
REVIEW Cell-derived microparticles: a new challenge in
neuroscience

Loic Doeuvre,*'t Laurent Plawinski,*'j Florence Toti§'¶'** and
Eduardo AnglCs-Cano*

*INSERM U9/9, Serine Proteases and Pathophysiology ofthe Neurovascular Unit, UniversitC de Caen,

Caen, France

jUniversitC de Caen, Caen, France

jcNRs UMR6232, Caen, France

§FacultC de MCdecine, Institut d 'HCmatologie et d 'Immunologie, UniversitC de Strasbourg, Strasbourg,

France

¶Inserm U770, UniversitC Paris-Sud 11, Le Kremlin-BicCtre, France

**FacultC de MCdecine, UniversitC Paris-Sud 11, Le Kremlin-BicCtre, France

Abstract

Microparticles (MPS) are membrane fragments shed by cells

activated by a variety of stimuli including serine proteases,

inflammatory cytokines, growth factors, and stress inducers.

MPS originating from platelets, leukocytes, endothelial cells,

and erythrocytes are found in circulating blood at relative con-

centrations determined by the pathophysiological context. The

procoagulant activity of MPS is their most characterized prop-

erty as a determinant of thrombosis in various vascular and

systemic diseases including myocardial infarction and diabe-

tes. An increase in circulating MPS has also been associated

with ischemic cerebrovascular accidents, transient ischemic

attacks, multiple sclerosis, and cerebral malaria. Recent data

indicate that besides their procoagulant components and

identity antigens, MPS bear a number of bioactive effectors that

can be disseminated, exchanged, and transferred via MPS cell

interactions. Furthermore, as activated parenchymal cells may

also shed MPS carrying identity antigens and biomolecules,

MPS are now emerging as new messengers/biomarkers from a

specific tissue undergoing activation or damage. Thus, detec-

tion of MPS of neurovascular origin in biological fluids such as

CSF or tears, and even in circulating blood in case of blood-

brain barrier leakage, would not only improve our comprehen-

sion of neurovascular pathophysiology, but may also constitute

a powerful tool as a biomarker in disease prediction, diagnosis,

prognosis, and follow-up.

Keywords: cerebral malaria, hemostasis, ischemic stroke,

microparticles, multiple sclerosis, neurovascular unit.
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Brain functions and survival of its multiple cellular compo-
nents depend on blood flowing through a patent vascular
microcirculation that ensures selective exchange of vital
elements (e.g., glucose, oxygen, and hormones), excretion of
metabolic products, and transmigration of competent cells.
The structural/fiinctional-integrated network that regulates
these physiological functions is the neurovascular unit.

It is now well known that a number of stress conditions
and inflammatory mediators may stimulate and activate
vascular and blood cells. One of the earliest manifestations of
cell activation is plasma membrane blebbing and shedding
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into body fluids of membrane fragments known and desig-
nated hereafter as microparticles (MIPS) (Freyssinet 2003) -
other designations in the literature include microvesicles,
ectosomes, shedding vesicles, and exovesicles. Plasma
membrane remodeling is an early event observed in cells
entering apoptosis as well. MPS characteristically display
procoagulant properties and behave also as a storage pool of
bioactive molecular effectors, messengers of cell activation,
and apoptosis (Morel et al. 2004a).

Cells in the neurovascular unit or its vicinity including
the endothelial lining and neural cells (neurons, astrocytes,
oligodendrocytes, and microglia) are also subjected to stress
by a variety of stimuli (e.g., oxygen radicals, inflammation,
ischemia. ..) known to induce membrane shedding in
vascular cells. It is therefore possible that shedding of
cellular MPS in the neurovascular network may be linked to
the onset and progression of a variety of CNS diseases
including stroke, vascular dementia, inflammatory, and age-
related neurodegenerative disorders. In this review we
analyze the state of the art on MPS in the CNS and provide
clues that may improve our knowledge in the field. The
review also examines MP detection and characterization as
possible tools for identification of new markers and
biological signal conveyors in stroke and other CNS
diseases.

Circulating blood microparticles: hemostatic and
inflammatory effectors

Plasma membrane blebbling and shedding of microparticles
The most characterized cellular MPS are those originating
from platelets, leukocytes, erythrocytes, and endothelial
cells, detected in circulating blood (Morel et al. 2006). A
number of studies have demonstrated that stimulation of
these cells triggers a characteristic activation pattern of
events: increased levels of cytoplasmic calcium associated
with translocation of phosphatidylserine (PS) from the inner
to the outer leaflet of the membrane and activation of
calpains that, by cleaving cytoskeletal filaments, facilitate
MP shedding (Pasquet et al. 1996). The increase in intracel-
lular calcium concentration induces a disordered state in the
phospholipid membrane asymmetry of quiescent cells that is
maintained by the concerted activity of lipid transporter
proteins (Bevers et al. 1999; Daleke 2003). The ATP-
dependent flippases (e.g., aminophospholipid translocase)
and floppases (including the ATP-binding cassette transporter
Al, ABCA1) are respectively inward- and outward-directed
transporters, whereas the calcium-dependent scramblases
(e.g., phospholipid scramblase receptor I) facilitate bidirec-
tional movement between the membrane leaflets (Fig. I).
The rate of PS translocation has been found to be sensitive to
the altered expression of ABCA1 in knock-out mice (Hamon
et al. 2000).

In summary, the mechanism governing the plasma mem-
brane PS redistribution is of a complex nature and implicates
various membrane (lipid transporters, receptors, and calcium
channels) and cytoplasmic (cytoskeleton, calpains) actors
(Zwaal et al. 2005). Recent data indicate that the formation
and integrity of lateral transient membrane microdomains
termed rafts, rich in cholesterol and sphingolipids (Brown
2006; Hancock 2006), may provide an appropriate platform
for the assembly of some of these regulatory elements and be
essential for the transmembrane redistribution of PS
(Kunzelmann-Marche et al. 2002; Sun et al. 2002; Lopez
et al. 2005). PS exposure was indeed colocalized with
membrane lipid raft regions (Fischer et al. 2006). Rafts are
dynamic features that may appear and disappear as a function
of the state of activation and types of stimuli (Hancock 2006).
Raft microdomains in the outer leaflet of the plasma membrane
are coupled to microdomains in the inner leaflet that contain
signaling kinases, and are able to initiate transmembrane
signaling transduction pathways (Michel and Bakovic 2007).

Consequences of phosphatidylserine exposure
Transfer of PS to the outer leaflet of the membrane is an early
sign of cell activation or apoptosis. The intensity and
duration of PS exposure during viable cell activation depends
on cell type and agonists, whereas in apoptotic cells it
constitutes a prerequisite for engulfment by phagocytes
before any loss of plasma membrane integrity (Balasubra-
manian and Schroit 2003). Apoptotic bodies, the fragments
of apoptotic cells (size >1 µm) containing fragmented DNA,
also expose PS and follow the same fate on a delayed time
scale. In the vascular territory, exposed PS serves as a
catalytic template or functional surface for the assembling of
blood coagulation factor complexes, thus promoting in situ
hemostasis, a physiological function of activated platelets
and shed platelet MPS. As prime sensors of procoagulant
stimuli, platelets are main contributors to MP circulating
levels (Morel et al. 2008b). Platelet-derived MPS can thus be
found at low levels in the circulation of healthy individuals
probably as a result of low grade surveillance activation of
the hemostatic system (Berckmans et al. 2001).

In vitro, the interaction of membrane-PS with coagulation
factors is inhibited by its affinity ligand annexin V in
presence of calcium (Gidon-jeangirard et al. 1999). This
property of annexin V is exploited experimentally and in
clinical practice in the detection of NIPS using various assays
eventually combined with fluorescence labeling (flow
cytometry, capture assays, and fluorescence MP tracking).

Microparticles' identity unveil activated or suffering cells
Membrane glycoproteins distinctive of the parental cells are
present on circulating NIPS allowing thereby identification of
their cellular origin. Antibodies directed against cell-specific
antigenic determinants are used for this purpose in flow
cytometry or antibody capture assays. Elevated circulating
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Fig. 1 Blebbling and shedding of membrane microparticles during cell

activation. Cell membrane phospholipid asymmetry results from the

concerted activity of lipid transporters responsible for their inward

(flippases), outward (floppases) or bidirectional (scramblases) trans-

location. Accordingly, aminophospholipids, mainly phosphatidylserine

(polar head blue) and phosphatidylethanolamine are sequestered in

the internal leaflet of the plasma membrane. Upon cell activation and

calcium influx, scramblase activity overwhelm flippase activity and

phosphatidylserine is rapidly translocated to the external membrane

levels of distinct MPS are now considered as an indicator of

either platelet, endothelial or leukocyte activation.
Identification of MP origin constitutes therefore a solid

advantage to determination of their sole number and
represents a robust parameter in systemic or inflammatory
diseases (Chironi et al. 2006) or when associated with
vascular complications like in diabetes (Sabatier et al.
2002b). Identification of MPS of practically any cell origin
in plasma or other biological fluids (CSF, tears, exudates,
Fig. 2) would become possible provided that antibodies
directed against cell-specific antigenic determinants were
available (Cook et al. 2001; Morel et al. 2008a). Detection
of a distinct MP population would then be considered a direct
message from a specific tissue undergoing activation or
damage.

Hemostatic properties of blood microparticles
The procoagulant activity of platelet NIPS was initially
identified in the precipitate ofplatelet-free plasma obtained at
high-speed centrifugation (30 000 g, 120 min) (Chargaff and

leaflet. Cleavage of the cytoskeleton promotes budding of the stimu-

lated cell membrane and shedding of microparticles. Formation of

transient membrane cholesterol-rich microdomains termed raft may

provide an appropriate platform for the assembly of regulatory ele-

ments and cell agonists, and the initiation of transmembrane signaling

pathways. Shed microparticles bear cell-specific proteins (CD xx) as

well as bioactive molecular components (e.g., growth factors, proteo-

lytic enzymes, mRNA...) from the parental cell cytoplasm and from the

plasma membrane.

West 1946) and containing electron dense 'platelet-dust'

(Wolf 1967). These seminal discoveries established the basis

for the isolation of MPS from plasma and opened up a new

avenue in thrombosis research culminating in the discovery

that circulating tissue factor (TF), the cellular trigger ofblood

clotting, is mostly associated with circulating MPS (Giesen

et al. 1999). It has also been suggested that platelets may

recover TF present in raft of leukocyte-derived MPS (Rauch

et al. 2000; Falati et al. 2003; Del Conde et al. 2005) and

that endothelial MPS may stimulate the expression of TF by

leukocytes (Sabatier et al. 2002a). Current knowledge sug-

gests that coagulation factors VII and IX, once bound to

membrane PS in the presence of calcium, are activated by

MP-borne TF thereby initiating the coagulation cascade

leading to thrombin generation and in jine to the formation of
a fibrin-platelet clot. Thus, TF-expressing MPS released by
leukocytes upon soluble P-selectin stimulation enhance
thrombus formation (Andre et al. 2000). P-selectin is a
cell-adhesion molecule released by thrombin-activated plate-
lets and endothelial cells into the circulation and its soluble
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Fig. 2 Microparticles: new biomarkers in

CNS pathology. Cells in the neurovascular

unit are subjected to activation by different

types of stimuli (e.g., oxidants, inflamma-

tion, and ischemia). As a consequence,

activated cells release membrane micro-

particles (Fig. I). Microparticles carry iden-

tity proteins and bioactive molecules from

the parental cell. Their detection and iden-

tification in blood, CSF, and other body

fluids (e.g., tears, nasal mucus) would then

be considered as a direct indicator of

activation or damage from specific cells or

tissues.

form is a useful biomarker in ischemic events such as stroke
(Nadar et al. 2004). In this regard, it was recently shown that
mice producing abnormally high plasma levels of soluble P-
selectin had local uneven blood brain barrier disruption,
silent brain infarctions, and increased infarct size volumes in
an experimental model of middle cerebral artery occlusion
(Kisucka et al. 2009).

First clinical evidence of the hemostatic properties of
procoagulant MPS was shown in patients with idiopathic
thrombotic purpura (ITP) (see 'Transient ischemic stroke
in idiopathic thrombocytopenic purpura') wherein high
MP circulating levels were found protective against second-
ary hemorrhages. Conversely, in Scott syndrome, a very
rare bleeding disorder, platelet PS exposure, membrane
remodeling, and MP shedding are defective and can be
treated by platelet transfusion (Weiss 1994; Toti et al. 1996).
Ultimate evidence of the hemostatic properties of MPS
was given in engineered hemophiliac mice in which
circulating leukocyte MPS correct hemostasis (Hrachovinova
et al. 2003).

Most clinical studies have focused on the procoagulant
role of platelet- and leukocyte-derived MPS as a determinant
of the risk of cardio- and cerebrovascular ischemic accidents
as well as in thrombotic-associated disorders (Morel et al.
2004c; Simak et al. 2006; Chironi et al. 2009). However, it
has recently been suggested that endothelial-derived MPS
may also express anticoagulant or profibrinolytic properties,
thereby complementing their procoagulant activity. The
anticoagulant property of MPS is based, in part, on their
ability to promote activation of protein C by thrombin, both
assembled on their respective surface receptors thrombo-
modulin and endothelial protein C receptor (EPCR). Acti-
vated protein C (APC) bound to MP-EPCR inactivates
procoagulant cofactors Va and VIlla, thereby down-regulat-
ing thrombin generation (Satta et al. 1997; Perez-Casal et al.
2005). Endothelial MPS also express matrix metalloprotein-
ases (EC 3.4.24) (Taraboletti et al. 2002). MPS from the

atherosclerotic plaque bear the tumor necrosis factor 0(

(TNF)-m-converting enzyme that is able to enhance endo-
thelial cell surface processing of TNF-m and EPCR (Canault

et al. 2007). The recent discovery of a profibrinolytic activity

on MPS adds further to their contribution in the maintenance
of vascular integrity. MPS shed by TNF-m-stimulated endo-

thelial cells, serve indeed as a surface for assembly of

plasminogen and its conversion into plasmin (EC 3.4.21.7)

by urokinase (urokinase-type plasminogen activator; EC

3.4.21.73) bound to its receptor (Lacroix et al. 2007). This
capacity of endothelial MPS to promote plasmin generation

confers them new profibrinolytic and, in concert with matrix
metalloproteinases, proteolytic functions (Doeuvre and

Angles-Cano 2009). The proteolytic activity of MPS may

be of relevance in fibrinolysis, cell migration, angiogenesis,

dissemination of malignant cells, cell detachment, and

apoptosis.

Beyond hemostasis: microparticles are dynamic pools of
bioactive effectors

Apart from being membrane templates that harbor proco-

agulant, fibrinolytic, and proteolytic factors as well as their

distinctive glycoproteins, MPS may also carry molecular

components (membrane receptors, cytokines, transcription
factors, and mRNA), veritable indicators of the activation

status of the parental cell. MPS thus constitute a dissem-
inated dynamic pool of bioactive effectors or messengers, as

documented by several in vitro studies (Morel et al. 2004a;

Ahn 2005). Some of these MP components may exert in

situ functions such as local fibrinolytic and proteolytic
activities induced by urokinase-type plasminogen activator

and metalloproteinases (Taraboletti et al. 2002; Graves

et al. 2004; Lacroix et al. 2007). The intercellular transfer

by MPs of mRNA (Ratajczak et al. 2006; Deregibus et al.
2007; Bruno et al. 2009) or membrane proteins like platelet

glycoprotein GPIIb/IIIa to leukocytes (Salanova et al. 2007)

or endothelial progenitor cell cultures (Prokopi et al. 2009),
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leukocyte TF to platelets (Falati et al. 2003) or the
monocyte chemokine receptor 5 (CCR5) to endothelial
cells (Mack et al. 2000) might have pathophysiological
consequences for intercellular communication. MPS may
also be conveyors of infectious agents delivered to target
cells (human immuno deficiency virus, prions) (Simak et al.
2002) and of oncogenes transferred from glioma MPS to
naive cells (Al-Nedawi et al. 2008). Despite difficulties in
the assessment of membrane proteins, proteomic approaches
combining two-dimensional electrophoresis and mass spec-
trophotometry have expanded the number of identified
proteins harbored by MPS of various origins (Miguet et al.
2006).

Microparticles are different from exosomes

The isolation of NIPs follows a very precise protocol includ-
ing a succession of various centrifugations at 20 000 g.
A consensus on a method of isolation has not been obtained
as yet, but it appears clear that the relative gravitational
force necessary to sediment MPS (15 000 to 20 000 g, 45
to 90 min) is quite different from that used to isolate
exosomes (as verified by light scattering measurement;
L. Doeuvre, L. Plawinski and E. AnglCs-Cano, unpublished
data). Exosomes are vesicles of endosomic origin, of smaller
size (<100 nm) than MPS and are therefore isolated by
sequential ultracentrifugation at very high speed (100 000 g)
(Thery et al. 2006). They are secreted in the extracellular
medium after fusion of multivesicular endosomes with the
plasma membrane (for review, see (Thery et al. 2002)).
Exosomes and MPS are biochemically and morphologically
distinct, and have different patterns of protein composition
(Thery et al. 2001). Exosomes are particularly enriched in
tetraspanins, annexins, and major histocompatibility complex
class II molecules. Beacause membrane vesicles isolated at
50 000-100 000 g may contain both exosomes and MPS,
molecular components or pathophysiological involvement
cannot be ascribed to single vesicles.

Effects of microparticles on inflammation and
apoptosis

Vascular NIPS behave as a dynamic storage pool of bioactive
effectors able to tune the hemostatic balance, achieve vessel
protection, and complete restoration of blood flow. In
addition, vascular MPS have been recognized as inflamma-
tory actors via the transcellular delivery of bioactive lipids,
chemokines (RANTES), or cytokines (interleukin-l B) (Barry
et al. 1997; Mesri and Altieri 1999; MacKenzie et al. 2001;
Mause et al. 2005). The question arises whether these
transcellular cross-talk are all pathophysiological, i.e. dele-
terious (Freyssinet 2003; Morel et al. 2009), or as suggested
by recent in vitro data, a beneficial effect may be expected.
For instance, neutrophil-derived MPS were shown to inhibit

Microparticles in neuroscience I 461

the macrophage pro-inflammatory response to lipopolysac-

charide and up-regulate macrophage transforming growth

factor-fl secretion (Gasser and Schieferli 2004). Furthermore,

MPS shed from adherent neutrophils convey annexin I, an

anti-inflammatory protein that is able to inhibit further

neutrophil adhesion thereby providing a negative regulatory

loop to their recruitment at the inflamed endothelium (Dalli

et al. 2008). Similarly, on endothelial cell cultures, early

cytoprotection may also occur through the sorting of

deleterious pro-apoptotic factors like caspase 3 in NIPS, a

mechanism that would prevent endothelial cell detachment

and apoptosis (Abid Hussein et al. 2007). In a very recent

report, RNA-dependent apoptosis resistance and in vitro

proliferation were conferred to tubular epithelial cells by

NIPS derived from human bone marrow mesenchymal stem

cells (Bruno et al. 2009). Recovery of cultured rat oligo-

dendrocytes from complement mediated attack through NIPS

shedding of membrane attack complexes may protect cells

from complement-mediated lysis (Scolding et al. 1989;

Pilzer et al. 2005). Other cytoprotective mechanisms rely

on the MP-mediated modulation of apoptosis-related genes

or pro-inflammatory cytokines, as recently shown in endo-

thelial cells treated by APC-bearing MPS and confirmed in

baboon heatstroke treated by recombinant human APC

(Bouchama et al. 2008; PCrez-Casal et al. 2009). In addition,

it has been recently suggested that MPS bearing EPCR would

contribute to the cytoprotective effects of therapeutical APC,

known to reduce mortality in sepsis and provide neuropro-

tective benefit in ischemic stroke (Soriano et al. 2005;

Kerschen et al. 2007).

The adjustment between deleterious or beneficial re-

sponses to MP signals deserves extensive investigation and

probably relies on multiple actors, including intracellular

signaling kinases (Al-Nedawi et al. 2008; Schoenwaelder

et al. 2009). New experimental approaches are needed to

decipher the mechanisms governing the sorting out of

beneficial or deleterious molecules into NIPS and their

relevance in distinct pathophysiological settings.

Current analytical methods

Because of the increasing importance of NIPS as potential

biomarkers, messengers or mediators of disease pathophysi-

ology, particular attention has been given to pre-analytical

sample conditioning and to biophysical methods for their

detection and characterization (Hugel et al. 2004; Jy et al.

2004b). Appropriate blood collection to avoid artefactual

cell activation and rigorous sample processing to isolate

exosome-free MPS (see 'Microparticles are different from

exosomes') are indispensable. Among the available detection

methods, the most currently used is flow cytometry. It allows

characterization and quantification of MP subpopulations in

heterogeneous samples and may be directly used to analyze

MPS in plasma samples (Robert et al. 2009). However, its
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main pitfall is that MPS with a size range below 500 nm
(under the limit of the laser beam wave length) cannot be
accurately detected. Therefore, quantitative analysis of MPS
should be interpreted cautiously. An alternative capture assay
using annexin V measures all procoagulant MPS bearing
PS irrespective of size and origin. This functional assay
provides quantitative results in terms of nmol/l of PS
equivalent by comparison with a calibration curve con-
structed with synthetic vesicles containing known amounts of
PS (Hugel et al. 2004). Annexin V-coated beads have also
been used for MP visualization (Bianco et al. 2005). Newer
methods for the measurement of MP size and distribution
may be envisaged using their physical properties. Thus,
photon correlation spectroscopy of back scattered light
(Lawrie et al. 2009) and enhanced laser microscopy micro-
particle tracking (K. Braeckmans, University of Ghent,
personal communication) are emerging in the field of cellular
NIPS. The latter has the advantage of identifying the cellular
origin of NIPs with the use of specific fluorescent-labeled
antibodies (K. Braeckmans, L. Doeuvre, L. Plawinski and
E. AnglCs-Cano unpublished data).

Microparticles in CNS pathologies

The association of blood-derived NIPS with a variety of
inflammatory and/or prothrombotic states has been exten-
sively studied (Diamant et al. 2004; Morel et al. 2004b;
Distler et al. 2005; Pilzer et al. 2005; Morel et al. 2006;
Leroyer et al. 2008). At present, all available reports on MPS
in CNS or neurovascular pathologies have also focused on
endothelial- or blood cells-derived MPS (Horstman et al.
2007). The survey of the literature we have made on MP
involvement in CNS pathophysiology until April 28, 2009,
concerns a limited number of diseases as reported here (Table
I). Although virtually any cell type may be constrained to
release MIPS, little is known about MP release from brain
structures or cells of the neurovascular unit. Yet, the presence
of galactocerebroside-containing MPS, suggesting oligoden-
drocyte origin, has been reported in CSF of patients with

multiple sclerosis (MS) (Scolding et al. 1989) and in vitro
studies indicate that MPS can be isolated from the superna-
tant of glial cells like astrocytes using annexin V-coated
beads (Bianco et al. 2005, 2009).

Ischemic stroke
A potential pathophysiological link between elevated con-
centration of platelet-derived MPS and development of
cerebrovascular infarction was first reported in patients with
prosthetic heart valves (Geiser et al. 1998). A limited number
ofprospective studies on MPS of endothelial and blood origin
in ischemic stroke have then been reported. For instance, a
significantly high concentration of platelet-derived NIPS was
found in peripheral blood within 7 days and at 6-month
follow-up of ischemic stroke (Cherian et al. 2003). This
increase in platelet MPS after stroke was confirmed by other
studies and was treated using a combination of the
anti-platelet drugs aspirin and clopidogrel (Serebruany et al.
2005, 2008; Pawelczyk et al. 2009). The severity, lesion
volume, and outcome of acute ischemic stroke were also
associated with an increased number of circulating endo-
thelial-derived MPS (Simak et al. 2006). However, in all these
reports, the prognostic value of these findings on recurrence
of stroke and survival free of handicap could not be
established. Furthermore, a comparison of endothelial MPS
levels in acute ischemic stroke versus stroke mimic patients
showed no difference (Williams et al. 2007). As it is currently
impossible to determine the anatomical origin of the endo-
thelial MPS (systemic or neurovascular ischemic stimulation),
it is difficult to ascertain whether MPS are epiphenomenal
markers or active players in ischemic stroke.

Elevated levels of platelet MPS have been also observed in
patients with transient ischemic attacks (TIA) and small
vessels cerebrovascular accidents including lacunar infarcts,
and multiinfarct dementias (Lee et al. 1993; Geiser et al.
1998). Although in patients with TIA the number of platelet
MPS may be importantly decreased under anti-platelet drug
therapy, benefits for prevention of second stroke have not
been reported (Serebruany et al. 2008).

Table 1 Cell-derived microparticles (MPS) in CNS diseases

Pathology

Stroke

Stroke

Stroke

Transient ischemic stroke

Cerebral malaria

Multiple sclerosis

Multiple sclerosis

Traumatic brain injury

Glioblastoma

Compartment

Blood

Blood

Blood

Blood

Blood

Plasma

CSF

Plasma and CSF

CSF

MP pattern

Elevated platelets-derived MPS

Elevated platelets-derived MPS

Association of endothelial MPS with lesion

Elevated platelets-derived MPS

Elevated endothelial-derived MPS

High level of endothelial MPS

Presence of oligodendrocyte-derived MPS

Presence of platelet and endothelial MPS

Presence of platelet and endothelial MPS

Technique used

Flow cytometry

Flow cytometry

Flow cytometry

Flow cytometry

Flow cytometry

Flow cytometry

Electron microscopy

Prothrombinase assay

lmmunoblot

Reference

Cherian et al. 2003

Pawelczyk et al. 2009

Simak et al. 2006

Lee et al. 1993

Combes et al. 2004

Jy et al. 2004a,b

Scolding et al. 1989

Morel et al. 2008a,b

Huttner et al. 2008
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Transient ischemic stroke in idiopathic thrombocytopenic

purpura
Idiopathic thrombocytopenic purpura is an autoimmune
disorder in which autoantibody-coated platelets are cleared
by the mononuclear phagocytic system (Neylon et al. 2003).
As some of these autoantibodies bind to glycoproteins that
induce platelet activation, platelet MPS are frequently
elevated in these patients and thrombotic complications
may develop despite severe thrombocytopenia and few signs
of bleeding (Ahn et al. 2002). Patients with chronic late
onset ITP (mean 56 years) may develop a syndrome
characterized by neurological complications resembling
transient cerebral ischemic attacks (TIA-like syndrome) and
evolving from dizzy spells in mild cases to coma, seizure, or
progressive memory loss and cognitive dysfunction in
advanced cases (Jy et al. 1992). TIA-like syndrome in
patients with ITP is indeed associated with magnetic
resonance imaging findings (periventricular and subcortical
white matter lesions) consistent with ischemic small vessels
disease that may be a consequence of platelet MP-induced
microthrombi (Ahn et al. 2002). Recent in vitro data suggest
that the release of endothelial MPS and the extravasation of
leukocytes may also contribute to development of the
ischemic brain disease (Jimenez et al. 2008). These data
suggest that ITP and ischemic stroke are not mutually
exclusive events (Theeler and Ney 2008). If proper identi-
fication of this syndrome (e.g., measurement of MIPS) is
made, therapy could then be targeted at prevention of
thrombotic complication rather than hemorrhages. Indeed,
ITP patients, with elevated MP levels were shown to be at
lower risk of hemorrhages, probably because procoagulant
NIPS behave as alternate procoagulant catalytic surfaces
under circumstances of cytopenia (Jy et al. 1992).

Microparticles in CSF
Recently, it was shown that the plasma and the CSF of
patients suffering from traumatic brain injury (Morel et al.
2008a) contain PS exposing MPS mainly of platelet and
endothelial origin. Procoagulant MPS were also found
significantly elevated in the CSF of patients with hemor-
rhagic stroke as detected by annexin V binding/procoagulant
assay (Huang et al. 2009). The sustained generation of these
procoagulant MPS in the CSF of some patients could
contribute to a poor clinical outcome. MPS (0.1 to 0.5 µm
in diameter) reactive with antibodies to complement mem-
brane-attack complex neoantigen and galactocerebroside
were identified in CSF of MS patients by electron micros-
copy (Scolding et al. 1989) suggesting that reversible
complement-mediated injury contributes to myelin damage
in vivo. In patients with glioblastoma, membrane vesicles
were identified in CSF after sequential centrifugation at
10 000 and 200 000 g (Huttner et al. 2008), a procedure
frequently used to separate exosomes. These membrane
particles (previously identified as 50-80 nm particles;

Microparticles in neuroscience I 463

Marzesco et al. 2005), contained the neural stem cell marker

prominin-l/CDl33, but neither PS nor cell identity antigens

were reported. Prominin-l/CDl33 is a marker that decline

postnatally until 10 years of age and was found elevated in

glioblastoma patients. A proteomic analysis of human

embryo CSF revealed a heterogeneous mixture of function-

ally diverse proteins including proteins with extracellular

matrix functions, secreted proteases and their inhibitors, and

cell adhesion proteins (Zappaterra et al. 2007). Interestingly,

the presence of membrane proteins, signaling molecules and

other intracellular proteins are most likely of MP and/or

exosome origin that have been previously described in CSF

(Scolding et al. 1989; Marzesco et al. 2005).

Cerebral malaria

Circulating endothelial-derived MPS are increased in patients

with severe cerebral malaria (I to 8% of Plasmodium

falciparum infections) complicated with coma as compared

with uncomplicated malaria or healthy control (Combes

et al. 2004). Parasite-derived products activate platelets and

promote monocyte TNF-m production, a well-known inducer

of endothelial MPS in vitro. Binding of activated platelets to

TNF-m-primed endothelial cells would lead to platelet

adhesion and blood clogging, and the release of NIPS within

brain microvasculature with subsequent induction of perme-

ability changes, ischemia, endothelial cell apoptosis and

cerebral oedema (van der Heyde et al. 2006).

Combes et al. (2005) provided major insights in the

mechanism of action of MPS in cerebral malaria. These

authors reported that in a mouse model, ABCA1, a

membrane transporter that mediates cholesterol translocation

and a casual floppase known to facilitate the transbilayer

distribution of PS to the outer leaflet of the membrane

(Fig. I), might contribute to cerebral malaria via MP

shedding. Indeed, external exposure of PS is impaired in

ABC-1 knockout mice that also show low circulating MP

levels and a complete resistance to cerebral malaria (ablated

platelet accumulation in brain microvessels). These data

suggest, but do not prove, that endothelial MPS are directly

implicated in the mechanism of human cerebral malaria.

Interestingly, some biological manifestations (impaired PS

exposure and defective vesiculation by Epstein-Barr vims

lymphocytes) of a patient with impaired plasma membrane

expression of ABCA1 are found in patients with Scott

syndrome and normal ABCA1 (Albrecht et al. 2005; Toti

and Freyssinet 2005).

Multiple sclerosis

Multiple sclerosis is characterized by the presence of

inflammatory white and gray matter lesions in the brain

and spinal cord (Frohman et al. 2006). Demyelination and

oligodendrocyte degeneration are hallmarks in MS. Oligo-

dendrocytes activated by inflammatory cells recover from

cell injury via the release of MPS enriched in complement

© 2009 The Authors
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membrane-attack complexes (Scolding et al. 1989). Such
oligodendrocyte-derived MPS have been found in the CSF of
MS patients thus underlining their pathophysiological rele-
vance (Scolding et al. 1989). Activation of leukocytes
adhering to the neurovascular endothelium and their release
of inflammatory cytokines [interferon (IFN)-j', TNF-m)] that
in tum activate the endothelium is thought to be another
crucial step in the formation of demyelinating lesions. As a
consequence, elevated levels of circulating MPS have been
documented in MS. They reflect endothelial dysfunction
induced by the inflammatory cytokines and could be
associated with a poor clinical outcome (Minagar and
Alexander 2003). High plasma levels of endothelial MPS
carrying CD3 1 (platelet endothelial cell adhesion molecule)
were detected during disease exacerbation and returned to
nearly control value during remission (Minagar et al. 2001).
The presence of such MPS was in positive association
with contrast-enhancing lesions by brain magnetic resonance
imaging. These authors suggested that a high rate of CD31-
endothelial MPS in plasma would rather be a marker of
exacerbation (acute injury of endothelium) while endothelial
MPS carrying CD51 (vitronectin receptor) may reflect MS
relapse (chronic injury of endothelium). These markers
reflecting the state of the endothelium are not distinctive of
MS, but can be of help in follow-up, once the diagnosis of
MS has been established. For instance, treatment of relaps-
ing-remitting MS patients with IFN-flla significantly reduced
plasma levels of CD3 l-endothelial MPS (Sheremata et al.
2006). In the absence of any specific probe, the ratio of
endothelial MPS carrying CD54 (intercellular adhesion
molecule-l) to monocyte number was proposed as a better
parameter of MS as it was found increased during the acute
phase compared to remission or healthy controls (Jy et al.
2004a). The value of this ratio has also been used to
appreciate the response to IFN-fllb treatment (Sheremata
et al. 2006). In an in vitro study, it has indeed been shown
that IFN-fllb partially inhibits MS plasma-induced endothe-
lial MP formation as well as the transmigration of monocytes
or monocytes/endothelial MP complexes (Jimenez et al.
2005).

Experimental studies
In vivo murine experiments have shown that cancer cell-
derived NIPS may be involved in the propagation of
oncogenes. For instance, the membrane oncogenic epidermal
growth factor receptor EGFRvIII can be exchanged between
cultured U373 glioma cells by a PS-dependent intercellular
transfer of MPS. Incorporation of EGFRvIII into the U373
plasma membrane resulted in a consistent increase in
extracellular signal-regulated kinase 1/2 phosphorylation.
Furthermore, subcutaneously injected tumor cells into immu-
nodeficient mice cause extracellular and systemic release of
microvesicles carrying the EGFRvIII oncoprotein, suggest-
ing that these MPS may serve as vehicles for rapid

intercellular transfer of the transforming activity between
cells populating brain tumors (Al-Nedawi et al. 2008). The
horizontal transfer (without cell-cell contact) of this receptor
to naive cells may contribute to propagation of oncogenes
and their associated transforming phenotype. Such a mech-
anism may be operative in a variety of human brain tumors
and disseminates via blood to distant sites.

Conclusion and perspectives

Because the plasma membrane is the primary sensor of cell
interactions with the microenvironment, plasma membrane
remodeling including PS exposure and release of NIPS is a
characteristic feature of blood/vascular cell response to
different type of stimuli. The identity of circulating NIPS of
endothelial, platelet and leukocyte origin is indeed a reliable
indicator of their activation in CNS diseases such as stroke,
TIA, cerebral malaria and MS. The most characterized
property of MPS is their procoagulant activity and a number
of studies have established a clear relationship with throm-
bosis development in cardiovascular and cerebro-vascular
ischemic diseases. By virtue of the increasing number of
biomolecules identified on/in MPS, cell-derived MPS are
emerging as mediators of intercellular communication and
new messengers/biomarkers from tissues undergoing activa-
tion or damage. MPS could therefore be reliable markers of
CNS pathophysiological processes useful in biomedical
research and clinical medicine. For that purpose, efforts
should be made to develop new biological tools and methods
able to detect brain/neurovascular tissue-specific MPS. This
challenging approach may open new perspectives and
developments in the field of neuroscience, particularly in
pathologies, such as Alzheimer's disease, still virgin to MP
detection.
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