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Marabotti C, Scalzini A, Cialoni D, Passera M, L’Abbate A,
Bedini R. Cardiac changes induced by immersion and breath-hold
diving in humans. J Appl Physiol 106: 293-297, 2009. First published
May 8, 2008; doi:10.1152/japplphysiol.00126.2008.—To evaluate the
separate cardiovascular response to body immersion and increased
environmental pressure during diving, 12 healthy male subjects (mean
age 35.2 = 6.5 yr) underwent two-dimensional Doppler echocardiog-
raphy in five different conditions: out of water (basal); head-out
immersion while breathing (condition A); fully immersed at the
surface while breathing (condition B) and breath holding (condition
C); and breath-hold diving at 5-m depth (condition D). Heart rate, left
ventricular volumes, stroke volume, and cardiac output were obtained
by underwater echocardiography. Early (E) and late (A) transmitral
flow velocities, their ratio (E/A), and deceleration time of E (DTE)
were also obtained from pulsed-wave Doppler, as left ventricular
diastolic function indexes. The experimental protocol induced signif-
icant reductions in left ventricular volumes, left ventricular stroke
volume (P < 0.05), cardiac output (P < 0.001), and heart rate (P <
0.05). A significant increase in E peak (P < 0.01) and E/A (P < 0.01)
and a significant reduction of DTE (P < 0.01) were also observed.
Changes occurring during diving (condition D) accounted for most of
the changes observed in the experimental series. In particular, cardiac
output at condition D was significantly lower compared with each of
the other experimental conditions, E/A was significantly higher during
condition D than in conditions A and C. Finally, DTE was signifi-
cantly shorter at condition D than in basal and condition C. This study
confirms a reduction of cardiac output in diving humans. Since most
of the changes were observed during diving, the increased environ-
mental pressure seems responsible for this hemodynamic rearrange-
ment. Left ventricular diastolic function changes suggest a constric-
tive effect on the heart, possibly accounting for cardiac output reduc-
tion.

diving response; hemodynamics

PREVIOUS STUDIES ON NATURAL divers (mainly marine mam-
mals) showed that breath-hold diving is associated with
energy-saving cardiovascular changes, i.e., a marked reduc-
tion in cardiac output [due to the reduction of both stroke
volume and heart rate (HR)] and the redistribution of blood
flow away from skin and myoglobin-rich muscles in favor of
brain and heart (7, 28, 30). For years, however, technical
difficulties have prevented a comprehensive assessment of
cardiovascular changes during breath-hold diving in hu-

mans. Most of the knowledge on human diving physiology
has been obtained from the study of head-out immersed
subjects (9, 27), or extrapolated from the results obtained in
breath-holding subjects, either with or without face immersion
(2, 8, 10). The recent wide diffusion of recreational and
competitive breath-hold diving (with a progressive increase of
attained depths) highlighted the presence of serious diving-
related pathologies, like syncope (ascent blackout), decompres-
sion illness, hemoptysis, and pulmonary edema, whose patho-
physiology is not yet completely understood (13, 31). A deeper
knowledge of breath-hold diving physiology in humans seems
thus needed.

Using a submersible echocardiographic machine, we re-
cently showed, in humans, during short breath-hold dives up to
10-m depth, a hemodynamic pattern qualitatively similar to
that described in marine mammals (22), with a significant
decrease in HR, stroke volume, and, hence, cardiac output.

Breath-hold diving involves progressive decrease of O, and
increase of CO, blood content, changes in temperature and
thermal conductivity, evocation of neural reflexes (induced by
face immersion), change in environmental pressure (linearly
increasing with depth), which, in turn, modulates the venous
return to the heart (21). The relative role of these factors in
determining the cardiovascular response to diving is still to be
elucidated.

The aim of the present study was to separately evaluate, in
humans, the cardiovascular response to body immersion, with
or without face immersion, breath holding, and diving.

MATERIALS AND METHODS

Subjects. A group of 12 healthy male subjects (age 35.2 = 6.5 yr;
range 24-51 yr; height 180.2 * 6.8 cm; weight 77.4 = 10.2 kg; body
mass index 23.8 * 2.3 kg/m?) was studied. The absence of female
subjects was casual and not due to a selection criterion. All subjects
were experienced, active breath-hold divers (practicing breath-hold
diving from 5.8 = 3.5 yr), undergoing at least 2 h/wk of breath-hold
diving training; no subject was engaged in regular physical activity
besides underwater training. Each diver had the ability to reach a
depth of at least 30 m under constant weight (i.e., with no ballast aid
for descent); their maximum static breath-hold time at surface was
4.5 = 0.8 min (range 4—6 min). No subject had historical, clinical, or
instrumental (resting ECG, Doppler echocardiography) evidence of
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Fig. 1. Schematic representation of the underwater echocardiographic
equipment.

arterial hypertension or cardiac or pulmonary diseases. All subjects
were nonsmokers and had been fasting from at least 2 h before the
study.

The study protocol was approved by the Scientific Committee of
the Consiglio Nazionale delle Ricerca Institute of Clinical Physiology.
All participants were informed about the aims and procedures of
underwater ultrasound examination and gave their written consent.

Underwater echocardiographic equipment. Doppler-echocardio-
graphic examination was performed by a commercially available
instrument (MyLab 30, Esaote SPA, Florence, Italy) as part of a
submersible echograph previously described elsewhere (5). Briefly, a
special, patented, water-tight container, made by two steel cylinders
(60-cm diameter) intersecting each other (Fig. 1) contained the echo-
cardiograph (6). A rubber glove sealed to the front Plexiglas panel
allowed the user to access the instrument’s control keys. A pressure
regulator connected to a standard 200-ATA compressed air cylinder
(normally used for scuba diving) maintained the pressure inside the
container of the echocardiographic instrument at the same level of
external pressure, reducing the risk of water leakage and preventing
rubber glove inflation. Ultrasound reflection in water was prevented
by the rubber and silicon backing of the probe, ensuring the extinction
of backward ultrasound radiation. The absence of ultrasound interfer-
ences in free water was confirmed by tests performed by the manu-
facturing company.

Experimental protocol. The study was performed, between 10 AM
and 2 PM, in a 10-m-deep pool (water temperature 29°C; air temper-
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ature 27°C). Subjects were studied, by two-dimensional Doppler
echocardiography, in five different conditions: out of water (basal),
head-out immersion during normal breathing (condition A), fully
immersed (head-in) at the surface while breathing by a snorkel
(condition B), fully immersed (head-in) at the surface while breath
holding (condition C), and, finally, breath-hold diving at 5-m depth
(condition D). Subjects were simply wearing a bathing suit and,
during full immersion (conditions B, C, and D), a diving mask.
Echocardiogram was recorded, in each condition, with the subject
lying on his left side during normal breathing (basal, conditions A and
B) or after a maximal inspiration (conditions C and D). Each dive was
preceded by 2—4 min of surface floating preparation, during which
subjects were breathing normally (no preliminary hyperventilation
was done). Descents were done by using 10-kg ballast, thus reducing
the cardiovascular effects of muscular work. Subjects equilibrated the
pressure in the medium ear by Frenzel technique (in most cases) or by
a mild Valsalva maneuver. As soon as the diver reached the echo
station, he positioned himself on a metallic bracket, lying on his left
side (Fig. 1). Cardiac imaging started during the first minute of apnea
and lasted <90 s in all subjects, so that echo-Doppler data were
acquired in a cardiovascular steady state (not influenced by the
possible, if any, effects of Valsalva maneuver, nor by those of
hypoxia).

The time necessary for handling and positioning the underwater
echocardiograph in the different positions prevented the possibility of
performing, in each subject, the entire series of tests consecutively.
The sequence of echocardiographic studies was the following: basal
for all subjects; after the launch of the echocardiograph, the three
studies at surface (conditions A, B, C) were performed consecutively
in each subject. Finally, after echocardiograph was positioned at
depth, ultrasonic study during diving (condition D) was made in all
subjects. During the periods of instrumentation handling, subjects
stayed out of the water, at rest.

Doppler-echocardiographic parameters. To minimize the duration
of the echocardiographic study during diving, we recorded only an
apical four-chamber view loop (4-s duration) and a pulsed-wave
Doppler tracing of transmitral blood flow. Analysis was made offline,
according to the American Society of Echocardiography recommen-
dations (19), by an expert in Doppler-echocardiography, unaware of
the identity of the subjects and of the condition of recording. From the
four-chamber view, the following parameters were obtained: systolic
and diastolic left ventricular volumes (calculated by area-length
method) (14, 19), and right ventricular internal dimension (maximal
diastolic distance from right-side interventricular septum to right
ventricular free wall). From the same view, maximal transversal (from
interatrial septum to the opposite atrial wall) and supero-inferior (from
the mitral valve plane to the opposite wall) dimensions were calcu-
lated for left atrium during ventricular systole. Early (E) and late (A)
peak transmitral diastolic flow velocities, as well as deceleration time
of E velocity (DTE), were obtained from pulsed-wave Doppler trac-
ings, by sampling blood velocities at the level of mitral valve tips;
E-to-A ratio (E/A) was then calculated. Such indexes allowed the
characterization of left ventricular diastolic function, as different
filling patterns have been described in case of delayed ventricular

Table 1. Doppler-echocardiographic data in basal (dry) and in the four different immersion conditions

Conditions LV EDV, ml LV ESV, ml LV SV, ml CO, I/min HR, beats/min RVD, mm E Peak, cm/s A Peak, cm/s E/A DTE, msec
Basal 169.9+27.6 75.8+17.3 94.1£19.5 6.3£1.5 66.7+8.5 38.4=*7.1 69.812.8 51.8*+11.0 1.39+0.3 214.2+46.5
A 186.8+29.9 86.9+22.8 99.9+21.6 6.8£2.0 68.3£14.0 36.1+3.1 75.9%16.6 53.2%11.9 1.39+0.3 193.8+33.4
B 173.2+27.1 83.2*12.2 90.0£23.2 6.1£1.9 67.7x11.0 42.8+1.8 76.813.6 48.9+8.7 1.6+0.29 183.5+38.9
C 152.7+21.2 60.6*11.5 93.1+18.3 52*1.5 57.3*+16.0 40.0*+2.1 77.7£26.9 45.6£15.7 1.89£1.06 191.7%£34.5
D 138.4+27.0 6721152 71.1£16.2 3.8+1.2 55.6%+22.1 39.5*£2.7 99.2+259 46.4*+19.8 2.49+1.29 143.7+19.3

Values are means = SD. See MATERIALS AND METHODS for definition of basal and conditions A, B, C, and D. LV, left ventricle; EDV, end-diastolic volume;
ESV, end-systolic volume; SV, stroke volume; CO, cardiac output; HR, heart rate; RVD, right ventricular dimension; E peak, early transmitral flow velocity;
A peak, late transmitral flow velocity; E/A, ratio of E to A; DTE, deceleration time of E peak.
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Table 2. P values for comparisons between the different experimental conditions

LV EDV LV ESV LV SV co HR RVD E Peak A Peak E/A DTE
Basal vs. A NS NS NS NS NS NS NS NS NS NS
Basal vs. B NS NS NS NS NS NS NS NS NS NS
Basal vs. C NS NS NS NS NS NS NS NS NS NS
Basal vs. D NS NS NS 0.004 NS NS NS NS NS 0.009
A vs. B NS NS NS NS NS NS NS NS NS NS
Avs. C NS NS NS NS NS NS NS NS NS NS
A vs. D 0.012 NS 0,03 0.001 NS NS NS NS 0.001 NS
Bvs. C NS 0.028 NS NS NS NS NS NS NS NS
Bvs.D NS 0.003 NS 0.006 NS NS NS NS NS NS
Cvs.D NS NS NS 0.045 NS NS NS NS 0.033 0.037

NS, nonsignificant.

relaxation (as in early hypertensive heart disease or during aging), as
well as in situations of increased wall stiffness (as in advanced
hypertensive heart disease or in constrictive/restrictive heart diseases)
(24). Duration of cardiac cycle (R-R interval) was measured as the
time interval between two consecutive mitral A peaks; HR was then
calculated (60/R-R interval expressed in seconds); the mean value of
three consecutive cardiac cycles was considered. Left ventricular
stroke volume was calculated as the difference between diastolic and
systolic left ventricular volumes. Cardiac output was obtained as the
product of stroke volume and HR.

Statistical analysis. Data are reported as means = SD. Normal
distribution of the parameters was evaluated preliminarily by the
nonparametric Kolmogorov-Smirnov test. All parameters were nor-
mally distributed. Analysis of variance for repeated measures was
used to evaluate the global effect of the experimental protocol. A post
hoc analysis, according to Bonferroni’s method, was then imple-
mented, to evaluate the differences between each experimental con-
dition. A probability <5% was assumed as threshold to reject the null
hypothesis.

RESULTS

Mean values of Echo-Doppler cardiac parameters observed
in the different experimental conditions are reported in Table 1.
The analysis of variance showed, along the series of immer-
sion and diving experiments, significant reductions in left
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Fig. 2. Cardiac output (CO) in basal (dry) conditions and in the different
immersion states. Values are means = SD. See MATERIALS AND METHODS for
definition of conditions A, B, C, and D. *P < 0.05; **P < 0.01.

ventricular volumes, both diastolic and systolic (P < 0.01 for
both), left ventricular stroke volume (P < 0.05), cardiac output
(P < 0.001), and HR (P < 0.05). As concerns Doppler indexes
of left ventricular diastolic function, an increase in E peak (P <
0.01) and E/A (P < 0.01) and a reduction in DTE (P < 0.01)
were observed.

The results of post hoc analysis (Table 2) showed that
changes occurring during 5-m breath-hold diving (condition D
step) accounted for most of variance observed in the experi-
mental series. In particular, cardiac output in condition D was
lower than at any other experimental conditions (Fig. 2); left
ventricular diastolic volume and stroke volume were lower in
condition D than in A (head-out immersion), whereas left
ventricular systolic volume results were lower in condition D
than in B (surface submersion while breathing). As concerns
diastolic function indexes, E/A was higher in condition D than
in condition A (head-out immersion) and C (full body immer-
sion at the surface while breath-holding). Finally, DTE was
significantly shorter in condition D than in basal and in con-
dition C (Fig. 3).

No significant changes were observed in the dimensions of
right ventricle at end diastole and of left atrium.
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Fig. 3. Deceleration time of E peak (DTE) in basal (dry) conditions and in the
different immersion states. Values are means *= SD. *P < 0.05; **P < 0.01.
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DISCUSSION

The present study confirms and extends previous observa-
tions of a clearly appreciable diving response that leads to a
reduction in cardiac output during breath-hold diving in hu-
mans (22). The sequence of immersions actually induced a
significant reduction in cardiac output (due to a decrease in
both HR and stroke volume) and in left ventricular diastolic
and systolic volumes. Such a hemodynamic pattern is consis-
tent with a preload reduction (since both increased afterload
and/or reduced myocardial contractility would have implied
increased left ventricular volumes).

The design of the study aimed to discriminate among the
possible determinants of the diving cardiovascular response, as
breath-hold diving exposes the organism to a series of stimuli
(body immersion, breath holding, diving reflex elicitation,
environmental pressure effects), overlapping each other. Most
significant cardiac changes were observed during diving at
depth, while surface immersion (irrespective of head in or out,
breathing or breath holding) had, in our series, trivial effects on
cardiac function. These data may be explained by several
reasons. The progressive application of immersion stimuli
(from head-out to diving at depth) may have attenuated car-
diovascular changes at each step. Moreover, the reduced stim-
ulation of facial receptor during submersion (subjects were
wearing a diving mask), the small difference between air and
water temperatures, and the relatively comfortable water tem-
perature, not far from thermoneutrality, may also contribute to
explaining this observation, since both diving-induced brady-
cardia and peripheral vasoconstriction are marked in cold water
(1, 23, 26). On the other hand, full body immersion in colder
water can elicit sympathetic activation, potentially affecting
cardiovascular response to immersion and diving (18). Thus
body immersion, breath holding, and elicitation of diving reflex
seem to have, per se, a relatively minor role in humans
compared with the effect of diving at depth. Therefore, the
increase in hydrostatic pressure seems to be essential in induc-
ing cardiovascular changes during breath-hold diving. A pre-
vious study in humans, evaluating immersion, submersion, and
simulated diving at depth in a pressure chamber (12), obtained
different results, with cardiac output during diving significantly
higher compared with both dry measurement at 1 ATA and
surface breath holding. Methodological differences in cardiac
output measurement and the possible influences of a sympa-
thetic activation due to the unfamiliar experience represented
by compression in a confined space might explain this discrep-
ancy (25).

An increase in E/A with reduction of deceleration time of
early filling peak was observed, during diving at depth, at
Doppler evaluation of transmitral blood flow. This change,
already observed in breath-hold diving athletes (22), is, in the
clinical setting, typical of a restrictive/constrictive left ventric-
ular diastolic dysfunction (24). It may be hypothesized that the
reduction of chest volume (due to the increased environmental
pressure), combined with an increase in intrathoracic blood
content (3, 16), may exert a constraint on the heart, able to
induce an impairment of left ventricular filling and, in turn, a
relative reduction in preload (transmural filling pressure) and
cardiac output (22). It may be speculated that these changes
might contribute to the pathophysiology of diving-induced
acute pulmonary edema. During deep and prolonged dives,
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pulmonary vascular bed congestion (due to both an increased
venous return and an impaired left ventricular filling), com-
bined with an uneven hypoxic pulmonary vasoconstriction
caused by hypoxia (4, 15), could lead to a pulmonary capillary
stress failure (33) and pulmonary edema (34). The unfavorable
consequences of a large intrathoracic blood redistribution,
combined with thoracic squeeze during diving, are supported
by two observations. On one hand, a recent report by Lindholm
et al. (20) showed that breath-hold divers may have hemoptysis
and instrumental signs of lower airway edema after shallow
diving (6 m) performed at residual volume. On the other hand,
animals highly adapted to diving (like pinnipeds) have special-
ized anatomical structures devoted to reduce the intrathoracic
venous return during immersion (caval sphincter, hepatic si-
nus) (11, 29).

It is noteworthy to mention that changes in right ventricular
diastolic dimension were not observed at any stage of the
protocol, while intrathoracic blood displacement induced by
immersion (3, 16) should, theoretically, be associated with
right ventricular volume overload (17). Our negative finding
might be explained by circulatory adjustments that rapidly
occur in the period preceding cardiac imaging during the
different experimental conditions. Alternatively, it might re-
flect the intrinsic inefficiency of echocardiography in accu-
rately detecting small changes in right ventricle dimensions,
owing to its complex three-dimensional anatomy (32).

In conclusion, our study documents, in humans performing
breath-hold diving at shallow depth (5 m), a cardiovascular
response qualitatively similar to marine mammals. Body im-
mersion at surface, diving reflex elicitation, and breath holding
all seem to contribute only marginally to cardiac changes
observed at depth, where the hydrostatic pressure on the chest
becomes sufficiently high to constrict the heart, hampering its
diastolic filling and reducing stroke work.
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