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Abstract We hypothesised that hypoxic-hypercap-

nic environment (HHE) could induce metabolic sup-

pression and associated benefits for health and

longevity, as observed in the naked-mole rat (NMR).

We developed a model of self-produced HHE (similar

to a natural habitat of NMRs), which is simple, reliable

and natural, and does not require external sources of

gases or complex technical equipment. Here, we

showed for the first time that a chronic exposure of

mice to HHE could be a unique tool for NMR-like

metabolic remodeling, resulting in a long-term and

substantial decrease in metabolic rate, body temper-

ature, and food consumption, without significant

changes in expression of stress-related genes. Unex-

pectedly, the HHE accelerated skin wound healing,

despite the lower energy expenditure. The self-

produced HHE could be considered a model of

voluntary calorie restriction. All in all, a chronic

exposure to HHE offers a potential of being a lifespan-

extending intervention as well as an efficient tool for

treating the overweight and associated metabolic

disorders.
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Vo2 Oxygen consumption

Vco2 Carbon dioxide production

UCP2 Mitochondrial uncoupling protein 2

Introduction

Energy and temperature are the two all-pervasive

factors that could modify virtually all biological

processes, aging included. Not surprisingly, the links

between aging, energy expenditure and temperature

have been objects of close scrutiny since the beginning

of the twentieth century (Loeb and Northrop 1916;

Pearl 1928). Although many aspects of the relation-

ships remain disputable, it is generally assumed that

lower metabolic rate and body temperature could

independently or in cooperation with each other

contribute to longevity in both poikilotherms and

homeotherms (Conti 2008; Flouris and Piantoni 2014;

Keil et al. Keil et al. 2015; Lehmann et al. 2008, 2013;

Prokopov 2007; Tabarean et al. 2010; Xiao et al.

2015). Lately, the problem acquired additional impe-

tus due to the emergence of a new gerontological

model—the naked mole-rat (Heterocephalus glaber,

NMR), a mouse-sized rodent species which maximum

life span (MLS) in captivity exceeds 30 years, i.e. is

around 8 times longer than MLS of mice (Buffenstein

2008; Lewis et al. Lewis et al. 2018; Tacutu et al.

2018). Remarkably, metabolic rate and body core

temperature of NMR are substantially lower than in

similar-sized mice (Goldman et al. 1999; Nathaniel

et al. 2012). Other outstanding longevity characteris-

tics of NMRs include (but are not limited to) the

absence of the most notorious features of aging—

increased mortality and declined reproductive activity

(Ruby et al. 2018). Of particular interest is their high

resistance to the age-associated pathologies such as

cancer (Liang et al. 2010; Seluanov et al. 2018),

cardiovascular and pulmonary disorders (Csiszar et al.

2007; Delaney et al. 2013; Grimes et al. 2017), stroke

(Nathaniel et al. 2013; Xiao et al. 2017), sarcopenia

(Stoll et al. 2016), diabetes (Singer 2011), etc.

Comparison of NMRs and mice revealed relatively

small genomic rearrangements after their split from

the common murid ancestor (Kim et al. 2011),

indicating that striking longevity differences could

mainly be associated with their physiology and

lifestyle. NMRs are eusocial subterranean rodents

which live as relatively big colonies of about 70

individuals in deep and poorly ventilated underground

burrows (Goldman et al. 1999; O’Riain and Faulkes

2008) and are extremely resistant to hypoxia (Ilacqua

et al. 2017; Larson and Park 2009) and hypercapnia

(Branigan et al. 2018). In their habitat, CO2 content

could be increased and O2 reciprocally decreased, at

least temporarily, up to 10% (Bennett and Faulkes

2000; Šumbera 2019). There are reasons to believe

that HHE could decrease intensity of metabolic

processes and extend life span (Muradian 2013). We

hypothesise that such self-generated and balanced

HHE could create unique backward loops ensuring

physiologically well-tuned decline of body tempera-

ture and metabolism. The aim of this research was to

clarify whether HHE commonly experienced by

NMRs could induce similar metabolic and tempera-

ture changes in mice. Specifically, we focused on

gross metabolic variables such as O2 consumption,

CO2 production and thermoregulation as well as food

and water consumption upon acute and chronic HHE.

We also evaluated whether chronic HHE is stressful

for mice and whether it affects such a basic biological

process as wound healing.

Materials and methods

Animals

Young (3–4 months), middle-aged (8–12 months) and

old (24–26 months) male C57Bl/6 or CBA mice were

bred and kept in the standard living conditions in the

Animal Facility of the Institute of Gerontology of

National Academy of Medical Sciences of Ukraine,

Kiev. The animals had free access to water and food.

All experiments were approved by the Bioethical

Committee of the Institute of Gerontology of National

Academy of Medical Sciences of Ukraine (Protocol

No. 5 of June 12, 2015).

Acute exposure to self-produced HHE

Young and old CBA mice (10 animals in each age

group) were kept individually in open glass jars during

2 h for adaptation to the new environment. Then, the

jars were hermetically closed for 3 h, resulting in a

gradual increase in CO2 and a decrease in O2 content

(see ‘‘Results’’ section). Air samples for measurement
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of CO2 and O2 concentrations were taken every

30 min, simultaneously with registration of the num-

ber of moving or sleeping mice. Body surface

temperature was measured before and immediately

after 3 h of HHE.

Chronic exposure to self-produced HHE

In chronic series of experiments, C57Bl/6 mice were

kept in standard cages placed in transparent plastic

cuvettes with covers. Slots for air exchange of the

cuvettes were adjusted to keep O2 and CO2 levels

around 10 ± 2%. The content of O2 and CO2 in the air

was regularly measured by using corresponding

blocks of the gas analyzer (Gerb-Minnhardt, Nether-

land). The cages were cleaned simultaneously with

ad libitum food and water replenishment on every

other day basis. Food and water consumption and body

weight were measured in three age groups (young,

middle-aged and old) for 90 days of HHE. Other

measurements (Vo2 and Vco2, body surface temper-

ature, plasma levels of free triiodothyronine (FT3) and

free thyroxine (FT4), expression of stress-related

genes (UCP2 and HSP90), and organ weights were

performed in youngmice at indicated time points (Day

0, 1, 10, 20 and 30 of HHE). Control animals were kept

in normoxic atmosphere and underwent the same

procedures as experimental animals. The measure-

ments were conducted in morning hours, between 9

and 11 pm.

Food and water consumption

Food and water consumption rates (in percent of the

body mass per day) were estimated as differences

between the food and water weights before and after

the food and water replenishment procedure. The

amount of grinded food was separately measured and

subtracted when calculating food consumption rate.

Oxygen consumption (Vo2) and carbon dioxide

production (Vco2)

At indicated time points of chronic exposure to HHE,

the cuvettes with mice were hermetically closed for

1 h, then air samples were taken, and the difference

between O2 or CO2 content before and after the

closure was used for calculation of Vo2 and Vco2 (in

ml g-1 h-1), respectively. The content of O2 and CO2

in the air was measured using the gas analyzer (Gerb-

Minnhardt, Netherland).

Body surface temperature

Body surface temperature was measured by a non-

contact infrared thermometer (UNI-T UT912, Aus-

tria). The mean value of five consecutive measure-

ments of the temperature at 5–10 cm from the back of

freely moving animals was taken as the body surface

temperature. In a separate series, we compared the

body surface temperature with core (rectal) body

temperature in mice. As expected, there was a highly

significant positive correlation between the rectal and

surface temperatures (r = 0.81; p\ 0.001).

Plasma levels of free triiodothyronine (FT3)

and free thyroxine (FT4)

After a 6-h fasting, the whole blood was collected by

extracting eyeballs under hexobarbital (70 mg/kg,

i.p.) anesthesia, and plasma FT3 and FT4 levels were

measured using a commercially available enzyme-

linked immunosorbent assay (ELISA) kits (Diagnostic

systems, Russia).

Quantitative real-time polymerase chain reaction

(qPCR) analysis

Total RNA was extracted from the tissue samples

using RNA extraction kit Ribozol-A. RNA was

reverse-transcribed into cDNA by using RT-kit Rev-

erta-L-100 according to the manufacturer’s instruc-

tions (AmpliSens, Russia). The PCR primers for all

analyzed genes were synthesized by Metabion Inter-

national AG (Germany). The primer sequences,

Table 1 The list of primer sequences used in this study

Gene Primer sequence

GAPDH (F) 50-AGGTCGGTGTGAACGGATTTG-30

GAPDH (R) 50-TGTAGACCATGTAGTTGAGGTCA-30

UCP2 (F) 50-ATGGTTGGTTTCAAGGCCACA-30

UCP2 (R) 50-CGGTATCCAGAGGGAAAGTGAT-30

HSP90AA1 (F) 50-TGTTGCGGTACTACACATCTGC-30

HSP90AA1 (R) 50-GTCCTTGGTCTCACCTGTGATA-30
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forward (F) and reverse (R), are listed in Table 1. In all

experiments, GAPDH was used as a reference gene.

Real-time qPCR amplification was performed

using Chromo4 Detection System (Bio-Rad, USA).

The reaction mixture contained 5.5 ll of diluted

cDNA, 10 pm of each primer, 10 ll of 2.5 9 SYBR

Green master mixes in a total volume of 25 ll. PCR
was conducted at 95 �C for 5 min, followed by 40

cycles at 95 �C for 15 s, 60 �C for 20 s, and 72 �C for

20 s. Specificity of RT-PCR products was verified by

checking the product melting curves. The threshold

cycle (Ct) of each target product was determined and

the 2-DDCt method was used to calculate the fold

change in gene expression compared to the control

group (Schmittgen and Livak 2008).

Skin wound healing

Head excision model of skin wound healing was

described in detail elsewhere (Yanai et al.

2015, 2016). Briefly, the mice were anesthetized with

hexobarbital (70 mg/kg, i.p.), and full-thickness

wounds were generated on the crown of the skull,

using an 8-mm trephine (Punch Biopsy). The injured

tissue was then excised down to the bone with curved

sharp scissors. To follow up the wound closure, digital

photographs (Cannon IXY, 4 M) of the wound area

were taken every day after surgery, from a distance of

25 cm with a ruler aligned next to the wound. To

minimize any possible biases, the morphometric

analysis of wound closure was performed as a

double-blind study. Quantification of the wound area

was carried out using the open source NIH ImageJ

v1.43 software.

Statistical analysis

Statistical analysis was performed by using Statisitica-

6 package of programs (StatSoft, Inc., Tulsa, OK).

F-criteria of two-way factorial ANOVA or one-way

ANOVA were used to assess the significance of the

effects of HHE exposure (FHHE) or age of mice (Fage).

Pair-wise correlations were estimated by Pearson’s

coefficient (r) of correlation. The p-values less than

0.05 were considered statistically significant.

Results

Acute exposure to HHE

The atmospheric O2 content gradually decreased, and

CO2 content gradually increased during a 3-h exposure

of mice to self-produced HHE, reaching approxi-

mately 14% and 7%, respectively, by the end of HHE

exposure. Acute HHE caused a gradual decrease in

Vo2 and Vco2 of young and old CBA mice, and at the

end of the exposure, Vo2 and Vco2 were more than

twice lower compared with initial values (Fig. 1a). In

both age groups, Vco2 negatively correlated with CO2

content in atmosphere (Online Resource 1). Factorial

ANOVA revealed a highly significant effect of HHE

on Vo2 and Vco2 (p\ 10-25), while the effect of age

was insignificant. Body surface temperature decreased

on average by two centigrade at the end of a 3-hour

exposure to HHE (Fig. 1b). This effect of HHE was

also highly significant and independent of age (facto-

rial ANOVA: FHHE = 67.6, p\ 10-9 and Fage = 0.1,

p[ 0.9).

Thus, the acute exposure of mice to self-produced

HHE resulted in a significant decrease in metabolic

rate (Vo2 and Vco2) and body temperature, and the

patterns of these HHE-induced responses were similar

in young and old mice.

Chronic exposure to HHE

Metabolic rate and body temperature

The next series of experiments were carried out on

young mice, mostly in order to examine proof-of-

concept as such—the possibility to reach a stable hy-

pometabolic state by HHE. As seen in Fig. 2a, b, after

an initial decrease (see also Fig. 1), Vo2 and Vco2
stabilized at the level of some 40–50% lower than in

mice of the control group (one-way ANOVA,

p\ 10-5), and remained at this level until the end of

a one-month exposure to HHE. Body surface temper-

ature decreased by around 2.5–3.5 �C (Fig. 2c), and

this effect of HHE was highly significant (one-way

ANOVA, p\ 10-9). The HHE-induced decrease in

body temperature occurred promptly after HHE initi-

ation (see also Fig. 1), and the achieved level was held

during the entire period of HHE.
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Food consumption and body weight

The decrease in energy metabolism should in some

way be associated with food consumption, another

gross metabolic variable.We examined this possibility

in more detailed manner in mice of three age groups,

the young, middle-aged, and old. Also, we extended

HHE up to 3 months. As seen in Fig. 3a, food

consumption swiftly decreased during the first

10–14 days of HHE and stabilized afterwards at the

level around 40–50% lower than the control values,

thus highly resembling the response of Vo2 and Vco2
to chronic HHE (see Fig. 2). Similar changes were

also observed for water consumption (data not shown).

Notably, the mice of all three age groups (the young,

middle-aged, and old) showed similar patterns in both

food and water consumption upon a 3-month exposure

to HHE. Apparently, as a result of a decreased food

consumption, body mass decreased by some 25–30%

in both young and old mice, despite the ad libitum

feeding (Fig. 3b).

Blood plasma free triiodothyronine (FT3)

and thyroxine (FT4)

The thyroid hormones are one of the main regulators

of energy metabolism. Therefore, we further evaluated

whether hypometabolic effect of HHE could be
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Fig. 1 Effect of acute exposure to self-produced HHE onmetabolic rate estimated as aVo2 and bVco2, and c body surface temperature

in young (n = 10) and old (n = 10) male CBA mice. The results are presented as mean ± SD

F = 29.9; p < 10-5 F = 24.0; p < 10-5
F = 45.6; p < 10-9

a b c

Fig. 2 aOxygen consumption (Vo2), b carbon dioxide production (Vco2), and c body surface temperature in youngmale C57Bl/6 mice

(n = 10) upon chronic exposure to self-produced HHE. The results are presented as mean ± SD

Fig. 3 a Food consumption

(in percent of the body mass

per day) and b body weight

in young (n = 10), middle-

aged (n = 10) and old

(n = 10) male C57Bl/6 mice

upon chronic exposure to

self-produced HHE. The

results are presented as

mean ± SD
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mediated by thyroid hormones. We found only

moderate changes in the plasma levels of FT3 and

FT4 during chronic HHE. As seen in Fig. 4, FT3

declined during the first 10 days of HHE but normal-

ized afterwards (one-way ANOVA, p\ 0.025).

Unlike FT3, after an initial decrease, FT4 stabilized

by Day 10 at 85–90% of the control levels (one-way

ANOVA, p\ 0.03).

Expression of UCP2 and HSP90 genes

To evaluate whether chronic HHE is stressful for mice,

we determined the expression of two stress-related

genes, UCP2 and HSP90, which transcription activity

consistently increases in response to stress (Cadenas

2018; Yavelsky et al. 2004). As seen in Fig. 5, the

mRNA levels of UCP2 in the ventromedial hypotha-

lamus and HSP90 in the heart did not change

significantly during the course of chronic HHE

(p[ 0.5 after Benjamini correction).

The rate of skin wound healing

The hypometabolic state may affect the basic biolog-

ical processes, such as tissue wound healing (WH).

With this in mind, we evaluated the impact of chronic

HHE on the rate of skin WH in young C57Bl/6 mice.

Surprisingly, despite the lower energy expenditure,

HHE significantly accelerated the closure of head

excisional wounds (Fig. 6; Online Resource 2). A

50%-closure of skin wounds occurred by the day

19.7 ± 3.3 and 25 ± 2.4 (p = 0.03), and full closure

occurred by day 24 ± 3.8 and 29.2 ± 1.6 (p = 0.02)

after surgery, for HHE-exposed and control mice,

respectively.

Discussion

Pharmacological or physical means for a short-term

decrease in metabolism and/or body temperature have

been well known (Cuddy 2004; Johansen et al. 2014;

Joseph et al. 2012; Sandu et al. 2016a) and are used in

a wide variety of areas ranging from the complex

surgical operations (hypothermia) to routine treat-

ments at home. In striking contrast, a long-term

(chronic) decrease in energy expenditure and/or body

temperature in homeotherms appears to be a much

more difficult issue and remains practically unsolved

up to now. For example, life-long calorie restriction or

genetic modifications usually induce moderate or

disputable decrease in body temperature and meta-

bolic rate (Conti et al. 2006; Hunter et al. 1999; Roth

et al. 2002). Even ‘‘heavy’’ invasions, like destruction

of the hypothalamic centers and/or removal of

F = 3.6; p < 0.025 F = 3.4; p < 0.03
a b

Fig. 4 Blood plasma levels of the thyroid hormones a FT3 and b FT4 in young male C57Bl/6 mice (n = 5 for each time point) upon

chronic exposure to self-produced HHE. The results are presented as mean ± SD
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Fig. 5 Expression of a the hypothalamic UCP2 and b heart

HSP90 in young male C57Bl/6 mice (n = 5 for each time point)

upon chronic exposure to self-produced HHE. The mRNA

levels were assessed by qPCR and presented as fold change

(mean ± SEM) compared to the control group (see ‘‘Materials

and methods’’ section). The changes in UCP2 or HSP90

expression were insignificant (p[ 0.05)
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peripheral subordinate tissues, usually ensured only

transient effects, because within a week or two, new

centers of regulation emerge and recover the impaired

‘‘thermostat’’ (reviewed by Frolkis and Muradian

1991).

In view of the above, an over two-fold decrease in

metabolic rate (oxygen consumption, carbon dioxide

production), together with a marked decrease in body

temperature induced by chronic exposure of mice to

self-produced HHE (Fig. 2) are the most important

and principal findings of this study. To our best

knowledge, HHE is one of a few, if any, interventions

capable of causing sustained, long-lasting and sub-

stantial hypometabolism and hypothermia in home-

otherms. Of note, the used model of self-produced

HHE is simple, reliable and natural. It was achieved by

maintaining the mice in containers with limited

ventilation, that is, in conditions similar to a natural

habitat of NMRs. In contrast to the flow-type hypoxia

or hypercapnia models, HHE does not require external

sources of gases and complex technical equipment.

The latter is often accompanied by unpredictable side-

effects which are especially critical in long-term

experiments.

Most likely, the hypothermic effect of HHE is

primarily attributed to alterations in mitochondrial

metabolism and vascular responses. Hypoxia could

limit the electron flax in the electron transport chain,

whereas hypercapnia could decrease the rate of energy

generation via suppression of the three decarboxyla-

tion reactions occurring during utilization of each

molecule of pyruvate in the citric acid cycle. Along

with attenuated heat production, both hypoxia and

hypercapnia induce strong vasodilatory responses,

thus promoting heat loss (reviewed by Reglin and

Pries 2014; Liu et al. 2019). Although the role of

thyroid hormones in regulation of body metabolism

and temperature is well established (Fekete and

Lechan 2014), it appears that they have only a

moderate impact in mediating hypometabolic/hy-

pothermic effects of HHE (Fig. 4). Remarkably,

despite the lower energy expenditure, the HHE

accelerated wound healing in mice, rather than

slowing it (Fig. 6). This could in part be attributed to

enhanced mobilization and functional capacity of

mesenchymal stem cells in response to HHE, includ-

ing their wound-healing activity (Hu et al. 2018; Lee

et al. 2009; Shojaei et al. 2019). Likewise, HHE could

accelerate wound healing by stimulating the cell

proliferation (Tsuji et al. 2013). In another study, post-

stroke gaseous (hydrogen sulfide, H2S) hypothermia

was shown to stimulate angiogenesis in the damaged

brain of aged rats (Sandu et al. 2016b).

An important observation is that after the short

initial period of a decrease in metabolic rate, body

temperature and food consumption, the inhibitory

effects of HHE reached a steady-state, and the levels

of these variables remained stable up to the end of the

follow-up (Figs. 2, 3). This indirectly points towards a

well-regulated resetting of energy and thermal home-

ostases and a swift adaptation of mice to HHE,

actually without visible behavioral or stress responses.

Indeed, we did not observe any significant elevation in

the expression of stress-related genes UCP2 and

HSP90 (Fig. 5). Also, we did not detect any visible

changes in the gross behavioral responses in HHE-

treated mice, such as spontaneous motor activity or

sleeping, as well as excessive shivering or cuddling to

keep body warmer (data not shown). It seems that the

HHE-exposed mice managed optimizing their meta-

bolic expenditures and got used to the hypothermia.

HHE is distinguished by low inertia and reversibil-

ity of the effects. Mice could repeatedly enter and exit

from the suppressive metabolic state within minutes,

without obvious signs of exhaustion (data not shown).

In another model of the H2S-induced metabolic

suppression, the animals also recovered within min-

utes when returned back to normal atmospheric
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Fig. 6 Skin wound healing rate in young male C57Bl/6 mice

(n = 6 in each group) upon chronic exposure to self-produced

HHE. Round full-thickness wounds were administered to mice

and the measurements of the wound area were made on a daily

basis. Time of 50% and full closure are presented as mean ± SD
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conditions (Joseph et al. 2012). Of note, NMRs

remained relatively active and continued to explore

their environment even at 3% O2 (Ilacqua et al. 2017;

Larson and Park 2009).

It is worthwhile to mention that O2 and CO2

contents in the earth atmosphere underwent dramatic

changes, and the modern atmosphere with a high O2

and low CO2 is a relatively recent acquisition (Berner

2003; Mills et al. 2014; Planavsky et al. 2014). The

major period of life evolution occurred at extraordi-

nary low O2 and high CO2, thus suggesting that the

basic life- and longevity-supporting systems remained

hypoxic/hypercapnic by their essence. To survive in a

high O2 atmosphere, successful species had to modify

the ancient or invent new adaptive and defense

systems, apparently associated with elevated com-

plexity and expenditures. According to the ‘‘nostalgia

concept’’, living systems somehow ‘‘remember’’ and

are striving to return to the primordial and metabol-

ically relaxed conditions (Muradian 2015). If so,

maintenance of animals in HHE (which corresponds to

the balanced atmospheric O2 and CO2 at the interface

of the Proterozoic and Phanerozoic eons, around

500–600 million years ago) could help bypassing or

decreasing functional loadings of the evolutionary

later invented mechanisms. This, in turn, may ensure a

higher metabolic stability, one of the main determi-

nants of mammalian longevity (Olshansky and Rattan

2005; Lehmann et al. 2013). Yet, whether HHE could

enhance metabolic stability needs experimental vali-

dation. In view of a strong association between

longevity and lower metabolic rate and/or body

temperature in both poikilotherms and homeotherms

(Frolkis and Muradian 1991; Conti 2008; Prokopov

2007; Tabarean et al. 2010; Lehmann et al.

2008, 2013; Flouris and Piantoni 2014; Keil et al.

2015; Xiao et al. 2015; Yanai et al. 2017), a chronic

exposure to HHE offers a potential of being a lifespan-

extending intervention. Indeed, in cold-blooded

organisms, hypoxia and/or hypercapnia more than

often resulted in a lower metabolic rate and longevity-

promoting effect (Timchenko et al. 2008; Sharabi et al.

2009; Leiser et al. 2013; Tasaki et al. 2018). A

growing body of evidence indicates that hypoxia/

hypercapnia could have beneficial health outcomes in

mammals as well (Kulikov et al. 2019 and references

therein). Recently, Kulikov et al. (2019) showed that

even transient periodic exposures of mice to hyper-

capnic hypoxia (a daily 30-min exposure for 21 days,

with a 2-month interval between sessions) increased

their fitness and extended the average life span by

16%. In another important study (Tyshkovskiy et al.

2019), the mice were exposed to chronic hypoxia of

11.8% O2 in the air for 32 days, i.e. quite close to the

regimen used in our study. The authors found a high

similarity between gene expression signatures in

response to hypoxia and several recognized long-

evity-promoting interventions. Based on this finding,

they suggested that chronic hypoxia could extend a

mouse lifespan (Tyshkovskiy et al. 2019).

Further supporting this notion is HHE-induced

reduction in food consumption (Fig. 3). In fact, HHE-

treatment could be regarded as a model of ‘‘voluntary’’

calorie restriction (CR), because experimental animals

reduced food consumption of their own free will at

ad libitum feeding regimes. It is noteworthy that HHE

stabilized food consumption at the same level (by

around 40% lower control values) as in the most

efficient conventional CR models with longevity-

promoting effect. However, in conventional (forced)

CR, animals usually overate during relatively short

periods of food availability and then starve until the

next feeding. The HHE-treatment lacks such pertur-

bations (as well as other well-known disadvantages of

forced CR), and from this point of view, the HHE-

treated mice resemble more the transgenic long-lived

aMUPA mice (Miskin et al. 2005). Whatever the

differences, it is important to note that the HHE-

treated mice exhibited a stronger decrease in energy

expenditure and body temperature than mice in

conventional CR models.

Body mass is a relatively easy assessed index.

Despite its significance is often ignored, body weight

is a highly informative and reliable index highlighting

integral effects of all anabolic and catabolic processes.

The HHE-induced changes in body weight coincide

well with food consumption and metabolic rate (Vo2
and Vco2). The observed decrease in body mass

should mostly be the result of utilization of the lipid

deposits as the weight of most internal organs did not

change significantly (data not shown). This indicates

that HHE could be an efficient tool for treating the

overweight and associated metabolic disorders. In

support of this notion could be the results of our pilot

experiments on the Streptozotocin model of type 1

diabetes, which showed a significant improvement of

glucose metabolism in HHE-treated mice (data not

shown).
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All in all, a chronic exposure of mice to HHE could

promote NMR-like metabolic remodeling, resulting in

a long-term and substantial decrease in metabolic rate,

body temperature, and food consumption—conditions

that are strongly associated with lifespan extension.

Though many aspects of this association are still

debatable, the proposed ‘‘4H’’ approach (Hypox-

ia ? Hypercapnia ? Hypometabolism ? Hypother-

mia) definitely warrants further investigation and

appears to be easily translatable to other species,

humans included.
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