 55–60 mil-
lion years ago (Ponganis et al., 2003). Marked anatomical and
physiological modifications were necessary to meet the physical
demands of living in water instead of air (Williams and Worthy,
2002). These required variations include adaptations for breath-
hold diving, temperature regulation in cold water, water, and salt
balance, underwater navigation, and high pressure at great depth
(Elsner, 1999).

Marine mammals have not been considered to suffer from
decompression sickness (DCS) because of anatomical, physiolog-
ical, and behavioral adaptations that help them to prevent gas
bubble formation. More specifically compression of the respi-
ratory system together with blood-flow changes during the dive
would limit the amount of nitrogen absorbed on a dive (Scholan-
der, 1940; Butler and Jones, 1997; Kooyman and Ponganis, 1998;
Fahlman et al., 2006). Compression of the respiratory system was
suggested to force the air into the upper airways where no gas
exchange should take place, therefore it was assumed that the
finite volume of gas available in the lung would not be sufficient
to increase the tissue and blood inert gas tension. Finally, partial
pressure of nitrogen in the blood would decrease as nitrogen is
distributed among tissues (Piantadosi and Thalmann, 2004).

In human breath-hold divers, nitrogen accumulates in tissues as
pulmonary nitrogen partial pressure (PN2) increases with depth. If
the surface interval between repeated dives is insufficient to remove
the inert gas, nitrogen accumulation will occur (Ferrigno and
Lundgren, 2003). A causal relationship between breath-hold div-
ing in humans and DCS is only slowly being accepted despite the
growing number of cases of DCS-like symptoms in breath-hold
diving humans (Schipke et al., 2006). Some of these symptoms
might include vertigo, visual disturbances, unconsciousness, and
partial or complete paralysis of one or more extremity that could
be temporary or permanent. When these symptoms respond to
recompression, the most reasonable explanation is the presence of
bubbles due to gas phase separation in the body (Paulev, 1965). It
has been generally assumed that the risk of DCS is virtually zero
during a single breath-hold dive in humans, however DCS has
also been reported (although unusual) in 2 out of 192 deep sin-
gle breath-hold dives (Fitz-Clarke, 2009). Diagnosis of both cases
was based on DCS symptoms and recovery after treatment in a
hyperbaric chamber.

Recent work has suggested that the depth of lung compression
is not the same for all marine mammals species (Moore et al.,
2011) and one suggested reason is because of anatomical differ-
ences of the thorax and even of the lung airways (Belanger, 1940;
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Denison and Kooyman, 1973; Kooyman, 1973). Indirect measure-
ments of nitrogen uptake and removal have suggested that alveolar
collapse occurs at between 30 m (Falke et al., 1985) in the Weddell
seals and 70 m in the bottlenose dolphins (Ridgway and Howard,
1979). However, the physiological assumptions used in these stud-
ies are suspect (Bostrom et al., 2008) and direct measurements
in seals and sea lions suggest that alveolar collapse and cessation
of gas exchange may not happen until depths greater than 100 m
(Kooyman and Sinnett, 1982).

Moreover, intramuscular nitrogen levels as great as two to three
times the normal surface levels have been measured in voluntary
diving bottlenose dolphins after repeated short duration dives to
100 m depth (Ridgway and Howard, 1979). Moore et al. (2009)
described a high prevalence of bubble lesions in bycaught seals and
dolphins trapped at depth (15 out of 23) compared to stranded
marine mammals (1 out of 41), probably due to off gassing from
supersaturated tissues. In addition, several theoretical studies have
predicted end-dive nitrogen levels for marine mammals that would
cause a significant proportion of DCS cases in land mammals
(Houser et al., 2001; Zimmer and Tyack, 2007; Hooker et al., 2009).

In the last 8 years, an increasing number of studies have
reported lesions related to in vivo bubbles. Systemic venous gas
emboli were first described in an atypical beaked whale (BW)
mass stranding related to military maneuvers that occurred in the
Canary Islands in 2002. BWs (8 out of 8) presented acute lesions
consistent with acute trauma due to in vivo bubble formation (Jep-
son et al., 2003; Fernandez et al., 2005). Chronic gas bubble lesions
were also reported in single strandings of Risso’s dolphin (3 out of
24), common dolphins (3 out of 342), harbor porpoises (1 out of
1035), and in a Blainville’s BW (1 out of 1) stranded in the United
Kingdom (Jepson et al., 2003, 2005). Further gas analyses from
one Cuvier’s BW stranded along the Spanish coastline in tem-
poral and spatial association with military (naval) exercises and
one UK-stranded Risso’s dolphin with chronic gas embolic lesions
in the spleen, have confirmed high nitrogen content, of around
95% in the Risso’s dolphin case (Bernaldo de Quirós et al., 2011).
Additionally, dysbaric osteonecrosis (a chronic pathology of deep
diving recognized in humans) has been described in sperm whales
(Moore and Early, 2004). Finally, a recent publication showed
the existence of intravascular bubbles and peri-renal subcapsu-
lar emphysema (gas found beneath the kidney capsule) in live
stranded dolphins using a B-mode ultrasound (Dennison et al.,
2012).

Given these recent observations, it is valuable to review the div-
ing behavior of cetaceans. Some species of BWs have dive profiles
not previously observed in other marine mammals such as very
deep foraging dives (up to 2000 m and as long as 90 min), and rel-
atively slow controlled ascents followed by a series of bounce dives
of 100–400 m (Hooker and Baird, 1999; Tyack et al., 2006). These
diving profiles are considered as extreme dives and alterations
of these dive sequences by a behavioral response might induce
excessive nitrogen supersaturation driving growth of bubbles in a
manner similar to DCS in humans (Cox et al., 2006). Indeed, it
was in BWs stranded in spatiotemporal concordance with military
maneuvers when the “gas bubble lesions” were described for the
first time (Jepson et al., 2003; Fernandez et al., 2005). Authors sug-
gested a DCS-like disease as a plausible mechanism for explaining

the observed lesions. These findings have been widely discussed
since then and have become a scientific controversy. Further inves-
tigations, including analysis of gas in bubbles were recommended
(Piantadosi and Thalmann, 2004).

Here we present a comprehensive study of prevalence, amount,
distribution, and composition of intravascular bubbles and sub-
capsular emphysema found in cetaceans stranded on the Canary
Islands coast, Spain, with different decomposition codes. The
waters of the Canary Islands are one of the richest and most diverse
areas in the Northeast Atlantic, with 28 different cetacean species
reported, 21 of the Odontocete and 7 of the Mysticete group. Of
these 28 species, at least 26 have been found stranded on the coasts
of the Canary Islands (Martin et al., 2009). The high biodiversity,
including both shallow and deep diving species, make the Canary
Islands an excellent natural laboratory for the study of gas emboli
in cetaceans with different diving behaviors.

MATERIALS AND METHODS
MATERIALS
Animals included in the study were stranded cetaceans in the
Canary Islands between 2006 and 2010, mass stranded sperm
whales in Italy in 2009, and two sea lions (Otaria byronia) from
aquatic-parks of the Canary Islands submitted for necropsy to our
institution. A total of 88 necropsies were performed on marine
mammals belonging to 18 different species. Species were segre-
gated into two broad groups: deep divers and non-deep divers,
defining deep divers as those species known to dive deeper than
500 m for foraging (Kogia, Physeter, Ziphius, Mesoplodon, Globi-
cephala, and Grampus; Gannier, 1998; Astruc and Beaubrun, 2005;
Aguilar de Soto, 2006; Tyack et al., 2006; Watwood et al., 2006; West
et al., 2009). These genera were further studied separately except
for Ziphius and Mesoplodon, which were studied together as the
family Ziphiidae. Twenty-nine out of 88 (33%) necropsied animals
were deep divers.

Animals were identified by their stranding codes, represented
by CET (“cetacean”) followed by the stranding number. Animals
not stranded in the Canary Islands were identified by their inves-
tigation numbers, represented by I (“investigation”) followed by
their corresponding numbers and the year when their necropsies
were performed (Table 1). Cause(s) of death (defined as patho-
logical entities) were determined by the Division of Histology and
Animal Pathology of the Institute for Animal Health, University of
Las Palmas de Gran Canaria (ULPGC; Unit of Cetaceans Research,
2006, 2007, 2008, 2009, 2010; Arbelo, 2007; Table 1).

METHODS
At necropsy, putrefaction of the animal was evaluated using a
morphological decomposition code from one to five according to
Kuiken and García-Hartmann (1991) where one is the animal alive
(becomes code 2 at death), code 2 is when the animal is extremely
fresh (no bloating), code 3 is moderate decomposition (bloating,
skin peeling but organs still intact), code 4 is advanced decomposi-
tion (major bloating, organs beyond recognition), and finally code
5 when no organs are present. Dissection, gas sampling and analy-
sis were performed following procedures described by Bernaldo
de Quirós et al. (2011). A total of 429 samples were recovered and
analyzed from the studied animals, 208 (48%) of which belong to
deep diving animals.
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Table 1 | Identification number of the marine mammals included in the study, biological information, stranding circumstances, storing

conditions, decomposition code, and most likely (*) cause of dead established by individual pathological studies.

Identification

number

Species Deep

diver

Gender Age Active

stranding

Mass

stranding

Frozen Decomposition

code

Cause of dead*

CET 339 Globicephala

macrorhynchus

Yes F Adult Yes No No 2 Septicemia

CET 360 Globicephala

macrorhynchus

Yes M Calve Yes No No 1 Infectious meningitis

CET 361 Globicephala

macrorhynchus

Yes ND Adult No No No 5 Trauma

CET 362 Stenella frontalis No F Adult Yes No No 1 Septicemia

CET 363 Stenella frontalis No F Subadult ? No Yes 2 Obstruction by foreign body

CET 364 Delphinus delphis No M Subadult No No Yes 3 Infectious meningoen-

cephalitis

CET 367 Stenella coeruleoalba No M Calve No No Yes 5 Abnormal development

CET 368 Stenella frontalis No M Juvenile ? No Yes 3 Trauma

CET 369 Balaenoptera

physalus

No F Adult No No No 4 Trauma

CET 370 Stenella coeruleoalba No M Adult Yes No No 3 Septicemia

CET 371 Stenella frontalis No F Adult ? No No 2 Trauma

CET 372 Balaenoptera borealis No F Subadult No No No 5 Not determined

CET 373 Delphinus delphis No F Adult Yes No No 2 Septicemia

CET 374 Stenella coeruleoalba No M Adult No No No 3 Trauma

CET 375 Stenella coeruleoalba No M Neonate No No Yes 3 Neonatal weakness

CET 376 Stenella coeruleoalba No F Adult No No Yes 2 Neoplasia

CET 379 Mesoplodon bidens Yes M Adult ? No No 2 Trauma, Septicemia

CET 380 Stenella coeruleoalba No M Subadult ? No No 2 Infectious encephalitis

CET 381 Delphinus delphis No M Subadult No No Yes 4 Infectious encephalitis

CET 382 Delphinus delphis No M Adult ? No No 3 Sinusitis and meningoence-

falitis by Nasitrema sp.

CET 384 Stenella frontalis No M Adult No No Yes 3 Toxoplasmosis

CET 390 Globicephala

macrorhynchus

Yes M Calve ? No No 3 Septicemia

CET 393 Stenella frontalis No F Adult ? No No 2 Neoplasia

CET 395 Stenella frontalis No M Adult No No Yes 2 Neoplasia

CET 397 Kogia breviceps Yes F Adult No No No 3 Trauma, septicemia

CET 399 Globicephala

macrorhynchus

Yes M Neonate No No No 5 Trauma

CET 400 Stenella coeruleoalba No M Adult No No No 2 Parasitoses, senile disease

CET 402 Stenella coeruleoalba No F Adult No No No 5 Septicemia, senile disease

CET 404 Kogia breviceps Yes M Adult Yes No No 1 Encephalopathy of unknown

etiology

CET 409 Stenella coeruleoalba No F Subadult No No Yes 3 Infectious encephalitis, Para-

sitoses

CET 413 Pseudorca

crassidens

No M Juvenile Yes No No 2 Trauma, septicemia

CET 418 Stenella frontalis No F Adult ? No Yes 2 Heart failure

CET 419 Steno bredanensis No F Juvenile No No Yes 2 Septicemia

CET 421 Stenella frontalis No M Calve No No Yes 2 Not determined

CET 425 Delphinus delphis No F Juvenile No No Yes 4 Parasitoses

CET 430 Steno bredanensis No F Subadult No No No 4 Not determined

CET 431 Grampus griseus Yes M Juvenile Yes No No 2 Infectious meningitis

CET 434 Steno bredanensis No M Adult No Yes No 5 Not determined

(Continued)
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Table 1 | Continued

Identification

number

Species Deep

diver

Gender Age Active

stranding

Mass

stranding

Frozen Decomposition

code

Cause of dead*

CET 435 Stenella frontalis No F Adult No No No 5 Trauma

CET 437 Steno bredanensis No F Adult No Yes No 5 Not determined

CET 438 Steno bredanensis No F Subadult No No No 5 Not determined

CET 456 Grampus griseus Yes F Adult Yes No Yes 2 Infectious meningoen-

cephalitis

CET 459 Kogia breviceps Yes M Adult No No 3 Trauma, bycatch?

CET 460 Stenella coeruleoalba No M Calve No No No 4 Trauma

CET 462 Stenella frontalis No F Calve No No Yes 5 Not determined

CET 463 Physeter

macrocephalus

Yes F Neonate Yes No No 1 Parental segregation

CET 464 Globicephala

macrorhynchus

Yes M Juvenile No No No 4 Enterotoxaemia septicemia

CET 469 Stenella coeruleoalba No F Adult ? No No 3 Parasitoses, senile disease

CET 471 Ziphius cavirostris Yes F Calve ? No No 2 Chronic renal failure

CET 472 Grampus griseus Yes F Subadult No No No 2 Trauma

CET 473 Steno bredanensis No F Juvenile Yes No No 2 Septicemia

CET 474 Stenella coeruleoalba No M Adult No No Yes 2 Septicemia

CET 476 Stenella coeruleoalba No F Calve No No No 2 Chronic renal failure

CET 482 Delphinus delphis No F Adult No No Yes 3 Bacterial bronchopneumonia

CET 483 Grampus griseus Yes M Adult Yes No No 2 Venous gas embolism

CET 487 Stenella coeruleoalba No F Juvenile No No No 5 Not determined

CET 504 Globicephala

macrorhynchus

Yes M Adult No No No 4 Meningitis, septicemia

CET 505 Tursiops truncatus No M Juvenile No No No 5 Not determined

CET 506 Stenella coeruleoalba No F Neonate No No Yes 4 Not determined

CET 509 Tursiops truncatus No M Subadult No No No 4 Not determined

CET 510 Mesoplodon

europaeus

Yes M Adult ? No No 3 Trauma, possible viral dis-

ease

CET 512 Globicephala

macrorhynchus

Yes M Adult No No No 3 Septicemia

CET 515 Stenella frontalis No M Adult No No Yes 2 Toxoplasmosis

CET 517 Delphinus delphis No M Adult No No No 2 Chronic renal failure

CET 520 Physeter

macrocephalus

Yes F Calve No No No 4 Trauma

CET 521 Delphinus delphis No ND Juvenile No No Yes 5 Not determined

CET 522 Stenella frontalis No M Adult No No Yes 3 Toxoplasmosis

CET 523 Balaenoptera

acutorostrata

No M Calve No No No 2 Parental segregation

CET 526 Tursiops truncatus No F Adult ? No No 2 Septicemia

CET 527 Stenella coeruleoalba No F Adult Yes No Yes 3 Parasitoses Bacterial infec-

tion

CET 530 Stenella frontalis No F Adult ? No No 2 Trauma toxoplasmosis

CET 531 Stenella frontalis No M Juvenile ? No No 2 Septicemia

CET 533 Grampus griseus Yes M Adult No No No 4 Not determined, Parasitoses

CET 534 Grampus griseus Yes M Subadult Yes No No 1 Viral disease, bacterial/

mycotic infection

CET 537 Stenella coeruleoalba No F Adult No No No 2 Septicemia

CET 542 Kogia sima Yes ND Adult No No No 4 Septicemia

CET 543 Tursiops truncatus No M Adult No No No 5 Senile disease, parasitoses

CET 544 Physeter

macrocephalus

Yes M Juvenile No No No 5 Trauma, ship collision

(Continued)
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Table 1 | Continued

Identification

number

Species Deep

diver

Gender Age Active

stranding

Mass

stranding

Frozen Decomposition

code

Cause of dead*

CET 546 Stenella coeruleoalba No M Adult Yes No No 3 Trauma, stranding stress

syndrome

CET 547 Mesoplodon

europaeus

Yes M Adult ? No No 4 Not determined

CET 548 Stenella frontalis No M Calve No No No 2 Viral disease

CET 549 Grampus griseus Yes F Adult No No No 2 Venous gas embolism

CET 552 Balaenoptera

borealis

No M Juvenile No No No 5 Pending

I134/07 Otaria byronia No M Adult No No No 3 Not determined

I185/09 Mesoplodon bidens Yes F Adult No Yes No 5 Pending

I344/07 Otaria byronia No M Juvenile No No No 2 Iatrogenic pneumomedi-

astinum

I298/09 Physeter

macrocephalus

Yes M Juvenile Yes Yes No 3 Not determined

I299/09 Physeter

macrocephalus

Yes M Juvenile Yes Yes No 2 Not determined

I300/09 Physeter

macrocephalus

Yes M Juvenile Yes Yes No 2 Not determined

? Indicates those animals that have been found dead, without signs of active stranding, but where passive stranding can not be either confirmed since they were

found already dead.

Samples containing blood were considered contaminated, since
putrefaction gases from the blood will alter original gas sample
composition. When no gas compound had a chromatographic
signal higher than the detection limit, the sample was considered
empty. In addition, if only one compound was present in slightly
higher quantities than the established detection limit, the sam-
ple was considered small and not representative of its original
composition. Finally samples with an atmospheric-air-like com-
position (around 79% nitrogen and 21% oxygen) were considered
as“atmospheric-air polluted.”Thus, samples with blood, empty, or
identified as small or atmospheric-air polluted were not included
in the results. These samples represented 28% of the total. Most
of them were emptied intestines or blood contaminated samples
from the heart when only the vacutainer was applied. This problem
was prevented later in the study by using an aspirometer (Bernaldo
de Quirós et al., 2011).

The amount of gas present in veins and tissues was evaluated
retrospectively using pictures and data in the necropsy reports. Gas
amount was semi-quantified by giving a score to different vascular
locations as well as to the presence of subcapsular gas (emphy-
sema), defined as macroscopically visible gas found beneath the
capsule of body organs (e.g., kidneys). Vascular locations studied
for gas scoring were subcutaneous, mesenteric, and coronary veins
as well as the lumbo-caudal venous plexus. We used the following
score for these locations: grade 0 is no bubbles, grade I represented
few bubbles and grade II represented abundant presence of bub-
bles. Prevalence of subcapsular gas, was evaluated with a similar
grading system: grade 0 is no subcapsular gas, grade I represented
the presence of subcapsular gas in one or two organs, and grade II
represented wide distribution through the body organs. The sum-
mation of gas score (0–II) in the different vascular locations and

tissues (subcapsular gas; n = 5), gave the total gas score for each
animal that ranged from 0 to 10. However, because gas score was
done retrospectively, some information was missing on occasion.
Those cases on which only one localization could not be scored
were marked with an asterisk (∗), indicating that the total gas score
might be up to two units higher according to the established gas
score (e.g., 8∗). If information from more than one localization was
missing, the total gas score was not reported as it would not be a
realistic estimate. Finally, there were some animals with advanced
putrefaction where the veins could not be clearly distinguished
from the rest of the tissues. Gas score was not undertaken in these
cases.

The proportion of observations were analyzed for non-random
associations between two categorical variables with the Fisher
exact test. Hypothesis testing was considered significant when the
corresponding P-value was less than 0.05. All data were analyzed
using Sigma Stat software, version 3.5.

RESULTS
PREVALENCE OF BUBBLES
Intravascular bubbles were found in 51 out of 88 animals (58%).
They were absent in 33 out of 88 (37%) and the observation was
not correctly undertaken in 4 out of 88 animals (5%). Bubbles were
statistically (P = 0.006) more frequently present in deep divers
(76%) compared to non-deep divers (52%). Subcapsular emphy-
sema (mostly peri-renal) was found in 57 out of 88 animals (65%).
It was found in 66% of the non-deep diving animals and in 71%
of the deep divers. This difference was statistically non-significant
(P = 0.474).

A positive relationship between decomposition code and pres-
ence of intravascular bubbles and/or subcapsular emphysema was
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found (Figure 1). Intravascular bubbles were present in all the
studied animals with decomposition code 4 or higher. However,
intravascular bubbles had a higher prevalence (P = 0.006) in deep
divers compared to non-deep divers regardless of decomposition
code (Figures 2 and 3); they were present in 57% of the fresh
(decomposition code 2) deep diving animals compared to 20% of
non-deep divers (P = 0.001), and in 100% of deep diving animals
with decomposition code 3 compared to 50% of non-deep divers
within the same decomposition code (P = 0.019). In addition, sub-
capsular emphysema was found in 64% of the deep divers vs. 44%
with decomposition code 2, and in 66% of the deep divers vs.
61% of the non-deep divers with decomposition code 3, although
these differences were not statistically significant (P = 0.204 and
P = 0.648 respectively).

In 40% of the fresh animals with subcapsular emphysema,
intravascular bubbles were additionally present, while 61% of
the fresh animals with intravascular bubbles also had subcapsular
emphysema.

In freshly dead animals, intravascular bubbles were seen in 7
out of 14 of the cetaceans that were known to strand actively (by
swimming ashore) but only in 3 out of 15 that were found floating
ashore dead or dead in the beach with no signs of active stranding.
Animals found dead but suspected to have stranded alive were not
included in the study. Differences were not statistically significant
(P = 0.128).

AMOUNT OF BUBBLES (GAS SCORE)
Non-deep divers
Gas score from fresh non-deep diving animals was always lower
than half of the scale (5 on a scale of 10). Forty-four percent of
them (11 out of 25) did not present either intravascular bubbles or
subcapsular emphysema (gas score 0). Gas score of dolphins with
incipient autolysis (decomposition code 3) varied greatly (from
0 to 7). Dolphins with advanced autolysis (decomposition code
4) had gas score ranging from 5 to 8 and potentially 10, while all
animals in a very advanced state of autolysis (decomposition code

FIGURE 1 | Number and relative percentage of animals with intravascular bubbles (in dark gray) compared to those without bubbles (in white)

regarding to decomposition code.

FIGURE 2 | Number and relative percentage of non-deep diving animals in which bubbles were observed (in dark gray) compare to those in which

bubbles were absent (in white) attending to decomposition code.

FIGURE 3 | Number and relative percentage of deep diving animals in which bubbles were observed (in dark gray) compare to those in which bubbles

were absent (in white) attending to decomposition code.
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5) had the maximum gas score until an advanced state of decay
was reached and integrity of the tissues was lost (Figure 4).

Deep divers
Gas score from fresh deep divers was higher compared to non-deep
divers. Thirty-five percent of the animals (5 out of 14) presented
gas score 5 or higher. Indeed, two of these animals presented the
highest gas score of all studied animals with decomposition code
2. They presented high (7∗) and very high (9) gas score. All deep
divers with decomposition code 3 presented bubbles, most of them
with values around or slightly higher than gas score 5. Deep divers
with decomposition code 4 had a gas score ranging from 7 to 10,
while those with decomposition code 5 had a gas score of 9 or 10
(Figure 5).

GAS COMPOSITION
Intravascular bubbles of non-deep divers
The main gas compound in intravascular bubbles recovered from
non-deep divers in a fresh status or with incipient autolysis (codes
2 and 3) was nitrogen. Hydrogen was found in some samples of
these animals (in one animal with decomposition code 2 and in
two animals with decomposition code 3), especially in the mesen-
teric veins. When hydrogen was not present, nitrogen concentra-
tions were between 70 and 90%. On the other hand, samples from
more decomposed animals (codes 4 and 5) consisted of high lev-
els of CO2 (>30%) together with some hydrogen and/or nitrogen
(Figure 6). In some cases, the sample was 100% CO2.

INTRAVASCULAR BUBBLES OF DEEP DIVERS
Kogiidae
Only four Kogia sp. individuals were studied. In addition they
presented low gas scores, therefore few gas samples could be
obtained. Gas samples were mainly composed of nitrogen (70–
90%) although hydrogen appeared with decomposition code 4
(Figure 7).

Physeteridae
In sperm whales, gas composition from fresh animals had consis-
tently high nitrogen content (around 70%). This gas composition
changed dramatically with incipient autolysis. Gas composition
from more decomposed animals consisted of a mixture of hydro-
gen, CO2, and nitrogen. Oxygen was only present in the three
animals that stranded alive in the coast of Italy (Bernaldo de Quirós
et al., 2011; Mazzariol et al., 2011; Figure 8).

Globicephala
Fresh pilot whales presented none or few bubbles; therefore only
one sample from a fresh animal could be obtained. This sam-
ple was composed of a high concentration of nitrogen (74%)
together with oxygen and CO2. Samples from animals with incipi-
ent autolysis varied in composition. There were some intravascular
bubbles with high nitrogen content although hydrogen was already
present. The rest of the bubbles were composed of a mixture of
CO2, hydrogen, and nitrogen in similar concentrations. In more
decomposed animals, nitrogen levels decreased further, and the

FIGURE 4 |Total gas score (summation of gas scores in the different

localizations) for each animal (non-deep divers). Asterisks represent the
maximum potential summation gas score for a given animal, on which one

localization was not adequately observed for bubbles. The red line is
presented at half of the total gas score (5 of 10) in order to better illustrate the
total gas scores of animals that fall above and bellow the medium.
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FIGURE 5 |Total gas score (summation of gas scores in the different

localizations) for each animal (deep divers). Asterisks represent the
maximum potential summation gas score for a given animal, on which one

localization was not adequately observed for bubbles. The red line is
presented at half of the total gas score (5 of 10) in order to better illustrate the
total gas scores of animals that fall above and bellow the medium.

gas was composed of a mixture of CO2 and hydrogen; CO2 hav-
ing the highest concentration with nitrogen having concentrations
lower than 30%. In the samples from the most decomposed ani-
mals, nitrogen was no longer present. Intravascular bubbles were
composed of a mixture of CO2 and hydrogen with similar con-
centrations, although CO2 content was always slightly higher than
hydrogen. In summary, a clear difference was found in gas compo-
sition of bubbles in animals with different decomposition codes
(Figure 9).

Grampus
Samples from fresh animals were composed of nitrogen, CO2, and
in most cases some oxygen. They were composed of 76 ± 7% of
nitrogen and 15 ± 9% of CO2, with the exception of “CET 483”
where higher CO2 concentrations were found (40–60%). All these
samples were clearly different from samples obtained from a more
decomposed animal (with decomposition code 4) whose samples
were mainly composed of CO2 and hydrogen (Figure 10).

Ziphiidae
Only one sample was successfully analyzed from a fresh animal. It
was composed of high nitrogen content (81%) and CO2. Gas com-
position from more decomposed animals was highly variable, with
no clear trend along decomposition codes. Hydrogen was always
present except for two samples from “CET 547” with decomposi-
tion code 4. In this same animal there were three more samples
with low hydrogen concentration (below 15%). With the exception
of these samples, nitrogen was always lower than 60% in the more

decomposed animals. Samples were a mixture of CO2, nitrogen,
and hydrogen. In some samples nitrogen was absent and bubbles
were composed of CO2 and hydrogen exclusively (Figure 11).

INTESTINAL GAS
Gas composition from the intestines was highly variable with no
trend with PM time. Nitrogen was found in high concentrations
(higher than 60%) in 21% of the samples. However, nitrogen was
found in very low concentrations in the rest of the samples. In 40%
of the samples, nitrogen was not present. In most of the samples
(67%), CO2 was the major compound reaching values as high as
100%. Hydrogen was very frequently found in the intestine (in
64% of the samples). Therefore most of the samples were a mix-
ture of high CO2 levels with hydrogen and some, if any, nitrogen.
Methane was only detected in Kogiidae and Physeteridae.

SUBCAPSULAR EMPHYSEMA
Subcapsular gas was composed of around 80% of nitrogen and
20% of CO2 in the fresh animals studied (a Risso’s dolphin and
a sea lion), except from one sample recovered from the peri-renal
area of a common dolphin (CET 517). Gas composition of sub-
capsular samples from the fresh animals was clearly different from
those of more decomposed animals, which mainly consist on CO2

and hydrogen. Nitrogen was lower than 30% when present. Nitro-
gen was found in high concentrations in only one sample from the
most decomposed animals. This sample also presented the highest
concentration of oxygen (15% compared to a maximum of 4% in
the rest of the samples; Figure 12).

Frontiers in Physiology | Aquatic Physiology June 2012 | Volume 3 | Article 177 | 8

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Aquatic_Physiology
http://www.frontiersin.org/Aquatic_Physiology/archive


de Quirós et al. Bubbles in stranded marine mammals

FIGURE 6 | Intravascular bubble’s gas composition sampled form

different non-deep diving species (B.a., Balaenoptera

acutorostrata; S.b., Steno bredanensis; S.c., Stenella coeruleoalba;

S.f., Stenella frontalis; D.d., Delphinus delphis;T.t.,Tursiops

truncatus; B.p., Balaenoptera physalus; B.b., Balaenoptera

borealis), in different tissues and decomposition codes, illustrating

the contribution of each gas to the total amount in percentage

μmol.

GAS FROM THE PTERYGOIDAL SINUSES
Gas composition from the sinuses remained constant for longer
PM time compared to gas recovered from other tissues. Nitrogen

was always the major compound (58–87%) until decomposition
code 4 was reached. Within these decomposition codes, CO2

was present in concentrations ranging from 10 to 36%. After
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FIGURE 7 | Intravascular bubble’s gas composition of deep diving animals belonging to Kogiidae family in different tissues and decomposition codes,

illustrating the contribution of each gas to the total amount in percentage μmol.

FIGURE 8 | Intravascular bubble’s gas composition of deep diving animals belonging to Physeteridae family in different tissues and decomposition

codes, illustrating the contribution of each gas to the total amount in percentage μmol.

decomposition code 4, CO2 increased devaluating nitrogen pres-
ence. There were two samples with atmospheric-air like composi-
tion (CET 512 and CET 504) (Figure 13).

DISCUSSION
This is the first comprehensive study of prevalence, amount (gas
score), distribution, and composition of bubbles found in stranded
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FIGURE 9 | Intravascular bubble’s gas composition of deep diving animals belonging to Globicephala macrorhynchus specie in different tissues and

decomposition codes, illustrating the contribution of each gas to the total amount in percentage μmol.

cetaceans. The animals included in the study presented different
decomposition codes allowing us to study putrefaction gases that
may mask a decompression-induced gas phase. In addition, the
high number of animals (83) and species included in the study
(18) enabled us to relate the results with the diving behavior of
the animals. This study demonstrates the utility of scoring and
analyzing the gas in stranded marine mammals, especially in fresh
animals, encouraging the performance of the necropsy as soon
after death as possible.

BUBBLE PREVALENCE AND ABUNDANCE
Fifty-one out of 88 stranded animals presented macroscopic bub-
bles during the necropsy. This represents 58% of the animals that
were studied indicating that the presence of gas bubbles within the
cardiovascular system in stranded cetaceans is a common gross
finding during necropsy.

In forensic human pathology the presence of intravascular gas
in carcasses decomposing under different environmental condi-
tions is well known and widely reported (Knight, 1996). Indeed,
bubbles were found in all the studied animals with decomposi-
tion code 4 and 5. Putrefaction is a continual process of gradual
decay and disorganization of organic tissues and structures after

death that results in the production of liquids, simple molecules,
and gases (intravascular gas and/or putrefactive emphysema; Vass
et al., 2002; Lerner and Lerner, 2006). However, it is very unusual to
find gas bubbles within the cardiovascular system in fresh necrop-
sied domestic animals or humans (King et al., 1989; Knight, 1996).
Therefore, the most interesting data are those recorded from fresh
animals. Our results demonstrated that it is not uncommon to
find intravascular bubbles in fresh cetaceans. Thirty-three per-
cent of our fresh animals presented intravascular bubbles to some
extent, but only two animals presented high gas score. Recent stud-
ies have demonstrated that large amounts of intravascular bubbles
found within a few hours PM are not due to putrefaction processes
(Bernaldo de Quirós, 2011). Indeed, these animals were the only
ones diagnosed with gas embolism according to the pathological
studies carried out by the ULPGC. Therefore amount of intravas-
cular bubbles is more important than the mere presence of bubbles
from a pathological point of view in stranded cetaceans,and the gas
score is also an efficient tool to distinguish between gas embolism
and putrefaction gases in stranded cetaceans. Although we used
a simple gas scoring technique with a scale from 0 to 10 because
the study was done retrospectively, we encourage using a larger gas
score scale (0–27) described by Bernaldo de Quirós (2011). This
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FIGURE 10 | Intravascular bubble’s gas composition of deep diving animals belonging to Grampus griseus specie in different tissues and

decomposition codes, illustrating the contribution of each gas to the total amount in percentage μmol.

gas score has a grading scoring of 0–6 for the different vascular
localizations (n = 4) and a 0–3 grading scoring for subcapsular
gas (0–3). Therefore, total gas score in each animal ranged from
0 to 27. A larger scale highlights better the possible differences in
gas score along decomposition codes.

Subcapsular emphysema in the peri-renal area has been
described in 22 of 22 alive stranded animals using B-mode ultra-
sound (Dennison et al., 2012). In our study, we found it in 20 out of
39 fresh animals. Although the prevalence is smaller in our study,
it still suggests that subcapsular emphysema is a common finding
in dead stranded cetaceans. However, we could not find a clear
relationship between subcapsular emphysema and intravascular
bubbles. There is a 60% chance that a fresh animal with intravas-
cular bubbles presents subcapsular emphysema, but 60% of the
fresh animals with subcapsular emphysema showed no intravas-
cular bubbles. Therefore, intravascular bubbles can occur without
simultaneous subcapsular emphysema and vice versa.

An interesting result from our data was that intravascular
bubbles were more frequently found (P = 0.006) and in higher
quantities in deep divers than in non-deep divers regardless of

decomposition code. The higher prevalence of intravascular bub-
bles related to the diving behavior of the species, together with
the fact that finding bubbles in necropsied domestic animals
or humans is very unusual and mostly linked to iatrogenic air
embolism or diving fatalities (Knight, 1996; Muth and Shank,
2000), suggest that the most parsimonious explanation for the
presence of small quantities of intravascular bubbles in fresh
stranded cetaceans would be diving physiology related (Tikuisis
and Gerth, 2003). Thus our results further suggest that deep divers
might be at a higher risk from decompression.

GAS COMPOSITION
Intravascular bubbles and subcapsular emphysema of fresh marine
mammals (decomposition code 2) showed high concentrations
of nitrogen (>70%) and values of CO2 around 20%. Sim-
ilar results were obtained in animal models exposed to air
embolism or compression and decompression using the same
methodology (Bernaldo de Quirós, 2011). Furthermore, these
values are in accordance to what has been reported in cases of
air embolism and/or DCS in humans and laboratory animals
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FIGURE 11 | Intravascular bubble’s gas composition of deep

diving animals belonging to Ziphiidae (M.b., Mesoplodon

bidens; Z.c., Ziphius cavirostris; M.e., Mesoplodon europaeus)

family in different tissues and decomposition codes, illustrating

the contribution of each gas to the total amount in percentage

μmol.

(Bert, 1878; Armstrong, 1939; Pierucci and Gherson, 1968; Smith-
Sivertsen, 1976; Ishiyama, 1983; Bajanowski et al., 1998; Bernaldo
de Quirós, 2011). In addition, gas from pterygoideal sinuses

showed high concentrations of nitrogen in animals with decom-
position codes 2 and 3. This was an additional finding that needs
further investigation (Figure 13).
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FIGURE 12 | Subcapsular gas (emphysema) composition found in

different tissues from deep diving (G.g., Grampus griseus; D.d.,

P.m., Physeter macrocephalus; Z.c., Ziphius cavirostris; M.e.,

Mesoplodon europaeus) and shallow diving animals (D.d.,

Delphinus delphis; O.b., Otaria byronia; S.c., Stenella coeruleoalba;

T.t.,Tursiops truncatus) with different decomposition codes,

illustrating the contribution of each gas to the total amount in

percentage μmol.

Hydrogen, which is a putrefaction indicator (Pierucci and
Gherson, 1969), was mostly found after decomposition code 3
in gas collected from the different localizations (intravascularly,
subcapsularly, or in the pterygoideal sinuses). Animals with incip-
ient autolysis (decomposition code 3), had gas samples that varied
from typical gas embolism composition to putrefaction gases
(Pierucci and Gherson, 1968, 1969). Samples from animals with
decomposition code 4 and 5 always presented high CO2 concen-
trations together with hydrogen in most of the cases and low
concentration of nitrogen (mostly lower than 40%) if present.
In a few decomposed samples, small quantities of oxygen were
also detected. This gas composition was very similar to the gas
composition of the subcapsular emphysema found in very decom-
posed animals and completely different from gas composition

of intravascular bubbles and subcapsular emphysema in fresh
animals.

These data show that detection of hydrogen and/or very high
levels of CO2 are “signal” gases indicative of putrefaction, while
nitrogen decreases progressively until disappearing (not detected
chromatographically) in carcasses with the highest decomposition
code (code 5). Similar results have been described in humans and
laboratory animals (Pierucci and Gherson, 1968, 1969; Keil et al.,
1980; Bajanowski et al., 1998). In this sense, we can state that
hydrogen in stranded cetaceans is also a key putrefaction marker
with one exception that will be discussed later. In some cases, we
have found one sample’s composition to be clearly different from
the rest of the samples, presenting significantly higher nitrogen
and oxygen content. Thus, we have considered as a first option, a
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FIGURE 13 | Gas composition of pterygoid air sacs from animals (G.g.,

Grampus griseus; S.b., Steno bredanensis; M.e., Mesoplodon

europaeus; S.f., Stenella frontalis; G.m., Globicephala

macrorhynchus;T.t.,Tursiops truncatus) with different decomposition

codes, illustrating the contribution of each gas to the total amount in

percentage μmol.

likely contamination of atmospheric-air during sampling (see as
an example the sample from CET 546 in Figure 12). The exception
previously mentioned, was a Steno bredanensis (CET 473) with
decomposition code 2 that presented hydrogen in the mesenteric
veins. Here, it is important to remember that these are stranded
animals, and in most of the cases sick animals. Therefore these gas
results should be considered together with the individual diagnos-
tic analysis (including pathology, microbiology, toxicology, etc.).
Speculatively, we have considered acute gastrointestinal disease as
a primary source of hydrogen or due to overlapping with other
pathogenic processes, although further research is needed in order
to confirm this hypothesis.

One of the most interesting and unexpected results was CO2

concentrations of around 40–50% in the animal with the sec-
ond highest gas score for fresh animals and diagnosed with gas
embolism by the ULPGC (CET 483). This gas composition is not
in accordance with traditional DCS theories or some of the empir-
ical values reported for DCS (Bert, 1878; Smith-Sivertsen, 1976;
Ishiyama, 1983; Tikuisis and Gerth, 2003). However Armstrong
(1939) reported values of 30% of CO2 in decompressed goats, and
Bernaldo de Quirós (2011) has recently reported very similar CO2

concentrations to our results in rabbits.
In addition there are several empirical and physical models sug-

gesting an important role of CO2 in bubble formation: (i) there
is a higher prevalence of elevated CO2 in bends following dives
using compressed air (Behnke, 1951), (ii) a statistically significant
increase in DCS risk in rats breathing elevated levels of CO2 in
either He-O2, or N2-O2 mixtures during the hyperbaric exposure

has been reported (Berghage et al., 1978), (iii) bubbles moving ver-
tically through different water layers alternately saturated with air
or CO2, increase in size in the CO2 saturated water and decreasing
in the air-saturated layer (Harvey, 1945), (iv) bubbles formed with
less mechanical agitation and grew at a faster rate in decompressed
tubes filled with water saturated of CO2 rather than nitrogen (Har-
ris et al., 1945). All these findings, suggest that CO2 might play an
important role in bubble formation due to the high diffusivity of
this gas. If this is the case, prolonged dives where CO2 will build up
might pose an additional risk to animals with nitrogen saturation.

Theoretical studies have predicted BWs end-dive nitrogen lev-
els that would cause a significant proportion of DCS cases in land
mammals (Houser et al., 2001; Zimmer and Tyack, 2007; Hooker
et al., 2009). In addition BWs have both the deepest (3120 m)
and longest (137 min) dives ever recorded from an air-breathing
mammal (Schorr et al., 2011). Furthermore, BWs exposed to mid-
frequency sonar playback have reacted with unusual longer and
slower ascent dives (Tyack et al., 2011). All BWs included in our
study presented a minimum gas score of 5, this was not found in the
other studied sub groups. Although more fresh animals should be
studied in order to make conclusions, our results suggest that BWs
might be the most sensitive species to bubble formation. Future
theoretical studies should consider CO2 accumulation in addition
to nitrogen saturation, and its possible role in bubble formation.

We have shown that gas analysis may be a valid a technique
to differentiate between gas embolism and putrefaction gases in
stranded cetaceans. Therefore we encourage gas analysis. To try
to avoid putrefaction-masking gases, necropsy, and gas sampling

www.frontiersin.org June 2012 | Volume 3 | Article 177 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Aquatic_Physiology/archive


de Quirós et al. Bubbles in stranded marine mammals

must be performed as soon as possible, before 24 h PM is recom-
mended but preferably within 12 h PM. However, if gas analyses
are not possible due to logistics, we strongly recommend doing the
gas scoring, which is of no additional cost.

SOURCE OF BUBBLES
In summary, intravascular bubbles and subcapsular emphysema
are a common finding during necropsies of stranded marine mam-
mals, although they are present in low quantities (low gas score)
and with a gas composition of around 70–80% of nitrogen and
20–30% of CO2. They are more frequently found (P = 0.006) and
in higher quantities in deep divers vs. non-deep divers. They have
higher prevalence in active stranded animals, although they are
also present in passive stranded animals. Based on gas composi-
tion and in the highest prevalence of bubbles in deep divers, the
most likely source of these bubbles is decompression-related.

In air-breathing animals, nitrogen can build up in tissues and
formed bubbles. Although they only have a finite amount of air
in their lungs available for nitrogen diffusion, PN2 in the alveoli
increases with compression of the thorax as the pressure increases.
This results in a net exchange of nitrogen across the alveolar mem-
brane and it is either taken up or removed by the blood and tissues
depending on the partial pressure gradient. During ascent, nitro-
gen diffusion from tissues to blood and alveolus is slower, and if the
surface interval is too short, not all of the nitrogen that has been
taken up is removed. This may result in nitrogen build up in tissues
during repeated dives (Ferrigno and Lundgren, 2003). When the
sum of the dissolved gas tensions (oxygen, CO2, nitrogen, helium)
and water vapor exceeds the local absolute pressure, a state known
as supersaturation, bubbles may form due to gas phase separation
(Hamilton and Thalmann, 2003; Vann et al., 2011). Bubbles can
form without negatively impacting a diving animal, but bubbles
can have mechanical, embolic, and biochemical manifestations
ranging from trivial to fatal (Vann et al., 2011). They are generally
considered a pivotal event in the occurrence of DCS (Francis and
Simon, 2003).

Decompression bubble formation may still occur even after
death if the animal dies at depth and is later depressurized, a
phenomenon known as post mortem off gassing (Brown et al.,
1978; Lawrence, 1997; Cole et al., 2006; Lawrence and Cooke,
2006; Wheen and Williams, 2009). Post mortem off gassing has
been proposed for explaining the existence of bubbles in marine
mammals trapped in fishing nets (Moore et al., 2009). These
animals died at depth and were later hauled out. Our studied
animals are stranded marine mammals, which presumably have
not died at depth. Thus, post mortem off gassing is ruled out as a
plausible mechanism. The stated absence of bubbles in stranded
animals in the Moore et al. study probably reflects a relative,
rather than absolute absence, with bubble quantity being far more
obvious in the animals drowned at depth that off-gassed post
mortem. These authors probably failed to record the low preva-
lence of bubbles commonly seen in stranded animals in the current
study (Michael Moore, personal communication). It is interesting
that the Moore et al. findings likely reflect a routine supersat-
uration state in foraging, diving marine mammals. Analysis of
the gas bubble composition of drowned bycatch would test this
hypothesis.

The most likely explanation for the observed gas composition in
the freshly dead animals is that bubbles were in vivo or peri mortem
formed from supersaturated tissues by physiological off gassing.
Indeed, a recent study has shown that intravascular bubbles and
peri-renal subcapsular emphysema occur in live marine mam-
mals and without clinical consequences (Dennison et al., 2012).
The stranding itself has been proposed as a causal mechanism for
bubble formation in marine mammals (Houser et al., 2010; Den-
nison et al., 2012). According to this hypothesis, a fast stranding
will result in the inability to recompress resulting in problematic
supersaturation of the tissues. In addition, as a consequence of
the stranding, there would be tissues of reduced perfusion and
blood pooling that would continue to off-gas, but because the vas-
cular flow to the lung is supposed to be compromised, nitrogen
elimination would not be as effective and autochthonous bubble
formation would increase (Houser et al., 2010).

Another plausible stranding mechanism related would be tri-
bonucleation. Tribonucleation occurs when two surfaces in inti-
mate contact but separated by a viscous liquid film are suddenly
separated in an abrupt way. Then, the viscosity will avoid sudden
filling and cavities, which will be filled by diffusing gases, can occur
(Banks and Mill, 1953; Hayward,1967; Campbell, 1968; Ikels,1970;
Blatteau et al., 2006). This phenomenon has been proposed to hap-
pen with movements, exercise (McDonough and Hemmingsen,
1984a,b, 1985a,b), within the joints (Fick, 1911), or in the heart
valves (Hennessy, 1989). The agonal actions of the beached ani-
mals have been proposed to promote bubble formation (Houser
et al., 2010).

We have found intravascular bubbles in 3 out of 15 of the
animals that stranded passively, where reduced perfusion and tri-
bonucleation are not expected. Regardless of the low number of
passive strandings studied, our results support the idea that bub-
bles can occur independently to the stranding, as reported in three
BWs (one fresh, one partially autolytic, and an autolytic animal)
which were recovered floating in the atypical mass stranding event
of the Canary Islands in 2002 (Fernandez et al., 2005). However,
since we have found a higher prevalence of bubbles in actively
stranded animals (although the difference was non-statistically
significant), we suggest that stranding is not a necessary factor but
a contributing factor in bubble formation.

More recently, Houser et al. (2010) and Dennison et al. (2012)
hypothesized that the abnormal behavior of moribund cetaceans
that might spend a period of time at sea with reduced depth
and repetitiveness, may allow them to wash out nitrogen prior
to stranding. Few (Dennison et al., 2012) or no (Houser et al.,
2010) empirical data were presented to support this suggestion.
Our study animals are mostly single stranded specimens, affected
by different pathologies (Table 1). According to the mentioned
hypothesis, it is presumed that our case studies have washed out
their nitrogen prior to stranding. Our results do not support this
hypothesis; intravascular bubbles were found in 57% of the fresh
deep diving animals and in 20% of the non-deep diving animals,
and they were mainly composed of nitrogen (70–80%). Dennison
et al. (2012) further hypothesize that the prevalence of bubbles
will be less in most single stranded than mass stranded animals,
if they were diving less over an extended period. Since our study
cases are mostly single stranded animals, we could not test this
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hypothesis. Further studies are needed to confirm whether mass
stranded animals have higher prevalence of bubbles compared to
single–stranded animals.

If bubbles are not a consequence of the stranding, and since no
embolic related lesions were found in the pathological study, it is
reasonable to consider as a hypothesis that this small amount of
bubbles composed of nitrogen found in fresh stranded animals,
were silent bubbles. The existence of potentially asymptomatically
bubbles in marine mammals has been reported before (Dennison
et al., 2012). However, we studied dead animals where symptoms
could not be evaluated, therefore our results are indicative but not
conclusive by itself of the existence of silent bubbles in marine
mammals. A recent review of evidences for gas bubble incidence
in marine mammals concluded that they may deal with bubbles
on a more regular basis than previously thought (Hooker et al.,
2012) and suggested that our view of marine mammal adaptations
should therefore change from one of simply minimizing nitrogen
loading to one of management of the nitrogen load. Our study fur-
ther supports the hypothesis that decompression-induced bubbles
are relatively common but that marine mammals have unknown
adaptations allowing them to tolerate these under natural con-
ditions. It is important to remember that our case studies have
only few bubbles and died from numerous pathological reasons
different from gas embolism. Only two animals, showing a lot of
bubbles widely dispersed and with no other pathological signs,
were diagnosed with massive gas embolism.

Further research is needed in order to clarify questions that
remain unanswered from this study. The clinical impact of sub-
capsular emphysema remains unclear from this study since gas
composition indicates a plausible physiological decompression-
related off gassing origin, but no clear relationship with intravas-
cular bubbles was found. More studies are needed in order to
better understand the formation of this gas and the plausible
impact that might have on the health status of the animals.

Comparison between single-active, single-passive, mass stranded,
and by caught animals, might contribute to a better understanding
of the causative factor of intravascular bubble formation as well
as nitrogen supersaturation levels on these animals, and different
species sensibilities (like deep divers vs. non-deep divers). These
will provide new data that should be considered in future diving
physiology models and studies.

In conclusion, this study has demonstrated that bubbles are a
common finding in stranded cetaceans. The amount and compo-
sition of these bubbles in fresh animals suggests that these bubbles
have formed from nitrogen-supersaturated tissues, most likely
formed in vivo. This study has also demonstrated that these bub-
bles were more frequently found in deep divers indicating a higher
risk of decompression to these species. Further research is needed
in order to determine if there are any species-specific sensibilities
to bubble formation as preliminary results point out, as well as
the implications that CO2 accumulation along a dive might have
for these animals from a diving physiology perspective. Finally,
monitoring live non-deep diving and deep diving animals with an
ultrasound might help to confirm the hypothesis deduced from
our results.
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