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First published December 13, 2002; 10.1152/japplphysiol.
00952.2002.—Diving acclimatization refers to a reduced sus-
ceptibility to acute decompression sickness (DCS) in individ-
uals undergoing repeated compression-decompression cycles.
We postulated that mechanisms responsible for the acclima-
tization are similar to that of a stress preconditioning. In this
study, we investigated the protective effect of prior heat
shock treatment on air embolism-induced lung injury and on
the incidence of DCS in rats. We exposed rats (n � 31) to a
pressure cycle that induced signs of severe DCS in 48% of the
rats, greater wet-to-dry ratio (W/D) of lung weight compared
with the control group (5.48 � 0.69 vs. 4.70 � 0.17), and
higher protein concentration in bronchoalveolar lavage
(BAL) fluid (362 � 184 vs. 209 � 78 mg/l) compared with the
control group. Rats with DCS expressed more heat shock
protein 70 (HSP70) in the lungs than those without signs of
disease. Prior heat shock (n � 12) increased the expression of
HSP70 in the lung and attenuated the elevation of W/D of
lung weight (5.03 � 0.17) after the identical decompression
protocol. Prior heat shock reduced the incidence of severe
DCS by 23%, but this failed to reach statistical significant
(�2 � 1.94, P � 0.163). Venous air infusion (1.0 ml/40 min)
caused profound hypoxemia (54.5 � 3.8 vs. 83.8 � 3.2 Torr at
baseline; n � 6), greater W/D of lung weight (5.98 � 0.45),
and high protein concentration in BAL fluid (595 � 129 mg/l).
Prior heat shock (n � 6) did not alter the level of hypoxemia
caused by air embolism, but it accelerated the recovery to
normoxemia after air infusion was stopped. Prior heat shock
also attenuated the elevation of W/D of lung weight (5.19 �
0.40) and the increase in BAL protein (371 � 69 mg/l) in air
embolism group. Our results showed that the occurrence of
DCS after rapid decompression is associated with increased
expression of a stress protein (HSP70) and that prior heat
shock exposure attenuates the air bubble-induced lung in-
jury. These results suggest that bubble formation in tissues
activates a stress response and that stress preconditioning
attenuates lung injury on subsequent stress, which may be
the mechanism responsible for diving acclimatization.

diving acclimatization; decompression sickness; air embo-
lism; heat shock protein

DIVING ACCLIMATIZATION IS a phenomenon that occurs
when individuals undergoing repeated compression-
decompression cycles are able to reduce their suscep-
tibility to acute decompression sickness (DCS). Postu-
lated mechanisms for the acclimatization include
depletion of gas micronuclei (34), desensitization (30),
and decomplementation (29). These theories hypothe-
size that the acclimatization is due to consumption of
offensive factors induced by “silent bubbles,” which
exist in tissues after decompression but do not lead to
acute symptoms of DCS. However, attractive as this
theory may be, rigorous studies are lacking to support
the explanation of this phenomenon. Repetitive pres-
sure exposures did not consume the plasma comple-
ment proteins (10, 26). Broome et al. (3) reported in an
animal model of DCS that pretreatment with a soluble
complement receptor failed to prevent DCS. In additon,
the complement proteins of human divers were found
to remain within normal ranges when they were in a
regular diving schedule (12). Therefore, the “consump-
tion theory” should be reexamined.

Preconditioning is a protective mechanism that occurs
when prior sublethal stresses increase the ability of tis-
sues to withstand subsequent insults, such as heat, is-
chemia, hypoxia, hypoglycemia, drugs, and inflamma-
tion. Ischemic preconditioning has been shown to protect
the heart against myocardial infarction in several animal
species (5, 22). Recovery from septic shock makes the
animal more resistant to ischemia-reperfusion injury to
the heart (25). Hyperthermic preconditioning profoundly
attenuates cellular damage induced by a subsequent ox-
idative challenge in cultured endothelial cells (8). Fur-
thermore, pretreatment with heat produces a “cross-tol-
erance” to various types of insults (9, 20). Evidence
supports the involvement of heat shock proteins in many
of these protective effects (2, 4, 15). Specific overexpres-
sion of heat shock protein 70 (HSP70) by gene transfer
into pulmonary epithelium protected the rats from sep-
sis-induced lung injury and increased the animal sur-
vival rate (31). Although the mechanism of protection
remains unknown, it might be associated with induction
of protective cytokines (16).
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Diving acclimatization protects divers from acute
DCS in a pattern similar to the protective precondi-
tioning. Silent bubbles occur during daily pressure
exposures (12) and can be considered as a subsymp-
tomatic stress. Repeated stress responses induced by
silent bubbles is a form of preconditioning. We hereby
propose an “induction theory” hypothesizing that re-
petitive daily diving is a form of preconditioning that
reduces the severity of acute tissue injury caused by
subsequent exposure to intravascular bubbles. The
purpose of this study was to test this induction theory
by using the animal models of DCS or air embolism-
induced acute lung injury.

MATERIALS AND METHODS

Thermal preconditioning. All of the experimental proce-
dures were in accordance with the Guiding Principle in the
Care and Use of Animals approved by the Institutional Ani-
mal Care and Use Committee. Male Sprague-Dawley rats
weighing 300–350 g were lightly anesthetized by an intra-
peritoneal injection of pentobarbital sodium (25 mg/kg). Each
animal was placed on the heating pad of a temperature
control device (Homeothermic Pt-100, Dr Instruments, Tai-
wan, Republic of China), and the body temperature was
measured via a rectal probe. A light bulb (100 W) was used to
accelerate heating and quick adjustment of body tempera-
ture. The heat shock was induced by increasing the core
temperature to 41°C for 15 min. The animals were then
killed by an overdose of pentobarbital sodium at 4, 6, 16, and
24 h after heat shock treatment. The right upper lobe of the
lungs was excised for the determination of heat shock pro-
tein.

Decompression sickness. The rats were placed in an acrylic
hyperbaric chamber and were pressurized with air to 6 at-
mospheres absolute (ATA) for 2 h. The chamber was venti-
lated with compressed air at 15 l/min to maintain a low-CO2

environment. Chamber temperature was maintained con-
stant at 27°C. The animals were then decompressed at a rate
of 2 ATA/min. After completing the decompression proce-
dure, rats were examined for signs of DCS for 2 h. The
symptoms observed included dragging of a hind leg(s), dys-
pnea, agitation, collapsing into unconsciousness, and death.
The rats that died during the 2-h observation period were
immediately evaluated for lung injury, and the lungs were
excised for the analysis of HSP70. The surviving rats were
evaluated at 4 h after the decompression. In the heat shock
pretreatment group, rats were subjected to a compression-
decompression cycle 4 h after the heat shock exposure. The
control group received no hyperbaric exposure or heat shock
pretreatment.

Pulmonary air embolism. Under general anesthesia with
pentobarbital sodium (50 mg/kg ip), the animals underwent
tracheotomy and cannulation to aid spontaneous breathing
and to facilitate bronchoalveolar lavage (BAL) at the end of
an experiment. The femoral vein was catheterized for infus-
ing air. The femoral artery was catheterized for monitoring
blood pressure and for blood sampling. For inducing pulmo-
nary air embolism, we infused nitrogen gas via the femoral
vein catheter at a rate of 25 �l/min for 20 or 40 min by using
a Harvard infusion pump (Millis, MA). The total amount of
air infused was 0.50 or 1.00 ml, respectively. We did not
make an attempt to determine the size of the air bubbles in
circulation in this study. However, air infusion to an isolated
lung model generated air bubbles ranging from 0.4 to 0.5 mm
in diameter (13, 14). Arterial blood was collected from the

femoral artery catheter in ice-chilled syringes for blood-gas
analysis (IL-1610, Instrumentation Laboratory, Milano, It-
aly) before and during venous air infusion as well as at the
end of each experiment. The animals were subjected to lung
injury evaluation and HSP70 determination 40 min after the
completion of air infusion. Rats in the control group (n � 6)
received no air infusion or heat shock exposure but did
receive anesthesia and arterial catheterization. In the other
groups of rats (n � 6 in each group), the air embolism was
induced 4 or 16 h after the heat shock treatment.

Evaluation of lung injury. At the end of each experiment,
the rats were killed by an overdose of pentobarbital sodium
and midline thoracotomy. The right lung was excised as the
right hilum was clamped. The upper lobe was excised and
stored at �20°C for heat shock protein determination. The
remaining right lung was weighed and dried in a 60°C oven
for 48 h. The dry weight was then measured to obtain the
wet-to-dry ratio (W/D) of lung weight, an indicator of pulmo-
nary edema (11, 19). BAL was performed to the left lung with
5 ml PBS in 2.5-ml aliquots after cannulation of the left
bronchus. The recovered BAL fluid was centrifuged at 250 g
for 10 min. The protein concentration of the supernatant was
determined by using bicinchoninic acid protein assay re-
agents (Pierce, Rockford, IL).

Determination of heat shock protein. The expression of
HSP70 was determined via the Western immunoblotting (4,
15). The harvested lung tissue was homogenized in cold lysis
buffer (1 ml) and centrifuged at 12,000 g for 5 min at 4°C. The
protein concentration in supernatant was quantified by using
a Coomassie protein assay reagent (Pierce) and was diluted
to a final concentration of 40 �g/20 �l. The protein was
denatured in boiling water for 5 min, and the aliquots con-
taining equal amounts of protein were suspended in SDS-
glycerol loading buffer containing 12.5% Tris, 3% SDS, 20%
glycerol, 5% mercaptoethanol, and 0.05% bromophenol blue.
The proteins were separated by SDS-polyacrylamide gel elec-
trophoresis (Mini-PROTEAN II, Bio-Rad, Milano, Italy) with
40 �g total protein loaded per lane. Proteins were then
transferred to a polyvinylidene difluoride transfer membrane
(Amersham Pharmacia Biotech, Taipei, Taiwan, Republic of
China). Nonspecific binding to the membrane was blocked by
5% nonfat dry milk in PBS-Tween 20 overnight at 4°C. The
blots were incubated with a primary monoclonal antibody
(mouse anti-human IgG1) specific for HSP70 (Jackson Immu-
noResearch, West Groves, PA). The membrane was then
subjected to five washes with PBS-Tween 20 and incubated
with the secondary antibody (goat anti-mouse IgG, conju-
gated with horseradish peroxidase, dilution 1:1,000; Jackson
ImmunoResearch) for 1 h at room temperature. The mem-
branes were then developed with a 10-ml solution of the
enhanced chemiluminescence detection system for 1 min and
exposed to a film.

Statistical analysis. Data are expressed as means � SD.
The incidence of DCS after decompression was evaluated by
using �2 test. The differences of W/D of lungs and BAL fluid
analysis between groups were evaluated by using one-way
ANOVA. The changes of arterial PO2 (PaO2) were evaluated
by using ANOVA with repeated measures. When the vari-
ables were found different, a multiple-comparison test (Fish-
er’s paired least significant difference) was performed. A
value of P � 0.05 was accepted as significant.

RESULTS

Evidence of thermal preconditioning. Heat shock in-
creased the expression of HSP70 in the lung tissue.
The significant expression of HSP70 appeared as early
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as 4 h after heat stress and was sustained for another
20 h (Fig. 1). On the basis of this result, the protection
effect of prior heat shock in this study was tested 4
and/or 16 h after heat stress.

Effects of thermal preconditioning on DCS. Experi-
encing a compression-decompression cycle, 48% of rats
(15 of 31) presented significant signs of DCS, including
severe dyspnea, paralysis, and death (Table 1). In the
rats that died within 2 h after the decompression, the
chest wall was opened, revealing numerous air bubbles
occupying the inferior vena cava. This incidence of DCS
was not statistically different from that of 12 rats that
received prior heat shock 4 h before the compression-
decompression experiment, in which 25% of the ani-
mals (n � 3) showed severe DCS (�2 � 1.94, P � 0.163).

Pressure exposure caused significantly higher W/D
of lung weight (5.48 � 0.69) and protein concentration
in the BAL fluid (362 � 184 mg/l) compared with the
control group (4.70 � 0.17 and 209 � 78 mg/l, respec-
tively). Prior heat shock attenuated the elevation in
W/D of lung weight (P � 0.05) but not the increase in
BAL fluid protein (Fig. 2). Heat shock by itself did not
affect the W/D of lung or BAL protein concentration.

DCS and HSP70 expression. Four hours after decom-
pression, the expression of HSP70 in the lung was
higher in rats with severe signs of DCS than those
without DCS (Fig. 3). The pressure cycle by itself, if no
DCS occurred, increased the HSP70 expression only
slightly compared with the control group. The HSP70
expression was similarly increased in rats with signs of
DCS, either with or without prior heat shock treat-
ment.

Effects of thermal preconditioning on pulmonary air
embolism. Venous air infusion for 20 min decreased PaO2

by 39% from the baseline. The PaO2
returned gradually

after air infusion was stopped, but it remained lower
than the baseline at 40 min (Fig. 4). Doubling the
infusion duration (40 min) did not cause further de-
crease in PaO2

, but it delayed the recovery of arterial
oxygenation after cessation of air infusion. Prior heat
shock did not alter the level of hypoxemia during ve-

Fig. 1. Western immunoblotting for expression of heat shock protein
70 (HSP70) in the lung of rats exposed to hyperthermia. Lanes
represent time course (-hours) of HSP70 expression after heat shock
(HS).

Table 1. Occurrence of signs of DCS in rats after
rapid decompression from hyperbaric exposure
of 6 ATA for 2 h

Signs of DCS

Without
Heat Shock

(n � 31)

Heat Shock
Pretreatment

(n � 12)

No. of
rats

Time,
min

No. of
rats

Time,
min

Dyspnea 15(48%) 19�8 3(25%) 22�6
Dragging of hindlimbs 10(32%) 27�10 1(8%) 25
Collapsing into

unconsciousness 4(13%) 26�13 1(8%) 30
Death 4(13%) 36�16 1(8%) 45
Agitation and rolling 2(6%) 20�7 0
Total* 15(48%) 3(25%)

Values of time are means � SD; n, no. of rats/group. DCS, decom-
pression sickness; ATA, atmospheres absolute. *Rats presenting �1
sign of DCS.

Fig. 2. Effect of prior heat shock on acute lung injury induced by
rapid decompression after hyperbaric (6 atmospheres absolute) ex-
posure for 2 h. Values are means � SD. Nos. in bars are group sizes.
BAL, bronchoalveolar lavage; W/D, wet-to-dry ratio. *P � 0.05 com-
pared with the control group. �P � 0.05 compared with the hyper-
baria group.

Fig. 3. Western immunoblotting for expression of HSP70 in the lung
of rats after rapid decompression from 6 atmospheres absolute.
HS-4, prior heat shock 4 h before HSP70 determination; No DCS,
rats did not present signs of decompression sickness; DCS, rats
presented signs of decompression sickness; HS-4/DCS, rats received
prior heat shock 4 h before hyperbaric exposure and presented signs
of DCS.
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nous air infusion, but it accelerated the recovery of
oxygenation.

Air infusion for 20 and 40 min significantly increased
the W/D of lung weight by 21 and 25%, respectively
(Fig. 5). Prior heat shock significantly attenuated the
increase of W/D of lung weight caused by air infusion
for 40 min, but the attenuation was not statistically
significant in the other group that received air infusion
for 20 min. The protein concentration in BAL fluid was
increased by 61 and 190% after air infusion for 20 and
40 min, respectively (Fig. 6). The increase in BAL
protein concentration was significantly attenuated by
prior heat shock.

DISCUSSION

Diving acclimatization has been described as an
adaptive mechanism to decompression stress after re-

petitive pressure exposures. This adaptation reduces a
diver’s susceptibility to or severity of DCS. The mech-
anism contributing to the diving acclimatization, how-
ever, remains obscure. We propose an induction theory
hypothesizing that repetitive compression-decompres-
sion is a form of preconditioning that generates protec-
tive factors and reduces the severity of acute tissue
injury during the subsequent bubble formation. To test
this hypothesis, we must obtain evidence showing, in
an animal model, that 1) exposure to pressure cycles
causes severe DCS and lung injury, 2) heat shock
treatment induces expression of bioprotective factor
such as HSP70, 3) prior induction of expressing such
protective factors reduces the incidence or severity of
DCS and lung injury, and 4) repeated pressure expo-
sures should have the similar effects as prior heat
shock.

In this study, we found that exposure to pressure
cycle slightly increased the expression of HSP70 in the
lungs. The occurrence of DCS enhanced the HSP70
expression to a level similar to that induced by heat
shock exposure. The HSP70 is one of the main stress
proteins induced by heat shock in mammals (32). De-
tection of HSP70 expression has become a standard to
evaluate stress response and thermal preconditioning
(21). HSP70 expression may be induced by a variety of
stresses, including heat, ischemia, hypoglycemia, and
drugs (2). The slightly increased HSP70 expression
after pressure exposure in this study may be nonspe-
cific. However, stress from the pressure exposure itself
is one of the possibilities, leading to the silent bubbles
that emerged after decompression. In contrast to this
nonspecific increase, expression of HSP70 in the rats
with severe DCS was disease related. Our results
showed that rats with severe signs of DCS expressed
much higher levels of HSP70 compared with those
without DCS. This indicates that DCS by itself is able
to induce a stress response.

Fig. 4. Arterial hypoxemia induced by venous air infusion at rate of
25 �l/min for 20 min. HS-4/Air infusion and HS-16/Air infusion, prior
heat shock 4 and 16 h, respectively, before air infusion. PaO2, arterial
PO2. Values are means � SD. Nos. in parentheses are group sizes.
*P � 0.05 compared with the group that received only air infusion.

Fig. 5. W/D of lung weight in rats after venous air infusion. Values
are means � SD. -, Treatment not done; 20, 20 min; 40, 40 min. *P �
0.05 compared with the control group that received no air infusion or
prior heat shock treatment. �P � 0.05 compared with the group that
received only air infusion.

Fig. 6. BAL protein concentration in rats after venous air infusion.
Values are means � SD. *P � 0.05 compared with the control group
that received no air infusion or prior heat shock treatment. �P �
0.05 compared with the groups that received only air infusion for
respective durations.
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Although prior heat shock significantly enhanced the
expression of HSP70, it did not show a protective effect
to the occurrence of DCS in our study. Forty-eight
percent of the normal rats presented signs of severe
DCS after pressure exposure, as opposed to 25% in the
group with prior heat shock. Although the incidence of
DCS was only one-half that of control rats, the differ-
ence was statistically insignificant. This suggested
that induction of stress response could not reduce the
decompression risk in rats. The insignificant protection
against DCS may be due to an inadequate induction of
HSP70 expression by heat shock, an indistinguishable
high severity of DCS, or an unrelated mechanism be-
tween HSP70 expression and diving acclimatization.
The protocol of heat shock used in this study is a
well-documented method of inducing heat stress (2,
27). It has been shown that this heat pretreatment
significantly attenuates tissue injuries induced by a
variety of insults, such as cardiac surgery (18), sepsis
(9, 28), and ischemia-reperfusion (15). The Western
blot analysis showed that heat shock protocol used in
this study sufficed to induce significant HSP70 expres-
sion. This indicates that the heat shock protocol did
cause significant amount of HSP70 expression. It ap-
pears that the protocol of pressure exposure (6 ATA for
2 h) may induce symptoms of DCS that are too severe
to be evaluated for the protection effects of heat shock
pretreatment. By examining the index of pulmonary
edema, we found that prior heat shock did attenuate
the increase in W/D of lung weight induced by DCS.
This suggested that there might be a protective effect
of heat shock against the DCS-induced lung injury that
could not be differentiated by the gross symptomatic
indications. To detect the protective effects of prior
heat shock, we need an animal model to induce a
similar quantity of bubbles in the body and more quan-
titative tissue injury analysis.

Decompression sickness is an air bubble-induced tis-
sue injury. Our result showed that air bubbles existed
in the circulation of rats with severe signs of DCS. This
further ensured the role of air bubble formation in
causing tissue injury after decompression. Our labora-
tory has investigated the air bubble-induced lung in-
jury in animals in vivo (11) as well as in an isolated and
perfused lung model (13, 14). It was found that venous
air embolism is a feasible animal model for evaluating
lung injury caused by DCS. We, therefore, tested our
hypothesis in an animal model of pulmonary air embo-
lism. We found that venous air infusion caused an
acute lung injury as shown in profound hypoxemia,
increased protein concentration in BAL fluid, and ele-
vated W/D of lung weight. Pretreatment with heat
shock 4 h before air infusion significantly reduced the
increase in BAL protein, although the reduction in
W/D of lung weight was not statistically significant.
The protective effects of thermal preconditioning be-
came statistically significant as the air infusion was
done 16 h after heat shock. These results suggested
that thermal preconditioning protects the rats from air
embolism-induced lung injury. However, the mecha-

nism of protection continues to require further inves-
tigation.

Air bubbles produce their effects by mechanical ob-
struction, altering the biochemical environment, or
both. Bubble formation interrupts blood flow and com-
presses against or disrupts tissues. Air bubbles can
also initiate an air-liquid interface reaction in tissues,
which activates plasma proteins, including clotting fac-
tors, enzymes, and immunoglobulins (17). In addition,
the complement system, polymorphonuclear leuko-
cytes, and oxygen metabolites have been proven as
factors that mediate the air bubble-induced tissue in-
jury (1, 7, 13, 14, 29). Protection from air bubble-
induced tissue injury may result from a smaller num-
ber (or size) of bubble formations or from less tissue
reaction to air bubbles. Wisloff and Brubakk (33) re-
ported that endurance exercise reduced bubble forma-
tion and increased survival in rats exposed to hyper-
baric pressure. Although the mechanism has not been
discussed, it may be due to a stress response induced
by exercise. Endurance exercise is a stressor that in-
creases the expression of HSP70 and may represent a
powerful prevention agent against tissue injury in sev-
eral models (6, 23, 24). These reports suggest that
stresses such as endurance exercise can activate bio-
protective mechanisms and may have a protective ef-
fect against DCS. It is not known whether heat shock
pretreatment can reduce the bubble formation after
rapid decompression from a hyperbaric environment.
Nevertheless, we demonstrated that prior heat shock
protects the lung from air bubble-induced injury in rats
that received a constant amount of air infusion. This
suggests that the protection involves mechanisms
more than a reduction in bubble formation.

In summary, our results showed that DCS induced a
stress response as evidenced by the expression of heat
shock protein. Although prior heat shock did not re-
duce the incidence of acute DCS after hyperbaric expo-
sure, it attenuated decompression-related lung injury.
Prior heat shock prevented the animals from acute
lung injury induced by pulmonary air embolism, in
which the pathophysiology is similar to acute DCS.
Therefore, we conclude that bubble formation in tis-
sues after decompression can activate a stress response
and that adaptation to repeated stress may be the
mechanism responsible for the phenomenon of diving
acclimatization.

This study was supported by National Science Council of the
Republic of China Grant NSC-89-2314-B-016-127.
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