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Abstract 11 

Decompression sickness (DCS) in humans is associated with reductions in ambient pressure that 12 

occur during diving, aviation, or certain manned spaceflight operations.  Its signs and symptoms can 13 

include, but are not limited to, joint pain, radiating abdominal pain, paresthesia, dyspnea, general malaise, 14 

cognitive dysfunction, cardiopulmonary dysfunction, and death.  Probabilistic models of DCS allow the 15 

probability of DCS incidence and time of occurrence during or after a given hyperbaric or hypobaric 16 

exposure to be predicted based on how the gas contents or gas bubble volumes vary in hypothetical tissue 17 

compartments during the exposure.  These models are calibrated using data containing the pressure and 18 

respired gas histories of actual exposures, some of which resulted in DCS, some of which did not, and 19 

others in which the diagnosis of DCS was not clear. The latter are referred to as marginal DCS cases.  In 20 

earlier works, a marginal DCS event was typically weighted as 0.1, with a full DCS event being weighted as 21 

1.0, and a non-event being weighted as 0.0.  Recent work has shown that marginal DCS events should be 22 
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weighted as 0.0 when calibrating gas content models.  We confirm this indication in the present work by 23 

showing that such models have improved performance when calibrated to data with marginal DCS events 24 

coded as non-events.  Further, we investigate the ramifications of derating marginal events on model-25 

prescribed air diving no-stop limits. 26 
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Introduction 29 

 The signs and symptoms of decompression sickness (DCS) in humans, which is associated with 30 

reductions in ambient pressure during diving, aviation, or certain manned spaceflight operations, can 31 

include, but are not limited to joint pain, radiating abdominal pain, paresthesia, dyspnea, general malaise, 32 

cognitive dysfunction, cardiopulmonary dysfunction, and death [1, 2].  DCS is typically categorized as 33 

either type 1 pain only, or type 2 neurological [3, 4].  Our focus here is on the problem of DCS caused by 34 

decompressions from hyperbaric exposures, not decompressions to hypobaric pressures, such as those 35 

experienced by pilots on ascent to high altitudes and astronauts during extravehicular activities.  Haldane 36 

et al. [5] are commonly credited with developing the first effective strategy for preventing DCS in man.  37 

The latter entailed tracking gas content in a series of independent compartments.  Within each 38 

compartment, the gas content was used to calculate the level of supersaturation that was not allowed to 39 

exceed a maximum value by the algorithm.  A decompression was considered unsafe with the inevitability 40 

of DCS if the critical supersaturation was exceeded in any compartment, or safe with no possibility of DCS 41 

if the critical supersaturation was not exceeded in any compartment. Although this approach has since 42 

been extensively refined [6-10], it retains the shortcoming of being unable to explicitly control the risk of 43 

DCS in the calculation of decompression schedules. 44 



 Recognizing that the occurrence of DCS has both deterministic and stochastic mechanisms, 45 

workers at the United States Navy (USN) Naval Medical Research Institute (NMRI) developed models to 46 

predict the probability of DCS occurrence during hyperbaric exposures and compute decompression 47 

schedules that incur user-specified risks of DCS [11-23]. These models feature calibration against data 48 

describing a collection of hyperbaric exposures and their binary outcomes: either DCS occurred or it did 49 

not.  There is currently no definitive diagnostic test for DCS.  In the absence of a definitive test, the 50 

outcomes of some dives are an ambiguous collection of signs and symptoms.  These ambiguous outcomes 51 

are termed marginal DCS events, do not require recompression therapy, and spontaneously resolve.  52 

Examples of marginal DCS events are aches or mild pain in a single joint lasting less than 60 minutes or 53 

pain in multiple joints lasting less than 30 minutes [24, 25].  Pain with any other manifestation, such as 54 

visual disturbances, and difficulties with balance, speech, and/or comprehension, whether or not these 55 

other manifestations self-resolve, would not be classified as a marginal DCS event. 56 

 Transient or ambiguous symptoms indicate potential occurrence of the sickness.  In order to 57 

incorporate marginal DCS events, these occurrences were originally treated as half of a DCS event 58 

(weighted as 0.5) when included in the calibration data [13], though no statistical justification was given 59 

for this decision.  Later, the weight given to marginal events was reduced to one-tenth of a DCS event 60 

based upon communications with USN dive medical officers, who indicated they were much less 61 

concerned with marginal DCS than full DCS [19].  More rigorous methods for incorporating different 62 

degrees of severity of DCS have since been published [26].  Recent work has found the inclusion of 63 

marginal DCS events with fractional weights detrimental to the overall performance of probabilistic 64 

models [27].  Rigorous statistical evaluation of marginal events has found that they are not combinable 65 

with the rest of the data in the BIG292 calibration set used by the authors.  This past study points to the 66 

fact that while saturation data makes up 14.4% of the BIG292 calibration data set (discussed in more detail 67 

below) and marginal DCS events account for 3.3% of BIG292, 55% of the marginal DCS events occurred 68 



during saturation dives.  This indicates that including marginal DCS events, even with a small fractional 69 

weight, grants saturation exposures undue weight in the calibration data.  In this work, we evaluate the 70 

impact of treating marginal DCS events as non-events in the calibration data.  We first determine if linear 71 

kinetics, a threshold term, and oxygen as a participating gas are still beneficial to model performance; as 72 

determined previously [12, 15, 17, 19].  After we establish which model features are statistically justified, 73 

we investigate how the modified calibration data affects model performance. 74 

Methods 75 

Data 76 

All data used in this study were taken from the USN N2-O2 dive database which has been 77 

previously published [12, 24, 25, 28] and does not require approval from an institutional review board for 78 

use.  The data are composed of time-series records for the pressure and gas inspired by the diver 79 

throughout each recorded dive. Successive points or “nodes” are connected by straight lines in the time 80 

domain to describe a dive as a series of segments, each of which is either an isobaric, compression, or 81 

decompression segment that may include a breathing gas switch.  The outcome of each exposure is 82 

recorded as either 1.0 if DCS occurred, 0.0 if DCS did not occur, or 0.1 if marginal DCS occurred.  If the 83 

outcome was DCS or marginal DCS, the time the subject was last known to be symptom free and the time 84 

at which the presence of DCS signs or symptoms were first confirmed are also recorded.  Two subsets of 85 

the USN N2-O2 dive database were used in this study.  The first set, BIG292, consists of 3,322 exposures in 86 

1,038 different time and depth profiles within which 190 DCS events and 110 marginal DCS events 87 

occurred.  BIG292 was used as the calibration data set for the LE1-USN93 model parameters [29].  The 88 

second set, NMRI98, augments BIG292 with an additional 1,013 exposures in 266 additional profiles.  89 

These additional exposures used gases with increased oxygen content during either or both the on-90 

bottom and decompression (ascent) phases of the dives.  The inclusion of more profiles using gases with 91 



increased oxygen content makes the NMRI98 data set a more versatile calibration set than BIG292. The 92 

NMRI98 data set has a total of 223 full DCS events and 127 marginal DCS events.  NMR98 was used as the 93 

calibration data set for a study of models incorporating oxygen as a participating gas [12, 17].  94 

Models 95 

The PLBX3 exponential-exponential model [30, 31], the linear-exponential model (LE1) [29], and 96 

the linear exponential multigas model (LEM) [12, 17, 32] were chosen as the basis for this work. Features 97 

of these models are summarized in Table 1. Each is a survival model in which the body is considered to 98 

consist of three independent, well-stirred, perfusion-limited gas exchange compartments. These 99 

compartments are not intended to represent distinct anatomical tissues, but are mathematical 100 

abstractions with no direct relationship to the underlying physiology.  In each model, the probability of 101 

DCS for a given exposure, PDCS, is given as a function of the instantaneous risk of DCS, i
r , in each of 3n =  102 

compartments: 103 
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where, 
i

g is a compartmental scaling term or gain.  This equation does not include time of onset and is 105 

integrated from the start of the dive to the right-censored time, the time at which observation ceased. 106 

Time of symptom onset is incorporated by calculating a joint probability including the probability of being 107 

symptom free (PS) until the last known time at which the subject was symptom free, 
1

T , and the 108 

probability of DCS occurring between 
1

T and 
2

T , the time at which the presence of symptoms was first 109 

confirmed [33] 110 
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In the absence of gas bubbles, the rate of change of the compartmental inert gas tension is  112 
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where k is a rate constant for the compartment and 
T

P is the tissue tension of the dissolved inert gas 114 

(nitrogen for this document), 
2

0

N
P is the nitrogen pressure at the beginning of the segment,

2N
R is the rate 115 

of change of the arterial inert gas tension during the dive segment, and t is time.  The arterial inert gas 116 

tension is assumed to be in equilibrium with the alveolar gas. The solution to the differential Eq. (3) for 117 

the duration of a dive segment is the familiar mono-exponential expression [11, 13, 27, 34] given by  118 
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where the constants for the dive segment are 120 
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and 
0

TP  is the tissue tension at the beginning of the dive segment.   122 

Both gas uptake and elimination are mono-exponential in the PLBX3 model compartments [30, 123 

31]. Compartmental gas elimination in the LE1 and LEM models is allowed to be time linear in one 124 

compartment after a crossover compartmental tension PXO is exceeded.  Linear kinetics were introduced 125 

as a mechanism for modeling the reduced rate of inert gas elimination caused by the formation of gas 126 

bubbles in that compartment [29, 35].  The linear gas kinetics are defined as 127 
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where 
0

BP is the ambient pressure at the start of the dive segment and 
B

R is the rate of change in ambient 129 

pressure in the dive segment.  This condition can only occur when supersaturation is present.  Therefore, 130 

the tissue tension (or inert gas burden) evolves as 131 
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where B
P is the ambient pressure and FVG

P is the total partial pressure of the metabolic gases; oxygen, 133 

carbon dioxide, and water vapor; presumed constant and equal to 0.1917atm [36].   134 

 In all three models, the instantaneous risk for the th
i compartment ( i

r ) is given in terms of the 135 

prevailing compartmental gas supersaturation, (PTi +PFVG- PB): 136 
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= iT B i FVG
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P
, (8) 137 

where Thri is a threshold supersaturation that must be exceeded before risk accumulates in the 138 

compartment. For compartments which do not have a threshold, Thr is set to 0.   139 

 LEM further enhances the LE1 model with the addition of oxygen as a participating gas in the 140 

compartment with linear gas kinetics.  In order to include oxygen as a participating gas, the tissue tension 141 

is redefined as  142 
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where PSET is a fitted parameter determining the concentration above which oxygen ceases to be treated 146 

as completely metabolized and becomes part of the inert gas burden in the tissue.  
2Oeff

P is the partial 147 

pressure of oxygen treated as an inert gas.  Both conditions are implemented during gas uptake and 148 

elimination.  149 

 Models were optimized using likelihood maximization [11, 37, 38].  Gain variables can be 150 

calculated directly [39], but were left as fitted parameters in the present work due to the ease of 151 

programming.  Likelihood is defined as the probability of the observed outcome [11, 38].  The likelihood 152 

L for each exposure i is given by  153 

 δ δ−= − 1
(1 )i i

i i i
L P D C S P D C S , (11) 154 

where δ is the outcome, 0δ = indicates no DCS, 1δ = indicates DCS occurred, and 
m

Wδ = for marginal 155 

events.  Marginal DCS events were treated as non-events with an outcome of 0.0
m

W = .  The joint 156 

probability of all N observed outcomes can be calculated as 157 

 δ δ−= −∏ 1
(1 )i i

N

i i

i

L PDCS PDCS ,  (12) 158 

by assuming that the outcome of each exposure is independent of all other observed outcomes.  For ease 159 

of computation, we work with the log of each likelihood value and negate the final sum to phrase the 160 

problem as a maximization.  We used the Nelder-Mead maximization algorithm [40], which is gradient-161 

free and robust, to avoid numerical difficulties arising from discontinuities in the parameter space [34].  162 

32 solutions were obtained for each model tested; starting from different initial values of the free 163 

parameters.  The best (maximum log likelihood) parameter set was selected for each model for model 164 

comparison.  The LE1 and PLBX3 models were fit to the BIG292 data set for comparison with the LE1-165 

USN93 model and parameter set.  All other models tested were fit to the NMRI98 data.  166 



Model Selection 167 

 The LEM model is produced by the progressive addition of linear kinetics, a threshold term, and 168 

oxygen to the most reduced model, PLBX3.  All models tested were consequently nested within the least 169 

reduced LEM model.  The statistical justification for addition of each added model feature was tested with 170 

MATLAB (MathWorks MATLAB 2015b) log likelihood difference tests with a significance level of 0.05 as 171 

the selection criterion and with the Akaike Information Criterion (AICc) [41] defined in Eq. (13).  In Eq. 172 

(13), K is the number of free parameters and N is the sample size.  173 

  = − +  − − 
2(ln( )) 2

1

N
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  (13) 174 

The weighted AIC index, defined in Eq. (14), provides an easier-to-interpret statistic in which each model 175 

is assigned a number between 0.0 and 1.0. The model with value closest to 1.0 is the model that best 176 

describes the data.   177 
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Calculation of No-Stop Limits 179 

The no-stop limit for a given dive depth is the maximum time that can be spent at that depth and 180 

followed by a direct ascent to surface while producing a risk of DCS that reaches but does not exceed a 181 

pre-specified limit.  No-stop limit prescriptions of the present models optimized with marginal DCS events 182 

weighted as 0.1 and 0.0 were compared to limits in the USN Diving Manual Revision 7 (VVAL-79 Thalmann 183 

Algorithm [6, 42, 43]) and to limits prescribed by the LE1-USN93 and LEM-NMRI98 models.  The no-stop 184 

limits were calculated assuming air breathing throughout each exposure with descent and ascent rates of 185 

75 fpm and 30 fpm, respectively [44].  Descent time was not included in the bottom time.  A 2.3% 186 

acceptable risk of DCS was used to be consistent with prior USN work [22].  Starting with a bottom time 187 



of one minute, the no-stop limit at each dive depth was determined by incrementing the bottom time in 188 

one minute intervals until the 2.3% risk level was reached.   189 

Results and Discussion 190 

Deleting the weight of marginal events (Wm = 0.0) for model calibration against BIG292 resulted 191 

in LE1 remaining the best selected model.  After reparameterization with Wm = 0.0 we compared LE1 192 

against the less complex PLBX3 model and found that the additional complexity was justified with a p-193 

value of 5.61E-06 by the log likelihood difference test.  The weighted AICc index for LE1 was 0.99, 194 

indicating that LE1 provided a much better description of BIG292 than PLBX3.  Best-fit parameters along 195 

with their 95% confidence intervals for both models are provided in Table 2.  The confirmation that LE1 196 

remains the best descriptor of BIG292 is unsurprising.  Weighting marginal events as non-events (Wm = 197 

0.0) within the training set does not change the dive profiles.  Since all dive types (single air, single non-198 

air, saturation, et cetera) are still present, all modifications which enhance the three independent, well-199 

stirred, and perfusion-limited compartment class of models are still necessary. 200 

Figure 1 graphs the probability of DCS for each profile predicted by the LE1-USN93 model (Wm = 201 

0.1) versus the probabilities predicted by LE1 with refit parameters (Wm = 0.0).  The predicted probabilities 202 

were sorted from smallest to largest to more easily observe trends.  The performance of the LE1 model 203 

on saturation exposures is not significantly altered by reducing Wm to 0.0, despite marginal events 204 

predominantly occurring during saturation exposures.  In Figure 2, the predicted probabilities of all non-205 

saturation exposures from BIG292 are plotted; again after sorting the probabilities from smallest to 206 

largest.  The PDCS predictions from the parameters optimized with Wm = 0.0 are the abscissa and the 207 

predictions from LE1-USN93 (Wm = 0.1) are the ordinate.  The PDCS predictions from the refit parameters 208 

with Wm equal to 0.0 are consistently lower than the PDCS predictions of LE1-USN93 (Wm = 0.1).  From 209 

this we conclude that the bulk of the risk resulting from marginal DCS events is spread across the non-210 



saturation profiles, despite being predominantly associated with the saturation dives.  This agrees with 211 

our previous finding [27] that marginal DCS events weighted as Wm = 0.1 degrade model performance for 212 

non-saturation dives.  As shown in Figure 3 there is no significant change in the distribution of which 213 

compartments contribute to the overall risk.   214 

Occurrence density functions (ODFs) plot the number of DCS occurrences per hour centered on 215 

the time of surfacing from the dive.  Negative time values indicate DCS occurred prior to the diver 216 

surfacing.  Figure 4 shows the ODF for BIG292 along with the ODFs for the LE1-USN93 (Wm = 0.1) 217 

parameters and our refit parameters for the LE1 model (Wm = 0.0).  The true values from the BIG292 data 218 

contain a bimodal peak near the time of surfacing.  Neither version of LE1 reproduces this behavior and 219 

the source of the bimodal peak.  In our recent investigation into the source of the bimodality for the dive 220 

trial data, we found that the bimodality was most likely caused by a change in DCS onset time reporting 221 

protocol in 1984 and was not related to dive type or DCS event severity [45].  The reduction in value of 222 

Wm from 0.1 to 0.0 results in a smaller peak near the time of surfacing, but does not significantly change 223 

the shape or position of the peak. 224 

For the larger NMRI98 data set, we tested all combinations of model enhancements nested within 225 

the LEM model optimized with Wm assigned a value of 0.0.  Optimization and test results for each of the 226 

models are given in Table 3.  LEM was the best descriptor of these data with a weighted AICc index of 227 

0.97.  It also performed the best by the log likelihood difference test.  The best fit model parameters and 228 

their 95% confidence intervals are given in Table 4.  The best fit value of PSET in Model 5 was 25.9 atm, a 229 

value which is far in excess of the highest oxygen partial pressure encountered in any dive in the training 230 

data, and indeed of any oxygen partial pressure allowed during actual dive operations [46].  Thus, the 231 

potential to use oxygen as a participating gas in Model 5 was not exercised and the model collapsed into 232 

Model 3. 233 



Plotting the change in predicted probability of DCS for the LEM model optimized with the NMRI98 234 

data as depicted in Figure 5 shows that unlike the LE1 model, reducing the value of Wm from 0.1 to 0.0 235 

reduces the risks of saturation dives.  The same saturation dive subsets; ASATARE, ASATEDU, ASATNMR, 236 

and ASATNSM described by Temple et al [24, 25]; are contained in both BIG292 and NMRI98.  Unlike LE1, 237 

LEM did not predict higher probabilities of DCS for non-saturation dives when marginal DCS events are 238 

weighted as 0.1.  The predicted number of full DCS cases for the saturation dives with Wm = 0.1 is 59.39 239 

and the predicted number of cases with Wm = 0.0 is 52.94 while the actual number is 52.  Thus, interpreting 240 

marginals as no DCS yields a LEM model that does a better job of predicting the actual number of cases. 241 

Figure 6 shows that only a small number of non-saturation dives had their risks significantly lowered by 242 

the reduction of Wm from 0.1 to 0.0; most non-saturation exposures had very little change.  The risk 243 

contributions from each compartment normalized by the total risk are plotted in Figure 7.  Each 244 

compartment’s risk contribution did shift, but there were no significant qualitative changes.  For the 245 

models optimized with and without marginal DCS events given fractional weight, the majority of the dives 246 

in the data set accumulate risk in at most two compartments.  This may be inferred from the fact that the 247 

majority of the points fall on or close to the outer boundaries of the plot.  If an exposure accumulated risk 248 

in all three compartments, then that point would fall closer to the center of the plot.  The clustering of 249 

points on or close to the outer boundaries shows that exposures tend to accumulate risk either in the fast 250 

and intermediate compartments or in the intermediate and slow compartments. 251 

The ODF for the NMRI98 data is qualitatively the same as that of the BIG292 data, at least partly 252 

because NMRI98 is a superset of BIG292.  Weighting marginal DCS events as non-events (Wm = 0.0) in the 253 

LEM model’s training set did not significantly impact the large peak centered at the time of surfacing as is 254 

evident in Figure 8.  This is consistent with non-saturation dives being relatively unchanged by the 255 

classification of marginals as non-events.  DCS associated with non-saturation dives typically occurs within 256 

two hours after reaching the surface, whereas during saturation dives DCS is not uncommon during the 257 



ascent phase of the dive [24, 25].  Reducing Wm to 0.0 results principally in a reduction of the small 258 

numbers of events in the tail of the distribution associated with DCS occurrences before the divers 259 

surfaced. 260 

The air diving no-stop limits prescribed by our LE1 and LEM models fit to their respective training 261 

datasets with Wm = 0.0 are compared to the current USN guidance [44] in Table 5.  The LE1 prescriptions 262 

are consistently longer than those of LE1-USN93 (Wm = 0.1), which is expected since decreasing Wm to 0.0 263 

reduces the bulk probability of DCS by reducing the number of DCS events in the training data.  LEM 264 

prescriptions for dives to shallow depths (70 fsw and less) are shorter than the corresponding air no-stop 265 

limits, while the prescriptions for dives to greater depths are consistently longer.  In Figure 9, we plot our 266 

new no-stop prescriptions along with the VVal-79 Thalmann algorithm prescriptions.  As depicted in the 267 

graph, there is good agreement between all three algorithms except for shallow depths.  Four of the 268 

proposed no-stop limits have been man-tested in previous work [47, 48]: 20 minutes at 130 FSW, 15 269 

minutes at 150 FSW, 12 minutes at 150 FSW, and 9 minutes at 190 FSW.  The rate of DCS occurrence in 270 

these trials was less than 2.3%, but there was an unacceptably high number of Type 2 DCS events. 271 

Conclusions 272 

 Models for estimating the probabilities of DCS in diving have conventionally considered the 273 

occurrence of DCS to be a binary event with an outcome weighting of unity if it occurs or a weighting of 274 

zero if it does not occur in a given dive.  Desire to include information for dives in which the DCS outcome 275 

is not clear has motivated consideration of such outcomes as marginal DCS events with ad-hoc fractional 276 

weighting.  Previous work has shown that they should be treated as non-events with weights of Wm = 0.0 277 

for model optimization [27].  LE1 and LEM remained the best descriptors of BIG292 and NMRI98, 278 

respectively, after their parameters were reoptimized with Wm = 0.0.  The risk distributions for each of 279 

the refit models were affected very differently by reducing Wm from 0.1 to 0.0.  LE1 placed the bulk of the 280 



risk associated with marginal weights of Wm = 0.1 on the non-saturation dives despite a disproportionately 281 

large portion of marginal DCS events occurring during saturation dives.  In contrast, LEM correctly placed 282 

the bulk of the risk associated with marginal weights of Wm = 0.1 on the saturation dives indicating that it 283 

is a better descriptor of the NMRI98 data set. 284 

 The models refit with Wm = 0.0 prescribed no-stop limits for air diving similar to those published 285 

in the USN Dive Manual Revision 7 [46].  No-stop limits prescribed by the LE1 model were consistently 286 

longer, consistent with the ascription of less risk to the non-saturation dives.  The LEM model had small 287 

adjustments to its no-stop prescriptions.  The close agreement of all three algorithms’ prescriptions 288 

provide further evidence that Wm should equal 0.0 when optimizing models for predicting the occurrence 289 

of DCS.  The confirmation of Wm = 0.0 indicates that the information contained in marginal DCS events 290 

must be incorporated by an entirely different mechanism than what has been used thus far.  We propose 291 

that treating marginal DCS events as a different type of severity instead of a weighted binary outcome is 292 

a more appropriate way of incorporating the information from these events.  This can be accomplished 293 

using existing techniques for incorporating severity information [26] as no DCS, marginal DCS, and full DCS 294 

instead of differentiating by type 1 and type 2; or by extending existing techniques to include four 295 

severities: no DCS, marginal DCS, type 1, and type 2.  Finally, it is worth pointing out that probabilistic DCS 296 

models are inexact and the conclusions drawn in this paper might be dependent upon the probabilistic 297 

models used for this study. 298 
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 413 

Model Linear Kinetics Oxygen Threshold 

PLBX3    

Model 1 X   

Model 2  X  

Model 3   X 

LE1 (USN93) X  X 

Model 4 X X  

Model 5  X X 

LEM (LEM-

NMRI98) 

X X X 

Table 1: Summary of features in the models investigated.  All models are composed of three parallel, 414 

uncoupled, well-stirred compartments.  Exponential gas uptake and elimination prevailed in each 415 

compartment unless otherwise noted by an “X” in the Linear Kinetics column.  For the models which 416 

allowed linear gas kinetics, they were only allowed in the second compartment.  Oxygen only participated 417 

in the second compartment when present.  The threshold term was only applied to the third 418 

compartment.  419 
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 421 

Parameter 

value (+/- 

95% CI) 

PLBX3 LE1 

g1 
3.06E-03 

(3.48E-03) 

3.69E-03 

(4.77E-03) 

g2 
4.82E-04 

(3.42E-04) 

8.27E-05 

(4.70E-05) 

g3 
2.46E-04 

(3.28E-04) 

1.12E-03 

(2.88E-04) 

k1 
5.58E-01 

(3.88E-01) 

6.51E-01 

(5.58E-01) 

k2 
4.48E-03 

(1.39E-03) 

1.78E-02 

(8.59E-01) 

k3 
2.03E-03 

(1.07E-03) 

1.92E-03 

(2.44E-04) 

PXO2 N/A 
5.57E-02 

(3.01E-02) 

THR3 N/A 
1.13E-01 

(3.83E-02) 

Table 2: Best-fit parameters with Wm = 0.0 for the BIG292 data.  Gains are represented by g, tissue rates 422 

by k, crossover pressure to linear kinetics by PXO, and threshold for risk accumulation as THR.  Subscripts 423 

indicate the compartment index to which the parameter corresponds.  The 95% confidence intervals are 424 

displayed parenthetically below each parameter value. 425 
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Model Log Likelihood Bulk PDCS Log Likelihood 

Difference 

P-value Weighted AICc 

PLBX3 -1168.06 223.23 Rejected 3.79E-06 1.26E-05 

Model 1 -1165.93 223.3 Rejected 8.25E-06 3.86E-05 

Model 2 -1165.86 224 Rejected 2.10E-06 1.53E-05 

Model 3 -1160.48 218.74 Rejected 1.50E-03 8.98E-03 

LE1 -1159.14 223.39 Rejected 1.7E-03 1.26E-02 

Model 4 -1167.25 223.8 Rejected 7.52E-08 1.39E-06 

Model 5 -1159.47 213.08 Rejected 2.56E-04 3.33E-03 

LEM -1152.78 223.24 Accepted N/A 9.75E-01 

Table 3: Model optimization and selection results from the NMRI98 data set with Wm = 0.0.  Bulk PDCS is 427 

the total number of cases of DCS that each model predicts for the NMRI98 data set.  The observed number 428 

of DCS events was 223.  Log likelihood difference testing found that the LEM model was statistically 429 

justified as the best choice with 95% certainty as the selection criterion.  The actual P-values from each 430 

log likelihood difference test comparing the model to LEM are provided above.  Weighted AICc index 431 

values with a closer value to 1.0 indicate better agreement with the data.  The weighted AICc values do 432 

not sum to 1.0 because of rounding error. 433 
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 435 

Parameter 

value (+/- 

95% CI) 

PLBX3 Model 1 Model 2 Model 3 LE1 Model 4 Model 5 LEM 

g1 
7.82E-05 

(1.01E-04) 

3.41E-03 

(6.40E-03) 

3.46E-03 

(4.78E-03) 

2.09E-03 

(2.30E-03) 

3.05E-03 

(4.28E-03) 

3.41E-03 

(4.90E-03) 
2.33E-03 

3.00E-03 

(3.56E-03) 

g2 
6.88E-04 

(1.07E-04) 

7.04E-04 

(6.58E-04) 

3.13E-04 

(7.33E-04) 

6.43E-04 

(9.70E-05) 

6.80E-04 

(1.01E-04) 

1.75E-05 

(2.20E-05) 
4.86E-04 

1.57E-04 

(7.60E-05) 

g3 
7.12E-03 

(9.39E-03) 

6.25E-02 

(6.85E-04) 

4.03E-04 

(5.15E-01) 

8.13E-03 

(5.27E-03) 

6.68E-03 

(6.53E-03) 

6.88E-04 

(1.07E-04) 
7.46E-04 

8.63E-04 

(2.94E-04) 

k1 
2.55E-02 

(2.32E-02) 

6.44E-01 

(4.91E-01) 

6.44E-01 

(4.53E-03) 

5.03E-01 

(3.93E-01) 

5.91E-01 

(5.08E-01) 

6.43E-01 

(5.31E-01) 
4.34E-01 

5.97E-01 

(4.18E-07) 

k2 
3.08E-03 

(3.37E-04) 

3.35E-03 

(2.35E-03) 

5.15E-03 

(4.53E-03) 

3.37E-03 

(1.84E-04) 

3.35E-03 

(1.77E-04) 

8.16E-02 

(9.41E-02) 
4.27E-03 

1.02E-02 

(2.89E-03) 

k3 
1.02E-00 

(5.91E-04) 

5.54E-03 

(2.67E-03) 

2.46E-03 

(1.64E-03) 

1.28E-03 

(1.25E-04) 

2.78E-03 

(9.50E-04) 

3.10E-03 

(3.60E-04) 
1.75E-03 

1.95E-03 

(2.69E-04) 

o2 N/A N/A 
5.29E-02 

(8.20E-02) 
N/A N/A 

5.11E-02 

(1.90E-01) 
2.15E-02 

2.86E-02 

(1.22E-02) 

PSET2 N/A N/A 
9.44E-01 

(8.20E-02) 
N/A N/A 

1.05E+00 

(2.01E-00) 
2.59E+01 

8.46E-01 

(3.80E-01) 

PXO2 N/A 
1.08E+04 

(8.65E+00) 
N/A N/A 

5.85E-01 

(9.94E-02) 

2.25E-02 

(8.91E-02) 
N/A 

1.07E-01 

(3.32E-02) 

THR3 N/A N/A N/A 
5.25E-01 

(5.44E-02) 

4.61E-01 

(4.98E-01) 
N/A 1.34E-01 

9.71E-02 

(3.32E-02) 

Table 4: Best-fit model parameters against the NMRI98 data set with marginal DCS events weighted as 436 

0.0.  Gains are represented by g, tissue rates by k, crossover pressure to linear kinetics by PXO, and 437 

threshold for risk accumulation as THR.  Subscripts indicate to which compartment each parameter 438 

belongs.  The 95% confidence intervals are listed below each parameter in parenthesis.  The parameters 439 

used for PLBX3 have been previously reported elsewhere [30, 31]. 440 
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Model 
USDM, R7 

LEM-

NMRI98 
LEM Difference 

in No-Stop 

Times 

LE1-

USN93 
LE1 Difference 

in No-Stop 

Times 
Data Set N/A NMRI98 NMRI98 BIG292 BIG292 

Marginals N/A Wm = 0.1 Wm = 0.0 Wm = 0.1 Wm = 0.0 

30 371 234 214 -20 218 265 47 

35 232 178 161 -17 163 203 40 

40 163 140 128 -12 127 160 33 

45 125 113 105 -8 102 129 27 

50 92 94 88 -6 84 105 21 

55 74 79 76 -3 71 87 16 

60 63 68 66 -2 61 73 12 

65 -- 59 59 0 53 62 9 

70 48 52 52 0 47 53 6 

75 -- 46 47 1 42 47 5 

80 39 41 43 2 37 42 5 

85 -- 37 39 2 34 37 3 

90 33 34 36 2 31 34 3 

95 -- 31 33 2 28 31 3 

100 25 29 31 2 26 28 2 

105 -- 27 29 2 24 26 2 

110 20 25 27 2 22 24 2 

115 -- 23 24 1 20 22 2 

120 15 21 23 2 19 21 2 

125 -- 20 21 1 18 20 2 

130 12 18 20 2 16 18 2 

135 -- 17 18 1 15 17 2 

140 10 16 17 1 14 16 2 

145 -- 15 16 1 14 15 1 

150 8 14 15 1 13 14 1 

155 -- 13 14 1 12 13 1 

160 7 12 13 1 11 13 2 

165 -- 11 12 1 11 12 1 

170 6 11 12 1 10 11 1 

175 -- 10 11 1 9 10 1 

180 6 9 10 1 9 10 1 

185 -- 9 10 1 8 9 1 

190 5 8 9 1 8 9 1 

Table 5: Comparison of the no-stop limits prescribed for air dives by each model studied.  The prescriptions 442 

from the U.S. Navy Diving Manual Revision 7 are provided for reference [46].  The left most column is 443 

depth in feet of sea water (fsw).  No-stop times are calculated with a 2.3% target risk of DCS assuming a 444 

75 fpm descent rate and 30 fpm ascent rate.  Descent and ascent time is not included in the bottom time.  445 



Bottom times are only allowed to increase in one-minute increments with the largest time not resulting 446 

in a risk higher than 2.3% being accepted as the provisionally recommended no stop time. 447 

 448 

Figure 1:  Shift of risk in saturation dives from the BIG292 data set.  The risk of DCS was predicted for each 449 

saturation dive in the BIG292 data set.  After sorting the risks from smallest to largest they were plotted 450 

with the risk predicted by our refit parameters for LE1 (derated marginal events) as the abscissa and the 451 

USN93 parameters as the ordinate. 452 

 453 



 454 

Figure 2: The risk shifts all non-saturation profiles in BIG292.  The predicted risks of DCS occurring for each 455 

profile are sorted from smallest to largest and plotted with the predictions from the USN93 parameters 456 

as the ordinate and the predictions from our parameters optimized with derated marginal events as the 457 

abscissa.  Risk predictions from the parameters without marginal events in the training set are often much 458 

lower than the predictions of the USN93 parameters. 459 

 460 



 461 

Figure 3: Ternary plot of integrated risks from all profiles in BIG292 as predicted by the LE1 model after 462 

optimization with marginal events weighted (Wm = 0.1) and with marginal events unweighted (Wm = 0.0) 463 

in the training set.  Integrated risks for each compartment are normalized by the total integrated risk for 464 

the profile.  The profile is then plotted on the ternary plot in which each corner represents the situation 465 

where all risk came for the compartment whose axis indicates 1.0 in the corner.  As each isocline is crossed 466 

moving away from a corner the amount of risk contributed by the compartment the 1.0 belongs to 467 

decreases by 10%.  While profile risks shifted positions, there was no discernable qualitative change in the 468 

overall distribution of profile risks. 469 

 470 



 471 

Figure 4: The occurrence density function (ODF) for the BIG292 data set.  The occurrence density function 472 

plots the number of DCS events that either occurred (for the true data) or were expected (model 473 

predicted) per hour.  The function is centered on the time of surfacing with negative times indicating that 474 

DCS occurred prior to the diver reaching the surface.  A zoomed in view of the center of the graph is 475 

provided in the top left due to this being where the bulk of the DCS events occur.  In the true data, there 476 

is a bimodal peak which is not replicated by either of the models.   As expected, the number of occurrences 477 

per hour is decreased in the absence of marginal DCS events. 478 

 479 



 480 

Figure 5: Shift in risk of the saturation dives in the NMRI98 data set.  The risk of DCS was predicted for 481 

each saturation dive in the NMRI98 data set.  After sorting the risks from smallest to largest they were 482 

plotted with the risk predicted by our refit parameters for LEM (Wm = 0.0) as the abscissa and the LEM-483 

NMRI98 (Wm = 0.1) parameters as the ordinate. 484 



 485 

Figure 6: The risk shifts all non-saturation profiles in NMRI98.  The predicted risk of DCS occurring for each 486 

profile was sorted from smallest to largest and plotted with the predictions from the LEM-NMRI98 (Wm = 487 

0.1) parameters as the ordinate and the predictions from our parameters optimized with Wm = 0.0 as the 488 

abscissa. 489 



 490 

Figure 7: Ternary plot of integrated risks from all profiles in NMRI98 as predicted by the LEM model after 491 

optimization with marginal events weighted (Wm = 0.1) and marginal events unweighted (Wm = 0.0) in the 492 

training set.  Integrated risks for each compartment are normalized by the total integrated risk for the 493 

profile.  The profile is then plotted on the ternary plot in which each corner represents the situation where 494 

all risk came for the compartment whose axis indicates 1.0 in the corner.  As each isocline is crossed 495 

moving away from a corner the amount of risk contributed by the compartment the 1.0 belongs to 496 

decreases by 10%.  While profile risks shifted positions, there was no discernable qualitative change in the 497 

overall distribution of profile risks. 498 



 499 

Figure 8: The occurrence density function (ODF) for the NMRI98 data set.  The occurrence density function 500 

plots the number of DCS events that either occurred (for the true data) or were expected (model 501 

predicted) per hour.  The function is centered on the time of surfacing with negative times for DCS 502 

occurrences prior to the diver reaching the surface.  A zoomed in view of the center of the graph is 503 

provided in the top left due to this being where the bulk of the DCS events occur.  In the true data, there 504 

is a bimodal peak which is not replicated by either of the model parameter sets.  The ODFs for LEM 505 

optimized with Wm = 0.1 and Wm = 0.0 are indistinguishable at this resolution. 506 
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 508 

Figure 9: Air dive no-stop limits published in the USN Dive Manual Revision 7 [46] and the LE1 and LEM 509 

models after being refit with Wm = 0.0.  All calculations were made assuming air is the inspired gas with a 510 

descent rate of 75 fpm and an ascent rate of 30 fpm.  Ascent and descent times were not included in the 511 

bottom time.  Bottom times were increased in increments of 1 minute until a target risk of 2.3% probability 512 

of DCS occurring was reached.  If 2.3% risk was exceeded the next shorter time was accepted as the limit.   513 
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