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Abstract 

Background Existing evidence on long-term ambient air pollution (AAP) exposure and risk of cardio-respiratory 
diseases in China is mainly on mortality, and based on area average concentrations from fixed-site monitors for indi-
vidual exposures. Substantial uncertainty persists, therefore, about the shape and strength of the relationship when 
assessed using more personalised individual exposure data. We aimed to examine the relationships between AAP 
exposure and risk of cardio-respiratory diseases using predicted local levels of AAP.

Methods A prospective study included 50,407 participants aged 30–79 years from Suzhou, China, with concentra-
tions of nitrogen dioxide  (NO2), sulphur dioxide  (SO2), fine  (PM2.5), and inhalable  (PM10) particulate matter, ozone  (O3) 
and carbon monoxide (CO) and incident cases of cardiovascular disease (CVD) (n = 2,563) and respiratory disease 
(n = 1,764) recorded during 2013–2015. Cox regression models with time-dependent covariates were used to esti-
mate adjusted hazard ratios (HRs) for diseases associated with local-level concentrations of AAP exposure, estimated 
using Bayesian spatio–temporal modelling.

Results The study period of 2013–2015 included a total of 135,199 person-years of follow-up for CVD. There was a 
positive association of AAP, particularly  SO2 and  O3, with risk of major cardiovascular and respiratory diseases. Each 
10 µg/m3 increase in  SO2 was associated with adjusted hazard ratios (HRs) of 1.07 (95% CI: 1.02, 1.12) for CVD, 1.25 
(1.08, 1.44) for COPD and 1.12 (1.02, 1.23) for pneumonia. Similarly, each 10 µg/m3 increase in  O3 was associated with 
adjusted HR of 1.02 (1.01, 1.03) for CVD, 1.03 (1.02, 1.05) for all stroke, and 1.04 (1.02, 1.06) for pneumonia.

Conclusions Among adults in urban China, long-term exposure to ambient air pollution is associated with a higher 
risk of cardio-respiratory disease.
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Background
Ambient air pollution (AAP) is a major risk factor 
for many diseases, with ambient fine particulate mat-
ter  (PM2.5) and ozone  (O3) estimated to account for 4.5 
million deaths worldwide in 2019, including 1.5 million 
in China [1]. These estimates were largely based on the 
dose–response relationships of ambient  PM2.5 with car-
dio-respiratory diseases and  O3 with chronic obstructive 
pulmonary disease (but not other conditions), derived 
from prospective cohort studies mostly conducted in 
western high-income populations. Meanwhile, the asso-
ciations of other key air pollutants, such as sulphur diox-
ide  (SO2), nitrogen dioxide  (NO2), and carbon monoxide 
(CO) with health outcomes are less well-understood due 
to the lack of reliable prospective evidence [2].

In recent decades, China has undergone rapid eco-
nomic growth, urbanisation, and industrialisation, with 
pollution levels far exceeding both international [3] and 
national guidelines [4]. While the short-term health 
effects of AAP exposure have been well-documented 
across China, especially for cardio-respiratory morbid-
ity [5, 6] and mortality [7, 8], evidence is more limited on 
associations of AAP exposure with longer term health 
outcomes in China. For a few such studies in China, they 
mainly relied on spatially and temporally averaged con-
centrations from fixed-site monitors as proxies for per-
sonal exposure [9–14]. Recent studies have modelled 
exposure based on satellite remote sensing data, but at 
a relatively crude spatial and temporal resolution and/or 
for a limited number of pollutants [15–17]. We therefore 
aimed to examine the relationship between AAP expo-
sure and cardio-respiratory disease incidence using expo-
sure estimates from spatio–temporal modelling applied 
to individuals in a prospective Chinese cohort for all six 
criteria air pollutants.

Methods
Study design
We used data from the prospective China Kadoorie 
Biobank (CKB) study. Details of the study design, objec-
tives, and methodology are described elsewhere [18]. In 
brief, 512,713 participants aged 30 to 79 from 10 diverse 
areas of China were recruited between June 2004 and July 
2008 (overall response rate 28%). The study population, 
identified from public registry records, was not designed 
to be representative of China as a whole but cover a wide 
variation in risk factors and diseases. At local assessment 
centres participants underwent a laptop-based interview 
providing information on socio-demographic charac-
teristics, aspects of lifestyle (smoking, alcohol intake, 
diet, physical activity), exposure to passive smoking and 
household air pollution, and medical history. Trained 
health professionals undertook physical examination 

using standard protocols. The Chinese Center for Disease 
Control and Prevention and the University of Oxford 
gave ethics clearance for the CKB study. Written 
informed consent was obtained from all participants. For 
this report we included participants in the urban region 
of Suzhou only (n = 53,259), for which detailed air pol-
lution data were available. We excluded one assessment 
centre and its participants (n = 257) located outside the 
urban area of Suzhou. The included assessment centres 
are spread across an area of approximately 30  km by 
15 km.

Air pollution exposure
Daily 24  h-averaged measurements of inhalable  (PM10) 
and fine  (PM2.5) particulate matter,  SO2,  NO2, CO and 
 O3 were obtained from 10 fixed-site monitors situated 
in Suzhou for years 2013 to 2015. We also obtained daily 
meteorological variables (ground temperature, total pre-
cipitation, wind speed, and relative humidity) from five 
local weather stations. Geographic covariates of eleva-
tion, distance to nearest major road, distance to nearest 
motorway, total length of major roads and motorways in 
a 1 km radius, and land use (urban or non-urban) were 
also obtained.

Predictions for pollutant levels at assessment centre 
locations for each month from January 2013 to December 
2015 were derived using Bayesian models. Details of the 
modelling methodology can be found elsewhere [19]. A 
two-stage approach was used, applying spatio–temporal 
models for the meteorological variables then using these 
predictions (in addition to the five geographic covariates) 
in spatio–temporal models for each pollutant. Bayesian 
inference was via integrated nested Laplace approxima-
tion (INLA) and the SPDE approach, using the R-INLA 
package for R software [20]. In these models, predicted 
values for a random sample of fifty observations showed 
high correlation with observed values (r = 0.80 for CO 
and 0.87–0.98 for other pollutants).

Monthly pollutant levels were predicted for 77 base-
line assessment centres matched to 53,002 participants, 
each living within 1 km of their respective centre at base-
line. The two long-term exposures used in analyses were 
annual exposure (mean pollutant levels in calendar years 
2013, 2014, and 2015) and cumulative exposure (mean 
pollutant levels from January 2013 to a given month).

Follow‑up for morbidity and mortality
Deaths were identified by electronic linkage to local mor-
tality records, supplemented by annual confirmation of 
survival through street committees or village adminis-
trators and standardised verbal autopsies for mortality 
without medical attention before death (< 5%). Non-fatal 
events and any episodes of hospitalisation were captured 
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by disease registers (for cancer, ischaemic heart disease, 
stroke, and diabetes) and health insurance records. The 
underlying causes of death and hospital diagnoses were 
coded in accordance with the International Classification 
of Diseases, 10th Revision (ICD-10). By  31st December 
2015, 1,467 participants (2.8%) had died, and 15 (< 0.1%) 
were lost to follow-up. The primary outcomes in this 
analysis were the first occurrence of either non-fatal or 
fatal cardiovascular (ICD-10: I00-I99) and respiratory 
(J00-J99) disease from  1st January 2013 to  31st Decem-
ber 2015 when AAP data are available. We also examined 
specific cardiovascular and respiratory diseases, includ-
ing ischemic heart disease (IHD) (I20-I25), all-type stroke 
(I60-I61, I63-I64, I69.0, I69.1, I69.3, I69.4), ischemic 
stroke (I63), intracerebral haemorrhage (I61), chronic 
obstructive pulmonary disease (COPD) (J41-J44), and 
pneumonia (J12-J18). Endpoints capturing other cardio-
vascular diseases (I00-I16, I27-I52, I62, I65-I89, I95-I99), 
and other respiratory diseases (J00-J06, J20-J22, J30-J40, 
J80-J86, J90-J96, J98-J99) were also included (details can 
be found in eTable 1).

Statistical analysis
We excluded all participants censored prior to 2013 
(n = 1482) in addition to participants with the respective 
cardio-respiratory endpoint(s) of interest recorded prior 
to  1st January 2013. We restricted our study population 
to participants with no history of cancer at baseline or 
incident cancer prior to the start of follow-up. In analy-
ses of all cardiovascular disease and other cardiovascu-
lar diseases, participants with history of stroke/transient 
ischemic attack (TIA) or IHD (n = 907) at baseline were 
excluded. In analyses of stroke, participants with history 
of stroke/TIA (n = 402) were excluded, and in analyses 
of IHD participants with history of IHD (n = 522) were 
excluded. In analyses of respiratory disease, participants 
with history of asthma, tuberculosis, or emphysema/
bronchitis at baseline (n = 2,955) were excluded. Baseline 
characteristics of the study population and annual levels 
of individual air pollutants were summarised by means 
and standard deviations (SDs) or proportions.

Cox proportional hazard models were used to estimate 
adjusted hazard ratios (HRs) and 95% confidence inter-
vals (CIs) for disease incidence per 10 µg/m3 increase in 
pollutant exposures, or per 100  µg/m3 increase for CO 
exposure. Pollutant exposure was included as a time-
varying covariate. In all models time from start of study 
period was used as the time scale, and models were 
stratified for baseline age group (5-year groups) and sex, 
and adjusted for active smoking (never, occasional, ex-, 
or current smoker), exposure to passive smoking (never, 
previously, or currently lives with smoker), self-rated 
health status (excellent, good, fair, or poor), body mass 

index (kg/m2), physical activity level (metabolic equiva-
lent of task per days), alcohol consumption (never, ex-, 
occasional, monthly, reduced, or weekly drinker), high-
est education level (no formal schooling, primary school, 
middle school, high school, college, or university), solid-
fuel use for cooking (always clean fuels, switched from 
solid to clean fuels, always solid fuels, never cooked 
regularly, other), ambient mean temperature, and prior 
cardiovascular/respiratory disease (incident respiratory 
disease prior to the cardiovascular endpoint, or incident 
cardiovascular disease prior to a respiratory endpoint). 
Highest education level was chosen as it has been shown 
to be the best available measure for socioeconomic status 
in the CKB study. Temperature was included as a time-
varying covariate on the same time scale as the pollutant 
exposure. Additional potential confounders hypothe-
sised a priori to confound the relationship between AAP 
exposure and cardio-respiratory disease incidence were 
included. For cardiovascular diseases, these were con-
sumption of fresh fruit and preserved vegetables, cur-
rent use of hypertensive medication, and systolic blood 
pressure (SBP) at baseline. For respiratory diseases, these 
were consumption of fresh fruit, and preserved vegeta-
bles respectively, and current use of diabetes medication. 
We also used a robust variance estimator to account for 
spatial correlation of participant characteristics and dis-
ease incidence within assessment centres. For cardiovas-
cular disease and respiratory disease, further analyses 
included adjustment variables sequentially and addition-
ally adjusted for household income (6 groups).

We carried out subgroup analyses for pollutant expo-
sures significantly associated with all cardiovascular 
disease or all respiratory disease, and tested for hetero-
geneity (or trend, if appropriate) of associations using 
annual exposures. Additionally, for these pollutant expo-
sures we fit models adjusting for other pollutant expo-
sures. To assess linearity of the associations between 
these pollutants and cardiovascular and respiratory dis-
eases, we also fit models using natural cubic splines (with 
4 degrees of freedom) for annual pollutant exposure.

To ensure the reliability of estimates of associations 
between pollutant exposures and cardio-respiratory 
disease, we also estimated the associations with certain 
infectious and parasitic disease incidence as a “negative 
control”. This encompassed a limited range of diseases 
(eTable 1) unlikely to be linked to ambient air pollution 
exposure but only to potential confounders (e.g. socio-
economic status).

Results
Mean pollutant concentrations and long-term trends 
through the study period (2013–2015) varied consider-
ably between pollutants (Table 1, Fig. 1 and eFigure 1). 
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Mean levels of particulate matter declined 15.5% and 
21.9% between 2013 and 2015 for  PM10 and  PM2.5, 
respectively. Gaseous pollutant concentrations showed 

less consistent long-term trends and concentrations var-
ied substantially between assessment centres. Mean lev-
els of  SO2 fell by 39.9% between 2013 and 2015. Annual 

Table 1 Summary of predicted annual pollutant levels at assessment centre locations

Summary statistics calculated across annual predicted pollutant levels at all assessment centre locations

SD Standard deviation, P5 5th Percentile. P95 95th Percentile, IQR Inter-quartile range

2013 2014 2015

Pollutant (μg/m3) Mean SD P5 P95 IQR Mean SD P5 P95 IQR Mean SD P5 P95 IQR % change of mean 
from 2013 to 2015

NO2 68.4 39.5 30.9 117.3 36.5 68.2 36.7 32.3 117.5 33.7 69.4 36.1 33.8 119.4 33.8  + 1.4

SO2 38.6 18.9 11.7 68.4 20.9 29.4 15.5 8.4 52.5 15.5 23.2 12.3 6.3 40.3 13.7 -39.9

PM10 91.9 25.8 60.2 151.0 23.3 85.2 24.4 58.2 137.7 26.9 77.6 21.9 50.0 127.5 18.9 -15.5

PM2.5 83.6 25.8 56.5 140.5 24.1 76.3 23.4 51.3 128.5 22.4 65.3 19.9 44.9 110.2 19.0 -21.9

O3 100.9 37.8 37.5 161.8 44.3 95.1 35.6 35.5 145.6 48.3 96.8 36.0 35.9 149.0 49.4 -4.1

CO (mg/m3) 0.59 0.22 0.24 0.89 0.34 0.62 0.23 0.26 0.95 0.32 0.64 0.24 0.26 0.96 0.36  + 8.0

Fig. 1 Annual pollutant concentrations by assessment centre location and pollutant, Suzhou (2013–2015)
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levels of  PM2.5 were strongly positively correlated with 
 PM10 and  NO2, while annual  O3 levels were negatively 
correlated with  PM10 and  PM2.5 (eFigure 2).

Baseline characteristics for men and women included 
in analyses are presented in Table  2. The mean age of 
participants was 51.9  years for men and 51.5  years for 
women. While current regular smoking was highly 
prevalent (68.7%) among men, it was rare in women 
(0.4%). Similarly, regular alcohol consumption was com-
mon (41.1%) in men but not in women (0.6%). Self-rated 
health was slightly better among men (33.4% excellent 
and 7.1% poor) than women (26.6% excellent and 11.9% 
poor).

During the study period (including a total of 135,199 
person-years of follow-up for CVD and 130,917 person-
years for respiratory disease), 2,563 participants had a 
fatal or non-fatal cardiovascular event, and 1,764 had a 
respiratory disease event. Rates of both first cardiovascu-
lar event and first respiratory disease event were slightly 
higher in men (20.0 cardiovascular and 14.5 respiratory 
events per 1,000 person-years) compared to women (18.6 
cardiovascular and 12.8 respiratory events per 1,000 
person-years).

Adjusted HRs per 10 µg increase in long-term pollut-
ant exposures (per 100  µg for CO) for cardiovascular 
diseases are shown in Fig.  2. Increased  SO2 exposure is 
significantly associated with all cardiovascular disease 
(HR (95%CI): 1.07 (1.02, 1.12)) and other cardiovascu-
lar disease (1.11 (1.03, 1.19)).  O3 exposure is moderately 
positively associated with all cardiovascular disease, all-
type stroke, and ischemic stroke (1.02 (1.01, 1.03), 1.03 
(1.02, 1.05), and 1.04 (1.01, 1.06)).  PM10 and  PM2.5 are 
moderately inversely associated with all cardiovascular 
disease (0.97 (0.95, 0.99)), in particular ischaemic stroke 
for  PM2.5, and similarly  NO2 with ischaemic stroke (0.97 
(0.95, 0.99)).

Adjusted HRs for respiratory diseases are shown in 
Fig.  3. Increased  SO2 exposure is significantly associ-
ated with all respiratory disease (1.11 (1.04, 1.19)), COPD 
(1.25 (1.08, 1.44)), pneumonia (1.12 (1.02, 1.23)), and 
other respiratory disease (1.09 (1.01, 1.19)).  O3 expo-
sure is associated with increased risk of pneumonia (1.04 
(1.02, 1.06)).  PM10 and  PM2.5 are inversely associated 
with pneumonia (0.94 (0.90, 0.98) and 0.95 (0.90, 1.00), 
respectively), and CO is inversely associated with COPD 
(0.89 (0.83, 0.97)).

Analyses using cumulative pollutant exposures from 
January 2013 show similar results to analyses using 
annual exposures. Analyses of all cardiovascular disease 
and all respiratory disease with sequential adjustment for 
potential confounders show minimal change in estimates 
after adjustment for age, sex, and selected lifestyle and 
environmental factors (eFigure 8).

Table 2 Baseline characteristics of participants in Suzhou

Values are percentages, unless otherwise stated
a  Family history defined as baseline reported disease prevalence in mother and/
or father
b  Breathlessness and chest pain defined as being “short of breath”, and “slowing 
down due to chest discomfort”, respectively, when “walking on level ground 
with health people of the same age”. Chronic cough defined as “coughing 
frequently for ≥ 3 months"

Men
(n = 20,846)

Women
(n = 29,561)

Total follow‑up time (CVD), person‑years 55,962 80,193

Total follow‑up time (respiratory dis‑
ease), person‑years

57,706 82,830

Age, years, mean (SD) 51.9 (10.1) 51.5 (10.2)

Education
 No formal school 9.7 43.3

 Primary school 40.0 26.8

 Middle school 36.4 22.8

 High school and above 13.8 7.1

Smoking
 Never smoker 7.7 99.1

 Occasional smoker 10.8 0.5

 Ex regular smoker 12.7 0.0

 Current regular smoker 68.7 0.4

Passive smoking
 Never 22.9 7.5

 Yes, but not now 57.1 27.5

 Yes, at present 20 65

Alcohol consumption
 Never 16.2 89.1

 Ex-regular / Reduced intake 10.6 0.3

 Occasional / Monthly 32.2 10.0

 Current regular 41.1 0.6

Self‑rated health
 Excellent 33.4 26.6

 Good 32.9 31.7

 Fair 26.5 29.8

 Poor 7.1 11.9

Physical activity, MET‑hr/day, mean (SD) 27.8 (15.9) 24.4 (14.3)

Self‑reported disease
 Hypertension 10.8 11.5

 Stroke/TIA 1.1 0.6

 TB 1.6 0.6

 CHD 1 1

 Asthma 0.7 0.8

 Emphysema/Bronchitis 4.5 4.5

Family history of diseasea

 Stroke 18.7 17.0

 Myocardial infarction 1.9 2.1

Cardiorespiratory symptomsb

 Breathlessness 2.0 3.8

 Chest pain 1.0 2.2

 Chronic cough 4.8 2.3
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Fig. 2 Associations between cardiovascular diseases and long-term pollutant exposures
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Fig. 3 Associations between respiratory diseases and long-term pollutant exposures
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After adjustment for  NO2 or CO,  SO2 exposure 
remains significantly associated with cardiovascular dis-
ease, however adjustment for  PM2.5,  PM10 or  O3 attenu-
ates the association (eFigure  3). Adjustment for other 
pollutants does not attenuate the associations between 
 O3 exposure and all-type stroke and ischemic stroke. 
After adjustment for other pollutants,  SO2 exposure is 
significantly associated with respiratory disease, but not 
pneumonia (eFigure 4).

Results of stratified analyses for  SO2 and  O3 are pre-
sented in eTables  2 and 3. Heterogeneous associations 
are observed for  SO2 and cardiovascular disease between 
different exposures to passive smoking (p = 0.04), and for 
 O3 and respiratory disease between different smoking 
(p < 0.01).

Associations between  SO2 and  O3 and cardiovascular 
diseases are not significantly non-linear (p = 0.45 and 
p = 0.46, respectively). However, associations with respir-
atory diseases show significantly non-linearity (p = 0.002 
and p < 0.001), with approximately linear associations 
above 30 µg/m3  SO2 and above 100 µg/m3  O3 as shown 
in eFigure 5.

Increased  SO2 exposure is also associated with a higher 
risk of all-type and ischemic stroke when using monthly 
pollutant exposures (eFigure  6). However, the associa-
tions with all cardiovascular disease and other cardio-
vascular disease are not significant, as seen when using 
annual  SO2 exposure. Monthly  O3 is also associated with 
cardiovascular disease, all-type stroke, and ischemic 
stroke. For respiratory diseases, monthly  SO2 exposure 
remains associated only with increased risk of pneumo-
nia (eFigure 7).

Associations between annual and monthly pollutant 
exposures and infectious and parasitic disease incidence 
(467 events) are not significant (eTable 4).

Discussion
In this prospective cohort study in the urban region 
Suzhou in China we found some evidence for associa-
tions between long-term exposure to ambient  SO2 and 
 O3 pollution and increased risk of cardio-respiratory 
events. In particular, higher  SO2 exposure is associated 
with increased risk of COPD and pneumonia incidence, 
and higher  O3 with increased risk of ischaemic stroke.

Most existing studies focus on short-term  SO2 expo-
sure, and the associations of long-term exposure with 
cardio-respiratory health remain poorly understood 
[21]. Several previous cohort studies in China have 
reported positive associations between  SO2 exposure 
and cardio-respiratory mortality, but effect sizes tended 
to be smaller than that observed in the present study 
[9–11]. This may be explained by relatively crude expo-
sure assessment methods (e.g. fixed-site monitoring 

data assigned to residential zip codes) and lack of 
detailed adjustment for confounders in previous stud-
ies. We found some evidence of a threshold effect such 
that the harm of  SO2 may exceed individuals’ ability to 
cope at certain levels, but this needs to be verified in 
other large cohort studies.

SO2 is often hypothesized as a proxy for other com-
bustion-based pollutants [22] such as  PM2.5, instead of 
having direct long-term health impact on major cardio-
respiratory outcomes. We observed a lower correlation 
between  PM2.5 and  SO2 than seen in other studies, both 
in China [10] and elsewhere [23]. This could be due 
to our model of exposure assessment accounting for a 
greater degree of small-scale spatial and temporal vari-
ation, potentially reducing correlations between pollut-
ants seen when using averages from fixed-site monitors 
[24]. It may also reflect increasingly stringent  SO2 emis-
sion control (e.g., flue-gas desulphurisation) and the 
rapidly expanding car fleet in China in recent years, 
shifting relative PM contribution of older coal-fired 
power plants and industries to less sulphur-intense 
sources [25]. We found  SO2 associated with respiratory 
disease after adjustment for other pollutants, suggest-
ing some amount of an independent effect rather than 
 SO2 being solely representative of exposure to other 
pollutants as previously hypothesised [22]. However, 
adjustment for some other pollutants did attenuate the 
association between  SO2 exposure and cardiovascular 
disease.

To our knowledge, no study has examined the long-
term cardio-respiratory effects of  O3 exposure in China, 
and findings are mixed from the few studies performed 
in high-income countries. While some have found  O3 
exposure associated with cardio-respiratory mortality 
[26, 27] even after adjustment for  PM2.5 [28, 29], others 
have found no clear association [30, 31]. We found mod-
est associations between  O3 exposure and cardiovascu-
lar disease (primarily ischemic stroke), including when 
adjusting for exposure to other pollutants. This provides 
new prospective study evidence, supporting previously 
observed associations in several large cohort studies [32]. 
The discrepancy between the present and some previous 
studies may be attributed to the significantly higher  O3 
exposure recorded in this study (mean 86.9  µg/m3 ver-
sus ~ 50–55  µg/m3) [30] and more extensive adjustment 
for individual-level confounders than in previous stud-
ies. Further studies to investigate the apparent non-linear 
dose–response relationship between  O3 and respiratory 
disease is warranted.

The exact mechanisms linking  O3 and  SO2 with cardio-
respiratory diseases remain to be confirmed. For exam-
ple, experimental studies have shown  O3 to be associated 
with numerous major pathways of cardiovascular disease 
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development including oxidative stress, and inflamma-
tory pathways [33, 34]. Similarly, experimental and toxi-
cological studies have shown  SO2 exposure capable of 
inducing oxidative damage and mitochondrial dysfunc-
tion in the heart and lungs of mice [35, 36] and associated 
with reduced cardiac vagal control in humans [37].

While this study found moderate inverse associations 
between long-term particulate matter exposure and car-
dio-respiratory disease, most previous studies observed 
significant positive associations, including the few exist-
ing cohort studies in China [9, 17, 38]. A large nationwide 
cohort study in China reported overall positive associa-
tions between  PM2.5 and cardiovascular disease incidence 
and mortality, but found no clear association below 
70 µg/m3 or in urban areas [17]. These results may reflect 
substantial regional variation in emission sources, and 
thus chemical composition, of particulate matter, with 
solid fuels and less efficient coal-fired power plants domi-
nating rural AAP [39], which may be more harmful than 
particulate matter from mobile vehicles or industries 
[40], two major contributors of urban AAP. Declining PM 
levels may also have resulted in observable benefits on 
cardio-respiratory disease, as previously documented for 
mortality [41] and subclinical markers of inflammation 
[42] in China. It may also be due to residual confounding, 
especially by other pollutants, or the time delay between 
exposure and development of disease.

An important strength of this study is the inclusion 
of both non-fatal and fatal incident disease. A consider-
able proportion of the long-term burden relating to AAP 
exposure is likely captured by morbidity only, possibly 
more sensitive to AAP exposure than mortality [43, 44]. 
In addition, we used a spatio–temporal model to assign 
air pollution exposure instead of averages from fixed-site 
monitors, to attempt to account for small-scale variabil-
ity in exposure and give a more robust exposure assess-
ment [43]. Further, we included adjustment for a ranged 
of individual-level covariates and analysed all six criteria 
ambient air pollutants.

This study is limited by the short follow-up time cou-
pled with latency in the development of numerous 
cardio-respiratory diseases. It is unlikely to capture all 
participants’ historic AAP exposure that may be associ-
ated with disease development. We attempted to allevi-
ate this by examining disease endpoints representative of 
potentially shorter latency. For disease incidence not cap-
tured within the 3-year exposure period, extrapolation of 
AAP concentrations to additional years of follow-up was 
possible, as seen in other studies [16, 44]. However, given 
the substantial long-term trends seen in AAP, extrapo-
lation would be unlikely to capture the exposure accu-
rately [45]. We were unable to assign exposure based on 

residential addresses (though the CKB sampling strategy 
ensures that the vast majority of participants lived within 
1  km of their assessment centre) and there is inherent 
measurement error in exposures predicted from a mod-
elling strategy. Despite our adjustment for potential con-
founders at the individual level, residual confounding 
from factors such as socioeconomic status and health-
seeking behaviour remain plausible.

Conclusion
The findings of this study provide new evidence that 
long-term exposure to  O3 and  SO2 is associated with 
increased risk of both cardiovascular and respiratory 
diseases. In contrast to the continuous declining trend 
of  PM2.5 in China, anthropogenic  O3 has been increas-
ing rapidly in the past decade, prompting growing con-
cerns of its potentially increasing proportional public 
health impact [46]. Our findings support more stringent 
regulatory policy to control other key criteria pollutants, 
in addition to  PM2.5. Further cohort studies with greater 
geographic coverage, larger sample size, and longer fol-
low-up will help to clarify the magnitude of associations 
between AAP exposures and disease.
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