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Abstract 

Decompression sickness (DCS) is a condition resulting from the decrease in 

ambient pressure, both in hyperbaric and hypobaric environments.  When ambient 

pressure is decreased, inert gas dissolved in the body’s tissues can become 

supersaturated and form bubbles, the physiological precursor to DCS.  The signs and 

symptoms of DCS range from mild joint pain or rash to serious cardiopulmonary or 

neurological dysfunction.  DCS is treated with recompression therapy, in which a 

patient is recompressed in a hyperbaric chamber and then decompressed following a 

treatment schedule specific to their symptoms. 

This work focuses on DCS arising from hyperbaric exposures, and specifically 

underwater diving.  DCS is a risk faced by U.S. Navy divers during underwater 

missions.  To gain insight into the level of risk posed by a particular time-depth profile, 

the Navy uses probabilistic decompression models.  These models quantify the 

probability of DCS occurring using survival analysis and a gas content or bubble volume 

model to define risk.  Current probabilistic models make a binomial prediction of the 

probability of DCS occurring and not occurring. 

Risk is a two-faceted entity, in which both the probability of injury and severity 

of injury contribute to the level of risk posed by an activity.  Many Department of 
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Defense organizations use two-dimensional risk assessment matrices to consider both 

the probability and severity of injury to manage operational risk.  However, the U.S. 

Navy’s probabilistic decompression models only predict the probability of injury and do 

not provide divers with any information regarding potential DCS symptom severity.   

The goal of this work is to investigate the efficacy of a variety of multinomial 

probabilistic models which simultaneously predict the probability and severity of DCS 

injury.  We first conducted an analysis on the BIG292 calibration dataset to uncover the 

source of the bimodal trend in DCS symptom onset times.  We concluded that neither of 

the two peaks alone correspond to DCS symptoms or DCS resulting from a particular 

dive type, and rather are a product of dive trial medical surveillance protocol.  Because 

the dataset’s bimodal symptom onset time behavior is not related to the illness itself, it is 

not necessary for a probabilistic model to reproduce this trend. 

Next, we developed 20 multinomial probabilistic models, testing the 

effectiveness of gas content versus bubble volume models to calculate risk, the 

justification of various gas content model parameters, the impact of using Type A/B 

versus Type I/II symptom severity splitting methods to define mild/serious DCS cases, 

and the influence of treating marginal DCS cases as separate, hierarchical events versus 

considering them non-events during model calibration.   
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The multinomial models presented in Chapters 3, 4, and 5 are able to accurately 

predict the incidence and severity of DCS as observed in the calibration data within 95% 

confidence.  We find that trinomial models, which predict the probabilities of mild, 

serious, and no DCS, do perform better on the calibration dataset then their binomial 

counterparts.  Multinomial models that predict the probabilities of marginal DCS are not 

able to accurately replicate the onset or distribution of marginal DCS cases in the 

calibration dataset, and the use of marginal cases during model calibration negatively 

affects the model’s ability to accurately predict other types of DCS as well.  The 

multinomial bubble volume models tested in this work were not able to achieve an 

optimal parameter set, and experienced model failure when predicting zero risk for a 

subset of dives.   

We do not recommend the further use of multinomial models that predict the 

probability of marginal DCS separately from other symptom types.  The multinomial 

bubble volume models should be reoptimized with a different algorithm and/or an 

alternative bubble nucleation criterion.  To determine which multinomial probabilistic 

model presented here is optimal for U.S. Navy dive planning, all models should be 

evaluated on data that was not used for model calibration. 
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1. Introduction  

1.1 Brief History of Dive-Related Illnesses 

The first recorded case of decompression sickness (DCS) dates back to 1670, 

when Sir Robert Boyle noted a bubble in the eye of a viper after being placed in a 

vacuum [1].  Through this experiment, he demonstrated bubble formation in living 

tissue following a reduction in ambient pressure.  This was eight years after Boyle’s law 

was published, which describes the inverse relationship between the pressure and 

volume of a gas.  In the early nineteenth century, Dalton’s gas law and Henry’s law were 

published, both of which contribute to our modern understanding of DCS.  Dalton’s law 

of partial pressures states that the total pressure of a mixture of gases is equal to the sum 

of the partial pressures of each gas.  Henry’s law equates the amount of dissolved gas in 

a liquid to the partial pressure of the gas above the liquid. 

In the 1840’s, DCS was described in coal miners working in a pressurized mine in 

France, who experienced muscle cramps after leaving the pressurized environment [1, 

2].  This phenomenon was described again in the early 1870’s during the construction of 

the Brooklyn Bridge and the Eads Bridge.  The large piers of these bridges were built 

using caissons, which were air-tight, pressurized chambers to keep mud and water from 

flooding the working environment.  The construction of the east pier of the Eads Bridge 

exposed workers to 4.4 ATA, and after a 3-4 minute decompression from this 

environment, many workers experienced joint pain, numbness, paralysis, and there 
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were 12 recorded deaths [2].  After leaving the working environment, many laborers 

walked with a stooped posture, giving DCS its popular name of “the bends”, derived 

from the similar fashionable posture of Victorian ladies called the Grecian bend [3].   

In 1878, French physiologist Paul Bert published La Pression barometrique 

(Barometric Pressure), describing a series of experimental work on the physiological 

effects of hypobaric and hyperbaric exposures.  He was able to conclude that DCS 

symptoms were caused by the formation of nitrogen bubbles in the blood and 

recommended DCS mitigation through slow decompression.  Among Bert’s findings 

was also central nervous system oxygen toxicity.  He found that breathing oxygen at 

elevated pressures can be toxic, and symptoms of oxygen toxicity are sometimes called 

the “Paul Bert effect” [1, 2]. 

In the early twentieth century, though it was known that DCS arose from a 

decrease in pressure and the formation of nitrogen bubbles in the body, there were no 

standard methods for mitigating DCS risk.  The Royal Navy commissioned Scottish 

physiologist J. S. Haldane to develop decompression schedules that could be used by 

Navy divers.  The gas content model published by Haldane and coworkers [4] provided 

the foundation upon which all modern decompression models are based.  Haldane’s 

model calculated nitrogen gas content in five compartments (hypothetically 

representing tissues in the body), each with a unique gas absorption/elimination rate 

(also called a half-time).  These half-times were chosen to be 5, 10, 20, 40, and 75 minutes.  
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Unlike previous researchers who proposed uniform decompression, Haldane’s model 

recommended staged decompression, in which divers make stops during ascent to 

eliminate the absorbed inert gas.  This decompression schedule allowed for a maximum 

reduction in absolute pressure by one-half, followed by a series of decompression stops 

to complete the ascent so as not to exceed this 2:1 ratio of air tension in the diver to the 

absolute pressure.  The model was deterministic, meaning it predicted a binary outcome 

of DCS or no DCS based on the adherence to or violation of Haldane’s “safe” 

decompression criteria [2, 4]. 

In the mid 1930’s, the U.S. Navy observed occasional and sudden distress in 

divers surfacing from less than 33 feet of seawater (fsw).  Thought to be aberrant cases of 

DCS, similar symptoms resulting from submarine escape training revealed pulmonary 

barotrauma.  This lung injury results from breath-holding during ascent: as ambient 

pressure decreases, the air in the lungs will expand and, if the diver does not exhale, can 

rupture, releasing air bubbles into the pulmonary veins.  These air bubbles, called 

Arterial Gas Embolisms, can travel to the heart and brain, causing the severe symptoms 

reported by the Navy [1]. 

Also in the mid 1930’s, U.S. Navy Submarine Medical Officer Albert Behnke 

investigated the intoxicating effects of diving deeper than 150 feet.  Behnke discovered 

that inert gases, such as nitrogen, can cause mental deterioration; this phenomenon is 

known as nitrogen narcosis.  To avoid nitrogen narcosis, a series of experimental dives 
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were performed with helium-oxygen (heliox) breathing mixtures in 1937.  In the 1960’s, 

breathing mixtures of helium-nitrogen-oxygen (trimix) were investigated [1]. 

1.2 Physiology of DCS 

This work focuses on hyperbaric exposures from underwater diving.  At 

atmospheric pressure, the body’s tissues are saturated with the partial pressure of inert 

gas (nitrogen) inspired.  During decent to depth, the hydrostatic pressure of the water 

increases the ambient pressure experienced by a diver.  For every 33 fsw (10 meters 

seawater) descended, the ambient pressure increases by one atmosphere (1 bar, 14.5 

psig).  As a diver descends, the partial pressure of inert gas in their blood and tissues, 

which was equilibrated with 1 ATA, is now lower than the ambient pressure.  The diver 

breathes gas that is equilibrated to the new ambient pressure into the lungs, where it is 

absorbed into the blood and circulated to the tissues at this increased partial pressure.  

When a diver ascends back to the surface and ambient pressure decreases, the absorbed 

inert gas is now at an elevated partial pressure and can leave solution, forming gas 

bubbles [5]. 

The signs and symptoms of DCS can range from mild, such a skin rashes or joint 

pain, to more severe, including neurological and cardiopulmonary malfunction and 

even death.  The U.S. Navy categorizes DCS into two severities: Type I and Type II [6].  

Type I DCS includes joint pain, cutaneous symptoms, and lymphatic symptoms.  Joint 

pain is the most common symptom of DCS, and typically occurs at the shoulder, elbow, 



 

5 

wrist, hand, knee, and ankle.  Cutaneous symptoms include itching, skin rashes, and 

cutis marmorata (marbling).  Lymphatic symptoms result from swelling and pain in the 

lymph nodes.  Type II DCS includes all neurological, inner ear, and cardiopulmonary 

symptoms.  Common neurological symptoms include numbness, paresthesia, muscle 

weakness, loss of motor skills, tremors, lightheadedness, amnesia, urinary malfunction, 

and paralysis.  Inner ear DCS, which has been observed resulting from a switch from 

helium-oxygen mixtures to air during decompression, is marked by tinnitus, hearing 

loss, vertigo, nausea, and vomiting.  Cardiopulmonary symptoms include coughing, 

chest pain, and dyspnea [6]. 

Marginal DCS is defined as symptoms associated with DCS that are experienced 

during or after a dive and are mild, then subsequently resolve spontaneously without 

recompression treatment [7, 8].  Examples of marginal DCS are pain in one joint lasting 

for less than 60 minutes, or pain in two joints lasting less than 30 minutes. 

Howle et al. introduced an alternative approach to the classification of DCS 

symptom severity [9, 10].  Howle’s system, called Perceived Severity Index (PSI), 

categorizes DCS symptoms into six indices.  In order of increasing severity, these indices 

are constitutional or nonspecific (fatigue, dizziness, nausea), lymphatic or skin (itching, 

rash, marbling), pain (ache, cramps, joint pain), mild neurological (paresthesia, 

numbness, tingling), cardiopulmonary (cough, dyspnea, hemoptysis), and serious 

neurological (dysfunction of bladder, bowel, coordination, mood, vision, hearing).  
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Under this system, the Navy’s traditional classifications indicate Type I includes 

constitutional, skin, and pain symptoms, while Type II includes mild neurological, 

cardiopulmonary, and serious neurological symptoms (see Table 1). 

Howle et al. recommended an alternative severity categorization to Type I/II 

called Type A/B.  Type A includes constitutional, lymphatic or skin, pain, and mild 

neurological symptoms, and Type B encompasses cardiopulmonary and serious 

neurological manifestations (Table 1). 

Table 1: Distribution of PSI into Type I/II and Type A/B splitting. 

PSI Type I/II Type A/B 

6: Constitutional Type I Type A 

5: Lymphatic or skin 

4: Pain 

3: Mild neurological Type II 

2: Cardiopulmonary Type B 

1: Serious neurological 

 

The U.S. Navy Diving Manual outlines procedures for treatment of DCS based 

on symptom severity.  These procedures, called treatment tables, outline recompression 

and subsequent decompression schedules and oxygen-breathing periods to be 

performed in a hyperbaric chamber [6]. 

1.3 Probabilistic Modeling of DCS 

Haldane’s decompression model was deterministic, as it predicted that DCS 

would not occur if the prescribed “safe” ascent criteria were followed, and DCS would 

occur if the ascent schedule was violated.  This model has been improved and refined, 
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and the basic approach is still used today to generate staged decompression schedules.  

However, deterministic models are unable to describe the variability in symptoms 

observed in divers executing identical dive profiles.  To address this limitation of 

deterministic models, Berghage et al. [11] and Weathersby et al. [12] proposed a 

probabilistic approach, in which each dive is assigned a non-zero probability of resulting 

in DCS.  A distinct advantage of probabilistic models is model parameters can be 

estimated via maximum likelihood, allowing the model to be calibrated to a set of 

human dive data.   

Using survival analysis to convert a risk function r  into a probability [13], the 

probability of not experiencing DCS before T  is  

 0(0) .

T

rdt

P e
−

=   (1.1) 

The risk function is defined by a gas content model (Section 1.4 Gas Content Models) or 

bubble volume model (Section 1.5 Bubble Volume Models) and contains all the 

information about the gas kinetics and ambient pressure.  The probability of DCS 

occurring before time T  is 

 0( ) 1 .

T

rdt

P DCS e
−

= −   (1.2) 

Weathersby et al. improved upon this concept with the addition of onset time 

information [14].  Given a symptom onset time window, where 
1T  is the last time a diver 

was definitely symptom-free, and 2T  is the first time the diver was definitely 
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experiencing symptoms, the combined probability of being symptom-free until 
1T  and 

the onset of DCS occurring between 
1T  and 2T  is 

 

21

0 1

1 1 20( ) (0) ( ) 1 .

TT

T

rdtrdt

T T TP DCS P P DCS e e

−−

→ →

      = = −  
  
  

  (1.3) 

The parameters of a model used to generate the risk function r  can be estimated 

with likelihood maximization.  Given a set of calibration dive data containing the time-

depth profiles and symptom histories, the agreement between the model’s predictions 

and the true outcomes from the data can be quantified as the likelihood.  Maximizing 

the likelihood will thus maximize the accuracy of the model’s predictions.  The 

likelihood function for the thi  dive is defined as  

 (1 )
( ) (1 ( ))i i

i i iL P DCS P DCS
 −

= −   (1.4) 

where 1i =  if the thi  exposure resulted in DCS, and 0i =  if the thi  exposure did not 

result in DCS.  The definition of ( )P DCS  in Eq. (1.3) can be used in Eq. (1.4).  The 

likelihoods of each dive exposure are multiplied.  Because the probabilities are always 

less than 1, the likelihood parameter can become quite small, so the log likelihood is 

used to quantify the agreement between the model’s predictions and the calibration 

data: 

 ( ) 1

1

ln (1 ( )) .i i

N

i

i

LL P DCS P DCS
 −

=

 = −
    (1.5) 

To find the best set of model parameters, Eq. (1.5) is maximized. 
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1.4 Gas Content Models 

In Chapters 3 and 4, the risk function is defined using three parallelly-perfused 

compartments (Figure 1), similar to those used by Boycott et al. in the Haldane model 

[4].  Each compartment is assumed to be well-stirred and has a unique half-time.  

Models with strictly exponential gas uptake and elimination are known as Exponential-

Exponential (EE).  Thalmann et al. introduced models with both linear and exponential 

gas kinetics, known as Linear-Exponential (LE), in which gas elimination kinetics are 

switched from exponential to linear after a specific level of supersaturation is achieved 

[15, 16].  This crossover pressure is intended to represent the level of supersaturation at 

which dissolved inert gas leaves solution and enters the gas phase.  While the crossover 

pressure is exceeded, linear gas kinetics are used to simulate the transfer of the gas 

bubble into the solution.  

 

Figure 1: Three parallelly-perfused, well-stirred PLB compartments. 

Considering a single, well-mixed perfused compartment, also called the 

Perfusion-Limited Base (PLB) model, the time rate of change of the inert gas tension in 

the compartment as dictated by mass conservation is 
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,

,( )
in out

T i

T T i

i

dP Q
P P

dt V
= −   (1.6) 

where 
,T iP  is the partial pressure of inert gas in the thi compartment, t  indicates time, Q  

is the flow rate, iV  is the volume of the compartment, 
inTP  is the inert gas wash-in, and 

, outT iP  is the inert gas wash-out.  Assuming the compartment is well-stirred dictates that 

, , outT i T iP P= .  Note this first-order linear ordinary differential equation can be solved 

analytically.  We will assume the input pressure is a linear ramp, i.e. 

 0

in inT T inP P R t= +   (1.7) 

where 0

inTP  is the input inert gas tension at 0t =  and inR  is the rate of increase of input 

pressure.  Substituting Eq. (1.7) into Eq. (1.6), defining tissue rate 
Q

k
V

= , and solving Eq. 

(1.6) for TP  yields 

 kt

T inP e R t −= + +   (1.8)  

where   and   are defined as 

 

0 0 1

0 1

,

.

in

in

T T in

T in

P P k R

P k R





−

−

= − +

= −
  (1.9) 

The dive trial data used in this dissertation is for air or nitrox diving, so nitrogen 

is the inert gas of interest.  Given the dive’s time-depth profile, absolute ambient 

pressure can be converted from feet sea water (fsw) depth as 
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1

1 1 .
33.08

atm
fswg atm ATA

fswg

 
+ → 

 
  (1.10) 

Assuming the diver is breathing a fixed fraction of nitrogen gas, the partial pressure of 

inspired nitrogen gas is calculated as 

 ( )
2 2 2N N amb H OP F P P= −   (1.11) 

where 
2NF  is the fixed fraction of nitrogen gas (0.79 in air), 

ambP  is the absolute ambient 

pressure in ATA, and 
2H OP  is the water vapor pressure (constant 0.0617 ATA).  Eq. (1.11) 

can be used as input pressure 
inTP  in Eq. (1.6).   

For each dive segment, the ambient pressure is 

 0

amb amb ambP P R t= +   (1.12) 

where 0

ambP  is the ambient pressure at the start of the dive leg and ambR  is the rate of 

change in ambient pressure.  The absolute ambient pressure calculated with Eq. (1.12) is 

used in Eq. (1.11) to determine the partial pressure of the inspired inert gas.  From here, 

the tissue tension values, TP , can be calculated at each time step. 

 The instantaneous risk in this gas-content model compartment is proportional to 

the level of inert gas supersaturation, given by 

 
,

( )
T i amb i FVG

i

amb

P P Thr P
r t

P

− − +
=   (1.13) 

where FVGP  is the constant fixed venous gas pressure (6.34 fsw), determined by 

summing the partial pressures of venous gases O2 (2.00 fsw), CO2 (2.30 fsw), and H2O 
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vapor (2.04 fsw).  iThr  is an optimized threshold parameter that serves to delay risk 

accumulation until the supersaturation exceeds a critical threshold, and has been found 

to significantly improve a model’s performance [15, 17].  The subscript i  indicates the 

individual compartment.  This instantaneous risk is multiplied by an optimized gain 

parameter, ig , and summed over the entire dive for each of i  compartments.  Thus the 

form of Eq. (1.2) specific to EE gas kinetics is 

 0

( )

( ) 1

0

T

i i

i

g r t dt

i

P DCS e

r

− 
= −



  (1.14) 

and likewise when using the time window of symptom onset with Eq. (1.3). 

 The addition of linear gas kinetics adds an optimized crossover pressure, XOP , 

above which compartmental gas kinetics transition from exponential to linear.  

Thalmann et al. [15] defined inert gas tension as 

 
T ambP P A= +   (1.15) 

where  

 .XO FVGA P P= −   (1.16) 

Thalmann then defined the “inert gas burden”, TP , such that 

 
.

T T T amb

T amb T amb

P P when P P A

P P A when P P A

 =  +

= +  +
  (1.17) 

Eq. (1.6) can be altered to incorporate the inert gas burden as  
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 ( ).
in

T
T T

dP
k P P

dt


= −   (1.18) 

As ambient pressure increases, gas uptake is always exponential.  When ambient 

pressure decreases and the inert gas burden exceeds ambP A+ , inert gas elimination 

switches from exponential to linear kinetics, signifying the presence of a gaseous phase 

[15]. 

1.5 Bubble Volume Models 

Thalmann’s LE1 probabilistic model added linear gas washout to the EE1 gas 

content model to prolong inert gas washout, simulating gas transfer from a gas bubble 

to the tissue [15, 16].  To better describe the formation and growth of an inert gas bubble, 

which is the mechanism initiating DCS in vivo, Gerth and others introduced a variety of 

models in which the risk function is defined by the inert gas bubble volume [18, 19].  

Rather than calculating risk proportional to a critical level of inert gas supersaturation, 

these models define risk relative to a critical bubble volume: 

 
( )0

, ,

1

0

, ,

( ) ( )

( ) 0

n

i b i b i

i

b i b i

r t G V t V

V t V

=

= −

− 


  (1.19) 

where iG  is the compartmental gain, 
,b iV  is the compartmental bubble volume, and 0

,b iV  

is the compartmental nucleonic bubble volume. 

 In Chapter 5, the mathematical model used to calculate bubble volume is the 

Three-Region Unstirred Tissue, or 3RUT, model.  The 3RUT model contains a gas bubble 
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surrounded by an unstirred diffusion region that is perfused by a well-stirred tissue 

compartment [20, 21].  A schematic of three parallelly-perfused 3RUT model 

compartments is depicted in Figure 2. 

 

Figure 2: Three parallelly-perfused, well-stirred 3RUT compartments.  Each 

compartment contains a bubble surrounded by an unmixed diffusive region, perfused 

by arterial blood flow. 

Compartmental tissue tension is calculated according to Eq. (1.6).  When the 

compartmental supersaturation exceeds ambient pressure according to Eq. (1.20), 

 
, 0

,

2
amb T i FVG

b i

P P P
r


 + −   (1.20) 

where   is the gas-liquid surface tension, a bubble forms at the nucleonic radius, 0

,b ir  

[18].  After bubble formation, the blood-tissue gas exchange is governed by 

 ( )
( ), ,,

,

b i b iT i

i a T i i

d P VdP
k P P

dt dt
= − −   (1.21) 

where the arterial gas tension, aP , is calculated with Eq. (1.11), 
,b iP  is the compartmental 

bubble pressure, 
,b iV  is the compartmental bubble volume, and i  is the compartmental 

total solubility, defined as 
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, ,

1
.i

t i t iV



=   (1.22) 

In Eq. (1.22), 
,t i  is the compartmental solubility of nitrogen gas in tissue, and 

,t iV  is the 

compartmental volume. 

 The bubble dynamics are calculated according to the desired mathematical 

model for bubble evolution.  In this work, we will use the 3RUT model with a single 

bubble [20].  According to this model, the change in bubble radius is calculated as 

 

( )

( )

, ,

,,

3

,

,

( )1

3

4 8

3 3

i amb
i T i b i i

b ib i

amb FVG i b i

b i

r d P
P P

r dtdr

dt
P P M r

r

 

 

 
− + − 

 =

− + +

  (1.23) 

where iM  is the compartmental elastic modulus, and the compartmental sink ( i ) and 

diffusivity fraction ( i ) are defined as 

 
( )

1

,

, ,

,

.

i i t i

i t i t i

D

D

 

 

−

=

=
  (1.24) 

In Eq. (1.24), 
,t iD  is the compartmental bulk diffusion constant for inert gas, and 

i  is 

calculated from Ostwald solubility of nitrogen gas in blood 1.410 02b E = − , the tissue-

gas solubility ,t i , and the compartmental blood flow rate iQ  as 

 
,

.
t i

i

b iQ





=   (1.25) 

The volume of a spherical bubble is calculated as 
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 3

, ,

4

3
b i b iV r


=   (1.26) 

and this can be used to calculate the bubble pressure, 
,b iP : 

 
, ,

,

2
.b i amb FVG b i i

b i

P P P V M
r


= − + +   (1.27) 

The adjustable parameters in the 3RUT bubble volume probabilistic model are 

compartmental gain iG , rate 
1

i

i

k


= , elastic modulus iM , nucleonic bubble radius 0

,b ir , 

total solubility i , sink i , diffusivity fraction i , and the surface tension  . 

1.6 Dive Data 

All probabilistic models presented in this work were calibrated against subsets of 

empirical human dive trial data published by Temple in two Naval Medical Research 

Center (NMRC) reports [7, 8].  This public data does not require institutional review 

board (IRB) approval.  Temple’s reports contain a compilation of dive profiles and 

symptom histories of air and other nitrogen-oxygen mixture dive exposures conducted 

by the U.S., U.K., and Canadian militaries from 1944-1997.  These research trials were 

conducted in hyperbaric chambers, including both wet and dry diving, with medical 

officers monitoring divers to diagnose any onset of DCS.  The data are presented with 

time-depth profiles for each dive, inspired gas mixtures, dive conditions (wet or dry), 

and DCS symptom descriptions and onset time windows if DCS occurred. 
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The first data subset used in this work, called BIG292, contains 3,322 exposures of 

bounce dives and saturation dives, with depths ranging from 20 to 604.2 fsw and 

durations ranging from 0.64 to 12,960 minutes.  There is a total of 1,038 unique time-

depth profiles in this dataset. 

A bounce dive is the most common dive type, in which a diver descends to the 

maximum depth for a short time, followed by a direct ascent to the surface or an ascent 

with decompression stops.  A decompression stop is an isobaric hold during ascent to 

allow for elimination of inert gas from the diver’s body.  There are two categories of 

bounce diving in the BIG292 dataset: single dives and repetitive/multilevel dives.  A 

single dive consists of descent to the maximum depth, a period of time spent at 

maximum depth, followed by ascent to the surface with decompression stops if 

necessary.  Repetitive/multilevel dives consist of more than one bounce dive with 

surface intervals between dives for inert gas elimination, or dives with significant 

periods spent at multiple depths.  In contrast to bounce dives, a saturation dive is when 

the diver remains at depth for long enough that the partial pressure of inert gas in 

his/her tissues becomes completely equilibrated with the ambient pressure, followed by 

a single decompression to the surface [6].  See Table 2 for the breakdown of dive type in 

the BIG292 dataset. 
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Table 2: Dive types and DCS outcomes in the BIG292 dataset. 

Dive Type Exposures Full DCS Marginal DCS 

Single Air 1005 53 13 

Repetitive & Multilevel Air 565 34 15 

Single Nonair 678 25 18 

Repetitive & Multilevel Nonair 607 26 3 

Saturation 467 52 61 

Total 3322 190 110 

 

As seen in Table 2, while only 3% of the total dive exposures in the BIG292 

dataset resulted in marginal DCS, over half (55%) of these marginal events occurred 

from saturation diving.  However, saturation diving constitutes only 14% of the total 

dataset. 

 The second data subset used in this work is called NMRI98 (also referred to as 

p97).  This dataset contains the entirety of the BIG292 data and adds 1,013 dive 

exposures, totaling 4,335 exposures with 1,306 unique dive profiles.  These additional 

dive exposures used increased oxygen content in the divers’ inspired gas.  There are two 

categories of these dives: in-water decompression with oxygen, and surface 

decompression with oxygen.  During in-water oxygen decompression dives, the diver 

switches to a breathing mixture of high oxygen content or pure oxygen during 

decompression.  Surface decompression with oxygen dives have the diver brought to the 

surface before completing an adequate decompression, placed in a hyperbaric chamber, 

recompressed, and then complete their decompression while breathing oxygen.  The p97 
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dataset contains 224 cases of full DCS and 127 cases of marginal DCS.  Table 3 lists the 

breakdown of DCS events by dive type in the p97 data. 

Table 3: Dive types and DCS outcomes in the NMRI98 (p97) dataset. 

Dive Type Exposures Full DCS Marginal DCS 

Single Air 1005 53 13 

Repetitive & Multilevel Air 565 34 15 

Single Nonair 678 25 18 

Repetitive & Multilevel Nonair 607 26 3 

Saturation 467 52 61 

Surface Decompression with Oxygen 427 11 1 

In-Water Oxygen Decompression 586 23 12 

Total 4335 224 127 

 

1.7 Multinomial Probabilistic Models 

Probabilistic DCS models used by the U.S. Navy today predict only the 

probability of the occurrence of DCS, and do not provide any information about the 

severity of DCS symptoms.  The severity of DCS injury ought to be considered along 

with the probability of DCS injury, as an activity with a high probability of a mild injury 

or a low probability of a serious injury could both be considered high risk [22].  Both the 

probability and severity of injury are used in a risk assessment matrix, in which each cell 

is assigned a level of risk based on the particular combination of intersecting probability 

and severity.  Such risk assessment matrices are used in many industries and facets of 

the Department of Defense to manage risk, including the U.S. Army [23] and the U.S. 

Marine Corps [24]. 
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The U.S. Navy has guidelines for the acceptable occurrence of DCS based on 

symptom severity.  During a dive mission, the U.S. Navy will allow for no more than 

two cases of Type I DCS per 100 dives, or one case of Type II DCS per 1,000 dives [25].  

The goal of this dissertation is to explore models for predicting both the probability of 

occurrence and severity of DCS, in order to provide the U.S. Navy dive planner with a 

more complete spectrum of risk information. 

In Chapter 2, we interrogate the BIG292 empirical DCS calibration dataset, used 

to estimate probabilistic model parameters.  The onset times of DCS symptoms observed 

in the data are bimodal, however probabilistic models used by the U.S. Navy to predict 

the probability of the occurrence of DCS predict a unimodal peak in DCS onset over 

time.  If the data’s bimodality in DCS onset is a true component of the illness caused by 

symptom severity or dive type, and not a product of experimental methods, 

probabilistic models would need to replicate this bimodality in DCS onset to provide a 

better fit to the data.  The source of the bimodal DCS onset times in the BIG292 dataset is 

investigated in Chapter 2.  This work is published in Computers in Biology and Medicine 

[26]. 

Previously, Howle et al. developed a trinomial gas content model, which 

simultaneously predicts the occurrence of serious, mild, and no DCS [10].  In Chapters 3, 

4, and 5, we further that work by deriving and analyzing gas content and bubble volume 

models that make multinomial predictions.  In Chapter 3, we present a trinomial 
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marginal gas content model that predicts the probabilities of full (serious and mild), 

marginal, and no DCS outcomes.  This work is published in Computers in Biology and 

Medicine [27].  In Chapter 4, we develop a tetranomial gas content model that predicts 

the probabilities of serious, mild, marginal, and no DCS outcomes.  Finally, in Chapter 5, 

we investigate a trinomial 3RUT bubble volume model that predicts the probabilities of 

mild, serious, and no DCS outcomes.  Our conclusions and recommendations are 

presented in Chapter 6. 
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2. Bimodal Decompression Sickness Onset Times Are 
Not Related to Dive Type or Event Severity 

This chapter is adapted from a publication in Computers in Biology and Medicine.  

Secondary authors are Dr. F. Gregory Murphy and Dr. Laurens Howle. 

[26] A.E. King, F.G. Murphy, L.E. Howle, Bimodal Decompression Sickness Onset Times are 

Not Related to Dive Type or Event Severity. Computers in Biology and Medicine, 91 (2017) 

59-68. https://doi.org/10.1016/j.compbiomed.2017.10.010 

2.1 Introduction 

Decompression sickness (DCS) is a condition associated with depressurization of 

the body from underwater diving.  During a dive, exposure to increased ambient 

pressure allows elevated partial pressures of inert gas in the lung to dissolve into the 

blood.  When this blood circulates, the inert gas can diffuse into the body’s tissues.  

During decompression and after surfacing from a dive, the excess inert gas is normally 

circulated back to the lungs to be exhaled.  However, if the ambient pressure is reduced 

sufficiently far below the partial pressure of the dissolved gases, then gaseous bubbles 

may form in the blood and/or tissues.  The signs and symptoms of DCS can include, but 

are not limited to joint pain, paresthesia, fatigue, abdominal pain, and paralysis [3].  DCS 

cases are typically categorized into either Type I (also called mild) or Type II (also called 

serious), in which Type I includes pain-only cases and Type II includes neurological and 

cardiopulmonary cases.  In addition, DCS manifestations which subsequently 

spontaneously resolve without recompression treatment are categorized as marginal 
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DCS cases.  Examples of marginal cases are pain in one joint lasting less than 60 minutes 

or pain in two joints lasting less than 30 minutes [7, 8]. 

Decompression modeling originated in the early 20th century when Boycott et al. 

introduced the theory that DCS was caused by the formation of bubbles in the body 

during decompression due to the elevated partial pressure of dissolved nitrogen gas in 

the body’s tissues [4].  The model presented by Boycott and coworkers, later known as 

the Haldane model, was deterministic, as DCS could be avoided if a set of criteria were 

followed and was inevitable if those criteria were violated.  However, deterministic 

modeling cannot account for the variation in DCS occurrence and symptoms present in 

divers executing identical dive profiles as recorded in empirical dive data [7, 8].  This 

variability in DCS outcome prompted the development of probabilistic models, 

introduced by Berghage et al. [11] and Weathersby et al. [12], which compute a non-zero 

probability of DCS occurrence for a given dive profile.  Such probabilistic models used 

to predict the incidence and onset time of DCS rely on risk calculated from survival 

analysis [13] and either a gas content or bubble model.  These models allow dive profiles 

to be created with a level of risk tailored to the diver’s objective.  An advantage of 

probabilistic modeling is that their parameters can be calibrated with empirical dive 

data via numerical optimization.  Model parameters can be estimated to maximize the 

likelihood, which is a statistic that quantifies the agreement between the model and the 

corresponding experimental data.  In addition, including the time of onset of DCS 
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symptoms from experimental data during optimization has been shown to improve a 

model’s ability to describe the data [14].  To facilitate calibration of probabilistic DCS 

models with experimental dive data, Temple et al. published a compilation of dive 

profile and DCS manifestation descriptions corresponding to both air and nitrogen-

oxygen human dive trials conducted by the United States, United Kingdom, and 

Canadian militaries between 1944 and 1997 [7, 8].   These research trials were conducted 

in hyperbaric chambers and include both wet and dry dives during which a medical 

officer monitored divers and determined the time of onset of DCS symptoms.  Temple’s 

report includes the bottom times, depths, and ascent rates which characterize each dive 

profile, and the corresponding dive conditions (wet or dry), inspired gas mixtures, DCS 

symptom descriptions and onset times, and references to the originating dive trial 

reports.  The dive types performed during these research trials include single air, single 

non-air, repetitive and multilevel air, repetitive and multilevel non-air, air and oxygen 

decompression, saturation, sub-saturation, surface decompression with air, and surface 

decompression with oxygen.  The calibration set known as the BIG292 standard DCS 

dataset is a subset of the data presented by Temple et al. that includes a portion of the 

single air, single non-air, repetitive and multilevel air, repetitive and multilevel non-air, 

and saturation dive types.  This calibration set has been used in optimizing the 

parameters for a probabilistic model known as the LE1-USN93 model [28].  The LE1 

model consists of three perfusion-limited parallel compartments, two with mono-



 

25 

exponential gas uptake and elimination and one with mono-exponential uptake and 

linear elimination after a crossover tension is exceeded [15].  The BIG292 calibration 

dataset is analyzed in the present work.  

An occurrence density function (ODF) describes the number of occurrences of a 

particular event per unit of time, and can be used to graphically assess the agreement 

between a model’s estimations and observed DCS occurrences and onset times.  These 

plots map time relative to the final surface interval on the abscissa and the number of 

DCS occurrences on the ordinate.  A probabilistic model that most accurately predicts 

the onset time of DCS would generate an ODF which closely resembles that of empirical 

dive data.  The ODF constructed with the BIG292 dive dataset is bimodal, peaking in 

DCS occurrences at both the completion of decompression and two hours following 

decompression.  However, current probabilistic models, including the LE1-USN93 [28]  

and the BVM(3) [18], used to predict the onset time of DCS do not produce bimodal 

ODFs.  The ODFs of the LE1-USN93 and BVM(3) models each contain only one peak, 

located after the completion of decompression.  Simulating the bimodality of the 

empirical data would improve the fit of the model to the data, creating a better 

likelihood match.   

Recently, Hada [29] investigated using inert gas input delay in a class of 

probabilistic pharmacokinetic models with perfusion coupled compartments [30] and 

perfusion-diffusion coupled compartments in an effort to align model onset time 
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predictions with the bimodal onset times found in the BIG292 data.  Of the 11 delay-

differential probabilistic pharmacokinetic models Hada optimized and analyzed, many 

showed an improvement in model fit with the addition of the single-parameter input 

delay but none showed enough improvement by the Akaike Information Criterion to 

justify adding input delay.  Additionally, none of the models, when optimized on the 

BIG292 data, predicted bimodal ODFs.  This finding motivated our present study to 

investigate bimodality of the BIG292 dive data.  We wish to know if there is a feature, 

such as dive type, event severity, symptom type, or breathing gas, generates the two 

peaks in the ODF.  If so, this might inform what model changes could lead to improved 

onset time prediction.  If no feature can be identified, or if the bimodality is a result of 

some type of measurement bias, then attempts to reproduce bimodality in model 

prediction are unlikely to be successful or useful. 

2.2 Methods 

2.2.1 Calibration Dataset 

The BIG292 standard DCS dataset from two Naval Medical Research Institute 

(NMRI) reports was used [7, 8] in this study.  The BIG292 dataset, which is a subset of 

the dive data detailed in [7, 8], contains dive profiles from 3,322 exposures of air and 

nitrogen-oxygen diving conducted by the United States, United Kingdom, and Canadian 

militaries between 1944 and 1997.  The BIG292 dataset includes single air, single non-air, 

repetitive and multilevel air, repetitive and multilevel non-air, and saturation dive 



 

27 

types, resulting in 190 DCS cases and 110 marginal DCS cases.  Marginal DCS is defined 

as a case involving signs or symptoms associated with DCS that were deemed not 

serious enough to be treated with recompression and subsequently spontaneously 

resolved [7, 8].  In the BIG292 dataset, all DCS cases and 68 of the 110 marginal DCS 

cases are reported with symptom onset times T1 and T2, where T1 is the last known time 

a diver was symptom free, and T2 is the earliest time the diver was definitely 

experiencing symptoms.  Following our previous work on the efficacy of using marginal 

DCS events in fitting probabilistic DCS models, we scored marginal cases as non-events 

when considering the BIG292 dataset in this work so that only full DCS events were 

analyzed [31, 32].  Because these dive trial data are de-identified and are freely available 

to the public in the form of two U.S. Government reports, IRB approval was not required 

for this retrospective study. 

The 190 DCS cases in the BIG292 dataset can be further classified by perceived 

severity index (PSI) [9, 33].  As introduced by Howle et al., the PSI scale is defined with 

the following six indices, in order of increasing severity: constitutional (fatigue, nausea, 

dizziness), skin bends (rash, itching, marbling), pain (aches, joint pain, stiffness), mild 

neurological (numbness, paresthesia), cardiopulmonary (dyspnea, cough, hemoptysis), 

and serious neurological (dysfunction of vision, hearing, bladder, bowel, coordination) 

[33].  Based on the DCS symptom descriptions in the two NMRI reports [7, 8], the 190 

DCS cases were each assigned an index by Howle et al., with 6 indicating constitutional 
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and 1 indicating serious neurological.  If a DCS case fell into more than one of these 

categories, it was assigned an index corresponding to the highest severity present.  

Traditionally, DCS is categorized into Type I (mild) and Type II (serious), where Type I 

includes the PSI categories of constitutional, skin, and pain, and Type II includes mild 

neurological, cardiopulmonary, and serious neurological manifestations.  An alternative 

approach to classifying DCS severity was proposed by Howle et al. [33], called Type A/B 

splitting.  Type A (mild) includes the PSI categories of constitutional, skin, pain, and 

mild neurological, while Type B (serious) includes the cardiopulmonary and serious 

neurological PSI categories.  In the BIG292 dataset, there are 152 cases of Type I DCS and 

38 cases of Type II DCS.  Applying Type A/B splitting, the BIG292 dataset contains 170 

Type A and 20 Type B DCS cases.  When exploring DCS symptom type as a potential 

source of the bimodal ODF in this work, both Type I/II and Type A/B splitting were 

applied to the BIG292 data.  DCS cases corresponding to each individual PSI were also 

examined. 

2.2.2 Computational Modeling 

Many probabilistic DCS models are derived using the methods of survival 

analysis [13].  For these models, the probability of DCS is defined as 

 ( ) 1
i i

i

g r dt

P DCS e
− 

= −   (2.1) 

where ( )P DCS  is the probability of a DCS event occurring, the index i  counts over the 

risk-bearing model compartments, 
i

g  is the th
i  compartmental gain, 

i
r  is the th
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compartmental hazard function, and the definite integral containing the hazard function 

is evaluated from the beginning of the exposure to the right censoring time.  It should be 

noted that the risk function of the form of Eq. (2.1) assumes a time-uniform event 

probability.  Models differ by their definitions of compartmental hazard functions, ir . 

The event probability of DCS defined in Eq. (2.1) can be modified to include the 

time of symptom onset (event window), which was first introduced into the field of 

probabilistic DCS modeling by Weathersby et al. [14].  The BIG292 data define the DCS 

event window using times T1, the last time the diver was known to be symptom-free and 

T2, the first time the diver was known to be symptomatic.  For a profile which results in 

DCS, the event probability can be expressed as 

 ( ) ( ) ( )
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where ( )
10

0
T

P
→

 is the probability that the diver remained asymptomatic from the 

beginning of the exposure until time 
1T , and ( )

1 2T T
P DCS

→
is the probability that the 

diver is bent during the event window 1 2T T→ .  The event windowing information is 

also used in constructing the ODF, as explained below. 

Although recent work has considered the use of Bayesian inference in optimizing 

probabilistic DCS models [34], most models are optimized by maximizing the log 

likelihood function  
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in order to find the best set of model parameters [12].  In Eq. (2.3), n  counts over the 

N exposures and 1n =  if the thn  exposure resulted in DCS and 0n =  otherwise.  

Typically, marginal DCS cases are assigned a fractional weight, 0.1n = , but as 

discussed above, we de-rate marginal DCS events to non-events [31, 32].   

Occurrence density functions that display both the experimentally observed and 

model estimated DCS onset can be used to visualize a model’s agreement with dive trial 

data.  The ODF of observed DCS data is calculated using convolution with a top hat 

function [35].  Time is divided into one-hour bins, where a top hat function is turned on 

at the start of each bin and off at the end of each bin.  To generate the model-predicted 

ODF, the probability of a DCS occurrence in each individual bin is calculated with Eq. 

(2.2) (with T1 and T2 equal to the bin’s time interval bounds) for a particular exposure.  

The sum of the probabilities for all exposures in each bin is plotted against time relative 

to the final surface interval to create the occurrence density function [15, 18].  

2.2.3 Data Partitioning 

In order to determine the cause of the bimodal peaks in the BIG292 dive data 

ODF, many different schemes for partitioning the data were examined.  DCS occurrence 

density functions were computed and plotted with the data partitioned by dive type, 

DCS event severity, DCS symptom type, institution conducting the dive trial, and 
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chronology of the dive trial data.  Marginal DCS cases were not included in these ODFs, 

as they were scored as non-events; apart from one ODF which considers only marginal 

events.  Each ODF was determined to be bimodal, unimodal, or ambiguous in shape by 

visual inspection of the number of peaks present.  The BIG292 onset time bimodality 

could be attributed to dive type, event severity, symptom type, institution, or 

chronology if one of these methods of data partitioning resulted in unimodal ODFs.  For 

reference, the onset time determination method was extracted from each dive report 

(Table 4) to determine post-dive medical protocol. 

Table 4: DCS onset time measurement method of dive reports in the BIG292 

dataset. The NEDU 1-99 / NMRC 99-01 and NSMRL 1200 followed a consistent 

method of examining divers immediately post-dive, 2 hours post-dive, and the day 

after the dive.  All DCIEM reports followed a similar procedure of monitoring divers 

during the dive and for 1.5-3 hours post-dive.  The NEDU reports 11-80, 1-84, and 8-85 

do not explicitly document that divers were examined at 2 hours post-dive, although 

the NEDU 11-80 does indicate that divers were released from the hyperbaric chamber 

facility at this 2-hour mark. 

Report 

Contributing to 

the BIG292 

Dataset 

DCS Onset Time Measurement Method 

NEDU 11-80 [36] Following decompression, divers remained at the dive chamber for 2 

hours then were required to be within 30 min of facility for the next 4 

hours.  The dive chamber facility was prepared to provide DCS 

treatment for 24 hours post-dive.   

NEDU 1-84 [37] A US Navy Diving Medical Officer (DMO) examined all divers after 

surfacing. 

NEDU 8-85 [38] Divers could report symptoms of DCS at all times, including during 

the dive.  All DCS determination was made by a DMO. 
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NEDU 1-99 / 

NMRC 99-01 

[39] 

Divers were examined by a DMO during surface intervals (for 

repetitive dives) and immediately after completing each dive.  If no 

DCS symptoms were present, divers were re-examined 2 hours later.  

Divers were required to be in the presence of someone who could 

recognize DCS for the next 24 hours.  The DMO then re-examined 

each diver the next morning after their dive. 

NMRI 86-97 [40] Divers were examined by a DMO upon completion of the dive and 

again after 2 hours following decompression.  Divers could report 

symptoms for 18 hours post-dive and were interviewed by a DMO 

the morning after the dive.   

NSMRL 1200 

[41] 

The DMO examined divers immediately post-dive, 2 hours post-

dive, and 24 hours post-dive.  Divers could report symptoms at any 

time. 

DCIEM 80-R-32 

[42] 

Divers were monitored with Doppler Prechordal Bubble Detector, 

both at rest and after performing an exercise during the dive.  Divers 

were monitored with this device pre-dive, at 15 min intervals during 

the dive, immediately post-dive, and periodically for at least 3 hours 

post-dive.  Divers could report symptoms at any time.  The decision 

to treat for DCS was not based on doppler results, however these 

results were used by the DMO to determine if diver symptoms 

required recompression. 

DCIEM 81-R-02 

[43] 

Divers were monitored with Doppler Prechordal Bubble Detector, 

both at rest and after performing an exercise during the dive.  Divers 

were monitored with this device pre-dive, at 15 min intervals during 

the dive, immediately post-dive, and periodically for at least 3 hours 

post-dive.  Divers could report symptoms at any time. 

DCIEM 82-R-38 

[44] 

Divers were monitored with Doppler Prechordal Bubble Detector, 

both at rest and after performing an exercise during the dive.  Divers 

remained at rest for 90 min post-dive.  Divers could report 

symptoms at any time. 

DCIEM 84-R-72 

[45] 

Divers were monitored with the Doppler Bubble Detector before 

each dive, and at 30 min intervals for at least 2 hours post-dive while 

resting.  If bubbles were detected, the diver remained under 

observation until bubbles diminished.  Divers could report 

symptoms at any time.  The DMO determined treatment based on 

symptoms, not bubble grades. 
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DCIEM 84-R-73 

[46] 

Divers were monitored with the Doppler Bubble Detector before 

each dive, and at 30 min intervals for at least 2 hours post-dive while 

resting.  If bubbles were detected, the diver remained under 

observation until bubbles diminished.  Divers could report 

symptoms at any time.  The DMO determined treatment based on 

symptoms, not bubble grades. 

DCIEM 85-R-18 

[47] 

Divers were monitored with the Doppler Bubble Detector before 

each dive, and at 30 min intervals for at least 2 hours post-dive while 

resting.  If bubbles were detected, the diver remained under 

observation until bubbles diminished.  Divers could report 

symptoms at any time.  The DMO determined treatment based on 

symptoms, not bubble grades. 

 

First, the BIG292 dive data files were categorized by dive type and breathing gas, 

which included single air, repetitive and multi-level air, single non-air, repetitive and 

multi-level non-air, and saturation (Table 5) [48].  The ODFs for a subset of the BIG292 

data were examined using these dive type categories previously by Thalmann et al. [15], 

however they were not seeking to determine the cause of the bimodal ODF.  Dive 

profiles were also partitioned by event severity.  Both Type I/II and Type A/B splitting 

were used, in which Type I and Type A are considered mild DCS, while Type II and 

Type B are considered serious DCS.  The distribution of PSI classifications into each 

severity splitting method is summarized in Table 6.  Next, DCS data were separated 

according to their PSI, and the number of DCS occurrences with each PSI are listed in 

Table 7.  
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Table 5: Data partitioned by dive type.  The data files in the BIG292 dataset 

were categorized by dive type and ODFs were generated for each grouping (Figure 7), 

excluding marginal DCS cases.  All ODFs were bimodal except for that of the 

saturation dives, which was ambiguous in shape.  All bimodal plots had the first peak 

at 0 hours and the second peak at 2 hours following decompression. 

Dive Type BIG292 Files 

Number of DCS Occurrences  

(excluding marginal DCS cases) ODF Shape 

Single Air 

EDU885A 

53 Bimodal 

DC4W 

SUBX87 

NMRNSW 

PASA 

NSM6HR 

Repetitive and 

Multi-level 

Air 

EDU885AR 

34 Bimodal 
DC4WR 

PARA 

PAMLA 

Single Non-air 

NMR8697 

25 Bimodal EDU885M 

EDU1180S 

Repetitive and 

Multi-level 

Non-air 

EDU184 

26 Bimodal 
PAMLAOD 

PAMLAOS 

EDU885S 

Saturation 

ASATEDU 

52 Ambiguous 
ASATNMR 

ASATNSM 

ASATARE 
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Table 6: Data partitioned by event severity (Type I/II and Type A/B 

classifications) [10].  Each DCS case in the BIG292 dataset was assigned a PSI value 

based on the reported symptoms.  These cases were then categorized into Type I or 

Type II, then Type A or Type B, by their PSI.  Type I and Type A are considered mild 

cases of DCS, while Type II and Type B are serious cases.  ODFs were generated for 

Type I, Type II, Type A, and Type B DCS cases, excluding marginal DCS cases 

(Figure 8).  All plots were bimodal, with the first and second peaks occurring at 0 and 

2 hours after the final decompression, respectively. 

Perceived Severity Index Type I/II Type A/B 

Constitutional Type I 

152 DCS Occurrences 

Bimodal 

Type A 

170 DCS Occurrences 

Bimodal 

Skin 

Pain 

Mild Neurological 
Type II 

38 DCS Occurrences 

Bimodal 

Cardiopulmonary Type B 

20 DCS Occurrences 

Bimodal 

Serious Neurological 

 

 

Table 7: Data partitioned by symptom type.  Each DCS case in the BIG292 

dataset was assigned a PSI value based on the reported symptoms, and ODFs were 

generated for each symptom type.  The ODFs for pain and serious neurological 

symptoms were bimodal.  The first and second peaks occurred at 0 hours and 2 hours 

after the final surface interval, respectively.  ODFs for other symptom types did not 

have enough exposures to produce non-ambiguously-shaped plots. 

Symptom Type 

Number of DCS Occurrences 

(excluding marginal DCS cases) ODF Shape Based on Symptom Type 

Constitutional 1 Insufficient data 

Skin 1 Insufficient data 

Pain 149 Bimodal 

Mild Neuro 18 Insufficient data 

Cardio 2 Insufficient data 

Serious Neuro 18 Bimodal 
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The BIG292 dive data were then partitioned by originating dive report, followed 

with grouping by the institution that conducted each dive trial [7, 8].  The institutions 

included in the BIG292 dataset are the Navy Experimental Diving Unit (NEDU), Naval 

Medical Research Institute (NMRI), Naval Submarine Medical Research Laboratory 

(NSMRL), Defense and Civil Institute of Environmental Medicine (DCIEM), and 

Institute of Naval Medicine (INM) (Table 8).  Finally, the data were split by the year the 

dive trials were conducted and organized chronologically by end date (Table 9).  Some 

dive trials spanned many years, so the corresponding data files were divided based on 

the date the data were collected.  This chronological list was grouped into year ranges 

each containing similar quantities of DCS occurrences.  These year ranges, which can be 

found in Table 9, are 1978-1983, 1984, 1985-1987, and 1988-1992, which include 44, 57, 43, 

and 46 DCS events respectively.  There were two exceptions to this chronological 

method of data partitioning.  First, though the dive trials contained in the DC4W data 

file spanned 1979-1986, all eight DCS events occurred during 1978-1983, so this data file 

was included in that chronology range.  Second, the ASATNMR data file was composed 

of dive trials during June-August 1986, and then another during July 1988.  The single 

DCS occurrence corresponding to these 50 dives occurred during the July 1988 dive trial, 

so the data from this file was included in the 1988-1992 range.  ODFs were generated for 

each dive report, for all dive data generated by each institution, and for each of the year 

ranges outlined above.  
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Table 8: Data partitioned by institution.  The data files in the BIG292 dataset 

were categorized by the institution conducting the dive trial.  ODFs were generated 

separately for each dive report, and then for all the reports published by each 

institution.  All marginal DCS cases were excluded.  The first column indicates the 

institution (Navy Experimental Diving Unit, Naval Medicine Research Center, Naval 

Submarine Medical Research Laboratory, Defense and Civil Institute of 

Environmental Medicine, Institute of Naval Medicine) that conducted the dive trials.  

The second column includes each dive report published by that institution, and the 

third column indicates the dive files in the BIG292 dataset that were described by 

each report.  Columns four and five show the number of DCS occurrences in each 

dive file and the shape of the ODF for those exposures, respectively.  The sixth 

column indicates the ODF shape for all the dive data from each institution.  The 

NEDU 11-80, NEDU 1-84, NMRI 88-06, NSMRL 1200, and INM dives have too few 

DCS events to produce meaningful results.  The saturation dives produce an ODF 

with ambiguous shape (Figure 7).  All bimodal plots have a first peak at 0 hours and a 

second peak at 2 hours after the final decompression.  All ambiguously shaped plots 

have a peak at 0 hours after the final decompression, however the T1 and T2 times 

documented in these reports are consistent with those that produce bimodal plots. 

Institution Report Files 

Number of 

DCS 

Occurrences 

(excluding 

marginal 

DCS cases) 

ODF Shape 

Based on 

Report 

ODF Shape 

Based on 

Institution 

NEDU 

NEDU 11-80 

[36] 
EDU1180S 10 

Insufficient 

data 

Bimodal 

NEDU 1-84 

[37] 
EDU184 11 

Insufficient 

data 

NEDU 8-85 

[38] 

EDU885A 

49 Bimodal 
EDU885AR 

EDU885M 

EDU885S 

NEDU 1-99 

[39] 

PASA 

36 Bimodal 

PAMLA 

PARA 

PAMLAOS 

PAMLAO

D 

NMRC NMRI 86-97 NMR8697 11 Bimodal Bimodal 
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[40] 

NMRI 

Protocol 88-06 

(no report 

published) 

NMRNSW 5 
Insufficient 

data 

NMRC 99-02 

[7, 8] 

ASATEDU 

52 Ambiguous 
ASATNMR 

ASATNSM 

ASATARE 

NMRC 99-01 

[39] 

PASA 

36 Bimodal 

PAMLA 

PARA 

PAMLAOS 

PAMLAO

D 

NSMRL 
NSMRL 1200 

[41] 
NSM6HR 3 

Insufficient 

data 
Ambiguous 

DCIEM 
Several [42-

47]  

DC4W 
11 Bimodal Bimodal 

DC4WR 

INM 
No report 

published 
SUBX87 2 

Insufficient 

data 
Ambiguous 

 

Table 9: Data partitioned by dive trial chronology [7, 8].  Each dive data file 

was ordered (and split if necessary) based on dive trial end date.  Though the DC4W 

data file spanned 1978-1986, all eight DCS events occurred during 1978-1983, so this 

data file has been included in that chronology range.  The ASATNMR data file is 

composed of dive trials during June-August 1986, and then another during July 1988.  

The 1 DCS occurrence corresponding to these 50 dives occurred during the July 1988 

dive trial, so this data file was included in the 1988-1992 range.  The ODFs for 1984, 

1985-1987, and 1988-1992 are bimodal, with the first peak at 0 hours and the second 

peak at 2 hours following decompression.  The ODF for dive trials completed by 1978-

1983 is unimodal, with a peak at 0 hours after the final decompression (Figure 9). 

Dive Trial 

End Date 

Range 

Dive File Range 

Dives 

Conducted 

During 

Number 

of 

Exposures 

Number of DCS 

Occurrences 

(excluding 

marginal DCS 

cases) 

ODF Shape 

Based on Age 



 

39 

1978-1983 

EDU1180S 1977-1978 120 10 

44 DCS 

Occurrences 

 

Unimodal 

ASATNSM 

Profiles 14-

17 

Mar 1977-

Feb 1979 

23 1 

DC4W 1978-1983 244 8 

ASATEDU 

Profiles 1-5 

1979 10 4 

ASATEDU 

Profiles 6-9 

1979 10 3 

ASATEDU 

Profiles 10-

12 

1979 10 1 

EDU184 Jul 1980-

Aug 1980 

239 11 

ASATEDU 

Profiles 13-

14 

1981 10 1 

ASATEDU 

Profiles 15-

17 

1981 11 1 

ASATNSM 

Profiles 18-

24 

May 1979- 

Feb 1981 

12 3 

ASATEDU 

Profile 18 

1982 10 0 

ASATEDU 

Profiles 19-

21 

1983 10 1 

ASATEDU 

Profiles 22-

23 

1983 10 0 

1984 

ASATNSM 

Profiles 25-

28 

Sept 1982-

Jan 1984 

16 1 

57 DCS 

Occurrences 

 

Bimodal 

ASATNSM 

Profiles 1-

13 

Nov 1983-

May 1984 

33 4 

DC4WR Feb 1984 12 3 

EDU885A Aug 1984- 483 30 
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Dec 1984 

EDU885AR Aug 1984-

Dec 1984 

182 11 

EDU885M Nov 1984 81 4 

EDU885S Dec 1984 94 4 

ASATEDU 

Profiles 24-

26 

1984 10 0 

1985-1987 

NMR8697 April 1983-

Dec 1985 

477 11 

43 DCS 

Occurrences 

 

Bimodal 

ASATNSM 

Profiles 29-

41 

Sept 1984-

Sept 1986 

31 9 

ASATARE 1984-1986 165 20 

ASATEDU 

Profiles 27-

28 

1986 5 1 

ASATNSM 

Profiles 42-

45 

Oct 1986-

Jun 1987 

17 0 

ASATEDU 

Profile 29 

April 1987 9 0 

SUBX87 13-24 July 

1987 

58 2 

1988-1992 

ASATNMR Jun-Aug 

1986, July 

1988 

50 1 

46 DCS 

Occurrences 

 

Bimodal 

ASATEDU 

Profiles 30-

31 

1988 7 0 

ASATEDU 

Profile 32 

1988 8 1 

NMRNSW May 1988-

Jan 1989 

91 5 

NSM6HR 1989, 1991 57 3 

PAMLA 1 Feb 1991-

Jun 1991, 

Jul 1991-Jan 

1992 

236 13 
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PASA Mar 1991-

Jun 1991 

72 5 

PARA Jun 1991-

Jan 1992 

135 7 

PAMLAOS Jun 1991-

Jan 1992 

140 5 

PAMLAOD Jun 1991-

Jan 1992 

134 6 

 

2.3 Results 

The DCS onset time measurement methods used in each dive report contributing 

to the BIG292 dataset are documented in Table 4.  The NSMRL 1200 [41], NEDU 1-

99/NMRC 99-01 [39], NMRI 86-97 [40] technical reports all followed the same onset time 

determination procedure: divers were examined by a U.S. Navy Diving Medical Officer 

(DMO) during surface intervals, immediately following the final decompression, 2 hours 

post-dive, and the day after the dive.  All technical reports by the DCIEM [42-47]   used 

the following onset time determination procedure: divers were monitored with a 

Doppler Prechordal Bubble Detector, both at rest and while exercising during the dive, 

and then at 30-minute intervals for at least 1.5-3 hours post-dive.  If a diver’s Doppler 

bubble score was still elevated at this time, he/she remained under medical surveillance 

until this score decreased.  A diver’s account of symptoms was used to determine the 

onset time of DCS by a medical officer.   

The occurrence density function for the entire BIG292 dataset, excluding 

marginal DCS cases, is shown in Figure 3.  The time scale of the ODF ranges from mid-

dive (indicated by negative values for time) to post-dive (indicated by positive values 
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for time) with 0 hours representing the completion of decompression.  The first peak of 

this bimodal plot occurs at 0 hours after decompression and the second peak occurs at 2 

hours after decompression.  A trace of the computational model LE1-USN93 

parameterized without marginal DCS events [32] is also represented in Figure 3.  Note 

that the LE1-USN93 ODF is not bimodal, with a peak at 0 hours after the final 

decompression. 

 

Figure 3: Occurrence density function of the BIG292 dataset and predictions 

from the LE1-USN93 computational model, excluding marginal DCS cases [32].  The 

ODF is a plot of the number of DCS occurrences per hour relative to the final surface 

time.  Time less than zero indicates that the onset of DCS occurred before the 

completion of the dive.  This plot is bimodal, with one peak at 0 hours and a second 

peak at 2 hours after the final surface time.  The bimodality is not dependent on the 

presence or absence of marginal DCS cases.  The dashed line shows the prediction 

from the LE1-USN93 computational model (recalibrated without marginal DCS 

events [32]).  The ODF produced by this model is not bimodal.  The magnified view 

of the ODF in the top left more clearly illustrates the bimodal behavior of the onset of 

DCS symptoms in dive trial data. 
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The ODF of marginal DCS cases is plotted in Figure 4.  This plot contains a trace 

for all 110 marginal DCS cases (both with and without onset times), and a trace for the 

68 marginal DCS cases with onset times.  Both ODFs are unimodal with both peaks 

occurring at 1 hour after the final decompression.  This unimodal marginal DCS data is 

excluded from all further ODF analysis in this work. 

 

Figure 4: Occurrence density functions for marginal DCS cases.  The solid line 

trace includes data for all 110 marginal DCS cases in the BIG 292 dataset, and the 

dashed line trace plots only marginal DCS cases with recorded onset times (68 cases).  

Both ODFs are unimodal, with both peaks at 1 hour after the final surface time. 

DCS onset times T1 and T2 are ranked and plotted in Figure 5.  DCS occurrences 

were sorted first by T1, indicated by the leftmost solid line.  DCS occurrences that share 

the same T1 were then sorted by T2, as indicated by the rightmost line.  The gray shaded 

region indicates the time between T1 and T2.  This plot serves to graphically display the 
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disparity in the symptom event window duration.  The DCS events contributing to the 

first and second peaks are indicated in the figure.  Despite this disparity in event 

window, there is no obvious indication in the figure of what causes the bimodal peak. 

 

Figure 5: DCS onset time T1 and T2 ranking.  T1 is the last known time a diver 

was symptom free, and T2 is the earliest time the diver was definitely experiencing 

symptoms.  DCS occurrences were sorted first by T1, indicated by the leftmost line.  

DCS occurrences that share the same T1 were then sorted by T2, as indicated by the 

rightmost line. The shaded region shows the timespan between T1 and T2.  This plot 

serves to graphically display the disparity in the symptom event window size.  The 

profiles primarily contributing to the first and second ODF peaks are indicated, as the 

two long vertical segments correspond to 0 and 2 hours.  DCS events with T1=0 hours 

generally correspond to short event windows, while those with T2=2 hours are 

consistent with delayed DCS onset (as indicated by the large shaded region). 

Histograms displaying the distributions of T1 and T2 can be found in Figure 6.  

The leftmost and rightmost bars in both histograms include all onset times before 6 

hours prior to surfacing and after 6 hours post-dive respectively.  The frequency of T1 
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times peaks at 2 hours post-dive, with only one case having T1 exceed 2 hours (by 1 

minute).  The frequency of T2 times peaks immediately after surfacing and again after 2 

hours post-dive, then a significant portion of T2 times are after 6 hours post-dive. 

 

Figure 6: Distributions of T1 and T2 times of the DCS events in the BIG292 

dataset.  Time less than zero indicates that the onset of DCS occurred before the 

completion of the dive.  The leftmost and rightmost bars include all onset times prior 

to -6 hours and after 6 hours relative to surfacing respectively.  The most frequent T1 

time is 2 hours post-dive (as indicated by the peak frequency in the (1,2] bin range), 

with the only T1 time exceeding 2 hours being 2 hours and 1 minute.  Many of the T1 

times prior to -6 hours correspond to saturation diving.  The peak in T2 times during 

(0,1] hour post-dive relates to DCS events with rapid onset and correspond to T1 times 

during decompression.  The significant quantity of T2 times after 6 hours post-dive 

indicates delayed symptom onset; many of these late T2’s correspond to T1 at 2 hours. 

2.3.1 Dive Type 

DCS occurrence density functions were generated for each of the five dive type 

and breathing gas combinations included in the BIG292 dive dataset, excluding marginal 

DCS outcomes (Figure 7).  The individual data files corresponding to each dive type and 

the shapes of the resulting ODF (bimodal, unimodal, or ambiguous) are reported in 
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Table 5.  The single air, single non-air, repetitive and multi-level air, and repetitive and 

multi-level non-air ODFs have a bimodal shape.  The first peak of all these plots occurs 

at 0 hours and the second peak occurs at 2 hours after the final decompression.  Though 

these dive types differ in numbers of DCS occurrences, the timing of the peaks is 

consistent across dive type.  The saturation dive ODF is ambiguous in shape, with a 

peak at 0 hours after decompression and a sharp decline in DCS occurrence after 2 

hours.  Unlike the bounce dives, saturation diving displays a substantial frequency of  

 

Figure 7: Occurrence density functions for the BIG292 dataset partitioned by 

dive type.  See Table 5 for the categorization of the BIG292 data files.  The ODFs for 

all dive types except saturation dives are bimodal, with the first peak at 0 hours and 

the second peak at 2 hours after the final decompression.  Unlike the bounce dives, 

saturation diving displays a substantial frequency of DCS onset during 

decompression (prior to surfacing).  However, this dive type difference does not affect 

the bimodality of the BIG292 ODF. 
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DCS onset during decompression (prior to surfacing).  However, this dive type 

difference does not affect the bimodality of the BIG292 ODF. 

2.3.2 Event Severity 

Separate ODFs were generated for mild DCS and serious DCS cases, using both 

Type I/II and Type A/B data splitting and excluding marginal DCS cases.  The 

distribution of PSI classifications into each splitting method is reported in Table 6, along 

with the number of DCS events in each mild or severe categorization and the shapes of 

the resulting ODFs.  All plots are bimodal, with the first peak at 0 hours and the second 

peak at 2 hours after the final surface interval (Figure 8). 

 

Figure 8: Occurrence density functions for the BIG292 dataset partitioned by 

event severity (Type I/II and Type A/B classifications).  See Table 6 for categorization 

by PSI.  All ODFs are bimodal, with the first peak at 0 hours and the second peak at 2 

hours after the final decompression.  The magnified views of each ODF in the top left 

corners more clearly illustrate the bimodal behavior of DCS symptom onset time. 
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2.3.3 Symptom Type 

The shape of the ODF for each PSI is reported in Table 7.  The ODFs for pain and 

serious neurological symptoms are bimodal, with the first peak at 0 hours and the 

second peak at 2 hours after the final decompression.  The ODFs for constitutional, skin, 

mild neurological, and cardiopulmonary symptoms are ambiguously shaped, likely due 

to the low number of DCS events with these symptom types in the BIG292 data. 

2.3.4 Institution 

ODFs were generated for each individual dive report contained in the BIG292 

dataset, then ODFs were created for all the dive reports published by each institution 

(Table 8).  The NEDU 11-80 [36], NEDU 1-84 [37], and NSMRL 1200 [41] technical 

reports each generated ambiguously shaped ODFs, likely due to the low number of DCS 

events in each report.  The NEDU 8-85 [38], NEDU 1-99/NMRC 99-01 [39], NMRI 86-97 

[40], and all DCIEM technical reports (DCIEM 80-R-32 [42], DCIEM 81-R-02 [43], DCIEM 

82-R-38 [44], DCIEM 84-R-72 [45], DCIEM 84-R-73 [46], DCIEM 85-R-18 [47]) each 

yielded bimodal ODFs.  All bimodal ODFs had a first peak at 0 hours and a second peak 

at 2 hours after final decompression.  All ambiguously shaped ODFs had a peak at 0 

hours after the final decompression. However, by inspection of the T1 and T2 times 

corresponding to the ambiguous ODFs, these DCS event windows are consistent with 

those generating bimodal ODFs.  Regardless of onset time measurement procedure, 

ODFs for all reports were either bimodal (with the first peak at 0 hours and second peak 
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at 2 hours after the final decompression) or ambiguously shaped; the latter likely due to 

insufficient quantity of DCS events documented by that particular dive report. 

Saturation dive data were not partitioned by report or institution.  The four 

saturation dive files (ASATARE, ASATNSM, ASATEDU, ASATNMR) contain data from 

30 reports and dive test plans with publication spanning 1979-1992 [7, 8].  The removal 

of saturation dive data does not affect the bimodality of the ODFs of other dive types as 

many resulting DCS events occurred prior to surfacing (Figure 7), so further partitioning 

by dive report was not warranted. 

2.3.5 Chronology of Dive Trials 

ODFs were generated for dive trials completed during 1978-1983, 1984, 1985-

1987, and 1988-1992 (Table 9).  These temporal groupings were selected to each include 

similar quantities of DCS events.  The ODFs for 1984, 1985-1987, and 1988-1992 are 

bimodal, with the first peak at 0 hours and the second peak at 2 hours following 

decompression.  The ODF for dive trials completed during 1978-1983 is unimodal, with 

a peak at 0 hours after the final decompression (Figure 9).  

2.4 Discussion 

The goal of this work was to determine the cause of the bimodality in the BIG292 

ODF to enable replication of this bimodal behavior in probabilistic models of DCS.  The 

source of the bimodality would be revealed if a particular data partitioning method 

resulted in a set of unimodal ODFs, some peaking at 0 hours and others at 2 hours 
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Figure 9: Occurrence density function for dive trials completed during 1978-

1983 in the BIG292 dataset.  See Table 9 for details about dive data files included in 

this time range.  A total of 719 dives were conducted during this time, resulting in 44 

DCS occurrences.  Neglecting the two cases of DCS that occurred nearly 50 hours 

before the time of final surfacing, the ODF is unimodal, with a peak corresponding to 

the time of final surfacing. 

following decompression.  All but one iteration of data partitioning resulted in a 

bimodal or ambiguously shaped ODF; the latter likely due to an insufficient quantity of 

DCS events in that group. 

Partitioning the data by dive type, DCS severity, DCS symptom type, or 

institution did not provide any insight into the source of the bimodal peak.  The ODFs 

for single air, single non-air, repetitive and multi-level air, and repetitive and multi-level 

non-air dives were all bimodal.  The ODF for saturation dives had only one peak, which 

occurred at 0 hours after decompression, but followed a bimodal shape, with a sharp 
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decline in DCS occurrences after 2 hours post-dive.  No dive type could be identified as 

the source of either of the bimodal peaks.  When analyzing Type I/II and Type A/B data 

splitting, the ODFs for all mild and severe categorizations were bimodal.  Further, ODFs 

for each PSI with a sufficient number of DCS occurrences were bimodal.  Therefore, the 

second peak in the BIG292 bimodal ODF cannot be attributed to a discrepancy in DCS 

onset time based on DCS symptom severity or type.  Similarly, splitting the dive data 

based on the institution that conducted the dive trials, and further by each report 

published, generated either bimodal or ambiguously shaped ODFs; the latter likely due 

to an insufficient quantity of DCS occurrences in that dataset to produce a typical ODF.  

Thus, slight institutional differences in dive trial protocol are not responsible for the 

bimodality of the BIG292 ODF.   

DCS occurrence data from dive trials completed during 1978-1983 produced a 

unimodal ODF.  In all dive trial reports pertaining to the BIG292 dataset except the 

NEDU technical reports 11-80, 1-84, and 8-85, a strict onset time measurement protocol 

was established, in which all divers were examined by a DMO immediately after 

surfacing, and then again after 2 hours.  NEDU technical reports 11-80, 1-84, and 8-85 do 

not explicitly document that divers were examined at 2 hours post-dive, although the 

NEDU 11-80 does indicate that divers were released from the hyperbaric chamber 

facility at this 2-hour mark.  Thus, dive data produced by the NEDU during the 1978-

1983 trial end date range may not have used the above onset time determination 
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protocol.  In addition, one reviewer pointed out that the decompression schedules tested 

during this early date range were riskier, thus the onset of DCS events in these trials 

occurred during decompression or shortly thereafter.  Many of the T2 times reported in 

these trials are within 2 hours of decompression, and divers were under medical 

surveillance during this time.  Thus, the corresponding onset time windows are smaller 

and the ODF is unimodal.  As decompression schedules improved, divers were able to 

surface without incident but experienced DCS onset after surfacing.  In these later trials, 

divers were monitored by a DMO for 2 hours (NEDU, NMRC, NSMRL) or 1.5-3 hours 

(DCIEM) before being released if no symptoms developed.  For many DCS cases with 

onset after this window of post-dive medical surveillance, the T1 time is 2 hours, which 

is when close medical examination of the diver ended (and corresponds to the second 

ODF peak).  This bias towards a T1 time of 2 hours with delayed-onset DCS is apparent 

in Figure 6, as the T1 histogram contains a peak in the bin range (1,2].  Only one DCS 

case in the BIG292 dataset has a T1 time greater than 2 hours, and this onset time is 2 

hours and 1 minute.  In Figure 5, DCS events with T1=0 hours generally correspond to 

short event windows, while those with T2=2 hours arise from delayed DCS onset (as 

indicated by the large shaded region).  This is consistent with our conclusion that the T1 

for delayed DCS onset cases was biased towards T1=2 hours.  These long windows are a 

result of termination of continuous medical surveillance at 2 hours post-dive, thus the 
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last known time a diver was definitely asymptomatic was set as T1=2 hours if symptoms 

developed after this time.  

The bimodal shape of the BIG292 ODF is likely due to the medical surveillance 

protocol used in determining the onset time of DCS symptoms.  It may be possible to 

eliminate this bimodality in future dive trial data if medical examination of divers is 

scheduled more frequently in the 24 hours following decompression.  If divers were to 

be examined more often between 2 hours and 24 hours post-dive, there would be a 

lower number of T1=2 hours cases, as T1 would now reflect these later examination times.  

This could aid in shortening the event window, as T1 and T2 times would become more 

accurate.  

Although computational replication of the bimodal shape of the BIG292 ODF 

would increase the likelihood, implying a better fit of the model to the data, doing so 

would be meaningless because there is not a distinct source (differences in dive type or 

DCS event severity) of the second peak.  The single peak produced by current models of 

DCS which merges the bimodal peaks of the data in the ODF is very likely the correct 

solution.  The ODF is still however a valuable tool for assessing the performance of 

models which predict the onset time of DCS.  ODFs provide a qualitative metric to 

confirm that the onset time is being correctly predicted by the underlying model. 
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2.5 Conclusions 

We investigated the potential sources of the bimodal shape of the BIG292 ODF 

with the goal of identifying features in the DCS cases that could potentially lead to an 

improvement in DCS model prediction.  We found that bimodal shape of ODFs of DCS 

occurrences in empirical dive data were not related to dive types, severity of DCS 

symptoms, or symptom type.  The DCS onset time determination protocol used by each 

institution that contributed human dive trial data to the U.S. Navy collection that 

became the BIG292 collection was reviewed.  The common protocol between all 

institutions involved examination by a medical officer immediately after decompression 

and again in approximately 2 hours.  The unimodal ODF corresponding to dive data 

from 1978-1983 is likely due to the higher risk decompression schedules that were tested 

during these trials, thus DCS onset occurred during decompression or shortly thereafter.  

In later trials with less risky decompression schedules (post-1984), DCS onset tended to 

occur after the 2-hour window of close medical surveillance.  We conclude that the 

bimodality of the BIG292 ODF is likely due to a combination of delayed DCS onset in 

post-1984 trials, as decompression schedules became safer, and the protocol for 

determining DCS symptom onset time, in which divers were released from medical 

officer surveillance if no symptoms developed around 2 hours post-dive.  When the time 

of symptom onset information is used in optimizing probabilistic DCS models, the log 

likelihood function implicitly aligns the model’s ODF prediction with that of the 



 

55 

calibration data.  Thus, if a model were able to replicate the data’s bimodal ODF, the 

model would generate a greater log likelihood than a model which generated a 

unimodal ODF.  This would lead one to conclude that the model replicating the bimodal 

ODF were the better of the two models.  However, replicating the bimodal ODF shape in 

probabilistic models would likely be meaningless; as the ODF bimodality is not caused 

by dive type, DCS event severity, or symptom type but is rather related to the DCS onset 

time measurement protocol. 
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3. Trinomial Decompression Sickness Model using Full, 
Marginal, and Non-Event Outcomes 

This chapter is adapted from a publication in Computers in Biology and Medicine.  

Secondary authors are Nicholas Andriano and Dr. Laurens Howle. 

[27] A.E. King, N.R. Andriano, L.E. Howle, Trinomial Decompression Sickness Model using 

Full, Marginal, and Non-Event Outcomes. Computers in Biology and Medicine, 118 (2020). 

https://doi.org/10.1016/j.compbiomed.2020.103640 

3.1 Introduction 

Decompression sickness (DCS) is a condition associated with reductions in 

ambient pressure during underwater diving, aviation, or other situations exposing 

humans to hyperbaric or hypobaric environments.  Focusing here on hyperbaric 

exposures during deep-sea diving, inspired inert gas can dissolve into the blood at 

elevated pressures due to the hydrostatic pressure of water at depth.  This dissolved gas 

is then circulated to the capillaries during diving, where it can diffuse into the tissues.  

Upon ascent, depressurization of the body can lead to supersaturation of the blood and 

tissues, causing the inert gas to leave solution and form bubbles, the putative initiating 

cause of DCS.  The signs and symptoms of DCS can range from mild, such as joint pain 

or rash, to more severe, such as paralysis and death [3]. 

The Haldane decompression algorithm is credited as the first model used to 

generate decompression schedules to mitigate the occurrence of DCS [4].  This model 

used stage decompression to optimize the rate of inert gas washout by placing 

decompression stops at depths with substantial difference between the ambient pressure 
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and the inert gas tension in the body.  This early model was deterministic and binary in 

outcome.  Deterministic models predict the definite occurrence of DCS if the “safe” 

ascent criteria are violated, and likewise that the diver will not experience DCS if they 

adhere to the prescribed decompression schedule.  Deterministic models do not allow 

for any variation in DCS outcome.  However, this variation has been observed, as a 

single dive profile can result in DCS for some divers, and no DCS for others.  In 

addition, a single individual repeating the same dive profile will not experience DCS 

every time [7, 8]. 

To address this variation in DCS outcome, Weathersby et al. [12] and Berghage et 

al. [11] introduced probabilistic DCS modeling, in which all dive profiles are assigned a 

non-zero probability of DCS.  Probabilistic models use survival analysis to quantify risk, 

and allow for model parameters to be calibrated with empirical dive data [13].  

However, neither deterministic nor probabilistic models used by the U.S. Navy to 

generate dive schedules address DCS symptom severity.  Symptom severity is taken into 

account during U.S. Navy dive missions, as the Navy has established limits on the 

number of allowable cases of DCS for a given dive that vary based on symptom severity.  

The U.S. Navy categorizes symptom severity as Type I DCS (mild, pain-only) and Type 

II DCS (serious, cardiopulmonary or neurological), and will allow for a slightly higher 

probability of Type I than Type II DCS during dive planning [25].  Developing models to 
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predict both the probability and severity of DCS outcomes would provide dive planners 

with a more complete spectrum of risk information.   

Previously, Howle et al. [10] explored multinomial probabilistic models in which 

the probabilities of multiple separate events are calculated simultaneously during model 

calibration.  Howle derived and tested a trinomial severity model, which predicted 

probabilities of serious DCS, mild DCS, and no DCS.  A third classification of DCS 

symptoms is called marginal DCS, in which symptoms associated with DCS last for only 

a short duration and resolve spontaneously without recompression treatment [7, 8].  For 

example, pain in one joint lasting for less than 60 minutes, or pain in two joints lasting 

less than 30 minutes, would be considered marginal DCS.  Howle’s trinomial severity 

model considered marginal DCS as non-events.  The observed cases of serious and mild 

DCS were treated hierarchically, as a diagnosis of serious DCS would take precedence 

over and mask mild DCS if both types of symptoms were present.  This model used a 

scaling factor to differentiate between serious and mild DCS during parameter 

calibration with empirical dive data.  Two approaches to symptom severity classification 

were tested: the traditional Type I and Type II, and a novel classification system called 

Type A and Type B [9, 10].  Howle’s Type A/B classification scale is defined by the 

Perceived Severity Index (PSI) [9, 10].  The PSI scale consists of six indices, listed here in 

order of increasing severity: constitutional or nonspecific (fatigue, dizziness, nausea), 

skin (rash, marbling), pain (joint pain, spasm, stiffness), mild neurological (numbness, 
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paresthesia), cardiopulmonary (cough, dyspnea), and serious neurological (dysfunction 

of bladder, coordination, mental status, vision).  As a single DCS case could exhibit 

multiple symptom types, the PSI index is assigned corresponding to the most severe 

symptom present.  In the traditional symptom classification system, Type I DCS would 

encompass constitutional, skin, and pain symptoms, and Type II DCS would include 

mild neurological, cardiopulmonary, and serious neurological manifestations. Howle et 

al. [10] presented an alternative approach, in which mild neurological symptoms are 

considered mild DCS rather than serious DCS.  This system is called Type A/B splitting, 

in which Type A DCS includes constitutional, skin, pain, and mild neurological 

symptoms, and Type B DCS consists of cardiopulmonary and serious neurological cases.  

The categorization of DCS cases into mild and serious have important implications in 

U.S. Navy dive planning, as the Navy allows for a lower predicted probability of serious 

DCS than mild DCS for a given dive profile. 

In some early probabilistic decompression models, marginal events were 

weighted as one-half of a full DCS event during model calibration.  When U.S. Navy 

medical officers expressed a lower level of concern for marginal DCS, the weighting of 

marginal DCS was reduced to one-tenth of a full DCS event [16].  Further research on 

the efficacy of including marginal DCS as fractionally weighted events during 

probabilistic model fitting indicated that these events could skew the model’s 

performance [31, 49]. 
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In this chapter, we explore an alternative trinomial model, called the trinomial 

marginal model, in which the three states are full DCS, marginal DCS, and no DCS.  Full 

DCS includes both mild and serious DCS, and marginal DCS is treated as a separate, 

fully-weighted event during model calibration.  Full and marginal DCS are 

differentiated with a scaling factor during model calibration.  The hierarchical nature of 

observed full and marginal DCS is reconciled with the competing probabilities used in 

the model.  This trinomial marginal model is compared with its binomial counterpart 

and Howle’s previous trinomial severity model. 

3.2 Methods 

3.2.1 Calibration Dataset 

The BIG292 standard DCS dataset, available from two Naval Medical Research 

Institute (NMRI) reports [7, 8], was used in the fitting of all models in this work.  No IRB 

approval was required for this work, as all the data used was de-identified and made 

publicly available in official Government reports.  The dive trials described in this 

dataset were conducted by the U.S., U.K., and Canadian militaries from 1944-1997.  The 

BIG292 data is a subset of the human dive trial data presented in the NMRI reports [7, 

8], comprised of dive profiles and symptom histories for 3,322 air and N2-O2 exposures, 

including single bounce dives, repetitive and multilevel dives, and saturation dives 

conducted in hyperbaric chambers.  These dive profiles range from 20 to 604.2 feet of 



 

61 

seawater (fsw) in depth and 0.64 to 12,960 minutes in duration.  Of the 3,322 dive 

exposures, there were 190 cases of DCS, and 110 cases of marginal DCS. 

In the BIG292 dataset, symptom onset time information is provided for all full 

DCS cases and 68/110 marginal DCS cases.  This onset time information is given as times 

T1 and T2, where T1 is the last known time a diver was symptom-free, and T2 is the first 

known time the diver was symptomatic.  Standard procedures have been established for 

determining this onset time window [50].  These symptom onset times can be used in 

calculating the probability of DCS and have been shown to improve a model’s fit to the 

empirical dive data [14]; although this onset time window may be biased by the dive 

trial’s medical surveillance protocol [26]. 

Based on the symptom histories given in the NMRI reports, the 190 full DCS 

cases can be further categorized into the U.S. Navy’s traditional classification of severity, 

Type I (mild) and Type II (serious) [6], and Howle’s alternative classification system of 

Type A (mild) and Type B (serious) [9, 10].  In the BIG292 dataset, there are 152 cases of 

Type I DCS and 38 cases of Type II DCS.  Type A/B splitting, applied to the BIG292 

dataset, yields 170 cases of Type A DCS (constitutional, skin, pain, and mild 

neurological) and 20 cases of Type B DCS (cardiopulmonary and serious neurological) 

[10].  The trinomial marginal model presented in this work groups mild and serious DCS 

into one category: full DCS. 
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3.2.2 DCS Models 

Probabilistic models generally use parallel perfused compartments measuring 

gas content or bubble volume and survival analysis to calculate the probability of the 

occurrence of DCS [13].  The basic building block of these models is the Perfusion 

Limited Base Model (PLB), which is a single, well-stirred, perfused compartment.  A set 

of three parallel PLB compartments, each with different parameter values, known as the 

EE1 model, has been studied and used extensively by the U.S. Navy.  Our previous 

work investigated pharmacokinetic gas content models, which have coupled 

compartments that allow for gas transfer between compartments [30, 51].  These 

pharmacokinetic models perform well on specific dive types but do not outperform the 

U.S. Navy’s model on the entire dataset, so they are not used here.   

This chapter explores three variants of exponential-exponential (EE) and three 

variants of linear-exponential (LE) decompression models.  All six models consist of 

three parallel, well-mixed compartments, each with a unique half-time for the uptake 

and elimination of inert gas, and have a baseline of six adjustable parameters (three 

tissue half-times and three gain parameters).  The EE models use exponential gas 

kinetics in both gas uptake and elimination.  Three variants of EE models were explored: 

EE1, EE1nt, and EE1 Full.  The EE1 model includes a pressure threshold parameter in 

the third (slowest) compartment, which serves to modify risk accumulation.  The EE1nt 
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model, “nt” indicating no threshold, does not contain any threshold parameters.  The 

EE1 Full model uses a threshold parameter in all three compartments.   

The LE models allow for a switch between exponential and linear gas kinetics 

during inert gas washout [15, 16].  Three variants of LE models were examined: LE1, 

LE1nt, and LE1 Full.  The LE1 model builds upon the EE1 with the addition of a 

pressure crossover parameter in the second (intermediate) compartment, which dictates 

the pressure above which linear gas kinetics is used for gas wash-out rather than 

exponential wash-out.  The LE1 model also contains the pressure threshold parameter in 

the third compartment.  The LE1nt model does not contain any threshold parameter, but 

does include the aforementioned pressure crossover parameter in the second 

compartment.  The LE1 Full model includes pressure crossover and threshold 

parameters in all three compartments, and thus has the highest number of degrees of 

freedom of all six models.  A detailed derivation of these models can be found elsewhere 

[17]. 

3.2.3 Trinomial Marginal Model 

Previous works by Weathersby et al. [12] and Thalmann et al. [15] modeled the 

probability of DCS with a binomial outcome: the probability of DCS and the probability 

of no DCS.  The probability of DCS for a given dive is defined as 

 ( ) 1 g RP DCS e−= −   (3.1) 
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where g  and R  are vectors of the compartmental gain and hazard respectively.  The 

hazard function is derived from survival analysis and contains all information about gas 

kinetics; see [13, 17] for a thorough derivation.  It follows that the probability of no DCS 

is 

 (0) 1 ( ) .g RP P DCS e−= − =   (3.2) 

The time of symptom onset information can be included in the hazard function and has 

been shown to improve model performance when used during model calibration [14].  

This onset time information is used to create a joint probability of surviving DCS-free 

until 
1T   and experiencing DCS between 

1T  and 2T .  This joint probability can be 

calculated as 
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The trinomial marginal model explored in this work uses a scale factor, a , to 

differentiate the probability of a full DCS event from a marginal DCS event, as shown in 

Eq. (3.4). 
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Subscripts f  and n  correspond to full DCS and marginal DCS respectively, and the 

superscript c  indicates that these are competitive probabilities.  The term competitive 
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probability means c

fP  and c

nP  are the independent probabilities of full and marginal 

DCS occurring, respectively.  The assignment of the scaling factor to the probability of 

full DCS is arbitrary.  All mathematical notation used in this work is kept consistent 

with the previous work by Howle et al. [10] to aid in model comparison. 

3.2.4 Competitive and Hierarchical Probabilities 

The determination of a DCS outcome is dictated by the most severe symptom 

present.  For example, a diver with symptoms associated with full DCS may also be 

experiencing marginal DCS, but the single recorded outcome will be full DCS.  To 

reconcile this hierarchical system of classification of observed DCS with the competitive 

probabilities (Eq. (3.4)) used in modeling, Howle et al.’s [10] definition of hierarchical 

probabilities is applied here.  The hierarchical probability of a less severe event 

occurring is defined as the joint probability of the competitive probability of the less 

severe event occurring and the competitive probability of the more severe event not 

occurring.  In the trinomial marginal model, this means that the probability of a diver 

experiencing marginal DCS is multiplied by the probability of that diver not 

experiencing full DCS.  Using Howle’s compact notation, let 

 g Re − =   (3.5) 

and 

 ( ) .a g R ae − =   (3.6) 

The competitive probabilities in Eq. (3.4) can be converted to hierarchical probabilities as 
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where the superscript h  indicates hierarchical probabilities.  The probability of no DCS 

is thus 

 1

0, _ arg 1h h h a

tri m f nP P P  += − − =   (3.8) 

as the law of total probability dictates that the sum of the probabilities of all events is 

equal to 1.  It is important to note that the DCS outcomes recorded in empirical dive data 

correspond to hierarchical probabilities, rather than competitive probabilities. 

 

Figure 10: Probabilities of full and marginal DCS events with increasing value 

of the hazard function in the hierarchical model.  The probability of observing 

marginal DCS decreases as the probability of full DCS increases, illustrating that full 

DCS masks marginal DCS.  An arbitrary scale factor of a = 2  was used to generate 

these illustrative results. 
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   Figure 10 plots the hierarchical probabilities for a single tissue compartment 

defined in Eqs. (3.7) and (3.8).  A scale factor 2a =  was used to generate this plot, as 

there are roughly twice as many observed cases of full DCS as marginal DCS in the 

dataset.  With increasing hazard function, the probability of marginal DCS increases 

then decreases.  This decrease is due to the masking of marginal DCS by full DCS, as a 

diver becomes less likely to experience only marginal DCS with increasing risk. 

3.2.5 Multinomial Likelihood Functions 

To determine the model parameters which yield the best representation of the 

dive data, Weathersby et al. [12] applied the principle of maximum likelihood to 

decompression modeling.  Bayesian estimation has also been explored for model fitting, 

and while it can provide additional information about the parameters’ uncertainties, it 

has a much higher computational demand than likelihood maximization [34].  In this 

work, we use maximum likelihood parameter estimation, which uses repeated trials to 

select parameters that maximize the agreement between observed data and the model’s 

predictions. 

For a binomial model, the log likelihood function is defined as 

 ( ) ( )
1

2

1

ln 1 ( ) ( )
N

i i

i

LL P DCS P DCS
 −

=

 = −
    (3.9) 

where 
,D iP  is the calculated probability of DCS occurring on dive profile i .  For each 

dive, the exponent   is set to 1 if DCS was observed, and 0 if no DCS was observed.  
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The natural log of this quantity is summed over all N  dives in the dataset.  Eq. (3.9) can 

be extended to our trinomial marginal model as 

 ( ) ( ) ( )
1

3 , , , ,

1

ln 1
N

h h h h

f i n i f i n i

i

LL P P P P
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=

 = − −
     (3.10) 

where the exponents are set as 0 = =  for no DCS, 1, 0 = =  for full DCS, and 

0, 1 = =  for marginal DCS.  Thus, full DCS and marginal DCS are considered 

separate, fully-weighted hierarchical events. 

3.2.6 DCS Model Optimization and Statistical Methods 

Model parameters are determined through maximization of Eq. (3.10).  A 

detailed explanation of the optimization used in this study can be found in [17].  This 

optimization can be quite computationally expensive, as some parameters are nearly 

collinear, resulting in an ill-conditioned Hessian matrix which slows convergence.  To 

mitigate this computational demand, Howle analytically derived an exact solution for 

the optimal gain given the other parameters [52].  This decreases the number of 

parameters to be optimized, alleviating some of the computational intensity.  A 

derivation of the exact gain calculation for a three-state model can be found in our 

previous work [10]. 

Each of the six model variants was optimized for 256 random initial guesses of 

the model parameter set.  The log likelihood difference test was used for model 

comparison, as each model has a different number of adjustable parameters and cannot 



 

69 

be compared directly [13].  To categorize model improvement, a value of 0.05p   was 

considered significant, and a value of 0.01p   was considered highly significant.  95% 

confidence intervals on the predicted parameters were estimated according to the 

method presented in Ref. [13] by Dr. Gerth.  In this method, The Hessian matrix was 

approximated by perturbing each parameter.  The covariance matrix was calculated as 

the negative inverse Hessian, and the estimated parameter standard errors were taken as 

the diagonal components of this covariance matrix.  SigmaPlot v14 was used to calculate 

and plot the 95% confidence limits and 95% prediction limits for the fit of the model to 

the data [53]. 

When comparing the success of each model, the log likelihoods cannot be 

compared directly when the models differ in degrees of freedom.  The log likelihood 

difference test can be used to compare model fit [13], shown in Eq. (3.11) 

 ( )2 2 .ij i jLL LL LL = = − −   (3.11) 

The log likelihood difference values between all models can be compared against the 

critical Chi-squared ( 2 ) value for significance ( 0.05p  ) and the critical Chi-squared 

value for high significance ( 0.01p  ) based on the number of additional degrees of 

freedom from one model to the other.  This log likelihood difference test can be used to 

determine if the addition of a parameter to the model with more degrees of freedom 

provides statistically significant improvement in model performance. 
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3.3 Results 

The optimized trinomial marginal model variants were examined to determine 

the best performing model using the log likelihood difference test.  The fit of this model 

to the empirical dive data was explored with the model’s predicted vs. observed 

probabilities of DCS and the cumulative density functions for DCS events predicted by 

the model.  The trinomial marginal model’s predicted probabilities were also compared 

with the binomial model. 

3.3.1 Trinomial Marginal Model Comparison 

The optimal model parameter values and log likelihood values for all model 

variants can be found in Table 10, with the 95% confidence intervals for the LE1 model. 

Table 10: Parameter values for the EE1 and LE1 model variants.  95% 

confidence intervals are provided for the LE1 model parameters, which yielded the 

best model fit to the data. 

 EE1nt EE1 EE1 Full LE1nt LE1 LE1 Full 

1/k1 (min) 1.340 1.092 1.932 1.570 3.509 ± 0.2165 5.426 

1/k2 (min) 227.7 231.1 566.8 228.2 63.79 ± 17.44 541.6 

1/k3 (min) 570.4 617.1 217.6 590.7 548.3 ± 45.09 146.4 

g1 (min-1) 1.465E-03 2.167E-03 1.227E-03 1.378E-03 4.962E-04 ± 3.002E-04 2.028E-04 

g2 (min-1) 2.545E-04 2.738E-04 7.830E-04 2.445E-04 6.303E-05 ± 1.661E-05 6.302E-04 

g3 (min-1) 1.770E-04 4.014E-04 2.408E-04 1.525E-04 7.327E-04 ± 1.570E-04 1.764E-04 

PXO1 (fsw) ∞ ∞ ∞ ∞ ∞ 1.8787 

PXO2 (fsw) ∞ ∞ ∞ 3.526E-01 7.467E-02 ± 1.065E-02 4.5414 

PXO3 (fsw) ∞ ∞ ∞ ∞ ∞ 7.8777 

Thr1 (fsw) 0 0 1.298E-01 0 0 1.082E-02 

Thr2 (fsw) 0 0 1.635E-01 0 0 1.125E-01 

Thr3 (fsw) 0 1.230E-01 -2.701E-02 0 1.203E-01 ± 1.749E-02 -6.318E-02 

a 1.609 1.762 1.547 1.732 1.596 ± 3.134E-03 1.452 

LL3 -1516.66 -1492.45 -1488.93 -1514.70 -1485.39 -1492.40 
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Table 11: Log likelihood difference comparison between trinomial marginal 

models determined by Chi-squared distributions for the respective degree of freedom 

differences.  The degrees of freedom of each model are listed in parentheses.  Each 

value in the table is the log likelihood difference comparison between the row and 

column models.  A bold value indicates the model listed in the column offers 

significant improvement (p < 0.05) over the model listed in the row.  A bold and 

underlined value indicates the column model demonstrates highly significant 

improvement (p < 0.01) over the row model. 

 EE1nt (7) EE1 (8) LE1nt (8) LE1 (9) EE1 Full (10) LE1 Full (13) 

EE1nt (7) - 48.413 3.912 62.524 55.462 48.520 

EE1 (8)  - -44.502 14.111 7.049 0.107 

LE1nt (8)   - 58.612 51.550 44.609 

LE1 (9)    - -7.062 -14.004 

EE1 Full (10)     - -6.942 

LE1 Full (13)      - 

 

The log likelihood difference comparisons between each of the six models can be 

found in Table 11, located in the corresponding row-column intersections.  The log 

likelihood difference values reading down each column are the comparisons between 

that column’s model and those with fewer degrees of freedom, and reading left to right 

across a row are the comparisons between that row’s model and those with more  

degrees of freedom.  The LE1 model provides significant improvement over all models 

with fewer degrees of freedom, and no models with more degrees of freedom than the 

LE1 offer significant improvement.  The addition of a pressure threshold parameter is 

justified, as the EE1 outperforms the EE1nt, and the LE1 outperforms the LE1nt.  The 

LE1 model provides significant improvement over the EE1 model, justifying the 

addition of a single crossover pressure.  The models with more degrees of freedom than 
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the LE1 (EE1 full and LE1 full) do not offer any significant improvement.  From these log 

likelihood difference comparisons, we can conclude that the LE1 variant is the best 

performing trinomial marginal model. 

 The observed probability of DCS is plotted against the predicted probability of 

DCS in Figure 11 for the LE1 trinomial marginal model.  This plot was generated by 

sorting all dive exposures in the dataset by the model’s predicted probability of no DCS 

from smallest to largest.  Exposures were then grouped into bins containing equal 

numbers of full (or marginal) events.  For each bin, the predicted PDCS was calculated 

as the sum of the per-exposure probabilities of full (or marginal) DCS events in the bin 

divided by the actual number of observed cases of full (or marginal) DCS.  The observed 

PDCS was calculated as the number of observed full (or marginal) DCS cases in the bin 

divided by the total number of exposures in the bin.  Ten bins were used for full DCS (19 

observed cases per bin) and five bins were used for marginal DCS (22 observed cases per 

bin).  The full (triangles, left panel) and marginal (circles, right panel) data points were 

plotted with 95% confidence and 95% prediction bands, as represented by the long-

dashed and solid lines respectively.  The dotted lines represent the linear fit of the 

observed to predicted probability of DCS, with 2

arg 0.80m inalr =  and 2 0.64fullr = .  A model 

that perfectly fits the dive data would have observed PDCS equal to predicted PDCS, 

thus all points would fall on the line of identity.  It is interesting to note that the 
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marginal DCS data points are more linear than full DCS, but the full DCS regression line 

is closer to the line of identity.   

 

Figure 11: Trinomial marginal LE1-predicted probabilities of DCS versus 

observed probabilities of full (left) and marginal (right) DCS.  These data points were 

generated by separating the marginal (full) DCS exposures into five (ten) bins, each 

containing 22 (19) observed marginal (full) DCS cases.  The predicted and observed 

probabilities of DCS were then calculated for each bin.  A larger bin size was used for 

the marginal DCS cases to best reflect the probability of observed DCS, where some 

dive profiles resulted in multiple observed marginal DCS cases.  These probabilities 

are plotted with a linear fit (dotted lines, 2

marginal
r = 0.80 , 2

full
r = 0.64 ) and the 95% 

confidence (long dashed line) and 95% prediction (solid line) bands. 

3.3.2 Predictions on Data 

Table 12 shows the number of observed and marginal DCS cases in the BIG292 

dataset, along with the trinomial marginal LE1 model’s predictions for full and marginal 

DCS.  The 95% confidence bands are given for the total number of predicted marginal 

and full DCS cases.  The dive data is categorized by dive type: single air, repetitive and 
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Table 12: DCS occurrences and trinomial marginal model predictions for the 

BIG292 dataset. 

  Observed DCS LE1 Trinomial Marginal Predicted DCS 

 Exposures Full Marginal Total Full Marginal Total 

Single Air               

EDU885A 483 30 0 30 22.07 13.23 35.3 

DC4W 244 8 4 12 4.59 2.81 7.4 

SUBX87 58 2 0 2 0.16 0.1 0.26 

NMRNSW 91 5 5 10 4.33 2.59 6.92 

PASA 72 5 2 7 2.08 1.27 3.35 

NSM6HR 57 3 2 5 3.46 2.05 5.51 

Rep&Mult 

Air               

EDU885AR 182 11 0 11 9.4 5.59 14.99 

DC4WR 12 3 0 3 0.74 0.44 1.18 

PARA 135 7 3 10 7.8 4.62 12.42 

PAMLA 236 13 12 25 15.7 9.24 24.94 

Single 

Non-air               

NMR8697 477 11 18 29 12.27 7.48 19.75 

EDU885M 81 4 0 4 2.42 1.48 3.9 

EDU1180S 120 10 0 10 5.66 3.37 9.03 

Rep&Mult 

Non-air               

EDU184 239 11 0 11 11.36 6.79 18.15 

PAMLAOD 134 6 0 6 6.61 3.98 10.59 

PAMLAOS 140 5 3 8 4.77 2.89 7.66 

EDU885S 94 4 0 4 2.9 1.77 4.67 

Saturation               

ASATEDU 120 13 27 40 16.53 9.06 25.59 

ASATNMR 50 1 0 1 4.62 2.66 7.28 

ASATNSM 132 18 21 39 25.17 13.17 38.34 

ASATARE 165 20 13 33 20.08 11.22 31.3 

Totals 3322 190 110 300 182.72 ± 25.9 105.81 ± 15.0 288.53 ± 29.9 
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multilevel air, single non-air, repetitive and multilevel non-air, and saturation dives.  

The model’s predictions for total number of full DCS and marginal DCS cases do match 

the observed data within their 95% confidence intervals. 

3.3.3 Binomial to Trinomial Probability Shift 

The influence of marginal DCS events treated as separate, hierarchical events is 

illustrated in Figure 12, which shows the shift in the predicted probability of full DCS 

events between the trinomial marginal LE1 and binomial LE1 models.  The parameters 

used for each model to generate Figure 12 can be found in Table 13.  Marginal DCS cases 

are weighted as non-events in the binomial LE1 model, following previous work on the 

efficacy of marginal DCS events in model fitting [31, 49].  For this comparison of the 

trinomial marginal to binomial LE1 models, all dives that did not result in full DCS are 

categorized as no DCS (including marginals).  In Figure 12, the trinomial marginal LE1 

model predicted probabilities of full DCS for all observed full DCS cases are plotted 

against that of the binomial LE1 model (black circles).  Likewise, for dive profiles that 

did not result in DCS, the trinomial marginal LE1 sum of the model predicted 

probabilities for no DCS and marginal DCS are plotted against the corresponding 

binomial LE1 predicted probabilities for no DCS.  Observed marginal DCS cases are 

delineated from no DCS cases with the white square markers. 
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Figure 12: Binomial to trinomial probability shift plot.  For the dives that 

resulted in DCS, the binomial LE1 predicted probability is compared to the predicted 

full DCS probability from the trinomial marginal LE1 model with solid black circles.  

For dive exposures that did not result in full DCS, the predicted probabilities of no 

DCS are shown with black triangles and white squares.  The trinomial marginal 

model’s plotted probabilities for no DCS are the sum of the predicted marginal and 

predicted no DCS probabilities.  Exposures with observed marginal DCS are 

delineated with white square markers. 

The line of identity in Figure 12 can be used to compare the predictions of both 

models.  A point that falls below the line of identity indicates the trinomial marginal 

model has a lower predicted event probability than the binomial model.  Conversely, a 

point above the line of identity indicates the trinomial marginal model has a higher 

predicted event probability than the binomial model.  It is thus evident that for some 

dives, the trinomial marginal model predicts a lower probability of no DCS and a higher 

probability of full DCS than the binomial model. 
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Table 13: Optimized parameters used for the Binomial LE1 and Trinomial 

Marginal LE1 models in Figure 12. 

 Binomial LE1 Trinomial Marginal LE1 

1/k1 (min) 2.350 ± 0.09401 3.509 ± 0.2165 

1/k2 (min) 63.02 ± 39.49 63.79 ± 17.44 

1/k3 (min) 504.4 ± 55.85 548.3 ± 45.09 

g1 (min-1) 1.985E-03 ± 1.200E-3 4.962E-04 ± 3.002E-04 

g2 (min-1) 1.069E-04 ± 4.523E-05 6.303E-05 ± 1.661E-05 

g3 (min-1) 9.665E-04 ± 2.658E-04 7.327E-04 ± 1.570E-04 

PXO1 (fsw) ∞ ∞ 

PXO2 (fsw) 7.236E-02 ± 2.052E-02 7.467E-02 ± 1.065E-02 

PXO3 (fsw) ∞ ∞ 

Thr1 (fsw) 0 0 

Thr2 (fsw) 0 0 

Thr3 (fsw) 9.963E-02 ± 1.459E-02 1.203E-01 ± 1.749E-02 

a - 1.596 ± 3.134E-03 

LL2 -963.308 - 

LL3 - -1485.39 

 

The linear regression line fitted to the full DCS predicted probabilities has a slope 

of 1.320 ( 2 0.9627r = ) and the linear fit for the no DCS predicted probabilities has a 

slope of 1.226 ( 2 0.9584r = ).  This indicates there is slightly more scatter in the no DCS 

probabilities.  These slopes can be used to approximate the probability shift from the 

binomial to the trinomial marginal model, i.e. 
, ,1.320tri full bin fullP P .  

3.3.4 Cumulative Density Function 

The cumulative density functions plotted in Figure 13 can be used to visually 

compare DCS onset times for both the dive data and the model’s predictions.  For the  
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Figure 13: Trinomial marginal cumulative density function.  Full DCS cases 

(black, solid curve) and marginal DCS cases (gray, solid curve) are shown for the 

empirical dive data.  The cumulative density function for the predicted full and 

marginal DCS cases fall on the same curve (black, dashed). 

 

predicted cases, the hierarchical probability model simply scales event probabilities to 

distinguish between marginal and full DCS.  Thus the predicted cumulative density 

functions for both marginal and full DCS fall on the same curve (dashed black line).  The 

observed full (solid black line) and marginal (solid gray line) DCS cumulative  

probabilities differ from approximately 100 hours prior to surfacing to 15 hours prior to 

surfacing, and from 0 to 48 hours after surfacing.  The cumulative probability of 

observed marginal DCS cases is always less than that of full DCS cases.  Prior to 

surfacing, the model under predicts the cumulative probability of full DCS, and after 
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surfacing, the model over predicts the cumulative probability of both full and marginal 

DCS.  The model predicts that DCS events occur sooner after surfacing than seen in the 

data. 

 Figure 4 illustrates the disparity in the onset time information for full DCS versus 

marginal DCS in the data.  While all full DCS cases are reported with the symptom onset 

time window T1 and T2, only 68 of the 110 marginal cases have this information.  Thus, 

the T2, or the first known time the diver was experiencing symptoms, for these cases 

without onset times was set to the right-censored time (24 or 48 hours after surfacing).  

The impact of this assignment of T2 is evident in the marginal DCS cumulative density 

function, as the cumulative probability lags behind full DCS until 48 hours post-dive.  

The trinomial marginal model does not replicate this trend, and over-predicts both full 

and marginal DCS after the final surface interval. 

3.4 Discussion 

The trinomial marginal model explored in this work is a continuation of the 

multinomial modeling developed by Howle et al. [10].  The conversion between 

competitive probabilities, used by the model, to hierarchical probabilities, observed in 

the data, was adapted for full and marginal DCS, and a multinomial log likelihood 

function was used for model calibration.  The analysis of the trinomial marginal model 

was conducted in accordance with our previous work [10] to expedite comparison. 
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Of the six model variants optimized in this work, the log likelihood difference 

test indicated the LE1 provided the best fit to the BIG292 dataset, as it performed 

significantly better than models with fewer degrees of freedom, and models with more 

degrees of freedom performed worse than the LE1.  This justified using both the 

pressure crossover parameter in the second model compartment and the pressure 

threshold parameter in the third model compartment.   

Although the LE1 trinomial marginal model is able to predict, within 95% 

confidence intervals, the number of observed full and marginal DCS cases, the 

distribution of these predictions among the dataset is not directly aligned with the 

observed cases.  The model predicts full DCS more accurately than marginal DCS.  It has 

been shown that the inclusion of marginal DCS in model calibration can impair a 

model’s performance [31, 49].  Marginal DCS events make up only 3.3% of the BIG292 

dataset, and 55% of these marginal events resulted from saturation diving.  Because 

saturation diving only constitutes 14% of the BIG292 dataset, the frequency of observed 

marginal DCS causes undue risk to be associated with this dive type during model 

calibration. 

The weighting of marginal DCS events in binomial models has historically been 

subject to debate and change.  The original weighting of 0.5 was somewhat arbitrary, 

and was subsequently decreased to 0.1.  The comparison of our tristate model, in which 

marginal DCS is considered a fully weighted event separate from full DCS, with 
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Howle’s trinomial severity model [10], in which marginal events are classified as non-

events, can provide insight into the additional impact of marginal events on model 

calibration.  Howle demonstrated that his trinomial LE1nt severity model, which 

simultaneously predicted the probabilities of serious, mild, and no DCS, outperformed 

the binomial LE1nt model.  We cannot compare our trinomial marginal LE1 model 

directly with the binomial LE1 model, as the treatment of marginal events differs 

between the two.  When comparing the distribution of each of Howle’s and our model’s 

predictions of the data (see Table 12), it is interesting to investigate both models’ success 

with saturation diving.  In the dive data, a total of 52 full and 61 marginal DCS cases 

were observed resulting from saturation diving.  The trinomial marginal model predicts 

66.4 full DCS and 36.11 marginal DCS events.  Howle’s trinomial severity model 

predicted a total of 40.9 full DCS events (mild + serious), which is more accurate than the 

trinomial marginal model’s corresponding prediction of full DCS.  The trinomial 

marginal model only attributed roughly a third of the total predicted marginal cases to 

saturation diving, the rest distributed approximately uniformly among other dive types, 

resulting in the over-prediction of the occurrence of marginal DCS for single air, and 

repetitive and multilevel air and nonair diving. 

The binomial to trinomial probability shift plot in Howle’s work [10] indicated 

that both models’ probabilities of no DCS were nearly identical, and his trinomial 

severity model predicted lower probabilities for full DCS, especially those with serious 
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symptoms, when compared with the binomial model.  Howle’s optimal model 

parameters for the trinomial severity model were found to be similar to the binomial 

model, generating the tight correlation between the binomial and trinomial severity 

models’ predicted probabilities.  The slopes of the linear fit lines for mild (0.894) and 

serious (0.109) DCS are nearly identical to the ratios of mild and serious DCS events to 

the total number of full DCS cases in the data, i.e. for mild, 170/190 = 0.895, and for 

serious, 20/190 = 0.105.  Our binomial to trinomial marginal probability shift plot (Figure 

12) has more scatter, and over-predicts the probability of full DCS when compared with 

the binomial counterpart.  This illuminates one effect that the inclusion of marginal DCS 

cases has on model fitting, as the optimal parameters for the trinomial marginal are 

quite different from the binomial and trinomial severity models.  In Figure 12, there is no 

trend in the marginal DCS data points that distinguishes them from no DCS events. 

The cumulative density function for the BIG292 dataset and the model’s 

predictions (Figure 13) indicates that the model under-predicts the probability of full 

DCS prior to surfacing, and over-predicts both full and marginal DCS after surfacing.  

The model is able to replicate the trend of full DCS onset, but does not predict the late 

onset of marginal DCS symptoms.  As symptom onset time information is missing for 

almost 40% of the marginal cases, the assigned onset windows are quite large, ranging 

from one to five days.  For comparison, the reported onset time windows for the other 68 

marginal events range from 15 minutes to 30 hours (1.25 days).  Because these reported 
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onset time windows are imprecise, the trinomial marginal model’s inability to predict 

late onset for marginal DCS does not necessarily indicate poor performance. 

3.5 Conclusions 

The trinomial marginal model presented in this work is an augmentation of the 

traditional binomial probabilistic decompression model.  This model predicts the 

probabilities of the occurrence of full, marginal, and no DCS simultaneously.  The LE1 

trinomial marginal model provided the best fit to the data, justifying the addition of 

both the pressure threshold and crossover pressure parameters.  Analysis of the LE1 

trinomial marginal model indicated there is room for improvement.  The model’s 

predicted probabilities of DCS do not align directly with observed probabilities of DCS.  

The lack of recorded symptom onset times for many of the marginal DCS cases and 

subsequent right censoring is unfavorable during the optimization process, as these 

large event windows make model parameters more difficult to refine than cases with 

recorded onset times. 

Howle’s trinomial severity model [10] and our trinomial marginal model treat 

marginal DCS cases differently; as Howle’s model considers marginal DCS as a non-

event, while we weight marginals as fully separate hierarchical events from full DCS.  

Because of this differential treatment, the two models cannot be directly compared.  For 

future work, it is possible to derive a four-state (tetranomial) model, that simultaneously 

predicts mild, serious, marginal, and no DCS outcomes.  This model could be compared 



 

84 

directly against the trinomial marginal model, with the eventual goal of determining 

which multinomial probabilistic model performs best, and whether these models 

provide a significant improvement over the binomial probabilistic model. 
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4. Tetranomial Decompression Sickness Model using 
Serious, Mild, Marginal, and Non-Event Outcomes 

4.1 Introduction 

 Decompression sickness (DCS) is a condition resulting from a reduction in 

ambient pressure.  This can occur during hyperbaric exposures, such as ascent from a 

deep-sea dive, and hypobaric exposures, such as ascent to altitude.  When ambient 

pressure is reduced, inert gas which had been inspired, circulated, and dissolved into 

the body’s blood and tissues at the previous elevated pressure can leave solution, 

forming bubbles and causing DCS.  Signs and symptoms of DCS can range from mild 

skin rashes and joint pain to serious neurological and cardiological malfunction, and 

even death [3].  Marginal DCS is defined as symptoms typically associated with DCS 

that are mild and resolve spontaneously without recompression treatment, such as pain 

in one joint lasting for less than 60 minutes or pain in two joints lasting less than 30 

minutes [7, 8].  Focusing in this work on hyperbaric exposures, DCS is of particular 

concern for U.S. Navy diver planners, as onset of symptoms can result in premature 

termination of undersea missions. 

The first known decompression model to mitigate the risk of DCS was created by 

Boycott et al. [4] in the early twentieth century, known as the Haldane Model.  The 

Haldane model generated decompression schedules using stage decompression to 

control the rate of inert gas washout from the body during ascent.  This model was 

deterministic, meaning it predicted that DCS would absolutely occur if the proposed 
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“safe” ascent criteria were violated, and would not occur if these criteria were followed.  

While this early model did reduce the prevalence of DCS, some divers who complied 

with the prescribed “safe” decompression schedules still experienced DCS. 

Probabilistic decompression modeling was introduced by Weathersby et al. [12] 

and Berghage et al. [11] to simulate the variation in DCS onset and severity experienced 

by divers executing the same dive profile as seen in empirical dive data [7, 8].  

Probabilistic decompression algorithms use either gas content or bubble models and 

survival analysis to generate a probability of DCS for each dive profile [13].  A 

significant advantage of probabilistic modeling over deterministic modeling is that 

model parameters can be calibrated with empirical dive data.  Probabilistic models used 

today to predict the probability of the occurrence of DCS do not provide any 

information about symptom severity.  DCS severity predictions would be advantageous 

as they would allow safety analysis to be conducted on military diving operations. 

Both the probability of DCS occurrence and symptom severity are of high 

concern to the U.S. Navy when planning undersea missions.  When planning dives, the 

U.S. Navy has previously stated that a 2.0% risk of Type I (mild) DCS and a 0.1% risk of 

Type II (serious) DCS is acceptable [25].  Additionally, U.S. Navy Dive Medical Officers 

have indicated a low level of concern for marginal DCS [16].  DCS symptom onset can 

result in premature termination of U.S. Navy diving missions.  The addition of the 

proposed multi-state probabilistic decompression model that predicts both the 
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occurrence and severity of DCS to dive planning would allow dive supervisors to tailor 

undersea missions to the acceptable level of risk for the divers. 

Howle et al. [10] introduced a multinomial probabilistic decompression model, 

which simultaneously predicted the probability of three outcomes for a given dive 

profile: mild DCS, serious DCS, and no DCS.  Howle tested two classifications of DCS 

cases as mild and serious based on the symptom histories published in the data set used 

for model calibration [7, 8], one in accordance with current U.S. Navy severity 

definitions [6] and one novel approach [9, 10].  Howle’s trinomial model considered 

marginal DCS as non-events following previous research on the effectiveness of 

marginal events in probabilistic model calibration [31, 49].  This trinomial model was 

compared with a binomial model (predicting full DCS and no DCS outcomes), and it 

was concluded that the trinomial model provided statistically significant improvement 

over the binomial model in its ability to fit empirical dive data. 

In the previous chapter, we modified Howle’s trinomial model by analyzing the 

multi-state outcome of full DCS, marginal DCS, and no DCS [27].  Historically, marginal 

DCS events have been included in probabilistic decompression models as fractionally 

weighted during model calibration.  Originally, marginal events were assigned a 

weighting of 0.5, indicating they were half as important as a full DCS event during 

model fitting.  This weighting was later reduced to 0.1 when U.S. Navy Medical Officers 

indicated a low level of concern for marginal DCS, to ensure that marginal DCS cases 
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did not cause undo risk to be associated with particular dives during model calibration 

[16].  Further research on the impact of fractionally weighted marginal events in 

probabilistic model fitting has indicated that fractionally weighted marginal DCS events 

may hinder a model’s performance [31, 49].  To address this issue, we developed the 

aforementioned trinomial marginal model, which considered marginal DCS to be a 

fully-weighted hierarchical outcome separate from full DCS.  This model could not be 

compared directly with Howle’s trinomial model, which classified marginal DCS as 

nonevents, though we found the inclusion of marginal events in this fashion may have 

skewed the distribution of predictions on the data.  In this chapter, we continue the 

investigation of multinomial probabilistic modeling by optimizing a tetranomial model 

with mild DCS, serious DCS, marginal DCS, and no DCS outcomes. 

4.2 Methods 

4.2.1 Calibration Data 

The model presented in this study was calibrated with the BIG292 standard DCS 

data set, which is a subset of data presented in two Naval Medical Research Institute 

(NMRI) reports [7, 8].  The BIG292 data contains 3,322 exposures of air and nitrogen-

oxygen diving conducted by the United States, United Kingdom, and Canadian 

militaries from 1944-1997.  This data set includes the dive profile, dive conditions (wet or 

dry), inspired gas, and DCS outcome and symptom history for each exposure.  The 

BIG292 data set contains a total of 190 DCS cases and 110 marginal DCS cases resulting 
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from single air, single non-air, repetitive and multilevel air, repetitive and multilevel 

non-air, and saturation dive types.  Marginal DCS is defined as signs or symptoms 

associated with DCS that persist for a short duration and spontaneously resolve without 

recompression treatment [7, 8].  The dive data used in this study are de-identified and 

available to the public in the form of two U.S. government reports, and no IRB approval 

was required for the present study. 

If DCS occurs, the onset time window of DCS symptoms can be characterized by 

times T1 and T2, where T1 is the last known time a diver was asymptomatic and T2 is the 

first known time a diver was definitely experiencing DCS symptoms [16].  In the BIG292 

data set, all 190 full DCS cases and 68 of the 110 marginal DCS cases are reported with 

symptom onset times T1 and T2.  These symptom onset times can be used in probabilistic 

DCS modeling to improve model fitting [14].  In our previous work, we found the onset 

time window provided by T1 and T2 are not related to DCS symptom severity, and may 

actually be biased by the medical surveillance protocol of each dive trial [26]. 

4.2.2 DCS Event Severity 

DCS cases are categorized into Type I (also called mild or pain-only) or Type II 

(also called serious or neurological) [6, 25].  A novel method of categorizing DCS cases 

was proposed by Howle et al., in which the 190 full DCS cases in our calibration data set 

are classified by perceived severity index (PSI) [9, 10].  These indices for describing DCS 

symptoms, in order of least to most severe, are: constitutional/nonspecific (dizziness, 
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fatigue, nausea), lymphatic/skin (itching, rash, marbling), pain (ache, joint pain, spasm), 

mild neurological (paresthesia, numbness, tingling), cardiopulmonary (hemoptysis, 

dyspnea, cough), and serious neurological (dysfunction of bladder, coordination, mental 

status). 

The dive data published in the two NMRI reports [7, 8] included symptom 

descriptions for each case of full and marginal DCS, so Howle et al. assigned each case a 

severity index 1-6 [10].  If a case exhibited symptoms corresponding to more than one 

severity category, the most severe index present was selected. 

The traditional categorization of Type I DCS corresponds to constitutional, skin, 

and pain manifestations, while mild neurological, cardiopulmonary, and serious 

neurological cases are considered Type II DCS [6].  Howle et al. [10] proposed Type A/B 

splitting, in which Type A DCS includes constitutional, skin, pain, and mild neurological 

symptoms, while Type B DCS corresponds to cardiopulmonary and serious 

neurological.  The number of DCS occurrences in the BIG292 data set corresponding to 

each PSI and classified by both Type I/II and Type A/B splitting are summarized in 

Table 1 (in Chapter 1). 

4.2.3 DCS Models 

Probabilistic DCS models use survival analysis with a gas content or bubble 

volume model to quantify the risk of DCS occurrence for a given dive profile [13].   Our 

tetranomial probabilistic models extended the exponential-exponential (EE) and linear-
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exponential (LE) gas content models described by Thalmann [15], which consist of three 

stirred, parallel perfused gas compartments.  The models in this chapter were added to 

our previously developed DCS modeling and optimization system, described in Refs. 

[17, 52]. 

Twelve probabilistic decompression model variants were tested to determine 

which model parameters were statistically justified for the tetranomial model.  The base 

model was the EE1 model, which consists of three well-mixed, parallel-perfused 

compartments.  Each compartment exhibits exponential gas kinetics and has a unique 

half-time.  The slowest compartment has a pressure threshold parameter, allowing for 

greater gas supersaturation before risk accumulation.  We also tested two additional 

variants of this EE1 model – one without any threshold parameter (EE1nt), and one with 

threshold parameters in all three compartments (EE1 full).   

Next, we tested the LE1 model, which augments the EE1 model by allowing for a 

switch between exponential and linear gas kinetics at an optimized crossover pressure in 

the middle compartment [15, 16].  The two variants of that LE1 model were one without 

any threshold parameter (LE1nt), and one with both threshold and crossover pressure 

parameters in all three compartments (LE1 full).  A detailed derivation of these models 

can be found in Ref. [17].  A summary of the free parameters in each model variant can 

be found in Table 15. 
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These three EE1 and three LE1 models were tested with Type I/Type II splitting, 

and again with Type A/Type B splitting, totaling 12 model variants. 

4.2.4 Tetranomial Model 

The binomial probability of DCS occurrence, as defined by Weathersby et al. [12], 

is 

 ( ) 1 g RP DCS e−= −   (4.1) 

and the probability of DCS not occurring is dictated by the law of total probability as 

 (0) 1 ( ) ,g RP P DCS e−= − =   (4.2) 

where g  is a vector of each compartment’s gain and R  is a vector containing each 

compartment’s risk information.  The risk function is derived from survival analysis and 

quantifies the gas kinetics in each compartment; a detailed derivation can be found in 

Refs. [13, 17].   

 It has been shown that including the DCS symptom onset time information in Eq. 

(4.1) can improve a model’s performance, and is done by calculating the joint probability 

of surviving DCS-free until T1 and experiencing DCS during the onset time window T1-

T2 [14].  This joint probability can be written as 
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These equations can be extended to the proposed tetranomial model, in which the 

probabilities of serious, mild, marginal, and no DCS are all calculated simultaneously.  

Competitive probabilities, meaning probabilities for each event independent of any 

other event occurring, are derived from Eq. (4.1) using fitted scale factors a  and b  to 

differentiate between DCS severity: 
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  (4.4) 

In Eq. (4.4), c

sP , c

mP , and c

nP  are the competitive probabilities of serious, mild, and 

marginal DCS respectively. 

4.2.5 Competitive and Hierarchical Probabilities 

Observed cases of DCS are categorized hierarchically.  For example, the 

diagnosis of serious DCS would take precedence over mild and marginal DCS if mild 

and/or marginal DCS symptoms were present, and mild DCS takes precedence over 

marginal DCS.  The calculated DCS probabilities in Eq. (4.4) are defined competitively, 

and consequently must be converted to hierarchical probabilities to accurately reflect the 

diagnoses in our dive data.  These hierarchical probabilities, labeled with a superscript 

h , can be calculated from competitive probabilities as the joint probability of the event’s 

independent probability and the probability that the more severe event(s) does not 

occur: 
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  (4.5) 

The sum of the probabilities of all events is equal to 1 by the law of total probability.  For 

comparison with Ref. [10] and Chapter 3, we can rewrite Eq. (4.5) in Howle’s compact 

notation, where a quantity   is defined as 

 g Re−   (4.6) 

and  
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Eqs. (4.6) and (4.7) can be substituted into the hierarchical probabilities defined in Eq. 

(4.5): 
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The hierarchical probabilities of serious, mild, and marginal DCS are plotted 

with increasing hazard function for a single compartment in Figure 14.  The probability 

of serious DCS increases with increasing hazard function, while the probabilities of mild 

and marginal DCS increase and then decrease.  This plot illustrates the masking of less 

severe DCS events by more severe DCS, i.e. a diver diagnosed with serious DCS may 
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have also been experiencing mild DCS symptoms.  We hypothesize that as the risk 

function increases, it is more likely that the diver will develop serious DCS symptoms 

and thus more likely to be diagnosed with serious DCS and less likely to be diagnosed 

with mild or marginal DCS. 

 

Figure 14: Probabilities of serious, mild, and marginal DCS events with 

increasing hazard function in the hierarchical model.  The masking of mild DCS by 

serious DCS, and marginal DCS by mild and serious DCS, is illustrated by the 

decreasing probabilities of mild and marginal DCS events with increasing hazard 

function.  Arbitrary scale factors of a = 0.25  and b = 0.75  were used to generate this 

plot. 

4.2.6 Multinomial Likelihood Functions 

Probabilistic DCS models are advantageous in their capacity to be calibrated 

with empirical dive data.  To determine optimal model parameters, Weathersby et al. 

[12] used maximization of the likelihood function.  Other optimization methods, such as 
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Bayes optimization, have also been used to estimate probabilistic DCS model parameters 

[34].  Although Bayesian optimization can provide a clearer picture of estimated 

parameters’ uncertainties, it has a high computational cost, so maximum likelihood 

optimization is used in the present work.  

 For a binomial model predicting the probabilities of full and no DCS, the log 

likelihood function is 

 ( )1

2

1

ln ( ) 1 ( ) ,
N

i i

i

LL P DCS P DCS −

=

 = −
    (4.9) 

where ( )iP DCS  is the probability of DCS occurring for the thi  of N  total dives, 

calculated with Eq. (4.1) or (4.3).  The exponent   signals the observed outcome of the 

thi  dive, where 1 =  if DCS occurred, and 0 =  if DCS did not occur.  This function is 

optimized to maximize the model’s fit to the data. 

 For our tetranomial model, the hierarchical probabilities defined in Eq. (4.5) can 

be used in a multinomial log likelihood function to calculate the fit of the model to the 

calibration data set: 

 ( ) ( ) ( ) ( )
1

4 , , , , , ,

1

ln 1 ,
N

h h h h h h

s i m i n i s i m i n i

i

LL P P P P P P
     − − −

=

 = − − −
     (4.10) 

where index i  counts over each dive exposure and the observed dive outcome is 

expressed with 
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1, 0  for serious DCS

1, 0  for mild DCS

1, 0  for marginal DCS

0     for no DCS.
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The model is optimized with serious, mild, and marginal DCS treated as separate, 

hierarchical events distinguished by scaling factors. 

 We can collapse the tetranomial log likelihood function in Eq. (4.10) to an 

equivalent trinomial marginal log likelihood function by combining the probabilities of 

serious and mild DCS to represent full DCS as 

 ( ) ( ) ( )
1

43 , , , , , ,

1

ln 1 .
N

h h h h h h

s i m i n i s i m i n i

i

LL P P P P P P
     + − − −

=

 = + − − −
     (4.12) 

We will use this deflated log likelihood to compare the tetranomial model in this work 

with the trinomial marginal model in the previous chapter [27]. 

4.2.7 DCS Model Optimization and Statistical Methods 

The optimal parameters for the tetranomial model were determined with 

maximization of the tetranomial log likelihood function in Eq. (4.10).  A thorough 

description of the maximization technique used herein can be found in Ref. [17].  The 

optimization of Eq. (4.10) is computationally expensive because some model parameters 

are nearly collinear.  To reduce the number of optimized parameters, Howle previous 

derived an analytical solution for the optimal compartmental gain values given the rest 

of the parameter set [52], which can be extended to these multinomial models [10]. 
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  All 12 model variants were optimized from 1024 random initial guesses, and the 

parameter set yielding the maximum log likelihood was chosen for each model.  Because 

these model variants differ in the number of adjustable parameters, their log likelihoods 

cannot be compared directly, so the log likelihood difference test was used, defined in 

[13] as 

 ( )2 2 ,ij i jLL LL LL = = − −   (4.13) 

Where 
iLL  and 

jLL  are the log likelihoods of the models being compared.  The log 

likelihood difference comparison value, 
ijLL , for each model pair can be compared 

against the Chi-squared distribution value for significant ( 0.05p  ) or highly significant 

( 0.01p  ) improvement based on the number of additional degrees of freedom from 

one model to the other. 

 The 95% confidence intervals on the optimized parameters were calculated 

according to Ref. [13].  In this method, the covariance matrix was taken as the negative 

inverse of the approximate Hessian, and the estimated parameter standard errors were 

the diagonal components of this covariance matrix. 

SigmaPlot v14 [53] was used to generate and plot the 95% confidence limits and 

95% prediction limits on the models’ fits to the data set. 

4.3 Results 

In the subsections below, all 12 optimized model variants are compared and the 

best performing model chosen using the log likelihood difference test.  The best model’s 
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predictions on the dive data set are examined, along with the cumulative density 

function for predicted cases and predicted vs. observed probabilities of DCS.  The 

tetranomial model is then compared with the trinomial and trinomial marginal models 

from our previous work. 

4.3.1 Tetranomial Model Comparison 

For each of the 12 model variants, the parameter sets yielding the best log 

likelihood were chosen for comparison.  The log likelihoods of each splitting type (I/II 

and A/B) model pair can be compared directly, and for all six pairs, the A/B models 

performed better than the corresponding I/II models (Table 14).  The optimal parameter  

Table 14: Maximum log likelihood for each of the 12 tetranomial models 

optimized from 1024 random initial guesses.  Each of the six models (EE1, EE1nt, EE1 

Full, LE1, LE1nt, and LE1 Full) was tested with both Type I/II and Type A/B DCS 

severity splitting.  For each of these six models, the log likelihoods of Type I/II and 

Type A/B splitting can be compared directly to determine which splitting method 

yields the best model performance. 

Model # DOF LL Severity Splitting Type Winner 

EE1 NT I/II 8 -1612.30041 
EE1 NT A/B 

EE1 NT A/B 8 -1581.05407 

EE1 I/II 9 -1589.44908 
EE1 A/B 

EE1 A/B 9 -1560.50726 

LE1 NT I/II 9 -1609.74076 
LE1 NT A/B 

LE1 NT A/B 9 -1578.65117 

LE1 I/II 10 -1583.42341 
LE1 A/B 

LE1 A/B 10 -1549.5327 

EE1 Full I/II 11 -1588.09186 
EE1 Full A/B 

EE1 Full A/B 11 -1559.70088 

LE1 Full I/II 14 -1586.30942 
LE1 Full A/B 

LE1 Full A/B 14 -1562.72073 
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sets for these six A/B splitting models (EE1, EE1nt, EE1 Full, LE1, LE1nt, and LE1 Full) 

can be found in Table 15, along with the 95% confidence intervals for the LE1 model.   

Table 15: Optimal model parameters for all EE1 and LE1 model variants.  All 

model variants in the above table used Type A/B splitting.  95% confidence intervals 

are given for the LE1 model parameters, which provided the best fit to the BIG292 

data set. 

 EE1nt EE1 LE1nt LE1 EE1 Full LE1 Full 

1/k1 (min) 2.295 4.957 3.001 3.496 ± 0.1510 7.802 1.585 

1/k2 (min) 245.9 267.6 211.5 63.83 ± 22.86 496.6 578.2 

1/k3 (min) 619.6 619.2 607.8 548.1 ± 42.89 149.4 151.0 

g1 (min-1) 1.212E-03 3.767E-04 7.665E-04 7.138E-04 ± 4.337E-04 3.743E-04 1.085E-03 

g2 (min-1) 4.222E-04 4.719E-04 3.458E-04 9.036E-05 ± 2.603E-05 1.110E-03 5.991E-04 

g3 (min-1) 2.032E-04 1.363E-03 2.369E-04 1.049E-03 ± 2.129E-04 1.226E-04 3.461E-04 

PXO1 (fsw) ∞ ∞ ∞ ∞ ∞ 2.429 

PXO2 (fsw) ∞ ∞ 0.2897 0.07471 ± 0.01127 ∞ 4.821 

PXO3 (fsw) ∞ ∞ ∞ ∞ ∞ 2.708 

Thr1 (fsw) 0 0 0 0 0.07158 0.1220 

Thr2 (fsw) 0 0 0 0 0.1127 0.08404 

Thr3 (fsw) 0 0.2185 0 0.1202 ± 0.01134 -0.06614 -0.02619 

a 0.1134 0.1087 0.1124 0.1127 ± 0.01552 0.1235 0.1250 

b 0.6756 0.6489 0.6869 0.6981 ± 0.01142 0.7173 0.6000 

P(N) 106.83 100.99 107.1 105.83 ± 12.57 102.46 93.11 

P(M) 167.41 167.88 165.31 163.2 ± 20.78 153.45 165.27 

P(S) 19.72 19.23 19.31 19.31 ± 3.566 19.87 21.6 

LL4 -1581.05 -1560.51 -1578.65 -1549.53 -1559.70 -1562.72 

 

The comparisons between the six A/B model variants, which differ in the number 

of degrees of freedom, were performed with the log likelihood difference test.  These log 

likelihood difference test values (
ijLL ) can be found in Table 16 for all A/B splitting 

models, and the Chi-squared distribution values for one to six additional degrees of 

freedom are in Table 17.  In Table 16, the number of adjustable parameters for each 
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model is listed in parenthesis.  The log likelihood difference value between each model 

pair is listed in the corresponding row-column intersection.  Reading down a column 

compares that column’s model to models with less degrees of freedom, and reading 

across a row compares that row’s model with models having more degrees of freedom.  

A bold value indicates the column model provides significant improvement ( 0.05p  ) 

over the row’s model, and a bold and underlined value indicates the column model 

provides highly significant improvement ( 0.01p  ) over the row’s model.  We can see 

that the use of one pressure threshold parameter is justified, as the EE1 and LE1 

provided highly significant improvement over the EE1nt and LE1nt respectively.  The 

crossover pressure parameter enabled the LE1 model to perform significantly better than 

the EE1 model.  However, the EE1 Full and LE1 Full models did offer significant  

Table 16: Log likelihood difference comparison for all tetranomial models 

using Type A/B splitting.  Each model’s number of adjustable parameters is listed in 

parenthesis.  The log likelihood difference value between any two of the six models is 

located in the corresponding row-column intersection.  Values in bold indicate the 

column model provides significant improvement (p < 0.05) over the row model, and 

bold and underlined values indicate the column model provides highly significant 

improvement (p < 0.01) over the row model. 

 EE1nt (8) EE1 (9) LE1nt (9) LE1 (10) EE1 Full (11) LE1 Full (14) 

EE1nt (8) - 41.094 4.806 63.043 42.706 36.667 

EE1 (9)  - -36.288 21.949 1.613 -4.427 

LE1nt (9)   - 58.237 37.901 31.861 

LE1 (10)    - -20.336 -26.376 

EE1 Full (11)     - -6.040 

LE1 Full (14)      - 
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improvement over the EE1 and LE1 models respectively, so the addition of threshold 

and crossover pressure parameters to all compartments is not justified.  We can 

conclude that the LE1 model provided the best fit to our data, as the LE1 model 

provided highly significant improvement over the EE1, EE1nt, and LE1nt models.  

Models with more adjustable parameters than the LE1 (the EE1 Full and LE1 Full) did 

not offer any improvement.  Therefore, all following discussion will pertain to the LE1 

model with Type A/B splitting. 

Table 17: Chi-squared distribution values for 0.95 (p < 0.05) and 0.99 (p < 0.01) 

based on the number of additional degrees of freedom. 

Δ DOF p<0.05 p<0.01 

1 3.841 6.635 

2 5.991 9.210 

3 7.815 11.345 

4 9.488 13.277 

5 11.070 15.086 

6 12.592 16.812 

 

 The observed probabilities of DCS in the data set and the LE1 tetranomial 

model’s predicted probabilities of DCS are plotted in Figure 15 for marginal (black 

diamonds, top right), mild (gray circles, top  left),  serious (white triangles, bottom) DCS.  

This plot was generated by first sorting the model’s per-dive exposure predictions by the 

probability of no DCS.  These per-dive predictions were then placed in bins with equal 

numbers of observed serious, mild, or marginal DCS cases.  For this plot, we used 10  
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Figure 15: Tetranomial LE1 observed probabilities of DCS vs. predicted 

probabilities of DCS.  To generate these data points, the predicted probabilities of 

marginal (top left), mild (top right), and serious (bottom) DCS for each dive were 

sorted by the predicted probability of no event, from smallest to largest.  These 

predicted probabilities were then separated into five, five, and ten bins with equal 

numbers of serious, mild, or marginal DCS events respectively.  The predicted and 

observed probabilities of DCS were calculated and plotted for each bin.  These 

probabilities are plotted with a linear fit ( 2

marginal
r = 0.80 , 2

mildr = 0.65 , and 

2

seriousr = 0.14 ) and the 95% confidence and 95% prediction bands 

bins of 17 mild DCS outcomes each, 5 bins of 4 serious DCS outcomes, and 5 bins of 22 

marginal DCS outcomes.  The predicted probabilities of DCS were calculated as the sum 

of the model’s per-dive exposure predictions for that DCS severity divided by the total 

number of exposures in the bin.  The observed probabilities of DCS were calculated as 
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the number of observed DCS outcomes in the bin divided by the total number of dive 

exposures in the bin.  The linear fits for the serious, mild, and marginal DCS data points 

were plotted ( 2 0.14seriousr = , 2 0.65mildr = , and 2 0.80marginalr = ), along with the 95% 

confidence and 95% prediction bands.  The line of identity was also plotted (black line).  

If a model’s predictions were perfectly aligned with the data set, all points in this plot 

would fall on the line of identity.  Like the trinomial model in the previous chapter [27], 

the marginal DCS data points are less scattered than that of serious and mild DCS.  The 

mild DCS model predictions align the closest with the data set, as the mild DCS linear fit 

line aligns closer to the line of identity than that for serious or marginal DCS. 

4.3.2 Predictions on Data 

The tetranomial LE1 model’s predicted DCS outcomes and the observed DCS 

cases in the data can be found in (Table 18).  The dive data is separated by dive type, 

which includes single air, single non-air, repetitive and multilevel air, repetitive and 

multilevel non-air, and saturation diving.  The 95% confidence intervals are listed for the 

model’s total predictions of serious, mild, marginal, and any DCS.  These predictions do 

match the observed number of cases within 95% confidence.  From Table 18, we can see 

that the model underpredicts mild, serious, and marginal DCS occurrence for single air 

diving. 



 

105 

 

Table 18: DCS occurrences and tetranomial model predictions for the BIG292 

data set. 

  Observed DCS LE1 AB Tetranomial Predicted DCS 

 Exposures Mild Serious Marginal Total Mild Serious Marginal Total 

Single Air                   

EDU885A 483 27 3 0 30 19.77 2.29 13.24 35.3 

DC4W 244 7 1 4 12 4.11 0.47 2.81 7.39 

SUBX87 58 0 2 0 2 0.14 0.02 0.10 0.26 

NMRNSW 91 4 1 5 10 3.88 0.45 2.59 6.92 

PASA 72 4 1 2 7 1.87 0.21 1.27 3.35 

NSM6HR 57 3 0 2 5 3.10 0.36 2.05 5.51 

Rep&Mult  

Air                   

EDU885AR 182 11 0 0 11 8.42 0.98 5.60 15 

DC4WR 12 3 0 0 3 0.66 0.08 0.44 1.18 

PARA 135 6 1 3 10 6.98 0.81 4.62 12.41 

PAMLA 236 9 4 12 25 14.05 1.64 9.25 24.94 

Single  

Nonair                   

NMR8697 477 9 2 18 29 11.00 1.26 7.48 19.74 

EDU885M 81 4 0 0 4 2.17 0.25 1.48 3.9 

EDU1180S 120 9 1 0 10 5.07 0.59 3.38 9.04 

Rep&Mult  

Nonair                   

EDU184 239 11 0 0 11 10.17 1.18 6.79 18.14 

PAMLAOD 134 5 1 0 6 5.92 0.68 3.98 10.58 

PAMLAOS 140 5 0 3 8 4.28 0.49 2.89 7.66 

EDU885S 94 4 0 0 4 2.60 0.30 1.77 4.67 

Saturation                   

ASATEDU 120 11 2 27 40 14.70 1.80 9.05 25.55 

ASATNMR 50 1 0 0 1 4.12 0.49 2.66 7.27 

ASATNSM 132 18 0 21 39 22.31 2.80 13.16 38.27 

ASATARE 165 19 1 13 33 17.88 2.16 11.22 31.26 

Totals 3322 170 20 110 300 

163.2 ± 

20.78 

19.31 ± 

 3.566 

105.83 ± 

 12.57 

288.34 ± 

 24.5 
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The imbalance in the distribution of marginal DCS events in the data is evident 

when considering saturation diving.  More than half of the marginal DCS events (55%) 

in the data set occur from saturation diving, though the entire data set is comprised of 

only 3% marginal events and 14% saturation dives.  In Table 18, we can see that the 

tetranomial model does not reproduce this skew in observed marginal DCS cases, as the 

model predicts only 33% of marginal cases occurring from saturation diving. 

4.3.3 Tetranomial Model vs. Trinomial Marginal Model 

The model parameters used in the trinomial marginal LE1 model along with 

model performance analysis can be found in Chapter 3 [27].  We can calculate the 

tetranomial model’s equivalent trinomial marginal log likelihood using Eq. (4.12).  For 

the optimized tetranomial LE1 model parameter set, 
43 1485.4LL = − , which is nearly 

identical to the optimal trinomial marginal LE1 log likelihood found in Chapter 3 [27].  

This indicates that the performance of the tetranomial model is on par with the trinomial 

marginal model when using the BIG292 data set.  This is likely because both models 

optimized to nearly identical parameter sets. 

The shift in predicted dive exposure probabilities between the trinomial marginal 

and tetranomial models is plotted in Figure 16.  In Figure 16, the trinomial marginal and 

tetranomial models’ predicted probabilities for full DCS are plotted for all full observed 

DCS cases (gray circles), predicted probabilities of marginal DCS for observed marginal 

DCS cases (white diamonds), and predicted probabilities of no DCS for observed no  
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Figure 16: Trinomial marginal to tetranomial probability shift.  For dives that 

resulted in full DCS, the sums of the tetranomial predicted probabilities of serious 

and mild DCS are plotted against the trinomial marginal predicted probability of full 

DCS (gray circles).  For dive exposures that resulted in marginal DCS and no DCS, the 

tetranomial model predicted probabilities of marginal (white diamonds) and no DCS 

(gray squares) respectively are compared with that of the trinomial marginal model. 

DCS cases (gray squares).  All these data points fall close to the line of identity, 

indicating that these models make nearly identical predictions on the data set.  The slope 

of the linear fit to the full DCS data points is 0.9978 ( 2 0.9999r  ), for marginal DCS data 

points is 1.000 ( 2 1.000r = ), and for no DCS data points is 0.9985 ( 2 0.9999r  ).  These 

slopes approximate the probability shift between the two models, i.e. 
, _ ,tet full tri m fullP P  

and , _ ,tet marg tri m margP P .  The tetranomial and trinomial marginal models’ agreement in 

hierarchical probabilities for each DCS cases is a result of both models optimizing to 
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nearly identical parameter sets, so one model does not offer significant performance 

improvement over the other on this data set. 

4.3.4 Tetranomial Model vs. Trinomial Model 

The shift in predicted dive exposure probabilities between the trinomial and 

tetranomial models is plotted in Figure 17.  The model parameters used in this trinomial 

LE1nt model can be found in Ref. [10].  Both models use DCS Type A/B splitting (see 

Table 2).  In Figure 17, the trinomial and tetranomial models’ predicted probabilities of 

mild DCS for dive exposures that resulted in mild DCS are plotted with gray circles, and  

 

Figure 17: Trinomial to tetranomial probability shift.  For dives that resulted in 

mild or serious DCS, the tetranomial model predicted probabilities of mild or serious 

DCS are plotted against that of the trinomial model.  For dives that resulted in no 

DCS (including marginal DCS), the sum of the predicted probabilities of marginal 

and no DCS for the tetranomial model are compared with the trinomial model’s 

predicted probabilities of no DCS. 
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likewise for serious DCS in white triangles.  The trinomial model’s predicted 

probabilities of no DCS and the tetranomial model’s predicted probabilities of no- and 

marginal DCS for dive exposures that did not result in full DCS are plotted with gray 

squares.  The mild DCS and serious DCS data points that fall above the line of identity 

indicate the tetranomial model predicted a greater probability of occurrence of DCS for 

those exposures than the trinomial model, and the no DCS points that fall below the line 

of identity indicate the tetranomial model predicted a lower probability of no DCS for 

those exposures compared with the trinomial model. 

The slope of the linear fit to the mild DCS data points is 1.720 ( 2 0.7358r = ) and 

the slope of the linear fit to the serious DCS data points is 1.228 ( 2 0.7250r = ).  The line 

of linear fit to the no DCS points has a slope of 1.352 ( 2 0.7333r = ).  All three sets of data 

points have similar amounts of scatter, as all have an r2 value of approximately 0.73.  

Using these slopes to approximate the trinomial to tetranomial probability shift, 

, ,1.720tet mild tri mildP P  and 
, ,1.228tet ser tri serP P .  Thus, the tetranomial model predicts a 

greater probability of mild/serious DCS for some mild/serious DCS cases and a lower 

probability of no DCS for some no DCS cases when compared with the trinomial model. 

4.3.5 Cumulative Density Function 

Cumulative density functions (CDF) can be used to visually inspect the DCS 

symptom onset time agreement between a model’s predictions and empirical data.  A 

probabilistic DCS model that performs well on the dataset would produce a CDF that 
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closely replicates that of the data.  An in-depth analysis of the BIG292 data set density 

function was performed in our previous work [26], and it is important to note that the 

DCS symptom onset times reported in the data may have been biased by the medical 

surveillance protocol. 

The cumulative density functions for the mild, serious, and marginal DCS 

BIG292 data are plotted in Figure 18 as the solid black curve, solid gray curve, and 

dashed gray curve respectively.  The dashed black line represents the cumulative 

density function for the tetranomial model’s predictions of all DCS types, as scaling 

factors are used by the model to delineate these severities and thus their cumulative 

density functions fall on the same curve. 

The tetranomial model’s predicted CDF indicates the model most severely over-

predicts serious DCS prior to surfacing, then over-predicts the onset of all severities of 

DCS immediately after surfacing.  The tetranomial model’s onset time predictions are 

closely aligned with the marginal DCS cases’ onset times until approximately 7 hours 

prior to surfacing.  After surfacing, the marginal DCS data CDF lags behind the mild 

and serious DCS curves, as the 42 of 110 marginal DCS cases reported without onset 

times were assigned T2, or the first known time the diver was experiencing symptoms, at 

the studies’ right-censored times (24 or 48 hours).  Because the onset time windows for 

these 42 marginal cases are imprecise, the tetranomial model’s predicted CDF’s inability 

to replicate late onset for marginal cases may not indicate an issue with the model. 
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Figure 18: Tetranomial cumulative density function.  Mild DCS (black, solid 

curve), serious DCS (solid, gray curve), and marginal DCS (dashed, gray curve) cases 

are shown for the BIG292 dive data set.  The cumulative density functions for 

predicted mild, serious, and marginal DCS fall on the same curve (black, dashed). 

4.3.6 Pearson Residual 

The Pearson Residual group statistic was calculated for each dive type in the 

BIG292 data set according to Ref. [13], i.e. 
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where subscript j  indicates the data group, 
jobs  is the number of observed events in 

the group, 
jpred  is the number of model-predicted events for that group, and 

jN  is the 
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total number of exposures in group j .  The sum of the Pearson Residuals for all j  

groups is equal to the Chi-squared statistic: 

 2

1

.
J

j

j

PR
=

=   (4.15) 

In this statistical analysis, the null hypothesis is that the model-predicted 

incidence of DCS is equal to the incidence of DCS observed in the BIG292 dataset.  A 

high 2  value (and corresponding low p-value) indicates that the model’s predictions 

are not consistent with the observed occurrence of DCS in the data.   

The chi-squared values calculated from the Pearson Residual of each dive type 

according to Eqs. (4.14) and (4.15) for the binomial and trinomial LE1nt models in Ref. 

[10], the trinomial marginal LE1 model in Chapter 3 [27], and the tetranomial LE1 model 

presented in this chapter can be found in Table 19.  It is evident from Table 19 that the  

Table 19: Pearson Residual group statistic ( 2
χ ) and corresponding p-value 

calculated for each model’s predictions of DCS incidence.  A high 2
χ  value (and 

corresponding low p-value) indicates that the model’s predictions are not consistent 

with the observed occurrence of DCS in the data.   

 

Number 

of DOF 

Pearson 

Residual 

Full DCS 

Pearson 

Residual 

Mild DCS 

Pearson 

Residual 

Serious DCS 

Pearson 

Residual 

Marginal DCS 

Binomial LE1nt 

[10]  

7 8.465 

p=0.294 

   

Trinomial LE1nt 

[10] 

8 
 

8.421 

p=0.393 

4.527 

p=0.807 

 

Trinomial 

Marginal LE1 [27] 

9 12.270 

p=0.199 

  
36.568 

p=0.000031 

Tetranomial LE1 10 
 

7.597 

p=0.668 

9.246 

p=0.509 

36.612 

p=0.000066 
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trinomial marginal model’s and the tetranomial model’s predictions of marginal DCS do 

not align with the observed incidence of marginal DCS, because these groups have a 

high 2  value (and corresponding low p-value). 

4.4 Discussion 

The tetranomial model presented here serves as a continuation of the trinomial 

LE1nt model published by Howle et al. [10] and the trinomial marginal LE1 model 

explored in Chapter 3.  All model formulation and analyses were conducted in 

accordance with those works.  In this Discussion section, we will compare all three 

models. 

In this chapter, we optimized six tetranomial model variants: EE1, EE1nt, EE1 

Full, LE1, LE1nt, and LE1 Full.  These model variants were tested with both Type I/II 

and Type A/B splitting, and the Type A/B splitting models outperformed all their 

corresponding Type I/II splitting models.  The log likelihood difference test was used to 

determine that the LE1 model, with a pressure crossover parameter in the second 

compartment and a pressure threshold parameter in the third compartment, provided 

the best fit to the BIG292 data set. 

The tetranomial LE1 model predicted the distribution and onset of mild DCS 

cases better than that of serious and marginal DCS.  In Figure 15, the linear fit line for the 

mild DCS data is closest to the line of identity, and in Figure 18, the predicted CDF is 

follows closest to the mild DCS curve when compared with serious and marginal DCS.  
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These figures also illustrate that the model is least accurate in predicting both the 

distribution of marginal DCS cases within the data set and their onset times.  These 

graphical results are verified in Table 19, as the Pearson Residual Chi-squared value is 

lowest for mild DCS, followed closely by serious DCS.  Howle’s trinomial model does 

not follow this trend, and predicts serious DCS more accurately than mild DCS (Table 

19).  All three models’ CDFs indicate they are able to accurately predict the onset of 

serious and mild DCS around the time of surfacing (Figure 13, Figure 18, Ref. [10]). 

The high Pearson Residual Chi-squared value for marginal DCS indicates that 

both the trinomial marginal and tetranomial models’ predictions are not aligned with 

the incidence of marginal DCS in the BIG292 data set.  The distribution of marginal DCS 

cases in the BIG292 data set is skewed towards saturation diving, as 55% of the BIG292 

marginal cases occur from saturation diving, and saturation diving only constitutes 14% 

of the total data.  Both the trinomial marginal and the tetranomial LE1 models are 

unable to reproduce this skew, and only predict 34% of marginal DCS cases occurring 

from saturation diving.  In addition, the marginal cases with right-censored T2 times 

may not accurately reflect the true symptom onset times.  Neither the trinomial marginal 

nor the tetranomial models predict the onset time delay created by this right-censoring 

(Figure 13, Figure 18).  This may not indicate an inherent flaw in these models’ ability to 

predict marginal DCS, rather points to an issue with potentially inaccurate data. 
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When comparing this tetranomial LE1 model with the trinomial marginal LE1 

model in Figure 16, all data points fall close to the line of identity.  Both models make 

nearly identical predictions on the data set.  In Table 18, the sums of the tetranomial 

model’s mild DCS and serious DCS predictions for each dive type are nearly equivalent 

to the trinomial marginal model’s predictions for full DCS (Table 12).  Both models 

optimized to nearly identical parameter sets.  When using the tetranomial model’s 

equivalent trinomial marginal log likelihood to compare these two models, no clear 

winner emerges.   

The optimal tetranomial model parameter set is quite different from the 

trinomial model’s optimal parameters in Ref. [10], which considers marginal DCS events 

as non-events.  In Figure 17, the tetranomial model predicts a higher probability of mild 

and serious DCS than the trinomial model for some mild and serious DCS cases, and a 

lower probability of no DCS than the trinomial model for some no DCS cases.  The 

increase in scatter of these data points when compared with Figure 16 illustrates the 

difference in optimal parameter sets which alters each models’ predictions.  It could be 

argued that the tetranomial model would generate more conservative “safe” ascent 

criteria than the trinomial model, as the tetranomial model predicts increased 

probabilities of DCS and decreased probabilities of no DCS than the trinomial model.   

When the trinomial model was compared with a binomial model in Ref. [10], the 

probability shift plot showed a similar trend as Figure 16 and both optimal parameter 
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sets were nearly identical.  However, the trinomial model’s equivalent binomial log 

likelihood indicated the trinomial model performed highly significantly better than the 

binomial model on the BIG292 data set. 

4.5 Conclusions 

The tetranomial model explored in this work simultaneously predicts the 

hierarchical probabilities of serious, mild, marginal, and no DCS.  The derivation of 

these hierarchical probabilities and the multinomial log likelihood function used during 

model calibration are extensions of the previous Howle et al. publication [10]. 

Both the trinomial marginal model in Chapter 3 and tetranomial model 

presented here are unable to accurately replicate the occurrence of marginal DCS events 

observed in the BIG292 dataset.  These marginal DCS events may hinder model fit 

during calibration.  The trinomial LE1nt model in Ref. [10] demonstrated highly 

significant improvement over the binomial LE1nt model, both considering marginal 

DCS as non-events.  Using the Pearson’s 2  statistic as a metric, we find that the 

trinomial LE1nt model’s predictions are most closely aligned with the incidence of 

observed DCS in the data.  We therefore recommend the use of the trinomial LE1nt 

model from Ref. [10] with the event categories of serious, mild, and no-DCS, Type A/B 

severity splitting, and marginal events scored as non-events.  This trinomial probabilistic 

model can be used to generate dive schedules specific to symptom severity, to better 

tailor dive missions to the acceptable level of risk for the divers. 
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5. Three-Region Unstirred Tissue Bubble Volume 
Trinomial Decompression Sickness Model using 
Serious, Mild, and Non-Event Outcomes 

5.1 Introduction 

Decompression sickness (DCS) is a condition resulting from decreasing ambient 

pressure, and can arise in both hyperbaric and hypobaric environments.  This work 

focuses on hyperbaric exposures, and in particular underwater diving.  As a diver 

makes their descent, ambient pressure increases.  The diver breathes gases equilibrated 

with ambient pressure, and that inspired gas is absorbed into the blood and circulated to 

the tissues.  When the diver makes their ascent, ambient pressure decreases, and the gas 

inspired at elevated pressure can become supersaturated.  This can cause gas to leave  

solution and form bubbles, which is the underlying mechanism perpetrating DCS 

symptoms [3]. 

The U.S. Navy has three classifications for DCS symptoms: Type I (mild), Type II 

(serious), and marginal.  The signs and symptoms of Type I DCS include joint pain, cutis 

marmorata, and paresthesia.  Type II DCS is characterized by more severe 

cardiopulmonary and neurological symptoms, such as hemoptysis, dyspnea, 

dysfunction of coordination, vision, and hearing, and loss of consciousness.  Type I and 

Type II DCS can be treated with hyperbaric chambers, in which the patient is 

recompressed, then decompressed according to the appropriate treatment schedule [6].  

Marginal DCS is symptoms associated with DCS that persist for only a short period of 
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time and resolve spontaneously without recompression treatment.  An example of 

marginal DCS is pain in one joint lasting for less than 60 minutes, or pain in two joints 

lasting less than 30 minutes [7, 8].  Though DCS is treatable, if symptom onset occurs 

mid-dive, it can diminish a diver’s ability to safely complete decompression.  DCS poses 

a great risk to military divers and can cause premature termination of diving missions. 

In the early 20th century, Scottish physiologist J. S. Haldane was commissioned 

by the U. K. Royal Navy to create diving ascent schedules for mitigating the risk of DCS.  

Haldane and coworkers published a five-compartment gas content model [4], referred to 

now as the Haldane model, which simulated the uptake and elimination of nitrogen gas 

in the body during diving.  Each of the five compartments, intended to represent the 

body’s tissues, had a unique prescribed rate of inert gas exchange with the blood, 

hypothetically demonstrating variation in the degree of blood perfusion.  Haldane 

proposed that if, during ascent, the partial pressure of inert gas in each compartment did 

not exceed twice the ambient pressure, a diver could avoid DCS.  Decompression tables 

were generated based on this principle, in which one or more decompression stops were 

assigned during ascent to allow for inert gas equilibration. 

The Haldane model was deterministic, meaning it purported that a diver was 

“safe” if they followed the appropriate decompression schedule, and would experience 

DCS if they violated the schedule.  However, in empirical dive data, there is variation in 

DCS symptoms (or lack thereof) among divers performing identical dive profiles [7, 8].  



 

120 

In response to this observed variation, Weathersby et al. [12] and Berghage et al. [11] 

developed probabilistic models for DCS.  Such models use a gas content model (like the 

Haldane model) or a bubble volume model in conjunction with survival analysis to 

report a probability of experiencing DCS for a given dive.  Probabilistic models have 

several adjustable parameters which can be calibrated with empirical dive data.  Neither 

deterministic nor probabilistic DCS models provide information regarding DCS 

symptom severity. 

The gas content models used currently by the U.S. Navy consist of three 

parallelly-perfused compartments, each with a different rate of gas uptake and 

elimination (referred to as a tissue half-time).  One model that has been particularly 

successful in its ability to predict empirical dive data, in particular DCS cases with late 

onset, is known as the LE1 model [15, 16].  This model improved upon previous gas 

content models by implementing asymmetrical gas kinetics, in which inert gas 

elimination occurs slower than gas uptake, representing the influence of gas bubble 

dynamics.  This can result in a longer duration of inert gas supersaturation and thus 

compartmental risk accumulation, enabling the model to predict occurrence of DCS long 

after the final surface interval as observed in some DCS cases.   

Following the success of the LE1 model, whose linear gas washout was inspired 

by bubble behavior in vivo, Tikuisis and coworkers developed the first probabilistic 

model to predict DCS using bubble physics [54, 55].  Their goal was to create a 
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predictive model more closely aligned with the physiological mechanism prompting 

DCS, so that the model could perform successfully on dives outside the calibration 

dataset. 

Though the LE1 model does perform well on empirical dive data, it does not 

allow for an increase in DCS risk after decompression and subsequent delay in DCS 

onset as observed in decompression from sea level to altitude (hypobaric exposures).  

With the twofold goal of creating a model with flexible gas kinetics to model hyperbaric 

and hypobaric decompression data, and to model the mechanism prompting DCS in 

vivo, Dr. Gerth and others [18] developed a bubble volume probabilistic model based on 

Van Liew et al.’s theoretical two-region (2R) model of bubble behavior in tissues [56].  

Dr. Gerth’s probabilistic model, called BVM3, consisted of three parallelly-perfused gas 

compartments, each capable of nucleating a bubble according to the 2R model.  BVM3 

was calibrated with empirical dive data and performed on-par with the LE1, though it 

had almost 20 additional adjustable parameters.  When tested on a validation dataset 

containing high-oxygen exposures, it was found that the bubble volume model 

successfully accumulated higher DCS risk and better predicted DCS incidence during 

high-oxygen decompression [18].  Because this model could predict increasing DCS risk 

after decompression is completed, it could be applied to both hyperbaric and hypobaric 

exposures, and even flying after diving.  However, without a more expansive training 

dataset, the bubble model’s number of parameters was not statistically warranted, and 
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these parameters did not reflect true physiologic values.  It was concluded that this 

bubble volume model, though inspired by DCS physiology, was only a mathematical 

descriptor of the processes involved in the illness [18]. 

Some of the limitations faced by Dr. Gerth’s BVM3 model from Ref. [18] were 

derived from unphysical assumptions of the 2R model [57].  A true physiological model 

of bubble behavior in extravascular tissue with blood flow is complex, requiring partial 

differential equations with many parameters.  Simpler models of bubble dynamics in the 

context of DCS were derived and tested by Srinivasan and others, with the goal of 

reducing the number of model parameters and enabling the practical implementation of 

ordinary differential equations [57-60].  A summary of these ODE models of bubble 

dynamics can be found in Ref. [20].  Of these models presented, the Three-Region 

Unstirred Tissue model, or 3RUT model, is the favorite because its underlying 

assumptions are most aligned with the true physiology and it provides the greatest 

behavioral flexibility.   

The 3RUT model consists of a spherical gas bubble surrounded by an unstirred 

diffusive region in a finite-volume, well-stirred tissue perfused with arterial blood.  A 

detailed derivation of the 3RUT model can be found in Ref. [59], and the 3RUT model 

accommodating multiple bubbles in each compartment, or 3RUT-MB, can be found in 

Ref. [58] and Appendix A of Ref. [21]. 
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Recently, the 3RUT-MB model has been augmented with exercise data and used 

to predict altitude DCS [21].  However, none of the bubble volume models used by the 

U.S. Navy predict any information about DCS symptom severity.  When conducting a 

Naval diving mission, dive medical officers will allow for a higher frequency of Type I 

(mild) DCS than Type II (serious) DCS occurrence before needing to terminate the 

mission [25].  Both the probability of injury and the severity of the injury contribute to 

the risk of an activity.  To incorporate both probability and severity factors in 

probabilistic modeling for DCS, Howle et al. created a trinomial gas content model that 

simultaneously predicts the probability of mild, serious, and no DCS events [10].  In 

Chapters 3 and 4, we continue this work by developing trinomial marginal and 

tetranomial probabilistic models with risk dependent on gas supersaturation in tissue 

[27, 61].  In this chapter, we use the 3RUT model to develop a trinomial probabilistic 

bubble volume model for DCS, predicting the occurrence of serious, mild, and no DCS.   

5.2 Methods 

5.2.1 3RUT Model 

The 3RUT model is a formulation for quantifying bubble dynamics in tissue, 

developed by Dr. Srinivasan and others [58, 59].  The three regions defined in this model 

are a spherical gas bubble, an unstirred diffusive region surrounding the bubble, and a 

well-stirred finite-volume tissue perfused by arterial blood. 

The volume of the gas bubble, bV , can be calculated as the volume of a sphere: 
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where i  is the compartmental diffusivity fraction, i  is the compartmental sink term, 

  is the bubble surface tension, and iM  is the compartmental bubble’s elastic modulus.  

The bubble pressure in each compartment, 
,b iP , is calculated from ambient pressure as 
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The rate of change of tissue tension in a bubble-baring compartment is calculated as 
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where aP  is the arterial partial pressure of inert gas, i  is the compartmental total 

solubility, and 
ik  is the tissue half-time. 

Note that Eq. (5.2) is undefined if the bubble’s radius shrinks to zero.  To avoid 

this mathematical instability, the 3RUT model dictates a bubble nucleation radius, 0

,b ir .  
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Before a bubble nucleates, the compartmental tissue tensions are calculated according to 

the EE1 model (i.e. Eq. (5.4) without the right-most term).  Bubble nucleation is 

determined by tissue saturation.  The models presented in this chapter moderated 

bubble nucleation according to the bubble formation criterion presented by Dr. Gerth 

and others in Ref. [18], in which a bubble forms if 
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After bubble nucleation, Eqs. (5.2)-(5.4) are used to model the bubble’s growth.  A 

complete derivation of Eqs. (5.2)-(5.4) can be found in Ref. [59]. 

5.2.2 Probabilistic Model 

The bubble volume model presented in this chapter consists of three parallelly-

perfused bubble-baring compartments, with bubble behavior following the 3RUT 

model.  The risk of a given dive is dependent on the relative increase in bubble volume: 
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Because the bubble never shrinks below the nucleonic size, risk is always greater than or 

equal to zero. 

 The probability of the occurrence of DCS can be calculated from this risk function 

using survival analysis [13]: 
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In this formulation, DCS is treated as a binomial process.  The probability of not 

experiencing DCS is defined as 

 0
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= − =   (5.8) 

Weathersby et al. [14] found that the inclusion of DCS onset times when 

estimating model parameters enabled probabilistic models to provide a better fit to 

calibration data.  DCS symptom onset times are reported in empirical dive data as a 

window from T1 to T2, in which time T1 was the last time a diver was not experiencing 

DCS symptoms, and T2 was the first time a diver was noted to be experiencing DCS 

symptoms [14].  Weathersby augmented Eq. (5.7) by calculating the probability of DCS 

from the joint probability of DCS not occurring until T1, and DCS occurring between T1 

and T2, as follows: 
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  (5.9) 

The 3RUT model’s adjustable parameters are compartmental gains, tissue half-

times, diffusivity fractions, sinks, total solubilities, elastic moduli, bubble nucleonic 

radii, and the surface tension.  These parameters can be estimated using maximum 

likelihood optimization, first applied to probabilistic models for DCS by Weathersby et 

al. [12].  The likelihood function, shown in Eq. (5.10), quantifies the agreement between 

the model’s predictions and the observed prevalence of DCS in the calibration dataset. 
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In Eq. (5.10), subscript i  counts over the N  dives in the calibration dataset.  For each 

dive, the probability of the occurrence of DCS is calculated according to Eq. (5.7), and 

the exponent i  is set to 1 if DCS was observed, and 0 if DCS was not observed.  To 

calibrate a probabilistic model, model parameters are adjusted to maximize Eq. (5.10).  

The calibration dataset used in this work is discussed in Section 5.2.4. 

5.2.3 Trinomial Formulation 

The primary objective of this chapter is to derive a bubble volume model that 

simultaneously predicts the probabilities of the occurrence of serious, mild, and no DCS.  

The binomial formulation of Eqs. (5.7)-(5.10) must be altered to accommodate multiple 

probabilities.  In accordance with our previous work on multinomial probabilistic 

modeling [10, 27, 61], the probabilities of serious DCS (denoted with subscript s ) and 

mild DCS (denoted with subscript m ) can be distinguished mathematically by a scale 

factor, a . 
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  (5.11) 

In Eq. (5.11), the superscript c  indicates these probabilities are competitive 

probabilities.  A competitive probability is the independent probability of an event 

happening, whether or not any other event has occurred.  In empirical dive data, DCS 
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severity is diagnosed hierarchically.  If a diver is experiencing both mild DCS and 

serious DCS symptoms, their diagnosis will be serious DCS.  To properly represent 

observed DCS cases in data, the competitive probabilities of serious and mild DCS in Eq. 

(5.11) must be converted to hierarchical probabilities.  In the hierarchical model, the 

probability of mild DCS occurrence is the joint probability of the independent 

probability of mild DCS and the probability of serious DCS not occurring, as shown in 

Eq. (5.12). 
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  (5.12) 

The superscript h  denotes hierarchical probabilities.  The masking of mild DCS 

by serious DCS in this hierarchical formulation is illustrated in Figure 19.  

The probability of no event occurring is 

 
( 1) ( )

0, 1 .
a r t dth h h

tri s mP P P e
− + = − − =   (5.13) 

Note the law of total probability dictates that the sum of the probabilities of all events 

must equal 1, and indeed 0, 1.h h h

s m triP P P+ + =   

 The log likelihood function in Eq. (5.10) must be altered to accommodate the 

trinomial model, as follows: 
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The exponents   and   are modulated to reflect observed occurrences of DCS in the 

calibration dataset, where 1 =  if serious DCS occurred, 1 =  if mild DCS occurred, 

and 0 = =  if no DCS occurred. 

 

Figure 19: Hierarchical probabilities of serious DCS, mild DCS, and any DCS 

event occurring with increasing risk function.  The hierarchical probabilities were 

calculated with Eq. (5.11), using a scale factor of a = 0.25 .  As the risk function 

increases, the probability of mild DCS increases then decreases, illustrating the 

masking of mild DCS by serious DCS. 

To enable direct comparison between the binomial and trinomial bubble volume 

models presented in this chapter, we can reduce Eq. (5.14) to the equivalent binomial log 

likelihood as 

 ( ) ( )
1
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h h h h
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LL P P P P
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since the sum of the probabilities of serious and mild DCS provides the trinomial 

model’s prediction for the occurrence of full DCS. 

 Following our previous research on the impact of marginal DCS events on model 

calibration, all binomial and trinomial models presented in this chapter categorize 

marginal events as non-events [31, 49]. 

5.2.4 Calibration Dataset 

Model parameters were calibrated with the p97 DCS dataset, which is a subset of 

data published by Temple et al. in Refs. [7, 8].  This dataset consists of 4,335 exposures of 

human dives conducted by the U.S., U.K. and Canadian militaries between 1944 and 

1997.  These dive trials used hyperbaric chambers to control ambient pressure, and 

diving occurred in both wet and dry conditions.  Seven different types of dives were 

tested in these trials: single dives with air and with nitrox, repetitive dives with air and 

nitrox, saturation dives, surface oxygen decompression dives, and in-water oxygen 

decompression dives.  Of these 4,335 dive exposures, there were 224 observed cases of 

full DCS and 127 cases of marginal DCS. 

Temple’s reports contain symptom histories for all the observed cases of full and 

marginal DCS, along with the onset time window of DCS symptoms all full DCS events 

and some marginal DCS events.  Howle and coworkers used the reported symptom 

histories to apply their Perceived Severity Index (PSI) system of severity classification to 

this dataset [10].  The six PSI indices, in order of least to most severe, are: constitutional: 
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dizziness, fatigue, nausea; lymphatic or skin: rash, marbling, itching; pain: joint pain, 

ache, cramps; mild neurological: paresthesia, tingling, numbness; cardiopulmonary: 

hemoptysis, cough, dyspnea; serious neurological: dysfunction of coordination, bladder, 

bowel, mental status, vision, consciousness [10].  Howle assigned each case of full DCS 

in the p97 dataset a PSI according to the most severe symptom present.  See Table 20 for 

the breakdown of PSI in the p97 dataset, with two symptom severity classification 

systems: Type I and Type II [6], and Type A and Type B [10]. 

Table 20: Distribution of Type I/II and Type A/B severities in the p97 dataset. 

PSI Occurrences in 

p97 Dataset 

Type I/II Type A/B 

Constitutional 2 Type I 

177 DCS Occurrences 

Type A 

199 DCS Occurrences Lymphatic or skin 1 

Pain 174 

Mild Neurological 22 Type II 

47 DCS Occurrences Cardiopulmonary 3 Type B 

25 DCS Occurrences Serious neurological 22 

 

5.2.5 Optimization and Statistical Methods 

Three 3RUT bubble volume models were optimized in this chapter: a binomial 

model, and two trinomial models predicting the probabilities of mild, serious, and no 

DCS outcomes.  One trinomial model used Type I/II severity splitting, and the other 

used Type A/B splitting.  These models were optimized by maximizing the log 

likelihood (binomial: Eq. (5.10), trinomial: Eq. (5.14)) with random initial guesses against 

the p97 dataset in our previously developed optimization system [17].  The equivalent 
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binomial log likelihood was calculated for the trinomial models according to Eq. (5.15) to 

compare trinomial model performance with the binomial model.  SigmaPlot v14 was 

used to generate and plot 95% prediction and confidence limits for the models’ fits to the 

calibration dataset [53]. 

The Pearson Residual group statistic was used to quantify model performance on 

each dive type and on the dataset as a whole.  In accordance with Ref. [13], the Pearson 

Residual is calculated as 
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where j  counts over each data group, 
jobs  is the number of observed events in the thj  

group, 
jpred  is the number of model-predicted events in the thj  group, and 

jN  is the 

total number of exposures in the thj  group.  Summing the Pearson Residuals for all data 

groups gives the Chi-squared statistic, 
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1

.
J

j

j

PR
=

=   (5.17) 

A high 2  value indicates the model’s predictions are not aligned with the observed 

events in the dataset. 
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5.3 Results 

5.3.1 Trinomial Model Comparison 

The best solutions achieved by our optimization process were close but not at 

maximum log likelihoods.  One of the limitations of model parameter estimation via log 

likelihood maximization is the potential for model failure when a parameter is adjusted 

such that the model predicts diminishing probability of DCS on a dive exposure with 

observed DCS [17]. 

The parameter sets yielding best model fits to the p97 data for the binomial and 

both trinomial models can be found in Table 21, along with the binomial model’s log 

likelihood (LL2, Eq. (5.10)), the trinomial models’ log likelihoods (LL3, Eq. (5.14)), and the 

trinomial models’ equivalent binomial log likelihoods (LL32, Eq. (5.15)).  The trinomial 

models’ log likelihoods can be compared directly, and the trinomial model with Type 

A/B severity splitting achieved the best fit to the calibration dataset.  This trinomial A/B 

model also outperformed the binomial model, as its equivalent binomial log likelihood  

(-1258.69) is slightly higher than the binomial model’s (-1260.34).  The trinomial I/II 

model did not provide a better fit to the data than the binomial model. 

The observed probability of DCS in the p97 dataset was plotted against the 

trinomial A/B model’s predicted probabilities of DCS in Figure 20.  These plots were 

generated by sorting the model’s three-state predictions for each dive exposure by (0)P , 

and grouping the observed cases of mild and serious DCS into 10 and 5 bins of 20 and 5 
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cases of DCS, respectively.  The observed probability of DCS was calculated as the 

number of DCS events in each bin divided by dive exposures divided in that bin.  The 

model’s predicted probability of DCS was calculated as the sum of the model’s  

Table 21: Optimized parameters used for the Binomial, Trinomial A/B, and 

Trinomial I/II bubble volume models. 

 Binomial Trinomial AB Trinomial I/II 

1/k1 (min) 3.936E+04 2.265E+03 1.755E+04 

1/k2 (min) 3.100E+02 3.106E+02 2.988E+02 

1/k3 (min) 2.146E+06 2.513E+06 2.439E+06 

G1 4.275E+01 1.274E-01 2.115E+01 

G2 1.200E+02 1.043E+02 9.903E+01 

G2 5.470E+03 4.981E+03 4.006E+03 

1  (cm-3) 1.342E+01 1.202E+01 2.151E+01 

2  (cm-3) 4.471E+02 3.775E+02 4.507E+02 

3  (cm-3) 2.975E+00 7.467E+00 7.652E+00 

1  (cm2min-1) 5.912E-03 5.444E-03 5.386E-03 

2  (cm2min-1) 6.592E-04 5.031E-04 4.620E-04 

3  (cm2min-1) 4.734E+00 6.632E+00 6.725E+00 

1  (cm-1) 6.675E-03 6.744E-03 8.543E-03 

2  (cm-1) 2.993E-02 2.887E-02 3.536E-02 

3  (cm-1) 1.116E-03 8.139E-04 7.987E-04 

  (atm∙cm-1) 2.466E-06 2.300E-06 2.486E-06 
0

1r  (cm) 2.617E-03 2.204E-03 2.865E-03 
0

2r  (cm) 1.272E-03 1.616E-03 1.739E-03 
0

3r  (cm) 1.460E-03 3.443E-03 3.593E-03 

M1 (atm∙cm-3) 9.195E+05 9.044E+05 8.580E+05 

M2 (atm∙cm-3) 2.264E+05 1.805E+05 1.951E+05 

M3 (atm∙cm-3) 2.483E+05 2.086E+05 2.202E+05 

a -- 9.995E-02 2.486E-01 

LL2 -1260.34 -- -- 

LL3 -- -1332.75 -1373.46 

LL32 -- -1258.69 -1262.99 
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Figure 20: Trinomial A/B predicted probabilities versus observed probabilities 

of mild (left) and serious (right) DCS.  These data points were generated by sorting 

the model’s predictions of the probabilities of mild and serious events into bins with 

equal numbers of observed cases.  10 bins were used for the 199 mild DCS cases, and 

5 bins were used for the 25 serious DCS cases in the p97 dataset.  The probabilities are 

plotted with a linear fit (dotted black lines, 2

mildr = 0.85 , 2

seriousr = 0.32 ) and 95% 

confidence (dashed gray lines) and 95% prediction (solid gray lines) limits. 

 

predictions for exposures in that bin divided by the number of exposures in the bin.  The 

linear fit lines of the data points are plotted (dotted, black), along with the 95% 

confidence (dashed, gray) and 95% prediction (solid, gray) limits and the line of identity 

(solid, black).  If a model was able to perfectly fit the data, all data points in Figure 20 

would fall on the line of identity.  The regression lines in this figure can help us 

determine how well the model’s predictions are aligned with the observed probabilities 

of DCS.  The serious DCS data points are less linear ( 2 0.32seriousr = ) than the mild DCS 

data points ( 2 0.85mildr = ), indicating the model is better at predicting the occurrence of 

mild DCS than serious DCS in the p97 dataset.  



 

136 

5.3.2 Predictions on Data 

The binomial and trinomial A/B models’ predictions for each data file in the p97 

dataset are given in Table 22.  Both models underpredict the total number of observed 

DCS cases for single air, saturation, and in-water oxygen decompression diving.   

Both models failed to predict any DCS from the SUBX87 data file.  The data in 

this file is derived from open water submarine escape trials performed in Norway in 

July 1987, consisting of 58 dives with 2 serious DCS cases.  The submarine escape dives 

saw a maximum depth of 602.4 fsw (19.2 ATA) and averaged around 2 minutes in 

duration.  These short, deep dives are intended to simulate exiting from a disabled 

submarine.  The bubble volume models tested in this chapter were unable to predict any 

amount of risk for these dives, meaning no compartment saw the nucleation of a bubble. 

In Table 23, the models’ predictions on each dive type are summarized, along 

with the Pearson 2  value for the binomial model’s predictions of full DCS and the 

trinomial A/B model’s predictions for mild and serious DCS.  The null hypothesis tested 

here is that the model’s predictions are a true reflection of the data, and a low 2  value 

supports this hypothesis.  These Pearson 2  values further indicate that the trinomial 

A/B model is a better predictor of mild than serious DCS. 
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Table 22: DCS occurrences and trinomial AB model predictions for the p97 

dataset. 

     Predicted DCS 

  Observed DCS Binomial Trinomial AB 

Dive Type Exposures Mild Serious Total Total Mild Serious Total 

Single Air                 

EDU885A 483 27 3 30 24.2 22.1 2.3 24.4 

DC4W 244 7 1 8 3.5 3.3 0.3 3.6 

SUBX87 58 0 2 2 0 0 0 0 

NMRNSW 91 4 1 5 6.6 5.5 0.6 6.1 

PASA 72 4 1 5 3.3 2.8 0.3 3.1 

NSM6HR 57 3 0 3 4.7 4.1 0.4 4.5 

Rep&Mult Air                 

EDU885AR 182 11 0 11 9.3 8.1 0.8 8.9 

DC4WR 12 3 0 3 0.7 0.6 0.1 0.7 

PARA 135 6 1 7 10.4 8.3 0.9 9.2 

PAMLA 236 9 4 13 17.8 16.4 1.7 18.1 

Single Nonair                 

NMR8697 477 9 2 11 19.6 15.9 1.6 17.5 

EDU885M 81 4 0 4 3.5 3.1 0.3 3.4 

EDU1180S 120 9 1 10 6.2 6.2 0.6 6.8 

Rep&Mult Nonair                 

EDU184 239 11 0 11 13.4 12.1 1.3 13.4 

PAMLAOD 134 5 1 6 9 8.2 0.9 9.1 

PAMLAOS 140 5 0 5 6.8 6.3 0.6 6.9 

EDU885S 94 4 0 4 4.7 4.2 0.40 4.6 

Saturation                 

ASATEDU 120 11 2 13 9.8 9.2 1.0 10.2 

ASATNMR 50 1 0 1 3.2 3 0.3 3.3 

ASATNSM 132 18 0 18 17.8 14.0 1.5 15.5 

ASATARE 165 19 1 20 15.8 14.6 1.5 16.1 

Air + O2 

Decompression                 

NMR94EOD 284 14 3 17 14.8 13.2 1.4 14.6 

DC8AOD 256 2 1 3 5.1 4.7 0.5 5.2 

DC8AOW 46 3 0 3 1.0 1.0 0.1 1.1 

Surface 

Decompression 

with O2                 
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DC8ASUR 358 9 1 10 11.8 9.0 0.9 9.9 

DCSUREP 69 1 0 1 2.8 2.2 0.2 2.4 

Totals 4335 199 25 224 225.8 198.1 20.5 218.6 

 

Table 23: Binomial and trinomial A/B predictions on each p97 dive type with 

the Pearson Chi-Squared statistic. 

     Predicted DCS 

  Observed DCS Trinomial A/B Binomial 

Dive Type Exposures Mild Serious Total Mild Serious Total 

Single Air 1005 45 8 53 37.8 3.9 42.3 

Rep&Mult Air 565 29 5 34 33.4 3.5 38.2 

Single Nonair 678 22 3 25 25.2 2.5 29.3 

Rep&Mult Nonair 607 25 1 26 30.8 3.2 33.9 

Saturation 467 49 3 52 40.8 4.3 46.6 

Air + O2 

Decompression 

586 19 4 23 18.9 2 20.9 

Surface 

Decompression with 

O2 

427 10 1 11 11.2 1.1 14.6 

Total 4335 199 25 224 198.1 20.5 225.8 

Pearson 
2       5.552 

p=0.9977 

9.001 

p=0.9999 

7.763 

p=0.9959 

 

5.3.3 Binomial to Trinomial Probability Shift 

In Figure 21, model-predicted probabilities of DCS and no DCS are plotted for 

the trinomial models against the binomial model.  For all dive exposures that resulted in 

mild or serious DCS, the trinomial models’ predictions of the probabilities of mild or 

serious DCS are plotted against the binomial model’s predictions of the probabilities of 

full DCS.  For dives that did not result in DCS, the trinomial models’ predicted 

probabilities of no DCS are plotted against that of the binomial model.  The trinomial 
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A/B model’s predictions are delineated with gray markers, and the trinomial I/II model 

predictions are shown with white markers. 

 

Figure 21: Trinomial to binomial probability shift plot.  For dive exposures 

that resulted in mild or serious DCS, each trinomial models’ predictions are plotted 

against the corresponding binomial model’s predictions for that dive.  Likewise for 

dives that did not result in DCS, the trinomial models’ predictions are plotted against 

the binomial model’s predictions of no DCS.  Gray data points are the shift between 

trinomial A/B and binomial probability, and white data points display the trinomial 

I/II to binomial probability shift.  Mild DCS events are indicated in circles, serious 

DCS as triangles, and no DCS as square markers. 

If the trinomial and binomial models made the same predictions, all data points 

in Figure 21 would fall on the line of identity.  Any point below the line of identity 

indicates the binomial model made a higher prediction for the probability of DCS or no 

DCS for that dive, and any point above the line of identity means a trinomial model 

predicted a higher probability of DCS or no DCS for that dive.   
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By fitting a linear regression line to each set of data points, we can quantitively 

assess the shift in probability between the trinomial and binomial models.  The linear 

regression slopes and corresponding 2r  values for each set of data points in Figure 21 

can be found in Table 24.  For dives that resulted in DCS, both trinomial models predict 

a lower probability of the occurrence of DCS than the binomial model.  The trinomial 

A/B model makes a slightly higher prediction of the probability of mild DCS and a 

slightly lower prediction of the probability of serious DCS than the trinomial I/II model 

for dives with DCS.  The data points corresponding to dives with serious DCS outcomes 

have the least amount of scatter.  The trinomial models’ predictions of the probabilities 

of no DCS events shift in opposite ways; the trinomial A/B model predicts higher 

probabilities than the binomial model, and the trinomial I/II model predicts lower 

probabilities than the binomial model. 

Table 24: Slope of Linear Regression and 2
r  value for each probability shift in 

Figure 21. 

Figure 21 Probability Shift Slope of Linear Regression 2r   

Trinomial A/B Mild DCS to Binomial 0.8331 0.9610 

Trinomial I/II Mild DCS to Binomial 0.7876 0.9755 

Trinomial A/B Serious DCS to Binomial 0.0987 0.9912 

Trinomial I/II Serious DCS to Binomial 0.2221 0.9887 

Trinomial A/B No DCS to Binomial 0.9509 0.9714 

Trinomial I/II No DCS to Binomial 1.0366 0.9835 
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5.3.4 Cumulative Density Function 

The cumulative density functions (CDFs) for the calibration dataset and the 

trinomial A/B model’s predictions are plotted in Figure 22.  The CDF helps us to 

visualize how a model’s DCS onset time predictions align with symptom onset in the 

data.  The CDFs for the trinomial model’s predictions of mild and serious DCS are 

identical because the model distinguishes between severities mathematically with a 

scaling factor, so when the CDFs are computed, that scaling factor divides out.  Figure 

22 shows the model’s predicted CDF for all DCS types (dashed line, black) and the CDFs  

 

Figure 22: Trinomial A/B cumulative density function.  The cumulative density 

functions for mild DCS and serious DCS in the p97 dataset are the black curve and 

the gray curve, respectively.  The model’s predicted cumulative density function for 

all DCS events is plotted with the dashed black line.  Because the model 

distinguishes between mild and serious DCS with a scaling factor, both predicted 

cumulative density functions fall on the same curve. 
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for the observed cases of mild DCS (solid line, black) and serious DCS (solid line, gray) 

in the p97 dataset.  Time on the x-axis is relative to the time of final surfacing, negative 

time indicating decompression has not yet been completed.  The model’s predicted CDF 

under-predicts the cumulative probability of mild DCS and over-predicts the cumulative 

probability of serious DCS until 4 hours prior to surfacing, after which the model over-

predicts the cumulative probability of all types of DCS.  Thus the model is predicting 

that more DCS events occur prior to surfacing than is observed in the data. 

5.4 Discussion 

In this Chapter, we optimized a binomial and two trinomial 3RUT bubble 

volume models to the p97 dataset.  The trinomial A/B model provides a better fit to the 

calibration dataset than the binomial bubble volume model.  From Figure 20 and the 

Pearson 2  values in Table 23, we can conclude that the trinomial A/B model predicts 

the occurrence of mild DCS in the dataset more accurately than that of serious DCS.  

This is similar to our findings in Chapter 4, in which the tetranomial A/B LE1 gas 

content model was a better predictor of mild DCS than serious or marginal DCS. 

The trinomial A/B model is particularly proficient at predicting the occurrence of 

mild DCS resulting from the high oxygen content dives that augment the BIG292 dataset 

to create the p97 dataset.  When comparing the success of this model on the various dive 

types with the models presented in Chapters 3 and 4, all multinomial models presented 

in this dissertation make significant under-predictions on the occurrence of full (mild 
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and serious) DCS resulting from single air dives.  The trinomial marginal LE1 gas 

content model from Chapter 3 and the tetranomial A/B LE1 gas content model from 

Chapter 4 both over-predict the occurrence of full (mild and serious) DCS from 

saturation diving, a trend thought to be related to the concentration of marginal DCS 

events resulting from saturation diving.  The trinomial A/B bubble volume model 

presented in this Chapter, which considered marginal DCS cases as non-events, 

underpredicts the occurrence of mild DCS from saturation diving, and in general is 

more accurate than the preceding models for predictions on saturation diving. 

The results presented in this Chapter can also be compared with those published 

by Howle et al. in Ref [10], who optimized binomial and trinomial (mild, serious, and no 

DCS) gas content models.  Unlike our trinomial bubble volume models, Howle’s 

trinomial gas content models optimized to nearly identical parameter sets as the 

binomial counterpart.  This resulted in their trinomial models making nearly identical 

predictions on the dataset as the binomial model.  While both Howle’s trinomial A/B 

and trinomial I/II gas content models outperformed the binomial model, only our 

trinomial A/B bubble volume model provided a better fit to the data than the binomial 

model.  Howle’s trinomial A/B gas content model’s equivalent binomial log likelihood 

saw much more substantial improvement over the binomial model than our trinomial 

A/B model over our binomial model. 
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The trinomial models presented in this chapter were unable to predict any risk 

for submarine escape dives (see Table 22).  Bubble volume model risk is derived from 

bubble nucleation, and our models did not nucleate a bubble on these short, deep 

profiles.  Bubble nucleation occurred if Eq. (5.5) was satisfied.  There are other options 

for bubble formation criteria, such as including the elastic modulus in Eq. (5.5), or 

modeling nucleation as a balance between tissue supersaturation and surface energy 

[62].  Perhaps one of these alternatives would allow our models to generate DCS risk 

from submarine escape dive data. 

Although bubble volume models have the advantages of more realistically 

simulating the physiological precursor to DCS and more accurately predicting DCS for 

dives with higher oxygen content when compared with gas content models, bubble 

volume models are vulnerable to overfitting.  With 23 adjustable parameters calibrated 

against 4,335 dive exposures, our trinomial models may be overfit to the p97 dataset.  To 

investigate the possibility of overfitting, our trinomial A/B model should be tested on 

dive data outside the calibration dataset. 

5.5 Conclusions 

The trinomial bubble volume models presented in this chapter serve to augment 

the binomial bubble volume models currently used by the U.S. Navy to estimate the risk 

of diving missions.  By providing the U.S. Navy divers with both the probability and 
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severity of DCS occurring, our trinomial model presents divers with a more complete set 

of risk information. 

The trinomial model with Type A/B severity splitting provided a better fit to the 

calibration dataset than the binomial model and the trinomial model with Type I/II 

splitting.  This trinomial A/B model was most accurate in predicting the occurrence of 

mild DCS in the dataset, and was able to successfully predict risk for dives using oxygen 

during in-water decompression and surface decompression.  However, the trinomial 

A/B model was not able to assign risk to submarine escape dives, likely because the 

short nature of these exposures did not allow for adequate tissue supersaturation 

required to trigger bubble nucleation in the model.  This issue may be addressed by 

implementing a different condition for bubble nucleation, or by adjusting the 

optimization algorithm to achieve a more optimal parameter set. 

Because the trinomial A/B model has 23 adjustable parameters and was 

calibrated on a dataset with only 4,335 dive exposures, it is possible that this model was 

overfit to the data.  To test for overfitting, the model should be evaluated on dive data 

from outside the p97 dataset.  In addition, it would be worthwhile to investigate the 

critiques presented in Ref. [62] of this formulation of bubble volume model, and 

potentially implement some of the suggested improvements. 
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6. Conclusions 

There are two factors that contribute the risk of an activity: the probability of 

injury, and the severity of injury.  An activity’s risk rises with the increase in the 

probability of injury and with the increase in the severity of injury.  Risk analysis can be 

conducted with a risk assessment matrix, which visualizes harm probability against 

harm severity.  Risk assessment matrices are used by many facets of the U.S. 

Department of Defense to manage operational risk. 

To mitigate the risk of DCS for diving missions, the U.S. Navy currently uses 

binomial probabilistic models, which predict the probability of DCS occurring and not 

occurring for a given time-depth dive profile.  These models provide Navy divers with 

DCS incidence and onset time predictions, but do not predict any information regarding 

the severity of potential injury.  With the goal of providing U.S. Navy divers with a 

more complete risk prediction for dive missions, we first interrogated the BIG292 

calibration dataset for evidence of DCS severity-dependent onset time information, then 

developed a variety of multinomial gas content and bubble volume probabilistic models 

that predict the probability of no DCS, serious DCS, mild DCS, and/or marginal DCS. 

Probabilistic decompression models have adjustable parameters that can be 

calibrated to an empirical dive dataset, such as the BIG292 dataset.  This data was 

recorded with the symptom onset time window when DCS occurred.  The occurrence 

density function, which visualizes the frequency in DCS onset over time relative to the 
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completion of decompression, shows two peaks in DCS onset in the BIG292 dataset.  The 

probabilistic models used by the U.S. Navy do not predict this temporal bimodality in 

symptom onset.  After investigating the source of the bimodal behavior, we concluded 

that the DCS symptom onset time windows recorded in the BIG292 dataset may have 

been biased by dive trial protocol, which dictated that divers underwent medical exams 

immediately after completing decompression and again two hours later.  The two peaks 

in reported symptom onset coincide with these two medical exams, likely because 

medical officers made diagnoses during these scheduled exams.  The bimodal trend in 

symptom onset time is present in the occurrence density functions generated by subsets 

of the data for each classification of DCS symptom severity and dive type.  Probabilistic 

models’ predictions of a single peak in DCS symptom onset over time do not indicate a 

defect with the models, but rather a bias in the data, and it is thus not necessary to 

develop a model that replicates this bimodal trend. 

Probabilistic decompression models can be modified to predict both the 

probability and severity of DCS injury.  Previously, Howle et al. developed a trinomial 

gas content model that predicts the probability of mild, serious, and no DCS.  Expanding 

on that work, we developed and optimized 20 multinomial models in this dissertation: 

six trinomial marginal gas content models, 12 tetranomial gas content models, and two 

trinomial bubble volume models.  Of all multinomial gas content models tested, the LE1 

formulation provided the best fit to the calibration dataset.  We found that multinomial 
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models that predict mild and serious DCS performed best with Type A/B severity 

splitting when compared with Type I/II splitting.  A summary of the best performing 

multinomial models’ Pearson 2  and p-values can be found in Table 25. 

Table 25: Pearson 2
χ  and p-values for all multinomial models.  The null 

hypothesis tested here is that model predictions are identical to observations in the 

data.  A high 2
χ  (and low p-value) suggests rejection of the null hypothesis, meaning 

the model’s predictions are not consistent with observation. 

Multinomial 

Model 

Number 

of DOF 
Pearson 2  

Full DCS 

Pearson 2  

Mild DCS 

Pearson 2  

Serious DCS 

Pearson 2  

Marginal 

DCS 

Binomial LE1nt 

Gas Content [10] 

7 8.465 

p=0.294 

   

Trinomial A/B 

LE1nt Gas 

Content [10] 

8  8.421 

p=0.393 

4.527 

p=0.807 

 

Trinomial 

Marginal LE1 

Gas Content 

(Chapter 3) 

9 12.270 

p=0.199 

  36.568 

p=0.000031 

Tetranomial A/B 

LE1 Gas Content 

(Chapter 4) 

10  7.597 

p=0.668 

9.246 

p=0.509 

36.612 

p=0.000066 

Binomial 3RUT 

Bubble Volume 

(Chapter 5) 

22 7.736 

p=0.998 

   

Trinomial A/B 

3RUT Bubble 

Volume 

(Chapter 5) 

23  5.552 

p=0.999 

9.007 

p=0.996 

 

 

The trinomial marginal LE1 A/B model and the tetranomial LE1 A/B model, 

which both considered marginal DCS to be a hierarchical event, did not accurately 
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predict the occurrence, onset, or distribution of marginal DCS cases in the calibration 

dataset.  The inclusion of marginal DCS data during model fitting may have hindered 

those models’ ability to predict the probabilities of other types of DCS as well.  Both the 

trinomial marginal LE1 model and the tetranomial A/B LE1 model over-predict the 

occurrence of full DCS from saturation diving, which is the dive type with the largest 

frequency of marginal DCS cases in the data.  The trinomial marginal LE1 model is not 

able to predict the probability of full DCS as well as the binomial LE1nt or binomial 

3RUT models, which consider marginal DCS a non-event.  The probability shift between 

the tetranomial A/B and trinomial marginal LE1 models indicates both models make 

nearly identical predictions on the dataset.  Many of the marginal DCS cases in the 

calibration dataset were not reported with symptom onset times, so the onset times 

windows were assigned to be between the divers’ last medical checks and the trials’ 

right-censored times.  These large event windows hinder model optimization, as 

symptom onset times are used to refine model parameters.  We do not recommend 

further development of multinomial models that predict marginal DCS separately, and 

rather suggest reassigning marginal DCS cases to non-events in the calibration dataset. 

The bubble volume models presented in Chapter 5 yielded the highest p-values 

in Table 25, indicating those models’ predictions are most closely aligned with the 

calibration dataset, even though they did not achieve a maximum log likelihood during 

model fitting.  These models were not able to accumulate any risk for submarine escape 
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dives, which are short, deep dives intended to simulate the decompression burden from 

exiting a disabled submarine.  An additional issue with these bubble volume models is 

they may have more adjustable parameters than warranted by the number of dive 

exposures in the p97 dataset.  Future work should include testing all multinomial 

models presented in this work on dive data from outside the calibration datasets.  Poor 

performance on new dive data would indicate the model is overfit to the calibration 

dataset and cannot be extrapolated to dive profiles that are different from those used 

during model fitting. 
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