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Abstract: Membrane-shed submicron microparticles (MPs) are released after cell activation or apoptosis. High
levels of MPs circulate in the blood of patients with atherothrombotic diseases, where they could serve as a useful
biomarker of vascular injury and a potential predictor of cardiovascular mortality and major adverse cardiovascular
events. Atherosclerotic lesions also accumulate large numbers of MPs of leukocyte, smooth muscle cell, endothelial,
and erythrocyte origin. A large body of evidence supports the role of MPs at different steps of atherosclerosis
development, progression, and complications. Circulating MPs impair the atheroprotective function of the vascular
endothelium, at least partly, by decreased nitric oxide synthesis. Plaque MPs favor local inflammation by augmenting
the expression of adhesion molecule, such as intercellular adhesion molecule-1 at the surface of endothelial cell, and
monocyte recruitment within the lesion. In addition, plaque MPs stimulate angiogenesis, a key event in the transition
from stable to unstable lesions. MPs also may promote local cell apoptosis, leading to the release and accumulation of
new MPs, and thus creating a vicious circle. Furthermore, highly thrombogenic plaque MPs could increase thrombus
formation at the time of rupture, together with circulating MPs released in this context by activated platelets and
leukocytes. Finally, MPs also could participate in repairing the consequences of arterial occlusion and tissue ischemia
by promoting postischemic neovascularization. (Circ Res. 2011;109:593-606.)
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Atherosclerosis is a pathological condition that underlies
several important adverse vascular events, including coro-

nary artery disease, stroke, and peripheral arterial disease,
responsible for most of the cardiovascular morbidity and mor-
tality in the Western world today. Epidemiological studies

indicate that the prevalence of atherosclerosis is increasing all
over the world because of the adoption of Western lifestyle and
is likely to reach epidemic proportions in the coming decades.1,2

Atherosclerosis was described as a simple proliferative
process, with passive deposition of lipid debris on the arterial
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wall.3 Within the past three decades, atherosclerosis emerged
as a chronic inflammatory disease, involving increased endo-
thelial cell permeability, accumulation of low-density lipo-
proteins (LDL) in the subendothelial space, followed by the
diapedesis of leukocytes and formation of foam cells, migra-
tion and proliferation of smooth muscle cells, production of
connective tissue, and neovascularization. The culminating
point of this slowly developing disease is plaque rupture or
erosion, resulting in thrombosis and arterial occlusion.4

Microparticles (MPs) are 0.1- to 1 �m membrane vesicles
released in extracellular space after cell activation or apopto-
sis.5 They harbor at their surface most of the membrane-
associated proteins of the cells they stem from and are
characterized by the loss of plasma membrane asymmetry,
resulting in the exposure of phosphatidylserine on their outer
leaflet.6 A large number of studies have proposed that MPs
may contribute to atherosclerotic plaque development, pro-
gression, and complications. This review summarizes the
possible implication of MPs at different steps of atheroscle-
rosis development. Noteworthy, investigation of MP role
relies on either MPs generated in vitro from cultured cells or
MPs isolated from the blood or tissues of patients and animal
models. Although the information provided by in vitro
generated MPs brings highly valued mechanical insights, the
transfer of such results in vivo might be limited because the
biological effects and composition of MPs greatly vary
depending on the stimulus initiating MP release.7–11

Microparticle Generation and Cardiovascular
Risk Factors

The general consensus is that most cell types, including
circulating cells and cells present in the vessel wall, are
capable to vesiculate and release membrane-shed MPs in the
extracellular medium in response to cell activation or apo-

ptosis. Several factors involved in the development of ath-
erosclerotic lesions, such as lipoproteins, cytokines, oxidative
stress, or shear stress level, increase in vitro the release of
MPs from vascular and/or circulating cells (Table).

Based on the knowledge gathered from experiments on
platelet, MP formation at the plasma membrane of the cell
appears to require some specific modifications. First, intra-
cellular calcium and caspase-dependent mechanisms are ma-
jor determinants of the loss of membrane asymmetry.6 Dis-
ruption of phospholipid membrane asymmetry leads to
exposure of phosphatidylserine on the outer leaflet. This is a
consequence of the calcium-dependent upregulation of
scramblase and inhibition floppase/ABC1 and translocase/
flippase activities.6 Second, blebbing requires cytoskeletal
reorganization. During apoptosis, bleb formation depends on
actin cytoskeleton and actin-myosin contraction, which is
regulated by caspase 3-induced Rho kinase I and II activa-
tion.12,13 Caspase activities have been identified in different
MPs, and thus could represent an attempt for cells to escape
cellular apoptosis.14–16

Non-standard Abbreviations and Acronyms

HUVEC human umbilical vein endothelial cell

ICAM intercellular adhesion molecule

IL interleukin

LDL low-density lipoproteins

MMP matrix metalloproteinases

MP microparticle

PSGL-1 P-selectin glycoprotein ligand-1

TNF-� tumor necrosis factor-�

Table. Relevant Stimuli for Atherosclerosis Leading to Microparticle Release From Circulating or Vascular Cells

Stimuli

Cell Type

Endothelial Cell Platelet Smooth Muscle Cell Monocyte/Macrophage

Cigarette extract … … … Li et al24

Modified LDL Nomura et al173 … Llorente-Cortes et al174 …

HDL cholesterol Liu et al175 … … Liu et al175

Uremic toxin Faure et al176 … … …

Flow conditions Ramkhelawon et al177 Nomura et al178 Stampfuss et al179 …

Thrombin Sapet et al,18 Simoncini et al20 Barry et al,60 Dale et al,180 Chang et al,181 … …

Collagen … Barry et al,60 Boilard et al,182 Chang et al,181 … …

Homocysteine Sekula et al183 Olas et al184 … …

Activated Protein C Pérez-Casal et al185 … … Pérez-Casal et al185

PAI-1 Brodsky et al186

Proinflammatory cytokines
(TNF�, IL1�) and CRP

Combes et al,187 Curtis et al,19

Abid Hussein et al,15 Wang et al,22

Nomura et al,178 Piguet et al188 Schecter et al189 Jungel et al190

Oxidative stress Vince et al,191 Szotowski et al192 … … …

Fas ligand … … Essayagh et al 2005193 …

PDGF … … Schecter et al194 …

CRP indicates C-reactive protein; HDL, high-density lipoprotein; IL, interleukin; LDL, low-density lipoprotein; PAI, plasminogen activator inhibitor; PDGF,
platelet-derived growth factor; TNF, tumor necrosis factor.

Only studies showing a significant increase in MPs release as compared to basal condition have been included.
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Endothelial MP formation and release have received sig-
nificant attention over the past recent years, and different
signaling pathways have been identified depending on the
stimuli (Table).17 Clearly, endothelial MP shedding can occur
independently of endothelial apoptosis.18 Curtis et al19 iden-
tified p38 mitogen-activated protein kinase as a key factor for
the shedding of endothelial cells under tumor necrosis
factor-� (TNF-�) stimulation. In opposition, thrombin stim-
ulation of endothelial cells induces a complex biphasic
release of endothelial MPs.18 Several different mechanisms
concur to vesiculation. First, thrombin binds to its protease-
activated receptor-1, followed by Rho kinase II activation.
Second, a later pathway involves TRAIL/Apo2L, a cytokine
that belongs to the TNF-� superfamily,20 followed by inter-
leukin (IL)-1 release and IL-1 receptor activation.21 The
second phase is characterized by an amplification loop based
on the release by endothelial cells stimulated by thrombin of
soluble forms of TRAIL and of IL-1 that act in an autocrine
or paracrine manner on endothelial cells and stimulate MP
shedding. Interestingly, these findings demonstrate that
thrombin-induced activation of endothelial cells leads to the
release of MPs of different composition. Endogenous nitric
oxide appears to play a protective role against endothelial MP
formation by a mechanism involving tetrahydro-biopterin, as
observed after C-reactive protein endothelial activation.22 No
other study has addressed the potential effects of nitric oxide
on endothelial MP formation and release.

Monocyte-macrophages also release MPs on activation
(Table). In addition, endotoxin stimulates macrophage MPs
formation via a pathway requiring inducible nitric oxide
synthase activation.23 Furthermore, tobacco smoke provokes
the generation of highly procoagulant monocytic MPs in a
process requiring ERK1/2 activation and caspase
3-dependent apoptosis.24

Although enucleated cells, such as erythrocytes and plate-
lets, cannot undergo classical apoptosis associated with nu-
clear fragmentation, MPs expressing specific markers of
platelets or red blood cells have been detected in human and
animal plasma.25 Contrary to platelet MP release, little
information is available on the molecular mechanisms lead-
ing to the phosphatidylserine exposure and MP formation in
erythrocytes. Increases in intracellular calcium and oxidative
stress promote erythrocyte MP release.26,27 In addition, se-
nescence of erythrocyte, as well as of platelets, leads to
phosphatidylserine exposure on the cell membrane outer
leaflet and release of MPs.28 In senescent platelets, the release
of MPs depends on cytochrome c release and subsequent
activation of caspase 3 and Rho kinase I.28

Lesion Initiation
A primary event in the development of atherosclerotic lesions
is the accumulation of low-density lipoprotein in the suben-
dothelial matrix.4 This occurs in precise sites within the
arteries such as arterial branching or curvature where hemo-
dynamic forces and endothelial shear stress is disturbed.4 In
these areas, endothelial cells are not aligned in the direction
of flow but rather have polygonal shapes and no particular
orientation.4 Endothelial permeability is also increased, al-
lowing for the diffusion of macromolecules such as LDL

through endothelial cell junctions.29,30 Then, LDL undergoes
several modifications, including oxidation, lipolysis, proteol-
ysis, or aggregation in the subendothelial space, where they
are removed by macrophages and foam cells.4 The implica-
tion, if any, of MPs in these initial stages of atherosclerosis
has never been directly assessed, but several findings indicate
it may be likely.

First, MPs, and particularly endothelial MPs, are released
and their circulating levels increase early in atherosclerotic
process. Cardiovascular risk factors may trigger endothelial
MP release, in addition to the well-known effects of cytokines
and proapoptotic and procoagulant stimuli (Table). For in-
stance, smoking, as well as second-hand smoking or enforced
physical inactivity, are associated with increases in circulat-
ing endothelial MP in healthy subjects.31–33 Increases in
plasma endothelial MPs are also observed after high-fat
meals with augmented circulating levels of modified LDL
and triglycerides, whereas a Mediterranean regimen lowers
levels of circulating endothelial MPs.34–36

Second, a paracrine effect of endothelium-derived MPs in
atherosclerotic-prone areas is possible. Mechanical factors
may be involved in the regulation of endothelial MPs release.
In vitro and in vivo studies demonstrate that turbulent shear
stress is accompanied by endothelial apoptosis, whereas
laminar shear stress protects endothelial cells from apopto-
sis.37,38 Apoptosis being a well-known stimulus of MP re-
lease, endothelial MPs are likely to be released in turbulent or
low shear stress areas. This hypothesis is reinforced by the
inverse correlation observed in patients with end-stage renal
disease between endothelial MPs and basal arterial laminar
shear stress.39 Because endothelial MPs released from apo-
ptotic cultured endothelial cells harbor caspase-3 activity,
endothelial cells from low or disturbed shear stress areas may
use MP release to expel proapoptotic proteins from their cell
body in a last attempt to escape programmed cell death.16

This interpretation therefore would support a beneficial role
of endothelial MP by maintaining a protective endothelial
lining of the blood vessel wall. However, because shear stress
is low in atherosclerotic-prone areas, local endothelial MP
concentrations are likely to be elevated and could affect
neighboring endothelial cells.

Third, several recent findings indicate that endothelial MPs
hamper the atheroprotective function of the endothelial lining
of blood vessels. Endothelial MPs impair endothelial nitric
oxide bioavailability by either stimulating free radical gener-
ation or decreasing Ser1179- endothelial nitric oxide synthase
phosphorylation40–43 (Figure A). Furthermore, endothelial
MPs may directly increase endothelial permeability.41 This
effect was initially reported in pulmonary capillaries of
C57BL/6 mice injected with endothelial MPs but was not
observed for MPs carrying endothelial protein C receptor-
generated after exposure of endothelial cells to exogenous
activated protein C.44 The increased permeability could also
result from increased CD11b expression at the surface of
leukocytes exposed to endothelial MPs.45 Interestingly, sev-
eral findings suggest that the release of endothelial MP may
be concomitant with increased endothelial permeability.
Stimuli such as thrombin or TNF-� induce both MP genera-
tion and endothelial permeability.17,46,47 Stimuli inhibiting
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Figure. Implication of MPs in
the development, progres-
sion, and complications of
atherosclerotic plaques. A,
Lesion initiation. Circulating
endothelial and leukocyte
microparticles (MPs) are
increased in patients with
high atherothrombotic risk.
These MPs induce endothelial
dysfunction by decreasing
nitric oxide (NO) synthesis as
the result of an inhibition of
the endothelial nitric oxide
synthase (eNOS) function
and/or an increase in
caveolin-1, increasing oxida-
tive stress and production of
endothelial superoxide anion
(O2

�). The highly unstable O2
�

anion can uncouple the
eNOS, thus decreasing NO
production. Some MP sub-
populations also can enhance
thromboxane A2 (TXA2) pro-
duction and thus vascular con-
traction. Opposite effects also
have been reported with MPs
derived from lymphocytes as
they increase the inducible NO
synthase (iNOS) and cyclooxy-
genase-2 (COX-2) enzymes
expression in the smooth mus-
cle cells, thus increasing vaso-
dilatory mediators concentra-
tion within the media and
decreasing contractile force.
B, Lesion progression. Human
atherosclerotic plaques contain
high levels of MPs. These MPs
are in the vicinity of the imma-
ture and leaky neovessels con-
tained in plaques. MPs harbor
intercellular adhesion molecule
(ICAM)-1 and transfer this
adhesion molecule to endothe-
lial cell membrane, thus
enhancing the recruitment of
monocytes into plaques. Once
transmigrated, monocytes dif-
ferentiate into macrophages
and foam cells, leading to
phagocytosis of modified low-
density lipoprotein (LDL, yellow
triangles). MPs could contrib-
ute to macrophages and foam
cells apoptosis, leading to the
release of MPs and creating a
vicious circle. C, Advanced
lesions. Vulnerable atheroscle-
rotic plaques prone to rupture
are characterized by an
increased number of vasa
vasorum and frequent intra-
plaque hemorrhage. Plaque
MPs express CD40 ligand
(CD40L), stimulate endothelial
cell proliferation after CD40

ligation, and promote angiogenesis. Therefore, plaque MPs likely contribute to the transition from stable to unstable plaques. D, Plaque
rupture. Plaque MPs expose at their surface phosphatidylserine (PS) and, frequently, tissue factor (TF), conferring MPs a high proco-
agulant activity. At the time of plaque rupture, locally released plaque MPs stimulate thrombus formation. Platelet MPs are shed from
activated platelets and participate in thrombus. The interactions between P-selectin glycoprotein ligand-1 (PSGL-1) carried by leuko-
cyte MPs and platelet P-selectin are necessary to concentrate TF activity at the thrombus edge. Endothelial, leukocyte, smooth muscle
cell, erythrocyte, and platelet MPs are represented by pink, green, brown, red, and blue circles, respectively.
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MP formation also decrease permeability.48,49 In addition,
Rho-associated protein kinase and p38 mitogen-activated
protein kinase pathways have been implicated in both endo-
thelial MP release and endothelial hyperpermeability.17,19,47,50

Finally, MP formation and changes in endothelial permeabil-
ity require cytoskeletal protein reorganization.17,47

Fourth, MPs of non-endothelial origin also may contribute
to the loss of the vasculoprotective effect of endothelial cells.
For instance, MPs circulating in patients with coronary artery
disease impair endothelial nitric oxide-dependent relaxations
in healthy arteries, suggesting that plasma MPs may contrib-
ute to the generalization of endothelial dysfunction in this
disease.51 Similar findings were observed using MPs gener-
ated in vitro from lymphocytes52 (Figure A). Furthermore,
endothelial permeability might be affected by circulating
MPs other than endothelial MPs. Dean et al53 have recently
shown that platelet MPs of large diameter impair endothelial
cell barrier integrity, whereas small platelet MPs have an
opposite effect.

Taken together, these findings suggest that circulating
endothelial MPs, as well as MPs of nonendothelial origin,
may contribute to the overall proatherogenic phenotype of
endothelial cells in atheroprone areas of the vasculature.

Plaque Progression
Endothelium and Recruitment of
Inflammatory Cells
Considerable evidence supports the early involvement of the
monocyte/macrophage, the most prominent cellular compo-
nent of the innate immune response, during atherogenesis.
Observations in human arterial specimens and many experi-
mental models of atherosclerosis have identified monocyte
recruitment as an early event in atherogenesis.54 This recruit-
ment involves attachment to activated endothelial cells by
leukocyte adhesion molecules such as intercellular adhesion
molecule (ICAM)-1, vascular adhesion molecule-1,
E-selectin, and P-selectin. Several cytokines, including
monocyte chemotactic protein-1, IL-6, and IL-8, direct cell
migration of monocytes into the intima.55 Interestingly,
monocyte entry to atherosclerotic plaques not only occurs
during the initial stages of lesion formation but also continues
even in established lesions.54,56

Several studies using in vitro-generated MPs of different
cellular origins support the concept that MPs increase the
synthesis and the release of proinflammatory cytokines by
endothelial cells and leukocytes.57–59 The release of IL-6 and
IL-8 could subsequently favor the recruitment of leukocytes
at the site of injury, and even monocyte chemotaxis.60

Interestingly, high-density lipoprotein impairs MP binding to
endothelial cells, therefore limiting their proinflammatory
effect.59,61 This observation could contribute to the beneficial
effect of high-density lipoprotein in atherosclerosis.

In vitro-generated MPs also stimulate the expression of
adhesion molecules, particularly ICAM-1, at the surface of
endothelial cells.19,57,62 MPs also augment the expression
of adhesion molecules counter-receptors, such as CD11a, on
monocytes.57 The mechanisms involve arachidonic acid or
oxidized phospholipids carried by MPs.10,57 The in vitro

transfer of proatherogenic chemokine RANTES (CCL5) from
platelet-derived MPs to endothelial cells could lead to mono-
cyte attraction and activation, possibly promoting their re-
cruitment into the lesions.63 Platelet MPs expressing
P-selectin also may contribute to monocyte infiltration by
favoring leukocyte–leukocyte interaction under unfavorable
flow conditions.64 Whether these observations occur during
the early stages of atherosclerotic plaque development re-
mains unknown.

A recent study using human MPs isolated from advanced
atherosclerotic plaques confirmed some of these results ob-
tained with in vitro-generated MPs, supporting the hypothesis
that MP proinflammatory effects may occur throughout the
development of atherosclerotic lesions.9 Atherosclerotic
plaques contain large amounts of MPs, mostly originating
from leukocytes.65,66 Although the mechanisms leading to
MPs formation in atherosclerotic lesions are unknown, oxi-
dized or modified lipids as well as oxidative stress and
proinflammatory cytokines may locally contribute to MP
release from vascular cells or from monocytes (Table). MPs
isolated from human plaques augment endothelial expression
of ICAM-1 and subsequently enhance monocytes adhesion
and transmigration under flow conditions, whereas MPs
isolated from plasma has no such effects.9 The increased
endothelial ICAM-1 induced by plaque MPs results from the
transfer of the adhesion molecule from MPs to endothelial
cells in a phosphatidylserine-dependent manner.9 Contrary to
in vitro-generated MPs, MPs isolated from advanced human
plaques does not affect endothelial release of IL-6, IL-8, or
monocyte chemotactic protein-1, or endothelial expression of
vascular adhesion molecule-1 or E-selectin.9 The effect of
plaque MPs on ICAM-1–dependent recruitment of inflam-
matory cells might be particularly relevant at the level of vasa
vasorum invading the advanced atherosclerotic lesions, be-
cause intimal neovessels express much greater levels of
vascular cell adhesion proteins than the luminal arterial
endothelium.67 These abnormal microvessels are character-
ized by disorganized branching and immature endothelial
tubes with leaky imperfect linings.68,69 Therefore, MPs bear-
ing ICAM-1 present in plaques may diffuse within blood
stream and thus transfer ICAM-1 to the endothelial cell
surface in a “paracrine” manner9 (Figure B). Whether plaque
MPs promote monocyte recruitment in fatty streaks at early
stages of atherosclerosis plaque development is unknown.

The lack of effect of circulating MPs on monocyte recruit-
ment may result from the concomitant proinflammatory and
antiinflammatory effects of MPs. For instance, neutrophil
MPs augment the release of the antiinflammatory cytokine
transforming growth factor-�1 from macrophages, suggesting
that MPs down-modulate cellular activation in macro-
phages.70 In addition, exposure of leukocyte-derived MPs to
recipient leukocytes before flowing over endothelial cell
monolayers significantly inhibits their adhesion in an an-
nexin-1–dependent manner.71 It should be noted that plaque
MPs isolated from human plaques harbor annexin-1, but no
information is available indicating whether this protein is
bioactive or in a sufficient amount to confer plaque MP
antiinflammatory properties or phospholipase A2 inhibitory
activity.9,72
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Monocytes/Macrophages
The transformation of recruited monocytes into lipid-laden
macrophages or “foam cells” by modified or oxidized LDL
trapped in the subendothelium is central to the development
of atherosclerotic lesions.73 Dysregulated uptake of modified
LDL via scavenger receptors such as CD36 determines foam
cells formation in vivo.74,75 Scavenger receptors also may be
involved in MP uptake and phagocytosis, because MP bind-
ing to platelet CD36 has been reported, leading to their
activation.76 However, there is no information regarding MP
interaction with monocytes–macrophages CD36 in athero-
sclerotic lesions and its potential functional consequences.

Recent findings demonstrate that the monocyte population
is not homogeneous with respect to its proinflammatory
properties. Besides the classical M1 activation of monocytes
responsible for a harsh proinflammatory activity, M2 alter-
native activation, associated with an antiinflammatory re-
sponse, is also implicated in atherosclerosis.77 No study has
yet evaluated the role of MPs in the regulation of monocyte/
macrophages subsets. Another area requiring further investi-
gations is the potential effect of MPs in monocyte prolifera-
tion, which would contribute to the increase in plaque
cellularity and therefore to plaque progression.56,78–80

Macrophages and foam cells then undergo cell death
leading to the deposition of a growing mass of extracellular
lipids forming the lipid core.4 Several reports have suggested
that MPs could contribute to monocyte and macrophage
apoptosis14,81,82 (Figure B). If this was demonstrated in
advanced atherosclerotic lesions, then MPs could contribute
to a characteristic of lesions prone to rupture.83 Two mecha-
nisms have been proposed for the proapoptotic effect of MPs.
The first one implicates the phagocytosis of monocyte-
derived or T-lymphocyte–derived MPs by monocytes and
macrophages, leading to an increased cellular content of
membrane phospholipids, which are likely cleaved by phos-
pholipases A2 into arachidonic acid. Arachidonic acid is a
strong activator of acid sphingomyelinase that metabolizes
sphingomyelin in proapoptotic ceramides, resultingin both
caspase-dependent and caspase-independent cell death.81,82

The second mechanism relies on the presence in endotheli-
al-derived, erythrocyte-derived, platelet-derived, monocyte-
derived, and dendritic cell-derived MPs of caspase-3 or
caspase-1, which may induce target cells apoptosis.14,15,84,85

MP encapsulation appears required for inducing apoptosis
because disruption of MP integrity suppresses the apoptotic
activity.84

Increased monocyte and macrophage apoptosis is likely to
be associated with the release of MPs, further increasing
plaque MP accumulation (Figure B). This leads to a vicious
circle responsible for more monocyte recruitment and more
macrophage apoptosis. The large MP concentration in human
atherosclerotic plaque also may result from the decrease
in macrophages phagocytic activity in plaques.66,86 At least in
normal conditions, macrophages seem to play a key role in
MP clearance through lactadherin and phosphatidylserine.
These data, obtained with platelet-derived and erythrocyte-
derived MPs, need to be confirmed with other cell-derived
MPs, particularly endothelial cell and monocytes.87–89 Inter-
estingly, lactadherin-deficient apolipoprotein E�/� mice have

more extensive atherosclerotic lesions and have greater levels
of circulating MPs.90 The mechanism for this decreased
macrophages phagocytic activity in plaques could be a
competition of MPs with apoptotic bodies and oxidized
LDL.91

Dendritic Cells, Lymphocytes, and Mast Cells
In atherosclerosis, the innate response is rapidly followed by
an adaptive immune response to an array of potential antigens
presented to effector T-lymphocytes by antigen-presenting
cells, such as dendritic cells. Dendritic cells populate athero-
sclerotic plaques and regional draining lymph nodes, where
they can present antigens to T cells with costimulatory
molecules.54 Their maturation requires the coordinated action
of a number of cytokines and growth factors. Several mole-
cules, including CD40, TNF receptor, and IL-1 receptor, have
been shown to activate dendritic cells and to trigger their
transition from immature antigen-capturing cells to mature
antigen presenting cells.55 Interestingly, in vitro-generated
endothelial MPs, but not platelet-derived or lymphocyte-
derived MPs, induce plasmocytoid dendritic cell maturation
with production of inflammatory cytokines (IL-6 and IL-8).92

However, the opposite effect has been reported with
polymorphonuclear neutrophil-derived MPs.93 The possi-
ble role of MPs in the migratory capacity of dendritic cells
is unknown.

Several studies concur in demonstrating a role of MPs in
lymphocyte proliferation. Both in vitro-generated and
human atherosclerotic plaques MPs are able to stimulate
T-lymphocyte proliferation.72,94 One likely mechanism could
implicate the major histocompatibility complex class II ex-
pressed, together with potent costimulatory molecules such as
CD40 ligand, at the surface of MPs isolated from human
plaques.11,72 Macrophages or dendritic cells must be the
source for MPs harboring major histocompatibility complex
class II, which are responsible for lymphocyte prolifera-
tion.94,95 MPs could also promote the differentiation of
lymphocytes toward a proatherogenic T helper lineage. Naive
CD4� T cells primed in the presence of plasmocytoid
dendritic cell maturated with endothelial MPs produce mainly
T helper-1 cytokines (interferon-� and TNF-�).92 However,
these data need to be confirmed using human plaque MPs.
This proatherogenic response is controlled by various
T-regulatory cells and by T helper-2–related cytokines.96

Except for studies using tumor-derived MPs, response of
T-regulatory cells to MPs has not been evaluated.97,98

Mast cells are inflammatory cells present in the arterial
wall, where they form part of the inflammatory cell infiltrate
and may contribute to atherosclerosis.55 Mast cells might be
an additional source of inflammatory cytokines within the
plaque. MPs released from activated T cells induce mast cell
activation, degranulation, and cytokine release in a mitogen-
activated protein kinase-dependent mechanism.99 Although
platelet MPs cannot be identified in atherosclerotic lesions,
platelet MPs may be taken-up by mast cells, leading to the
regulation of inflammatory cytokines.66,100 Regulation of
mast cells by plaque MPs is an additional area requiring
further investigations.
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Smooth Muscle Cell Migration, Proliferation,
and Phenotype
Smooth muscle cells play a key role in atherosclerosis both in
early and in late stages.101 In early stages, smooth muscle
cells migrate from the media to the intima, where they are
trapped and proliferate to contribute to the development of
plaque. The stimuli initiating smooth muscle cell migration
and proliferation are not well-elucidated.101 The effects of
MPs on smooth muscle cell proliferation depend on their cell
origin. In vitro-generated platelet MPs increase smooth mus-
cle cell proliferation in a platelet-derived growth factor-
independent mechanism, but they had only minor migratory
activity.102,103 Conversely, endotoxin-stimulated monocyte
MPs contain functional caspase-1 and induce smooth muscle
cell death.84 Studies using MPs obtained from atherosclerotic
plaques would be useful to clarify this point. Given the high
proportion of tissue factor-positive MPs in human plaques,
a promigratory effect of plaque MPs would be expected.66

Indeed, vascular smooth muscle cells express protease-ac-
tivated receptor-2 that can be activated by tissue factor-
coagulation factor VIIa, leading to vascular smooth muscle
cell migration.104 –106

In late stages, intimal smooth muscle cells differ signif-
icantly from their medial counterparts and as such have
unique atherogenic properties that make them fertile
ground for the initiation of plaques.107 Whereas human
medial smooth muscle cells predominantly express pro-
teins involved in contractile function, such as smooth
muscle myosin heavy chain or smooth muscle �-actin,
smooth muscle cells found in the intima express lower levels of
these proteins, have a higher proliferative index, and have a
greater synthetic capacity for extracellular matrix, particularly
collagen, proteases, and cytokines.108,109 The potential role of
MPs in this transition to the “synthetic” state that facilitates
many of the pathogenic roles of vascular smooth muscle cells
has not been investigated.

Neovessel Formation
The intima of normal human arteries lack vasa vasorum,
whereas the adventitia and outer media possess a vascular
network.68 As atherosclerosis progresses, the intima thickens
and intimal neoangiogenesis increases, likely arising from the
adventitia.69,110–112 This network of leaky neovessels allows
extravasation of erythrocytes into the atherosclerotic lesion,
providing erythrocyte-derived free cholesterol within the
lipid core, favoring excessive macrophage infiltration and
therefore promoting the transition from stable to unstable
plaques.68,113 The density of intraplaque neovessels increases
the risk of plaque rupture and is an independent predictor of
systemic cardiovascular outcome.114,115

The molecular mechanisms responsible for neovessel for-
mation relate predominantly to hypoxia because of impaired
oxygen diffusion in the thickened plaque but could also be
driven by inflammation and Toll-like receptor activation.69

MPs may contribute to intraplaque neovascularization at
different steps of the process: disruption of cell–cell contacts,
degradation of extracellular matrix, proliferation and migra-
tion and capillary tube formation of endothelial cells. First, as
discussed, MPs might increase endothelial permeability, al-

though data are scarce and controversial.41,53 Second, prote-
olysis of basement membrane matrix cellular components is
necessary to promote endothelial invasion into the surround-
ing interstitial matrix. As detailed below (see paragraph on
fibrous cap weakening), human plaque MPs harbor active
proteases116 and MPs of different cellular origin are able to
induce the release of metalloproteases by different cell
types.117–120 Third, MPs regulate endothelial proliferation and
capillary tube formation. Human plaque MPs isolated from
endarterectomy specimens surgically obtained from patients
increase endothelial cell proliferation in vitro as well as in
vivo in matrigel plugs.11,121 This effect relies on the presence
of CD40 ligand at the surface of plaque MPs, interacting with
endothelial CD40 to mediate proliferation by a vascular
endothelial growth factor receptor and PI3-kinase/Akt–de-
pendent pathway122–124 (Figure C). Most plaque CD40 ligand-
positive MPs appear to be of macrophage origin. The prolif-
erative effect of MPs isolated from human lesions is more
potent for those obtained from symptomatic (ie, patients who
experienced stroke or transient ischemic attack) than asymp-
tomatic patients.11 Interestingly, lesions from symptomatic
patients have significantly more CD40 ligand-positive MPs
than those from asymptomatic patients.11 The effect of in
vitro-generated MPs on endothelial cells proliferation de-
pends on the type of endothelial cells used,125 as well as the
concentration120,126 and the cellular origin of MPs. Platelet
MPs stimulate angiogenesis both in vitro and in vivo through
growth factors such as vascular endothelial growth fac-
tor.127,128 On the contrary, lymphocyte MPs inhibit endothe-
lial cell proliferation by augmenting reactive oxygen species
generation and by interfering with the vascular endothelial
growth factor signaling pathway.62,129,130 Endothelial MPs
also decrease endothelial cell proliferation by lowering endo-
thelial nitric oxide synthase activity131 or by increasing
oxidative stress.42 Opposite conclusions were drawn from
experiments using MPs derived from endothelial cells
overexpressing high levels of tissue factor132 or
T-cadherin.133 The MP composition of human atheroscle-
rotic plaque reconciles the different results obtained from
studies using human plaque and in vitro-generated MPs.
No platelet MPs could be identified in human plaque, and
endothelial and lymphocyte MPs represent only 8% and
15% of all plaque MPs.66 Conversely, the effect on
endothelial cell proliferation of MPs generated from eryth-
rocytes, macrophages/granulocytes, and smooth muscle
cell MPs (representing, respectively, 27%, 37%, and 13%
of all plaque MPs) has never been tested. Moreover,
circulating MPs from patients with advanced atheroscle-
rosis have no effect on endothelial cell proliferation.11 In
these patients, the proportion of platelet, lymphocyte, and
endothelial MPs are in the same range (29%, 13%, and 9%,
respectively), suggesting a balance between proangiogenic
and antiangiogenic activities of MPs of different cellular
origin present in human plasma.66

Complications and Repair Mechanisms
Fibrous Cap Weakening
Atherosclerotic plaques exist under two major phenotypes:
(1) stable plaques, characterized for the most part by a thick
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fibrous cap isolating a relatively small lipid core from the
lumen, which are associated with a very low risk of throm-
boembolic complications; and (2) unstable plaques, most of
which are characterized by a large lipid core covered by a thin
fibrous cap prone to rupture and thrombus formation and are
thought to be associated with a higher risk for thromboem-
bolic complications.134,135 Weakening of the fibrous cap
presumably results from extracellular matrix proteins degra-
dation and from smooth muscle cell disappearance likely
after cell apoptosis.136

Plaque MPs likely contribute to matrix degradation. Hu-
man atherosclerotic plaques carry active proteases.116 TNF-
�–converting enzyme (ADAM-17) has been identified, but
other proteases are also present on plaque MPs because these
MPs are able to cleave one peptide targeted by a large panel
of matrix metalloproteinases (MMPs), such as MMP-1,
MMP-2, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13,
MMP-14, MMP-15, and MMP-16, and another one preferen-
tially cleaved by MMP-3 and MMP-10.116 Proteases also
have been detected on MPs generated in vitro from various
cell types. For instance, in vitro-generated endothelial cell
MPs carry MMP-2, MMP-9, and MT1-MMP proenzyme and
also harbor proteases inhibitors (tissue inhibitor of MMPs-1
and tissue inhibitor of MMPS-2).126 Furthermore, adipocyte-
derived MPs carry MMP-2 and MMP-9,137 and neutrophil
MPs expose active MMP-9.138 In addition, plaque MPs might
stimulate the release of MMPs by cells present in atheroscle-
rotic plaques as shown for other MPs. Platelet-derived MPs
stimulate the secretion of active MMP-2 by prostate cancer
cells.117 Furthermore, T cells and monocytes MPs induce the
synthesis of MMP-1, MMP-3, MMP-9, and MMP-13 in
fibroblasts.118 Finally, T-cell– derived MPs upregulate
MMP-1, MMP-3, MMP-9, and MMP-13 genes in hepatic
stellate cells.119

Whether plaque MPs also could contribute to fibrous cap
weakening through induction of smooth muscle cell apoptosis
remains to be determined. As mentioned, conflicting data
have been reported regarding the effect of MPs on smooth
muscle cell survival.

Plaque Rupture and Thrombosis
Studies in apolipoprotein E-deficient mice have shown that
activated endothelial cells, either covering the lesion or
present in neovessels, could promote thrombus formation and
fibrin deposition by shedding soluble P-selectin, which then
increases circulating levels of procoagulant tissue-factor pos-
itive MPs.139 Physical disruption of plaques may also trigger
thrombosis and promote downstream ischemic event. Three
types of physical disruption may occur.140 First, superficial
erosion or microscopic areas of desquamation of endothelial
cells account for approximately one-quarter of fatal coronary
thromboses. There is currently no evidence suggesting an
implication of MPs in this process except for one study
showing that MPs generated in vitro from the monocytic cells
line THP-1 induce endothelial cell apoptosis.141 Second,
disruption of the microvessels that form in atherosclerotic
plaques furnishes another scenario for sudden plaque progres-
sion. The new blood vessels in the plaque may be particularly
fragile and prone to microhemorrhage.68 The role of plaque

MPs in intraplaque neoangiogenesis seems crucial and has
been discussed. The third and most common mechanism of
plaque disruption is a fracture of the plaque’s fibrous cap.
This allows the circulating blood contact with plaque MPs.
Human plaque MPs are particularly prothrombogenic be-
cause they generate twice as much thrombin as plasma MPs
from the same patients.66 This procoagulant activity is related
to the exposure at their surface of phosphatidylserine because
components of the clotting cascade assemble on membrane
surfaces containing phosphatidylserine. Additionally, a large
number of human plaque MPs harbor tissue factor. This
transmembrane receptor for plasma coagulation factor VII/
VIIa dramatically increases their procoagulant activity. The
high concentration of highly procoagulant MPs in plaques
supports their crucial role in thrombus formation at the time
of rupture (Figure D). Circulating MPs, and particularly
tissue factor-positive MPs, also contribute to arterial throm-
bosis.142 MP accumulation and subsequent formation of fibrin
are dependent on interaction of MPs P-selectin glycoprotein
ligand-1 with platelet P-selectin.143 MPs released by activated
platelets may also contribute to thrombus formation.144 More
details on the procoagulant activity of MPs appear in the
review by Owens and Mackman.145

Repair Mechanisms:
Postischemic Neovascularization
Neovascularization after vascular occlusion involves vascular
progenitor cells of bone marrow and nonbone marrow ori-
gin.146,147 After acute ischemia, such as acute coronary
syndrome51,148–150 or acute stroke,151 circulating levels of
platelet and endothelial MPs are increased in patients. More-
over, high amounts of MPs, mainly from endothelial cells
(70% of MPs are CD144�), are detected in mouse hind-limb
muscle 48 hours after unilateral femoral artery ligation.152

These observations prompted the investigation of the role of
MPs in postnatal neovascularization. Such neovascularization
is augmented by MPs originating from platelets153–155 or
endothelial progenitor cells,156 as well as by MPs isolated
from mouse plasma157 or ischemic hind-limb muscle.151

However, conflicting results were obtained using MPs from
lymphocytes.129,158

MPs act at different steps of the neovascularization pro-
cess. First, after ischemia, local tissue injury alters the
vascular endothelium to arrest progenitor cells in regions
where endothelium regeneration is needed.159 Besides hy-
poxic gradients via hypoxia-induced factor-1�–induced ex-
pression of CXCL12,160 platelet MPs also contribute to
chemoattract progenitor cells.154 A recent study has demon-
strated that endothelial cell-derived apoptotic bodies can be
transferred to recipient cells to induce the expression of
CXCL12. This effect is mediated through miRNA-126,
which is enriched in the apoptotic bodies and acts by
knocking down the negative regulator RGS16 and enabling
CXCR4 to stimulate an autoregulatory feedback loop that
enhances ERK1/2 phosphorylation and further increases
CXCL12 production. Repetitive in vivo injections of endo-
thelial apoptotic bodies have an atheroprotective effect by
promoting the mobilization and incorporation of progenitor
cells to the plaque.161 MPs also carry miRNA.5 Whether
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endothelial MPs have the same effect as apoptotic bodies in
this setting remains to be determined.

Another step of the neovascularization process in which
MPs could interfere might be the adhesion of progenitor cells
to activated endothelium or subendothelial components of the
extracellular matrix exposed at sites of vascular injury.
Platelet MPs are also implicated at this level because they
enhance adhesion and migration of progenitor cells.154,155

This effect seems to be attributable to phenotypic alterations
of progenitor cells exposed to platelet MPs with increased
expression of endothelial cell markers and transfer of the
chemokine receptor CXCR4 to progenitor cells, which en-
hances responsiveness to its ligand CXCL12.63 Several cel-
lular mechanisms could mediate progenitor cell vasoregen-
erative capacity after their adhesion. Progenitor cells may
deliver angiogenic factors to pathological tissues and contrib-
ute to neovascularization and tissue/vessel remodeling
through paracrine effects.162,163 Progenitor cell MPs could be
one of these factors. These MPs can be incorporated in
endothelial cells by interaction with �-4 and �-1 integrins
expressed on the MP surface. These MPs promote endothelial
cell survival, proliferation, and organization in capillary-like
structures through mRNA transfer, with a critical role of
PI3K and endothelial nitric oxide synthase.156

Finally, progenitor cells may incorporate into blood vessels
and regenerate the vascular endothelial barrier. MPs contrib-
ute to this step by promoting the differentiation of progenitor
cells into cells with endothelial phenotype.152 The mechanism
implicated depends on the origin of MPs: a binding of MP to
progenitor cells that changes their phenotype for platelet
MPs;155 reactive oxygen species for MPs isolated from
ischemic muscles;152 or peroxisome proliferator-activated
receptor-� for plasma MPs.157 It should be highlighted that
these positive effects of MPs on postischemic neovascular-
ization have been documented not only in vitro but also in
vivo in unilateral femoral artery ligation152,158 and arterial
wire-induced injury murine models.155

Microparticles: Biomarkers of Cardiovascular
Disease Progression

MPs originating from different cell types can be detected in
the plasma of healthy subjects, where they result from the
active balance between MP generation and clearance. Over
the past decade, numerous studies have shown that circulating
MPs levels increase in a wide range of cardiovascular
diseases, including uncontrolled cardiovascular risk factors,
atherosclerotic lesion progression, heart failure, thrombosis,
arrhythmias, and inflammatory vascular diseases.25 Changes
in circulating levels of MPs might provide important clinical
information in healthy subjects and in patients with cardio-
vascular disorders. Circulating levels of leukocyte-derived
MPs, possibly reflecting the increased vascular inflammation,
are independently associated with subclinical atherosclero-
sis164 and inward carotid artery remodeling in asymptomatic
subjects.165 Several studies identify plasma levels of endothe-
lial MPs as a surrogate marker of vascular function. In
patients with established endothelial dysfunction, levels of
circulating endothelial MPs are inversely correlated with the
amplitude of flow-mediated dilatation, independently of age

and pressure.40,166,167 Recent findings also support the prog-
nostic value of circulating MP levels. Circulating levels of
endothelial MPs, but not MPs of other cellular origin, appear
as a robust predictor of cardiovascular mortality and major
adverse cardiovascular events in patients with coronary artery
disease, pulmonary hypertension, or end-stage renal fail-
ure.168–171 Whether measuring MP plasma levels would be
useful to better-assess cardiovascular risk in primary preven-
tion is not known at the moment because of the lack of
evidence of its predictive value, discrimination, and reclassi-
fication power that are required to confer clinical utility to a
biomarker.172

Conclusion
Increasing numbers of studies point out the possible contri-
bution of MPs in different stages of atherothrombotic disease,
from initiation of endothelial dysfunction to atherosclerotic
plaque rupture and thrombosis. However, the extent of their
contribution remains uncertain for the time being because
animal models of atherosclerosis with selective defect in MP
generation or uptake are unfortunately lacking. Clearly, this
will be possible once the molecular mechanisms governing
MP formation and release are dissected. Then, one could
envisage therapeutic avenues designed to either prevent their
deleterious effects or promote their repair capacity.
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particle formation in moderate concentrations of homocysteine and
methionine in vitro. Cell Mol Biol Lett. 2011;16:69–78.

184. Olas B, Malinowska J, Rywaniak J. Homocysteine and its thiolactone
may promote apoptotic events in blood platelets in vitro. Platelets.
2010;21:533–540.
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