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Abstract 27 

Decompression sickness (DCS) is a condition resulting from reductions in ambient pressure, causing inert 28 

gas bubbles in tissues.  This work focuses on hyperbaric exposures, specifically DCS resulting from 29 

underwater diving.  Signs and symptoms of DCS can range from mild skin rashes and joint pain to serious 30 

neurological and cardiological malfunction, and even death.  Marginal DCS is defined as symptoms 31 

associated with DCS that resolve spontaneously without recompression treatment.   32 

There are two categories of decompression modeling used to mitigate risk of DCS: deterministic and 33 

probabilistic; neither address DCS symptom severity.  Symptom severity is important to U.S. Navy dive 34 

planning, as the Navy has different limits for the number allowable cases of mild-symptom DCS and 35 

more severe-symptom DCS for a given dive.  In this work, a probabilistic model for predicting the 36 

tetranomial outcomes of serious, mild, marginal, and no DCS was developed, analyzed, and compared 37 

with trinomial and trinomial marginal models from our previous works.   38 

Six variants of exponential-exponential (EE1) and linear-exponential (LE1) models were calibrated with 39 

3,322 air and N2-O2 dive exposures detailed in the BIG292 empirical human dive trial data set.  Two 40 

methods of symptom severity splitting were compared.  The log likelihood difference test indicated the 41 

LE1 model using a previously-disclosed Type A/B splitting provided the best fit to the empirical dive data 42 

of all tetranomial models tested in this work.  When comparing this tetranomial model to our previous 43 

trinomial and trinomial marginal models using the Pearson chi-squared statistic, we find that the 44 

tetranomial and trinomial marginal models’ predictions of marginal DCS are not aligned well with the 45 

incidence of marginal DCS in the data.   46 

Both the trinomial marginal model in our previous work and tetranomial model presented here are 47 

unable to accurately replicate the occurrence of marginal DCS events observed in the BIG292 dataset.  48 

These marginal DCS events may hinder model fit during calibration.  We recommend the use of the 49 
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trinomial model from our previous work, which simultaneously predicts the probability of mild, serious, 50 

and no DCS. 51 

Keywords 52 

Decompression sickness, decompression illness, probability, severity, modeling. 53 

1. Introduction 54 

Decompression sickness (DCS) is a condition resulting from a reduction in ambient pressure.  55 

This can occur during hyperbaric exposures, such as ascent from a deep-sea dive, and hypobaric 56 

exposures, such as ascent to altitude.  When ambient pressure is reduced, inert gas which had been 57 

inspired, circulated, and dissolved into the body’s blood and tissues at the previous elevated pressure 58 

can leave solution, forming bubbles and causing DCS.  Signs and symptoms of DCS can range from mild 59 

skin rashes and joint pain to serious neurological and cardiological malfunction, and even death [1].  60 

Marginal DCS is defined as symptoms typically associated with DCS that are mild and resolve 61 

spontaneously without recompression treatment, such as pain in one joint lasting for less than 60 62 

minutes or pain in two joints lasting less than 30 minutes [2, 3].  Focusing in this work on hyperbaric 63 

exposures, DCS is of particular concern for U.S. Navy diver planners, as onset of symptoms can result in 64 

premature termination of undersea missions. 65 

The first known decompression model to mitigate the risk of DCS was created by Boycott et al. 66 

[4] in the early twentieth century, known as the Haldane Model.  The Haldane model generated 67 

decompression schedules using stage decompression to control the rate of inert gas washout from the 68 

body during ascent.  This model was deterministic, meaning it predicted that DCS would absolutely 69 

occur if the proposed “safe” ascent criteria were violated, and would not occur if these criteria were 70 

followed.  While this early model did reduce the prevalence of DCS, some divers who complied with the 71 

prescribed “safe” decompression schedules still experienced DCS. 72 
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Probabilistic decompression modeling was introduced by Weathersby et al. [5] and Berghage et 73 

al. [6] to simulate the variation in DCS onset and severity experienced by divers executing the same dive 74 

profile as seen in empirical dive data [2, 3].  Probabilistic decompression algorithms use either gas 75 

content or bubble models and survival analysis to generate a probability of DCS for each dive profile [7].  76 

A significant advantage of probabilistic modeling over deterministic modeling is that model parameters 77 

can be calibrated with empirical dive data.  Probabilistic models used today to predict the probability of 78 

the occurrence of DCS do not provide any information about symptom severity.  DCS severity 79 

predictions would be advantageous as they would allow safety analysis to be conducted on military 80 

diving operations. 81 

Both the probability of DCS occurrence and symptom severity are of high concern to the U.S. 82 

Navy when planning undersea missions.  When planning dives, the U.S. Navy has previously stated that a 83 

2.0% risk of Type I (mild) DCS and a 0.1% risk of Type II (serious) DCS is acceptable [8].  Additionally, U.S. 84 

Navy Dive Medical Officers have indicated a low level of concern for marginal DCS [9].  DCS symptom 85 

onset can result in premature termination of U.S. Navy diving missions.  The addition of the proposed 86 

multi-state probabilistic decompression model that predicts both the occurrence and severity of DCS to 87 

dive planning would allow dive supervisors to tailor undersea missions to the acceptable level of risk for 88 

the divers. 89 

Howle et al. [10] introduced a multinomial probabilistic decompression model, which 90 

simultaneously predicted the probability of three outcomes for a given dive profile: mild DCS, serious 91 

DCS, and no DCS.  Howle tested two classifications of DCS cases as mild and serious based on the 92 

symptom histories published in the data set used for model calibration [2, 3], one in accordance with 93 

current U.S. Navy severity definitions [11] and one novel approach [10, 12].  Howle’s trinomial model 94 

considered marginal DCS as non-events following previous research on the effectiveness of marginal 95 

events in probabilistic model calibration [13, 14].  This trinomial model was compared with a binomial 96 
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model (predicting full DCS and no DCS outcomes), and it was concluded that the trinomial model 97 

provided statistically significant improvement over the binomial model in its ability to fit empirical dive 98 

data. 99 

In a companion work, we modified Howle’s trinomial model by analyzing the multi-state 100 

outcome of full DCS, marginal DCS, and no DCS [15].  Historically, marginal DCS events have been 101 

included in probabilistic decompression models as fractionally weighted during model calibration.  102 

Originally, marginal events were assigned a weighting of 0.5, indicating they were half as important as a 103 

full DCS event during model fitting.  This weighting was later reduced to 0.1 when U.S. Navy Medical 104 

Officers indicated a low level of concern for marginal DCS, to ensure that marginal DCS cases did not 105 

cause undo risk to be associated with particular dives during model calibration [9].  Further research on 106 

the impact of fractionally weighted marginal events in probabilistic model fitting has indicated that 107 

fractionally weighted marginal DCS events may hinder a model’s performance [13, 14].  To address this 108 

issue, we developed the aforementioned trinomial marginal model, which considered marginal DCS to 109 

be a fully-weighted hierarchical outcome separate from full DCS.  This model could not be compared 110 

directly with Howle’s trinomial model, which classified marginal DCS as nonevents, though we found the 111 

inclusion of marginal events in this fashion may have skewed the distribution of predictions on the data.  112 

In the present work, we continue the investigation of multinomial probabilistic modeling by optimizing a 113 

tetranomial model with mild DCS, serious DCS, marginal DCS, and no DCS outcomes. 114 

2. Methods 115 

2.1 Calibration Data 116 

The model presented in this study was calibrated with the BIG292 standard DCS data set, which 117 

is a subset of data presented in two Naval Medical Research Institute (NMRI) reports [2, 3].  The BIG292 118 

data contains 3,322 exposures of air and nitrogen-oxygen diving conducted by the United States, United 119 
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Kingdom, and Canadian militaries from 1944-1997.  This data set includes the dive profile, dive 120 

conditions (wet or dry), inspired gas, and DCS outcome and symptom history for each exposure.  The 121 

BIG292 data set contains a total of 190 DCS cases and 110 marginal DCS cases resulting from single air, 122 

single non-air, repetitive and multilevel air, repetitive and multilevel non-air, and saturation dive types.  123 

Marginal DCS is defined as signs or symptoms associated with DCS that persist for a short duration and 124 

spontaneously resolve without recompression treatment [2, 3].  The dive data used in this study are de-125 

identified and available to the public in the form of two U.S. government reports, and no IRB approval 126 

was required for the present study. 127 

If DCS occurs, the onset time window of DCS symptoms can be characterized by times T1 and T2, 128 

where T1 is the last known time a diver was asymptomatic and T2 is the first known time a diver was 129 

definitely experiencing DCS symptoms [16].  In the BIG292 data set, all 190 full DCS cases and 68 of the 130 

110 marginal DCS cases are reported with symptom onset times T1 and T2.  These symptom onset times 131 

can be used in probabilistic DCS modeling to improve model fitting [17].  In our previous work, we found 132 

the onset time window provided by T1 and T2 are not related to DCS symptom severity, and may actually 133 

be biased by the medical surveillance protocol of each dive trial [18]. 134 

2.2 DCS Event Severity 135 

DCS cases are categorized into Type I (also called mild or pain-only) or Type II (also called serious 136 

or neurological) [8, 11].  A novel method of categorizing DCS cases was proposed by Howle et al., in 137 

which the 190 full DCS cases in our calibration data set are classified by perceived severity index (PSI) 138 

[10, 12].  These indices for describing DCS symptoms, in order of least to most severe, are: 139 

constitutional/nonspecific (dizziness, fatigue, nausea), lymphatic/skin (itching, rash, marbling), pain 140 

(ache, joint pain, spasm), mild neurological (paresthesia, numbness, tingling), cardiopulmonary 141 
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(hemoptysis, dyspnea, cough), and serious neurological (dysfunction of bladder, coordination, mental 142 

status).  143 

The dive data published in the two NMRI reports [2, 3] included symptom descriptions for each 144 

case of full and marginal DCS, so Howle et al. assigned each case a severity index 1-6 [10].  If a case 145 

exhibited symptoms corresponding to more than one severity category, the most severe index present 146 

was selected. 147 

The traditional categorization of Type I DCS corresponds to constitutional, skin, and pain 148 

manifestations, while mild neurological, cardiopulmonary, and serious neurological cases are considered 149 

Type II DCS [11].  Howle et al. [10] proposed Type A/B splitting, in which Type A DCS includes 150 

constitutional, skin, pain, and mild neurological symptoms, while Type B DCS corresponds to 151 

cardiopulmonary and serious neurological.  The number of DCS occurrences in the BIG292 data set 152 

corresponding to each PSI and classified by both Type I/II and Type A/B splitting are summarized in Table 153 

1. 154 

 

Perceived Severity Index Type I/II Type A/B 

6 Constitutional/Nonspecific 

Type I 

152 DCS Occurrences 

Type A 

170 DCS Occurrences 

5 Lymphatic/Skin 

4 Pain 

3 Mild Neurological 

Type II 

38 DCS Occurrences 

2 Cardiopulmonary Type B 

20 DCS Occurrences 1 Serious Neurological 

 

Table 1.  Classification of BIG292 DCS events according to perceived severity index (PSI) and 
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corresponding Type I/II and Type A/B splitting. 

 155 

2.3 DCS Models 156 

Probabilistic DCS models use survival analysis with a gas content or bubble volume model to 157 

quantify the risk of DCS occurrence for a given dive profile [7].   Our tetranomial probabilistic models 158 

extended the exponential-exponential (EE) and linear-exponential (LE) gas content models described by 159 

Thalmann [19], which consist of three stirred, parallel perfused gas compartments.  The models in this 160 

work were added to our previously developed DCS modeling and optimization system, described in 161 

previous work [20, 21]. 162 

Twelve probabilistic decompression model variants were tested to determine which model 163 

parameters were statistically justified for the tetranomial model.  The base model was the EE1 model, 164 

which consists of three well-mixed, parallel-perfused compartments.  Each compartment exhibits 165 

exponential gas kinetics and has a unique half-time.  The slowest compartment has a pressure threshold 166 

parameter, allowing for greater gas supersaturation before risk accumulation.  We also tested two 167 

additional variants of this EE1 model – one without any threshold parameter (EE1nt), and one with 168 

threshold parameters in all three compartments (EE1 full).  Next, we tested the LE1 model, which 169 

augments the EE1 model by allowing for a switch between exponential and linear gas kinetics at an 170 

optimized crossover pressure in the middle compartment [9, 19].  The two variants of that LE1 model 171 

were one without any threshold parameter (LE1nt), and one with both threshold and crossover pressure 172 

parameters in all three compartments (LE1 full).  A detailed derivation of these models can be found in 173 

Ref. [21].  A summary of the free parameters in each model variant can be found in Table 3.   174 

These three EE1 and three LE1 models were tested with Type I/Type II splitting, and again with 175 

Type A/Type B splitting, totaling 12 model variants. 176 
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2.4 Tetranomial Model 177 

The binomial probability of DCS occurrence, as defined by Weathersby et al. [5], is  178 

 1 g R
DCSP e− ⋅= −

rr

  (1) 179 

and the probability of DCS not occurring is defined by the law of total probability as 180 

 0 1 .g R
DCSP P e− ⋅= − =

rr

  (2) 181 

In Eqs. (1) and (2), g
r
 is a vector of each compartment’s gain and R

r
 is a vector containing each 182 

compartment’s risk information.  The risk function is derived from survival analysis and quantifies the 183 

gas kinetics in each compartment; a detailed derivation can be found in Refs. [21, 22].   184 

It has been shown that including the DCS symptom onset time information in Eq. (1) can 185 

improve a model’s performance, and is done by calculating the joint probability of surviving DCS-free 186 

until T1 and experiencing DCS during the onset time window T1-T2 [17].  This joint probability can be 187 

written as 188 

 

21

0 1

1 1 20,0 , 1 ,

TT

T

g rdtg rdt

DCS T DCS T TP P P e e
−−

→ →

 
∫∫  = = − 

 
 

r rr r


  (3) 189 

where 
10,0 TP →  is the probability of surviving DCS-free until time T1 (Eq. (2)), and 

1 2,DCS T TP →  is the 190 

probability of DCS occurring between times T1 and T2 (Eq. (1)).  These equations can be extended to the 191 

proposed tetranomial model, in which the probabilities of serious, mild, marginal, and no DCS are all 192 

calculated simultaneously.  Competitive probabilities, meaning probabilities for each event independent 193 

of any other event occurring, are derived from Eq. (1) using fitted scale factors a  and b to differentiate 194 

between DCS severity: 195 
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( )

( )

1

1

1 .

c a g R
s

c g R
m

c b g R
n

P e

P e

P e

− ⋅

− ⋅

− ⋅

= −

= −

= −

rr

rr

rr

  (4) 196 

In Eq. (4), 
c

sP , 
c

mP , 
c

nP  are the competitive probabilities of serious, mild, and marginal DCS respectively.   197 

2.5 Competitive and Hierarchical Probabilities 198 

Observed cases of DCS are categorized hierarchically.  For example, the diagnosis of serious DCS 199 

would take precedence over mild and marginal DCS if mild and/or marginal DCS symptoms were 200 

present, and mild DCS takes precedence over marginal DCS.  The calculated DCS probabilities in Eq. (4) 201 

are defined competitively, and consequently must be converted to hierarchical probabilities to 202 

accurately reflect the diagnoses in our dive data.  These hierarchical probabilities, labeled with a 203 

superscript h , can be calculated from competitive probabilities as the joint probability of the event’s 204 

independent probability and the probability that the more severe event(s) does not occur: 205 

 

0

(1 )

(1 )(1 )

1

h c
s s

h c c
m m s

h c c c
n n s m

h h h h
s m n

P P

P P P

P P P P

P P P P

=

= −

= − −

= − − −

  (5) 206 

Eq. (5) lists the hierarchical probabilities of serious, mild, marginal, and no DCS occurring calculated from 207 

their competitive probabilities.  The sum of the probabilities of all events is equal to 1 by the law of total 208 

probability.  For comparison with [10, 15], we can rewrite Eq. (5) in Howle’s compact notation, where a 209 

quantity ξ is defined as 210 

 
g Re ξ− =
rr


  (6) 211 

and 212 
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( )

( ) .

a g R a

b g R b

e

e

ξ
ξ

−

−

=

=

rr


rr


  (7) 213 

Eqs. (6) and (7) can be substituted into the hierarchical probabilities in defined Eq. (5): 214 

 

1

1 1

1
0

1h a
s

h a a
m

h a a b
n

h a b

P

P

P

P

ξ
ξ ξ
ξ ξ
ξ

+

+ + +

+ +

= −

= −

= −

=

  (8) 215 

The hierarchical probabilities of serious, mild, and marginal DCS are plotted with increasing 216 

hazard function for a single compartment in Figure 1.  The probability of serious DCS increases with 217 

increasing hazard function, while the probabilities of mild and marginal DCS increase and then decrease.  218 

This plot illustrates the masking of less severe DCS events by more severe DCS, i.e. a diver diagnosed 219 

with serious DCS may have also been experiencing mild DCS symptoms.  We hypothesize that as the risk 220 

function increases, it is more likely that the diver will develop serious DCS symptoms and thus more 221 

likely to be diagnosed with serious DCS and less likely to be diagnosed with mild or marginal DCS. 222 

 223 
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 224 

Figure 1.  Probabilities of serious, mild, and marginal DCS events with increasing hazard function in the 225 

hierarchical model.  The masking of mild DCS by serious DCS, and marginal DCS by mild and serious DCS, 226 

is illustrated by the decreasing probabilities of mild and marginal DCS events with increasing hazard 227 

function.  Arbitrary scale factors of 0.25a =  and 0.75b =  were used to generate this plot. 228 

 229 

2.6 Multinomial Likelihood Functions 230 

Probabilistic DCS models are advantageous in their capacity to be calibrated with empirical dive 231 

data.  To determine optimal model parameters, Weathersby et al. [5] used maximization of the 232 

likelihood function.  Other optimization methods, such as Bayes optimization, have also been used to 233 

estimate probabilistic DCS model parameters [23].  Although Bayesian optimization can provide a 234 
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clearer picture of estimated parameters’ uncertainties, it has a high computational cost, so maximum 235 

likelihood optimization is used in the present work.   236 

For a binomial model predicting the probabilities of full and no DCS, the log likelihood function is 237 

 ( ) ( )1

2 , ,
1

ln 1
N

D i D i
i

LL P P
δ δ−

=

 = −
 ∑   (9) 238 

where ,D iP  is the probability of DCS occurring for the thi  of N  total dives, calculated with Eq. (1) or (3).  239 

The exponent δ  signals the observed outcome of the thi  dive, where 1δ =  if DCS occurred, and 240 

0δ =  if DCS did not occur.  This function is optimized to maximize the model’s fit to the data. 241 

For our tetranomial model, the hierarchical probabilities defined in Eq. (5) can be used in a 242 

multinomial log likelihood function to calculate the fit of the model to the calibration data set: 243 

 ( ) ( ) ( ) ( )1

4 , , , , , ,
1

ln 1 ,
N

h h h h h h
s i m i n i s i m i n i

i

LL P P P P P P
ν µ σ σ µ ν− − −

=

 = − − −  ∑   (10) 244 

where the index i  counts over each dive exposure and the dive outcome is expressed with  245 

 

1, 0 for serious DCS

1, 0 for mild DCS

1, 0 for marginal DCS

0   for no DCS.

σ µ ν
µ σ ν
ν σ µ
σ µ ν

= = =
= = =
= = =
= = =

  (11) 246 

The model is optimized with serious, mild, and marginal DCS treated as separate, hierarchical events 247 

distinguished by scaling factors. 248 

We can collapse the tetranomial log likelihood function in Eq. (10) to an equivalent trinomial 249 

marginal log likelihood function by combining the probabilities of serious and mild DCS to represent full 250 

DCS as 251 
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 ( ) ( ) ( )1

43 , , , , , ,
1

ln 1 .
N

h h h h h h
s i m i n i m i s i n i

i

LL P P P P P P
ν µ σ µ σ ν− − − +

=

 = − − − +  ∑   (12) 252 

In Eq. (12), 43LL  is the deflated tetranomial-to-trinomial log likelihood function calculated from 253 

hierarchical probabilities.  We will use this deflated log likelihood to compare the tetranomial model in 254 

this work with the trinomial marginal model in our companion work [15]. 255 

2.7 DCS Model Optimization and Statistical Methods 256 

The optimal parameters for the tetranomial model were determined with maximization of the 257 

tetranomial log likelihood function in Eq. (10).  A thorough description of the maximization technique 258 

used herein can be found in Ref. [21].  The optimization of Eq. (10) is computationally expensive because 259 

some model parameters are nearly collinear.  To reduce the number of optimized parameters, Howle 260 

previous derived an analytical solution for the optimal compartmental gain values given the rest of the 261 

parameter set [20], which can be extended to these multinomial models [10].   262 

All 12 model variants were optimized from 1024 random initial guesses, and the parameter set 263 

yielding the maximum log likelihood was chosen for each model.  Because these model variants differ in 264 

the number of adjustable parameters, their log likelihoods cannot be compared directly, so the log 265 

likelihood difference test was used, defined in [7] as 266 

 ( )2 2 ,ij i jLL LL LLχ∆ = = − −   (13) 267 

where iLL  and jLL  are the log likelihoods of the models being compared.  The log likelihood 268 

difference comparison value, ijLL∆ , for each model pair can be compared against the Chi-squared 269 

distribution value for significant ( 0.05p < ) or highly significant ( 0.01p < ) improvement based on the 270 

number of additional degrees of freedom from one model to the other. 271 
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The 95% confidence intervals on the optimized parameters were calculated according to Ref. [7].  In this 272 

method, the covariance matrix was taken as the negative inverse of the approximate Hessian, and the 273 

estimated parameter standard errors were the diagonal components of this covariance matrix.  274 

SigmaPlot v14 [24] was used to plot the 95% confidence limits and 95% prediction limits on the models’ 275 

fits to the data set. 276 

 The Pearson Residual group statistic was used to compare each multinomial models’ success at 277 

predicting each severity of DCS.  This statistic was calculated according to Ref. [22], i.e. 278 

 
( )2

1

j j

j

j
j

j

obs pred
PR

pred
pred

N

−
=

 
−  

 

  (14) 279 

where subscript j  indicates the group, jobs  is the number of observed events in the group, jpred  is the 280 

number of model-predicted events for that group, and jN  is the total number of exposures in group j.  281 

The sum of the Pearson Residuals for all j  groups is equal to the Chi-square statistic, 
2χ : 282 

 
2

1

J

j
j

PRχ
=

=∑  . (15) 283 

In this statistical analysis, the null hypothesis is that the model-predicted incidence of DCS is equal to the 284 

incidence of DCS observed in the BIG292 dataset.  A high 
2χ  value (and corresponding low p-value) 285 

indicates that the model’s predictions are not consistent with the observed occurrence of DCS in the 286 

data.   287 

 288 



16 

 

3. Results 289 

In the subsections below, all 12 optimized model variants are compared and the best 290 

performing model chosen using the log likelihood difference test.  The best model’s predictions on the 291 

dive data set are examined, along with the cumulative density function for predicted cases and 292 

predicted vs. observed probabilities of DCS.  The tetranomial model is then compared with the trinomial 293 

and trinomial marginal models from our previous work. 294 

3.1 Tetranomial Model Comparison 295 

For each of the 12 model variants, the parameter sets yielding the best log likelihood were 296 

chosen for comparison.  The log likelihoods of each splitting type (I/II and A/B) model pair can be 297 

compared directly, and for all six pairs, the A/B models performed better than the corresponding I/II 298 

models (Table 2).  The optimal parameter sets for these six A/B splitting models (EE1, EE1nt, EE1 Full, 299 

LE1, LE1nt, and LE1 Full) can be found in Table 3, along with the 95% confidence intervals for the LE1 300 

model.   301 

 

Model # DOF LL Severity Splitting Type Winner 

EE1 NT I/II 8 -1612.30041 

EE1 NT A/B 

EE1 NT A/B 8 -1581.05407 

EE1 I/II 9 -1589.44908 

EE1 A/B 

EE1 A/B 9 -1560.50726 

LE1 NT I/II 9 -1609.74076 

LE1 NT A/B 

LE1 NT A/B 9 -1578.65117 

LE1 I/II 10 -1583.42341 LE1 A/B 
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LE1 A/B 10 -1549.5327 

EE1 Full I/II 11 -1588.09186 

EE1 Full A/B 

EE1 Full A/B 11 -1559.70088 

LE1 Full I/II 14 -1586.30942 

LE1 Full A/B 

LE1 Full A/B 14 -1562.72073 

 

Table 2.  Maximum log likelihood for each of the 12 models optimized from 1024 random initial 

guesses.  Each of the six models (EE1, EE1nt, EE1 Full, LE1, LE1nt, and LE1 Full) was tested with both 

Type I/II and Type A/B DCS severity splitting.  For each of these six models, the log likelihoods of Type 

I/II and Type A/B splitting can be compared directly to determine which splitting method yields the 

best model performance. 

 

EE1nt EE1 LE1nt LE1 EE1 Full LE1 Full 

1/k1 (min) 2.295 4.957 3.001 3.496 ± 0.1510 7.802 1.585 

1/k2 (min) 245.9 267.6 211.5 63.83 ± 22.86 496.6 578.2 

1/k3 (min) 619.6 619.2 607.8 548.1 ± 42.89 149.4 151.0 

g1 (min
-1

) 1.212E-03 3.767E-04 7.665E-04 7.138E-04 ± 4.337E-04 3.743E-04 1.085E-03 

g2 (min
-1

) 4.222E-04 4.719E-04 3.458E-04 9.036E-05 ± 2.603E-05 1.110E-03 5.991E-04 

g3 (min
-1

) 2.032E-04 1.363E-03 2.369E-04 1.049E-03 ± 2.129E-04 1.226E-04 3.461E-04 

PXO1 (fsw) ∞ ∞ ∞ ∞ ∞ 2.429 

PXO2 (fsw) ∞ ∞ 0.2897 0.07471 ± 0.01127 ∞ 4.821 

PXO3 (fsw) ∞ ∞ ∞ ∞ ∞ 2.708 

Thr1 (fsw) 0 0 0 0 0.07158 0.1220 
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Thr2 (fsw) 0 0 0 0 0.1127 0.08404 

Thr3 (fsw) 0 0.2185 0 0.1202 ± 0.01134 -0.06614 -0.02619 

a 0.1134 0.1087 0.1124 0.1127 ± 0.01552 0.1235 0.1250 

b 0.6756 0.6489 0.6869 0.6981 ± 0.01142 0.7173 0.6000 

P(N) 106.83 100.99 107.1 105.83 ± 12.57 102.46 93.11 

P(M) 167.41 167.88 165.31 163.2 ± 20.78 153.45 165.27 

P(S) 19.72 19.23 19.31 19.31 ± 3.566 19.87 21.6 

LL4 -1581.05 -1560.51 -1578.65 -1549.53 -1559.70 -1562.72 

 

Table 3.  Optimal model parameters for all EE1 and LE1 model variants.  All model variants in the 

above table used Type A/B splitting.  95% confidence intervals are given for the LE1 model 

parameters, which provided the best fit to the BIG292 data set. 

 302 

The comparisons between the six A/B model variants, which differ in the number of degrees of 303 

freedom, were performed with the log likelihood difference test.  These log likelihood difference test 304 

values ( ijLL∆ ) can be found in Table 4 for all A/B splitting models, and the Chi-squared distribution 305 

values for one to six additional degrees of freedom are in Table 5.  In Table 4, the number of adjustable 306 

parameters for each model is listed in parenthesis.  The log likelihood difference value between each 307 

model pair is listed in the corresponding row-column intersection.  Reading down a column compares 308 

that column’s model to models with less degrees of freedom, and reading across a row compares that 309 

row’s model with models having more degrees of freedom.  A bold value indicates the column model 310 

provides significant improvement (p < 0.05) over the row’s model, and a bold and underlined value 311 

indicates the column model provides highly significant improvement (p < 0.01) over the row’s model.  312 
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We can see that the use of one pressure threshold parameter is justified, as the EE1 and LE1 provided 313 

highly significant improvement over the EE1nt and LE1nt respectively.  The crossover pressure 314 

parameter enabled the LE1 model to perform significantly better than the EE1 model.  However, the EE1 315 

Full and LE1 Full models did offer significant improvement over the EE1 and LE1 models respectively, so 316 

the addition of threshold and crossover pressure parameters to all compartments is not justified.  We 317 

can conclude that the LE1 model provided the best fit to our data, as the LE1 model provided highly 318 

significant improvement over the EE1, EE1nt, and LE1nt models.  Models with more adjustable 319 

parameters than the LE1 (the EE1 Full and LE1 Full) did not offer any improvement.  Therefore, all 320 

following discussion will pertain to the LE1 model with Type A/B splitting. 321 

 

 

EE1nt (8) EE1 (9) LE1nt (9) LE1 (10) EE1 Full (11) LE1 Full (14) 

EE1nt (8) - 41.094 4.806 63.043 42.706 36.667 

EE1 (9) 

 

- -36.288 21.949 1.613 -4.427 

LE1nt (9) 

  

- 58.237 37.901 31.861 

LE1 (10) 

   

- -20.336 -26.376 

EE1 Full (11) 

    

- -6.040 

LE1 Full (14) 

 

- 

 

Table 4.  Log likelihood difference comparison for all models using Type A/B splitting.  Each model’s 

number of adjustable parameters is listed in parenthesis.  The log likelihood difference value between 

any two of the six models is located in the corresponding row-column intersection.  Values in bold 

indicate the column model provides significant improvement (p < 0.05) over the row model, and bold 

and underlined values indicate the column model provides highly significant improvement (p < 0.01) 
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over the row model. 

 

Δ DOF p<0.05 p<0.01 

1 3.841 6.635 

2 5.991 9.210 

3 7.815 11.345 

4 9.488 13.277 

5 11.070 15.086 

6 12.592 16.812 

 

Table 5.  Chi-squared distribution values for 0.95 (p<0.05) and 0.99 (p<0.01) based on the number of 

additional degrees of freedom. 

 322 

The observed probabilities of DCS in the data set and the LE1 tetranomial model’s predicted 323 

probabilities of DCS are plotted in Figure 2 for marginal (black diamonds, top right), mild (gray circles, 324 

top  left),  serious (white triangles, bottom) DCS.  This plot was generated by first sorting the model’s 325 

per-dive exposure predictions by the probability of no DCS.  These per-dive predictions were then placed 326 

in bins with equal numbers of observed serious, mild, or marginal DCS cases.  For this plot, we used 10 327 

bins of 17 mild DCS outcomes each, 5 bins of 4 serious DCS outcomes, and 5 bins of 22 marginal DCS 328 

outcomes.  The predicted probabilities of DCS were calculated as the sum of the model’s per-dive 329 

exposure predictions for that DCS severity divided by the total number of exposures in the bin.  The 330 

observed probabilities of DCS were calculated as the number of observed DCS outcomes in the bin 331 

divided by the total number of dive exposures in the bin.  The linear fits for the serious, mild, and 332 
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marginal DCS data points were plotted (
2 0.14seriousr = , 

2 0.65mildr = , and 
2
arg 0.80m inalr = ), along with 333 

the 95% confidence and 95% prediction bands.  The line of identity was also plotted (black line).  If a 334 

model’s predictions were perfectly aligned with the data set, all points in this plot would fall on the line 335 

of identity.  Like the trinomial model in our companion work [15], the marginal DCS data points are less 336 

scattered than that of serious and mild DCS.  The mild DCS model predictions align the closest with the 337 

data set, as the mild DCS linear fit line aligns closer to the line of identity than that for serious or 338 

marginal DCS. 339 

 340 
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 341 

Figure 2.  Tetranomial LE1 observed probabilities of DCS vs. predicted probabilities of DCS  These 342 

probabilities are plotted with a linear fit (
2
arg 0.80m inalr = , 

2 0.65mildr = , and 
2 0.14seriousr = ) and the 95% 343 

confidence and 95% prediction bands. 344 

3.2 Predictions on Data 345 

The tetranomial LE1 model’s predicted DCS outcomes and the observed DCS cases in the data 346 

can be found in Table 6.  The dive data is separated by dive type, which includes single air, single non-air, 347 

repetitive and multilevel air, repetitive and multilevel non-air, and saturation diving.  The 95% 348 

confidence intervals are listed for the model’s total predictions of serious, mild, marginal, and any DCS.  349 

These predictions do match the observed number of cases within 95% confidence.  From Table 6, we can 350 

see that the model underpredicts mild, serious, and marginal DCS occurrence for single air diving. 351 
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Observed DCS LE1 AB Tetranomial Predicted DCS 

 

Exposures Mild Serious Marginal Total Mild Serious Marginal Total 

Single Air                   

EDU885A 483 27 3 0 30 19.77 2.29 13.24 35.3 

DC4W 244 7 1 4 12 4.11 0.47 2.81 7.39 

SUBX87 58 0 2 0 2 0.14 0.02 0.10 0.26 

NMRNSW 91 4 1 5 10 3.88 0.45 2.59 6.92 

PASA 72 4 1 2 7 1.87 0.21 1.27 3.35 

NSM6HR 57 3 0 2 5 3.10 0.36 2.05 5.51 

Rep&Mult  

Air                   

EDU885AR 182 11 0 0 11 8.42 0.98 5.60 15 

DC4WR 12 3 0 0 3 0.66 0.08 0.44 1.18 

PARA 135 6 1 3 10 6.98 0.81 4.62 12.41 

PAMLA 236 9 4 12 25 14.05 1.64 9.25 24.94 

Single  

Nonair                   

NMR8697 477 9 2 18 29 11.00 1.26 7.48 19.74 

EDU885M 81 4 0 0 4 2.17 0.25 1.48 3.9 

EDU1180S 120 9 1 0 10 5.07 0.59 3.38 9.04 

Rep&Mult  

Nonair                   

EDU184 239 11 0 0 11 10.17 1.18 6.79 18.14 

PAMLAOD 134 5 1 0 6 5.92 0.68 3.98 10.58 
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PAMLAOS 140 5 0 3 8 4.28 0.49 2.89 7.66 

EDU885S 94 4 0 0 4 2.60 0.30 1.77 4.67 

Saturation                   

ASATEDU 120 11 2 27 40 14.70 1.80 9.05 25.55 

ASATNMR 50 1 0 0 1 4.12 0.49 2.66 7.27 

ASATNSM 132 18 0 21 39 22.31 2.80 13.16 38.27 

ASATARE 165 19 1 13 33 17.88 2.16 11.22 31.26 

Totals 3322 170 20 110 300 

163.2 ± 

20.78 

19.31 ± 

 3.566 

105.83 ± 

 12.57 

288.34 ± 

 24.5 

 

Table 6.  DCS occurrences and tetranomial model predictions for the BIG292 data set. 

 352 

The imbalance in the distribution of marginal DCS events in the data is evident when considering 353 

saturation diving.  More than half of the marginal DCS events (55%) in the data set occur from saturation 354 

diving, though the entire data set is comprised of only 3% marginal events and 14% saturation dives.  In 355 

Table 6, we can see that the tetranomial model does not reproduce this skew in observed marginal DCS 356 

cases, as the model predicts only 33% of marginal cases occurring from saturation diving. 357 

3.3 Tetranomial Model vs. Trinomial Marginal Model 358 

The model parameters used in the trinomial marginal LE1 model along with model performance 359 

analysis can be found in Ref. [15].  We can calculate the tetranomial model’s equivalent trinomial 360 

marginal log likelihood using Eq. (12).  For the optimized tetranomial LE1 model parameter set, 361 

43 1485.4LL = − , which is nearly identical to the optimal trinomial marginal LE1 log likelihood found in 362 

[15].  This indicates that the performance of the tetranomial model is on par with the trinomial marginal 363 
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model when using the BIG292 data set.  This is likely because both models optimized to nearly identical 364 

parameter sets. 365 

The shift in predicted dive exposure probabilities between the trinomial marginal and 366 

tetranomial models is plotted in Figure 3.  In Figure 3, the trinomial marginal and tetranomial models’ 367 

predicted probabilities for full DCS are plotted for all full observed DCS cases (gray circles), predicted 368 

probabilities of marginal DCS for observed marginal DCS cases (white diamonds), and predicted 369 

probabilities of no DCS for observed no DCS cases (gray squares).  All these data points fall close to the 370 

line of identity, indicating that these models make nearly identical predictions on the data set.  The 371 

slope of the linear fit to the full DCS data points is 0.9978 ( 2 0.9999r > ), for marginal DCS data points is 372 

1.000 ( 2 1.000r = ), and for no DCS data points is 0.9985 ( 2 0.9999r > ).  These slopes approximate the 373 

probability shift between the two models, i.e. , _ ,tet full tri m fullP P≈  and , arg _ , argtet m tri m mP P≈ .  The 374 

tetranomial and trinomial marginal models’ agreement in hierarchical probabilities for each DCS cases is 375 

a result of both models optimizing to nearly identical parameter sets, so one model does not offer 376 

significant performance improvement over the other on this data set. 377 

 378 
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 379 

Figure 3.  Trinomial marginal to tetranomial probability shift.  For dives that resulted in full DCS, the 380 

sums of the tetranomial predicted probabilities of serious and mild DCS are plotted against the trinomial 381 

marginal predicted probability of full DCS (gray circles).  For dive exposures that resulted in marginal DCS 382 

and no DCS, the tetranomial model predicted probabilities of marginal (white diamonds) and no DCS 383 

(gray squares) respectively are compared with that of the trinomial marginal model. 384 

3.4 Tetranomial Model vs. Trinomial Model 385 

The shift in predicted dive exposure probabilities between the trinomial and tetranomial models 386 

is plotted in Figure 4.  The model parameters used in this trinomial LE1nt model can be found in [10].  387 

Both models use DCS Type A/B splitting (see Table 1).  In Figure 4, the trinomial and tetranomial models’ 388 

predicted probabilities of mild DCS for dive exposures that resulted in mild DCS are plotted with gray 389 
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circles, and likewise for serious DCS in white triangles.  The trinomial model’s predicted probabilities of 390 

no DCS and the tetranomial model’s predicted probabilities of no- and marginal DCS for dive exposures 391 

that did not result in full DCS are plotted with gray squares.  The mild DCS and serious DCS data points 392 

that fall above the line of identity indicate the tetranomial model predicted a greater probability of 393 

occurrence of DCS for those exposures than the trinomial model, and the no DCS points that fall below 394 

the line of identity indicate the tetranomial model predicted a lower probability of no DCS for those 395 

exposures compared with the trinomial model. 396 

 397 

 398 

Figure 4.  Trinomial to tetranomial probability shift.  For dives that resulted in mild or serious DCS, the 399 

tetranomial model predicted probabilities of mild or serious DCS are plotted against that of the trinomial 400 
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model.  For dives that resulted in no DCS (including marginal DCS), the sum of the predicted probabilities 401 

of marginal and no DCS for the tetranomial model are compared with the trinomial model’s predicted 402 

probabilities of no DCS. 403 

The slope of the linear fit to the mild DCS data points is 1.720 ( 2 0.7358r = ) and the slope of 404 

the linear fit to the serious DCS data points is 1.228 ( 2 0.7250r = ).  The line of linear fit to the no DCS 405 

points has a slope of 1.352 ( 2 0.7333r = ).  All three sets of data points have similar amounts of scatter, 406 

as all have an r
2
 value of approximately 0.73.  Using these slopes to approximate the trinomial to 407 

tetranomial probability shift, , ,1.720tet mild tri mildP P≈  and , ,1.228tet ser tri serP P= .  Thus, the tetranomial 408 

model predicts a greater probability of mild/serious DCS for some mild/serious DCS cases and a lower 409 

probability of no DCS for some no DCS cases when compared with the trinomial model. 410 

3.5 Cumulative Density Function 411 

Cumulative density functions (CDF) can be used to visually inspect the DCS symptom onset time 412 

agreement between a model’s predictions and empirical data.  A probabilistic DCS model that performs 413 

well on the dataset would produce a CDF that closely replicates that of the data.  An in-depth analysis of 414 

the BIG292 data set density function was performed in our previous work [18], and it is important to 415 

note that the DCS symptom onset times reported in the data may have been biased by the medical 416 

surveillance protocol. 417 

The cumulative density functions for the mild, serious, and marginal DCS BIG292 data are 418 

plotted in Figure 5 as the solid black curve, solid gray curve, and dashed gray curve respectively.  The 419 

dashed black line represents the cumulative density function for the tetranomial model’s predictions of 420 

all DCS types, as scaling factors are used by the model to delineate these severities and thus their 421 

cumulative density functions fall on the same curve.  422 
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 423 

 424 

Figure 5.  Tetranomial cumulative density function.  Mild DCS (black, solid curve), serious DCS (solid, gray 425 

curve), and marginal DCS (dashed, gray curve) cases are shown for the BIG292 dive data set.  The 426 

cumulative density functions for predicted mild, serious, and marginal DCS fall on the same curve (black, 427 

dashed). 428 

The tetranomial model’s predicted CDF indicates the model most severely over-predicts serious 429 

DCS prior to surfacing, then over-predicts the onset of all severities of DCS immediately after surfacing.  430 

The tetranomial model’s onset time predictions are closely aligned with the marginal DCS cases’ onset 431 

times until approximately 7 hours prior to surfacing.  After surfacing, the marginal DCS data CDF lags 432 

behind the mild and serious DCS curves, as the 42 of 110 marginal DCS cases reported without onset 433 
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times were assigned T2, or the first known time the diver was experiencing symptoms, at the studies’ 434 

right-censored times (24 or 48 hours).  Because the onset time windows for these 42 marginal cases are 435 

imprecise, the tetranomial model’s predicted CDF’s inability to replicate late onset for marginal cases 436 

may not indicate an issue with the model. 437 

3.6 Pearson Residual 438 

The chi-square values calculated from the Pearson Residual of each dive type according to Eqs. 439 

(14) and (15)  for the binomial and trinomial LE1nt models in Ref. [10], the trinomial marginal LE1 model 440 

in Ref. [15], and the tetranomial LE1 model presented in this work can be found in Table 7.  It is evident 441 

from Table 7 that the trinomial marginal model’s and the tetranomial model’s predictions of marginal 442 

DCS do not align with the observed incidence of marginal DCS, because these groups have a high 
2χ  443 

value (and corresponding low p-value). 444 

 

Number 

of DOF 

Pearson 

Residual Full 

DCS 

Pearson 

Residual Mild 

DCS 

Pearson 

Residual Serious 

DCS 

Pearson Residual 

Marginal DCS 

Binomial 

LE1nt [10]  

7 8.465 

p=0.294 

 Trinomial 

LE1nt [10] 

8 

 

8.421 

p=0.393 

4.527 

p=0.807 

 Trinomial 

Marginal 

LE1 [15] 

9 

12.270 

p=0.199 

 

36.568 

p=0.000031 
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Tetranomial 

LE1 

10 

 

7.597 

p=0.668 

9.246 

p=0.509 

36.612 

p=0.000066 

 

Table 7.  Pearson Residual group statistic (
2χ ) and corresponding p-value calculated for each model’s 

predictions of DCS incidence.  A high 
2χ  value (and corresponding low p-value) indicates that the 

model’s predictions are not consistent with the observed occurrence of DCS in the data.   

 445 

4. Discussion 446 

The tetranomial model presented here serves as a continuation of the trinomial LE1nt model 447 

published by Howle et al. [10] and the trinomial marginal LE1 model explored by King et al. [15].  All 448 

model formulation and analyses were conducted in accordance with those works.  In this Discussion 449 

section, we will compare all three models. 450 

In this work, we optimized six tetranomial model variants: EE1, EE1nt, EE1 Full, LE1, LE1nt, and 451 

LE1 Full.  These model variants were tested with both Type I/II and Type A/B splitting, and the Type A/B 452 

splitting models outperformed all their corresponding Type I/II splitting models.  The log likelihood 453 

difference test was used to determine that the LE1 model, with a pressure crossover parameter in the 454 

second compartment and a pressure threshold parameter in the third compartment, provided the best 455 

fit to the BIG292 data set.   456 

The tetranomial LE1 model predicted the distribution and onset of mild DCS cases better than 457 

that of serious and marginal DCS.  In Figure 2, the linear fit line for the mild DCS data is closest to the line 458 

of identity, and in Figure 5, the predicted CDF is follows closest to the mild DCS curve when compared 459 
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with serious and marginal DCS.  These figures also illustrate that the model is least accurate in predicting 460 

both the distribution of marginal DCS cases within the data set and their onset times.  These graphical 461 

results are verified in Table 7, as the Pearson Residual Chi-squared value is lowest for mild DCS, followed 462 

closely by serious DCS.  Howle’s trinomial model does not follow this trend, and predicts serious DCS 463 

more accurately than mild DCS (Table 7).  All three models’ CDFs indicate they are able to accurately 464 

predict the onset of serious and mild DCS around the time of surfacing (Figure 5, [10, 15]). 465 

The high Pearson Residual Chi-squared value for marginal DCS indicates that both the trinomial 466 

marginal and tetranomial models’ predictions are not aligned with the incidence of marginal DCS in the 467 

BIG292 data set.  The distribution of marginal DCS cases in the BIG292 data set is skewed towards 468 

saturation diving, as 55% of the BIG292 marginal cases occur from saturation diving, and saturation 469 

diving only constitutes 14% of the total data.  Both the trinomial marginal and the tetranomial LE1 470 

models are unable to reproduce this skew, and only predict 34% of marginal DCS cases occurring from 471 

saturation diving.  In addition, the marginal cases with right-censored T2 times may not accurately reflect 472 

the true symptom onset times.  Neither the trinomial marginal nor the tetranomial models predict the 473 

onset time delay created by this right-censoring (Figure 5, [15]).  This may not indicate an inherent flaw 474 

in these models’ ability to predict marginal DCS, rather points to an issue with potentially inaccurate 475 

data. 476 

When comparing this tetranomial LE1 model with the trinomial marginal LE1 model in Figure 3, 477 

all data points fall close to the line of identity.  Both models make nearly identical predictions on the 478 

data set.  In Table 6, the sums of the tetranomial model’s mild DCS and serious DCS predictions for each 479 

dive type are nearly equivalent to the trinomial marginal model’s predictions for full DCS in Ref. [15].  480 

Both models optimized to nearly identical parameter sets.  When using the tetranomial model’s 481 

equivalent trinomial marginal log likelihood to compare these two models, no clear winner emerges.   482 
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The optimal tetranomial model parameter set is quite different from the trinomial model’s 483 

optimal parameters Ref. [10], which considers marginal DCS events as non-events.  In Figure 4, the 484 

tetranomial model predicts a higher probability of mild and serious DCS than the trinomial model for 485 

some mild and serious DCS cases, and a lower probability of no DCS than the trinomial model for some 486 

no DCS cases.  The increase in scatter of these data points when compared with Figure 3 illustrates the 487 

difference in optimal parameter sets which alters each models’ predictions.  It could be argued that the 488 

tetranomial model would generate more conservative “safe” ascent criteria than the trinomial model, as 489 

the tetranomial model predicts increased probabilities of DCS and decreased probabilities of no DCS 490 

than the trinomial model.   491 

When the trinomial model was compared with a binomial model in [10], the probability shift 492 

plot showed a similar trend as Figure 3 and both optimal parameter sets were nearly identical.  493 

However, the trinomial model’s equivalent binomial log likelihood indicated the trinomial model 494 

performed highly significantly better than the binomial model on the BIG292 data set. 495 

5. Conclusion 496 

The tetranomial model explored in this work simultaneously predicts the hierarchical 497 

probabilities of serious, mild, marginal, and no DCS.  The derivation of these hierarchical probabilities 498 

and the multinomial log likelihood function used during model calibration are extensions of the previous 499 

Howle et al. work [10]. 500 

Both the trinomial marginal model in Ref. [15] and tetranomial model presented here are 501 

unable to accurately replicate the occurrence of marginal DCS events observed in the BIG292 dataset.  502 

These marginal DCS events may hinder model fit during calibration, there is a concentration in marginal 503 

DCS outcomes resulting from saturation diving.  A reviewer suggested modifying the tetranomial model 504 

presented in this work by optimizing separately on bounce diving and saturation diving data.  Future 505 
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work could include the creation of two tetranomial models, one that predicts serious, mild, marginal, 506 

and no DCS for bounce diving, and one that predicts serious, mild, marginal, and no DCS for saturation 507 

diving, with the goal of mitigating the bias the BIG292 dataset presents with marginal DCS outcomes. 508 

The trinomial LE1nt model in [10] demonstrated highly significant improvement over the 509 

binomial LE1nt model, both considering marginal DCS as non-events.  Using the Pearson’s 
2χ  as a 510 

metric, we find that the trinomial LE1nt model’s predictions are most closely aligned with the incidence 511 

of observed DCS in the data.  We therefore recommend the use of the trinomial LE1nt model from Ref. 512 

[10] with the event categories of serious, mild, and no-DCS, Type A/B severity splitting, and marginal 513 

events scored as non-events.  This trinomial probabilistic model can be used to generate dive schedules 514 

specific to symptom severity, to better tailor dive missions to the acceptable level of risk for the divers. 515 
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