Contents lists available at ScienceDirect

Respiratory Medicine

journal homepage: www.elsevier.com/locate/rmed

Correspondence

Pneumothorax and barotrauma in invasively ventilated patients with COVID-19

ARTICLE INFO

Keywords Coronavirus disease 2019 Macklin effect Acute respiratory distress syndrome Mechanical ventilation Pneumothorax Pneumomediastinum Barotrauma

Dear Editor,

We read with great interest the article by Chopra et al. recently published on Respiratory Medicine [1].

In their multicenter study, the Authors present incidence, clinical characteristics and outcome of pneumothorax in critically ill patients with coronavirus disease 2019 (COVID-19). They found that pneumothorax rate among invasively ventilated COVID-19 patients is 80/594 (13 %), and mortality rate for patients who developed pneumothorax is 50/80 (62 %). On the contrary, among 160 randomly selected invasively ventilated COVID-19 patients without pneumothorax, mortality was 78/ 160 (49 %).

We recently published a systematic review on rate of barotrauma among invasively ventilated COVID-19 patients [2]. Our pooled analysis included data from 13 studies and 1814 patients [3–15] and we found that pooled estimate of pneumothorax rate was 10.7 % (95 % confidence interval [CI] = 6.7 %–14.7 %), while overall rate of barotrauma event was 16.1 % (95 % CI = 11.8 %–20.4 %). In addition, we found an overall mortality rate for COVID-19 patients who developed barotrauma of 61.6 % (95 % CI = 50.2 %–73.0 %), as compared with a mortality of 49.5 % (95 % CI = 41.1 %–58.0 %) for COVID-19 patients who did not develop barotrauma.

We are pleased to read that our findings are further reinforced by another study, that confirms that pneumothorax rate among mechanically ventilated COVID-19 patients is between 10 and 15 %. Indeed, after including the study by Chopra et al. in an updated meta-analysis, the pooled pneumothorax rate is 11.1 % (95 % CI = 7.4 %–14.8 %) (Fig. 1), while the overall barotrauma rate is 15.4 % (95 % CI = 11.7 %– 19 %) (Fig. 2). Furthermore, the study by Chopra et al. also confirms a mortality rate above 60 % for COVID-19 patients with barotrauma (updated pooled estimate = 61.4 %; 95 % CI = 52.1 %-70.7 %) (Fig. 3), as compared with a mortality lower than 50 % for patients who did not develop barotrauma (updated pooled estimate = 49.5 %; 95 % CI = 42.8 %-52.3 %) (Fig. 4).

Collectively, these data confirm that barotrauma occur frequently in COVID-19 patients requiring mechanical ventilation, and is associated with a worse outcome and a very high mortality risk. Interestingly, the study by Chopra et al. is one of the few studies that identified worse lung mechanics at start of mechanical ventilation as a risk factor for development of barotrauma [2]. Most of previously published studies reported no significant differences among mechanical ventilation settings/parameters between patients who developed barotrauma and those who did not. They also found a trend towards lower age and higher use of steroids in pneumothorax patients, which were also suggested by other Authors [2,16].

Interestingly, in a recent study by our group, we identified Macklinlike radiological sign [17,18] detected on chest computed tomography (CT) scan as potential predictor of subsequent development of barotrauma about 12 days in advance [3].

Considering the high mortality rate associated with development of barotrauma in COVID-19 patients, and the ongoing debate on optimal timing of intubation in these patients [19–21], we believe that it might be justified to avoid intubation in patients with Macklin-like radiological sign on chest CT, and prefer early support with alternative techniques including awake prone positioning and extracorporeal membrane oxygenation [22–25].

Funding

None.

First				%	
Author	Year		ES (95% CI)	Weight	Country
		-			
Capaccione	2021	-	0.14 (0.08, 0.19)	11.28	USA
McGuinness	2020	•	0.09 (0.07, 0.11)	14.72	USA
Fiacchini	2020		0.20 (0.06, 0.34)	4.75	Italy
Wang	2020		- 0.56 (0.23, 0.88)	1.22	China
Udi	2021	• • • • • • • • • • • • • • • • • • •	0.25 (0.06, 0.44)	3.11	Germany
Yao	2020	+	0.06 (0.03, 0.09)	13.93	China
Edwards	2020	•	0.03 (0.00, 0.06)	14.31	USA
Talan	2020	-	0.06 (0.01, 0.11)	12.35	Turkey
Belletti	2021	-	0.19 (0.12, 0.26)	9.94	Italy
Chopra	2021	+	0.13 (0.11, 0.16)	14.37	USA
Mart	2021		(Excluded)	0.00	USA
Overall (I-squared = 83.8%, p = 0.000)		\diamond	0.11 (0.07, 0.15)	100.00	
NOTE: Weights are from random effects analysis					
88 0		0	88		

Fig. 1. Forest plot for pneumothorax development in invasively ventilated COVID-19 patients.

First				%		
Author	Year		ES (95% CI)	Weight	Country	
Capaccione	2021	-	0.14 (0.08, 0.19)	8.41	USA	
Lemmers	2020		0.14 (0.08, 0.19)	8.84	Italy	
McGuinness	2020	+	0.15 (0.12, 0.18)	10.09	USA	
Fiacchini	2020		0.47 (0.29, 0.65)	3.01	Italy	
Wang	2020		0.56 (0.23, 0.88)	1.13	China	
Udi	2021		0.40 (0.19, 0.61)	2.28	Germany	
Yao	2020	+	0.06 (0.03, 0.09)	9.89	China	
Edwards	2020	-	0.09 (0.05, 0.14)	8.99	USA	
Talan	2020	-	0.09 (0.04, 0.15)	8.43	Turkey	
Belletti	2021		0.24 (0.16, 0.32)	7.21	Italy	
Housman	2020	+	0.17 (0.11, 0.23)	8.56	USA	
Mart	2021	+	0.05 (0.01, 0.10)	9.16	USA	
Kahn	2021		0.33 (0.19, 0.48)	3.88	USA	
Chopra	2021	+	0.13 (0.11, 0.16)	10.13	USA	
Overall (I-squared = 82.9%, p = 0.000)		\diamond	0.15 (0.12, 0.19)	100.00		
NOTE: Weights are from random effects analysis						
	88	0	.88			

Fig. 2. Forest plot for barotrauma development in invasively ventilated COVID-19 patients.

Fig. 3. Forest plot for longest follow-up mortality in invasively ventilated COVID-19 patients who developed barotrauma.

Fig. 4. Forest plot for longest follow-up mortality in invasively ventilated COVID-19 patients who did not developed barotrauma.

Declaration of competing interest

None.

Acknowledgements

None.

References

 A. Chopra, A.H. Al-Tarbsheh, N.J. Shah, et al., Pneumothorax in critically ill patients with COVID-19 infection: incidence, clinical characteristics and outcomes in a case control multicenter study, Respir Med 184 (2021), 106464, https://doi.org/ 10.1016/j.rmed.2021.106464.

- [2] A. Belletti, G. Todaro, G. Valsecchi, et al., Barotrauma in COVID-19 patients undergoing invasive mechanical ventilation: a systematic literature review, Crit Care Med (2021), https://doi.org/10.1097/CCM.00000000005283. In press.
- [3] A. Belletti, D. Palumbo, A. Zangrillo, et al., Predictors of pneumothorax/pneumomediastinum in mechanically ventilated COVID-19 patients, J Cardiothorac Vasc Anesth (2021), https://doi.org/10.1053/j.jvca.2021.02.008. In press.
- [4] K.M. Capaccione, B. D'souza, J. Leb, et al., Pneumothorax rate in intubated patients with COVID-19, Acute Crit Care 36 (1) (2021) 81–84, https://doi.org/10.4266/ acc.2020.00689.
- [5] D.H.L. Lemmers, M. Abu Hilal, C. Bnà, et al., Pneumomediastinum and subcutaneous emphysema in COVID-19: barotrauma or lung frailty? ERJ Open Res 6 (4) (2020) https://doi.org/10.1183/23120541.00385-2020, 00385-02020.
- [6] G. Fiacchini, D. Tricò, A. Ribechini, et al., Evaluation of the incidence and potential mechanisms of tracheal complications in patients with COVID-19, JAMA Otolaryngol Neck Surg 147 (1) (2021) 70–76, https://doi.org/10.1001/ iamaoto.2020.4148.

Correspondence

- [7] L. Talan, F.G. Şaşal Solmaz, U. Ercan, et al., COVID-19 pneumonia and pneumothorax: case series, Tuberk Toraks 68 (4) (2020) 437–443, https://doi.org/ 10.5578/tt.70355.
- [8] J. Udi, C.N. Lang, V. Zotzmann, et al., Incidence of barotrauma in patients with COVID-19 pneumonia during prolonged invasive mechanical ventilation – a casecontrol study, J Intensive Care Med 36 (4) (2021) 477–483, https://doi.org/ 10.1177/0885066620954364.
- [9] W. Yao, T. Wang, B. Jiang, et al., Emergency tracheal intubation in 202 patients with COVID-19 in Wuhan, China: lessons learnt and international expert recommendations, Br J Anaesth 125 (1) (2020) e28–e37, https://doi.org/10.1016/j. bia.2020.03.026.
- [10] X. Wang, J. Duan, X. Han, et al., High incidence and mortality of pneumothorax in critically Ill patients with COVID-19, Heart Lung 50 (1) (2021) 37–43, https://doi. org/10.1016/j.hrtlng.2020.10.002.
- [11] B. Housman, A. Jacobi, A. Carollo, et al., COVID-19 ventilator barotrauma management: less is more, Ann Transl Med 8 (23) (2020), 1575, https://doi.org/ 10.21037/atm-20-3907.
- [12] G. McGuinness, C. Zhan, N. Rosenberg, et al., Increased incidence of barotrauma in patients with COVID-19 on invasive mechanical ventilation, Radiology 297 (2) (2020) E252–E262, https://doi.org/10.1148/RADIOL.2020202352.
- [13] M.F. Mart, S.G. Norfolk, L.N. Flemmons, et al., Pneumomediastinum in acute respiratory distress syndrome from COVID-19, Am J Respir Crit Care Med 203 (2) (2021) 237–238, https://doi.org/10.1164/rccm.202008-3376IM.
- [14] M.R. Kahn, R.L. Watson, J.T. Thetford, J.I. Wong, N. Kamangar, High incidence of barotrauma in patients with severe coronavirus disease 2019, J Intensive Care Med 36 (6) (2021) 646–654, https://doi.org/10.1177/0885066621989959.
- [15] J.A. Edwards, I. Breitman, J. Bienstock, et al., Pulmonary barotrauma in mechanically ventilated coronavirus disease 2019 patients: a case series, Ann Med Surg 61 (2021) 24–29, https://doi.org/10.1016/j.amsu.2020.11.054.
- [16] D. Palumbo, C. Campochiaro, A. Belletti, et al., Pneumothorax/pneumomediastinum in non-intubated COVID-19 patients: differences between first and second Italian pandemic wave, Eur J Intern Med 88 (2021) 144–146, https://doi. org/10.1016/j.ejim.2021.03.018.
- [17] C.C. Macklin, Transport of air along sheaths of pulmonic blood vessels from alveoli to mediastinum: clinical implications, Arch Intern Med 64 (5) (1939) 913–926, https://doi.org/10.1001/archinte.1939.00190050019003.
- [18] S. Murayama, S. Gibo, Spontaneous pneumomediastinum and Macklin effect: overview and appearance on computed tomography, World J Radiol 6 (11) (2014) 850–854, https://doi.org/10.4329/wjr.v6.i11.850.

- [19] Siempos, E. Xourgia, T.K. Ntaidou, et al., Effect of early vs. Delayed or No intubation on clinical outcomes of patients with COVID-19: an observational study, Front Med 7 (2020), 614152, https://doi.org/10.3389/fmed.2020.614152.
- [20] L. Cabrini, L. Ghislanzoni, P. Severgnini, et al., Early versus late tracheal intubation in COVID-19 patients: a pro-con debate also considering heart-lung interactions, Minerva Cardioangiol (2020), https://doi.org/10.23736/S0026-4725.20.05356-6. In press.
- [21] Y.H. Lee, K.-J. Choi, S.H. Choi, et al., Clinical significance of timing of intubation in critically ill patients with COVID-19: a multi-center retrospective study, J Clin Med 9 (9) (2020), 2847, https://doi.org/10.3390/jcm9092847.
- [22] C. Sartini, M. Tresoldi, P. Scarpellini, et al., Respiratory parameters in patients with COVID-19 after using noninvasive ventilation in the prone position outside the intensive care unit, JAMA 323 (22) (2020) 2338–2340, https://doi.org/10.1001/ jama.2020.7861.
- [23] M. Schmidt, M. Pineton de Chambrun, G. Lebreton, et al., Extracorporeal membrane oxygenation instead of invasive mechanical ventilation in a patient with severe COVID-19-associated acute respiratory distress syndrome, Am J Respir Crit Care Med (April 2021), https://doi.org/10.1164/rccm.202102-0259le. In press.
- [24] P. Loyalka, F.H. Cheema, H. Rao, J.E. Rame, K. Rajagopal, Early usage of extracorporeal membrane oxygenation in the absence of invasive mechanical ventilation to treat COVID-19-related hypoxemic respiratory failure, ASAIO J 67 (4) (2021) 392–394, https://doi.org/10.1097/MAT.00000000001393.
- [25] J. Tang, W. Li, F. Jiang, T. Wang, Successfully treatment of application awake extracorporeal membrane oxygenation in critical COVID-19 patient: a case report, J. Cardiothorac. Surg. 15 (1) (2020), 335, https://doi.org/10.1186/s13019-020-01376-9.

Alessandro Belletti^a, Giovanni Landoni^{a,b,*}, Alberto Zangrillo^{a,b} ^a Department of Anesthesia and Intensive Care, IRCCS San Raffaele

Scientific Institute, Milan, Italy

^b School of Medicine, Vita-Salute San Raffaele University, Milan, Italy

^{*} Corresponding author. Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy.

E-mail address: landoni.giovanni@hsr.it (G. Landoni).