Journal of Neurology Research Reviews & Reports

Review Article

Hyperbaric Oxygen and Outcomes Following the Brain Injury: A Systematic Review

Javed Iqbal¹*, Abdullah Naeem², Kainat Jahangir³, Yumna Ali⁴, Yusra Mashkoor⁵, Ahmer Ashraf⁸, Dalia Mehmood⁷, Maria Mehmood⁸ and Lucke-Wold Brandon⁹

¹King Edward Medical University Lahore Pakistan

²Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan

³Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan

⁴Faculty of Medicine, Dow Medical College, Dow University of Health Sciences

⁵Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan

⁶King Edward Medical University Lahore Pakistan

⁷Fatima Jinnah Medical University,Lahore

⁸Graduate of Shalamar Medical and Dental College Lahore year 2021

9University of Florida

ABSTRACT

Introduction: Hyperbaric oxygen therapy (HBO2) aims to address ischemia resulting from brain injury by subjecting patients to an atmosphere that dramatically raises the concentration of inspired oxygen (100% O2 at greater than 1 ATA). This results in elevated levels of oxygen in the plasma, which in turn boosts the delivery of oxygen for diffusion to the brain tissue.

Objective: To study the efficacy of hyperbaric oxygen (HBO)-based modalities in brain injury

Method: Preferred reporting items for systematic reviews protocol was applied to perform literature search regarding this analytical review.

Results: In our study, fifteen studies are included in this review, involving 1067 people. The mean age group of patients enrolled was 57.0 ± 11.6 and the mean NIHSS score was 10.5 ± 8.7 , of which 21 participants had moderate to severe neurological impairment. The total number of HBO treatments was 8 to 70 times (28.3 ± 17.9), at the end of the 6-month follow-up period. mRS (modified Rankin scale) ≤ 3 was found in 25 cases, of which 12 patients with high-grade aSAH recovered. Poor prognosis was prevalent in patients who experienced delayed cerebral ischemia, this was true for 22.7% of patients in this study. In 3 studies conducted by Rockswold, ICP (mm Hg) was significantly lower in the HBO2 group after the treatment than pretreatment. (p<0.05). 4 studies showed an improvement in GCS score after HBO2 therapy.One trial (Imai 2006) reported that three patients in the HBO group died due to pneumonia (two) and heart failure (one) and one patient died in the control group due to heart failure. Overall, it is relatively safe to use HBO in the treatment of brain-related haemorrhage, strokes, and injury as there were no major complications reported.

Conclusion: This systematic review demonstrates that HBO2 has significant clinical potential in treatment of brain related haemorrhages, stroke and injury.

*Corresponding author

Javed Iqbal, School of Medicine, King Edward Medical University, Lahore, Punjab, Pakistan.

Received: June 13, 2023; Accepted: June 20, 2023; Published: July 10, 2023

Keywords: Hyperbaric Oxygen, Stroke, Subarachnoid Haemorrhage, Ischemia, Brain Injury

Introduction

Stroke is rapidly becoming one of the leading causes of mortality worldwide, with only coronary heart disease ranking higher. Moreover, every year, the number of individuals being diagnosed with stroke is increasing drastically, and what is even more concerning is the fact that people are being diagnosed at a much younger age than ever before. The medical community recognizes three main categories of stroke, which include ischemic, intracerebral hemorrhage, and subarachnoid hemorrhage. Despite various treatment options available to stroke patients, managing the condition remains challenging due to its high prevalence,

expensive treatment costs, and the fact that many patients have a poor prognosis. [1-3]

The main objective of treating acute ischemic stroke (AIS) is to restore blood flow to the brain tissue, which is essential for the survival of brain cells [4]. Although early administration of intravenous thrombolysis (IVT) and endovascular therapy (EVT) are effective in achieving revascularization, they do not always guarantee a favorable outcome for the patient. Despite these interventions, the prognosis for stroke patients remains challenging and uncertain [5-7].

Hyperbaric oxygen therapy (HBO) is a treatment method that involves inhaling 100% oxygen while inside a pressurized hyperbaric chamber that is set to a pressure level greater than 1 atmosphere. This therapy is commonly used in the treatment of various neurological disorders such as global and focal cerebral ischemia, vegetative states, cerebral vasospasm after subarachnoid hemorrhage, and carbon monoxide poisoning. Studies have shown that animals treated with HBO after ischemia have experienced improved neurological outcomes and reduced brain edema [8-11].

The therapeutic effects of HBOT are attributed to several mechanisms, including increased oxygen delivery to tissues, improved tissue oxygenation, neovascularization promotion, wound healing enhancement, inflammation reduction, and neuroprotection [12-17].

Experimental studies indicate that HBOT mitigates early brain injury after SAH, possibly by inhibiting hypoxia-inducible factor- 1α and its target genes. HBOT has also been found to suppress oxidative stress by reducing NADPH oxidase enzymatic activity, lipid peroxidation, and neuronal damage. Furthermore, HBOT has been utilized to lower intracranial pressure (ICP) in SAH cases and related CVS. However, caution is advised when interpreting results due to the potential rebound effects of HBOT, which may pose risks, especially for patients with high ICP or those on artificial respiration [18].

A comprehensive and quantitative review of the literature on hyperbaric oxygen therapy (HBOT) and brain injury outcomes is crucial to inform clinical decision-making, guiding future research, and identifying knowledge gaps. SAH, a severe form of hemorrhagic stroke, is associated with high morbidity and mortality rates [19]. Research has shown potential protective effects of HBOT in both preclinical studies and in various SAH cases as well. [20-22].

Material and Methods

This systematic review has been reported in concordance with the guidelines provided by Preferred Items for Systematic Review and Meta-Analysis (PRISMA) [23]. The PRISMA checklist is designed and presented in the Supplementary file.

Data Sources and Search Strategy

The literature search was conducted systematically on the Pubmed/ Medline, Google Scholar, and Cochrane library databases, with the MeSH terms: "hyperbaric oxygen" OR "hyperbaric oxygen therapy" OR "HBOT" OR "oxygen therapy" AND "traumatic brain injury" OR "TBI" OR "hemorrhage" OR "subarachnoid hemorrhage" OR "SAH" OR "intracranial hemorrhage" OR "intracerebral hemorrhage" OR "stroke" OR "hematoma", used in various combinations by applying a timeframe from 2000 to 2023. After database search and removal of duplicates, the shortlisted studies were screened by two reviewers, using title and abstract; only studies in the English language were selected, and those performed on the human specimen. Exclusion criteria were implemented on the remaining articles, discarding studies after full-text screening based on irrelevance, poor quality, and ineligible outcomes. In addition, the cited references of studies were manually searched for any qualifying articles. During the screening process, if the reviewers found the eligibility of an article controversial and a mutual agreement could not be reached, a third independent reviewer would be approached to settle the confusion.

Inclusion and Exclusion Criteria

The criteria for inclusion and exclusion of studies were fixed after discussion with the authors. Only randomized controlled trials (RCTs) and observational studies were included in the analysis that involved clinical or pre-clinical outcomes of hyperbaric oxygen therapy in adult TBI patients including those hospitalized for subarachnoid hemorrhage, any intracranial bleeding, and/ or cerebrovascular event. Poor-quality trials, letters to editors, commentaries, case reports, cross-sectional studies, conference posters, proceedings, and personal communications were excluded. The further exclusion was based on overlapping study populations, text in languages other than English, and non-availability of sufficient data. Clinical studies that involved patients with postconcussion syndrome or post-concussive symptoms and nontraumatic brain injuries such as ischemic, anoxic, or cryogenic damage, were excluded from the review.

Data Extraction and Risk of Bias Assessment

The authors performed data extraction on characteristics of each study and its patient population including study design, country of study, the total number of patients, age and gender of patients, mechanism of injury, hyperbaric oxygen treatment protocol, preand post-HOBT Glasgow Coma Scale (GCS) scores, follow-up duration, and the reported outcomes from each study that met the inclusion criteria. The study characteristics of each study are described in Table 1.

The quality of each study was interpreted by measuring the risk of bias for RCTs using the Cochrane Collaboration Risk of Bias tool [24]. The performance bias, selection bias, reporting bias, detection bias, attrition bias, and other biases were estimated for each RCT. We scored the risk of bias in each category as low, high, or unclear, as shown in Figure 2. In a large number of the included RCTs, the probability of performance bias was high as blinding of the surgeons, investigators, and patients was not executed. Some trials showed a low risk of selection bias whereas all the RCTs showed a low risk of attrition and reporting bias. As far as the observational cohort studies are concerned, the risk of bias was assessed using the Newcastle Ottawa Scale, in which the cumulative scores in selection, comparability, and outcome sections in the scale identify the quality of each observational study as good, fair, or poor [25]. Most of the studies were scored as good quality, as summarized in Figure 3.

Results

Literature Review and Study Characteristics

The PRISMA flow chart summarizes the search and study selection process (Figure 1). In our initial search, we identified 5741 studies from PubMed using the keywords hyperbaric oxygen, hyperbaric oxygen therapy, HBOT, oxygen therapy, traumatic brain injury, TBI, hemorrhage, subarachnoid hemorrhage, SAH, intracranial hemorrhage, intracerebral hemorrhage, stroke, and hematoma. After removing duplicates, 838 studies remained, and we excluded 583 studies based on title and abstracts. We accessed the full text of the remaining 253 studies, we excluded 173 based on the

exclusion criteria (selection criteria table), 26 as they reported poor-quality trials, and 39 for lack of outcome interest. Ultimately, we included 15 studies. Of all the included articles, 11 were randomized control trials [26-36] and 4 were cohort studies [37-40]; all 15 articles were from Japan, USA, Canada, Israel, Taiwan, and China. Study characteristics and baseline characteristics of participants are provided in Tables 1 and 2.

Sr.	Author et al	Type of Study	Total Number of Patients	M/F	Mean age	HBO protocol	Follow up duration
1.	K. Imai et al.	Pilot Clinical Trial, japan	38; HBO/ CG: 19/19	M; HBO/ 12 CG	HBO:74.9, Control:73.9	1HrHBO(7Days). Chamber:2.0 atm (ATA)Oxygen(100%.). Edaravone(30mg): IV (60mins)	90Days
2.	Daniel E. Rusyniak	RCT-P, double- blind, sham- controlled pilot	33	F% Sham:37.5 HbO: 29.4	Sham: 68 Hbo: 75	1HrHBO(1-Time). Chamber:2.5atm(50ft- Seawater) Oxygen (100%.).	90 Days
3.	Sarah B.Rockswold	RCT-P study, USA	37	M/F: 27/10	Mean age was 36 + or -3 years (range 8–84 years)	1HrHBO(7Days) every 24Hours.Chamber:1.5atm Oxygen (100%.). Patients: 37	7treatments/patient; 1st: Immediately, 2ND : Next Morning, Subsequent: 24Hours Apart(5 Days)
4.	Schiavo S	RCT, Canada	27	Patients over the age of 18 years	The inclusion criteria were patients over the age of 18 years	HBOT with 100% oxygen at 2.0 ATA	Treatment: 8Weeks,12WeekFollow Up
5.	Shai Efrati	RCT-P	74 (15 excluded)	TG: 22/8 CG: 17/12	TG:61+/-12 CG: 63+ or - 6.3	40 Sessions,5 days/week, 90 minutes each, 100% oxygen (2ATA)	TG: 2x(baseline&40Sessions), XG: 3x(Baseline,2Months Control Period,40Sessions)
6.	Lin et al	RCT-P, single- center, Taiwan	44	38/6	Below 24(7 patients), 25- 64(13 patients), Above 65 (2 patients)	HBO (1/Day-20Day), 2.0 atm+ Compression:15+min, Inhalation:90 min+ decompression: 15 min	6 months
7.	Lu et al	RCT-P multicenter, China	158	140/18	CG (R1R without HBO) (46.21±10.45), group A (R1R with HBO) (45.78±11.24), group B (12R with HBO) (45.27±13.72), group C (12R without HBO) (44.81±12.68)	HBO at 2.0 atm, 1h daily for 20 days as a, 10-day interval (b/w every 2)	3 months
8.	Zhong et al	RCT-P, single- center, China	88	47/41	45.19±7.71	CG:14, SG: 30; 1/ Day, at 0.20-0.25 MPa+ compression for 20 min+ 100 % O2 inhalation:80 min+ decompression: 20 min	3 months
9.	Wang et al	RCT-R, single- center case-series study, China	44	16/28	57.0±11.6	1/Day, 2.0 atm+ compression: 20 min+ 100% oxygen inhalations:60 min decompression: 25 min	6 months
10.	Chan et al	RCT-P single- center controlled trial, China	84	54/30	45.19 ± 7.71	20 HBO (1/Day), at 2.0 atm+ compression: 15 min+. O2 inhalation: 60 min+ decompression: 15 min	6 months
11.	Xu et al	RCT-P	79	F: NormBot=10 HyperBot=17		HBO (Once/30Days). Chamber:2.5atm(ATA) (1.5atm for NormBOT) Oxygen(100%.).	6 months

12.	Zhu et al		100	Control M=30 F= 15 Research M=40 F=15	Average control= $61:18$ $\pm 8:31$ Average research= $63:12$ ± 9.7	80minsHBO(1/Day). Chamber:0.2mpa(ATA) Oxygen(100%.).	4 weeks (not sure)
13.	Rockswold 2013	RCT-P	42	M/F ratio HBO2/ NBH=5:1 Control=4:1	HBO2/NBH=33, control 36	combined HBO2/ NBH/100% FiO2 /60mins/1.5ATA/1.0 ATA(3hrs)	6 months
14.	Rockswold 2010	RCT-P	HBO2=26 NBH=21 Control=22 Total=69	HBO2=23:3 NBH=17:4 Control=18:4 Total=58:11	HBO2=34 NBH=37 Control=36 Total=35	17Patients : multiplace cahmber 9Patients: Monoplace chamber; 1.5ATA (17mins).	
15.	Li et al	RCT-P	565	Males (values in n, %) Group A=63 (55.75) Group B=66 (58.41) Group C= 73 (64.60) Group D=68 (60.18)	Mean age not mentioned	Group A:15Mins Compression-70Mins Inhalation;Group B 2.0 atm 60PE Group C 2atm 90PE); Group D 1.5 60PE; Group E 1.5atm 90pe PE: Pressure Exposures	6 months

Abbreviations: RCT: Randomized Control Trial; P: Prospective ; R: Retrospective **HBO:** Hyperbaric Oxygen Therapy, CG: Control Group, SG: Study Group, TG: Treatment Group, XG: Cross Group **R1R:** Routine 1/d rehabilitation training, I2R: Intensified 2/d rehabilitation training

Figure 1: Prisma flow chart of literature search

Figure 2: Risk of bias assessment of RCTs using the Cochrane Collaboration Risk of Bias tool [25].

Figure 3: Risk of bias assessment of cohort studies using Newcastle–Ottawa score [26]. Plots created using the risk-of-bias visualization (robvis) tool [43]

Figure 4: Risk of bias assessment for each cohort study according to NOS. Plots created using the risk-of-bias visualization (robvis) tool [43]

SR.	Author et al	Outcomes	Pre-HOBT GCS score	Post HOBT GCS score	NIHSS Score	MBI/FMA/FIM/ MMSE Score	Functional Outcome	Cognitive Outcome	ADL	ICP	Mortality
1.	K. Imai et al.	The HBO group had better 90-day outcomes (p=0.045), but no difference in survival rates.	NIHSS: <4-12	Patient Outcome:6	At 7 Days: Hbo:1-21, CG:2-30, Improvement: HBO:0-10, CG:8-7	MBI:6 FMA: NIHSS better in HBO FIM: NIHSS better in HBO MMSE:1 favorable outcome	No difference	Number of patients with favorable outcomes HBO group: 6 Control group: 1	No difference	Patients with stroke admitted within 48	Three patients in the HBO group died, two of pneumonia and one of heart failure. One patient died of a heart failure in the control group.
2.	Daniel E. Rusyniak	No early improvement difference (P=0.44). At 3 months, better outcomes in the sham group.	Sham:10 (90.9) Hbo: 6 (37.5)	GOS: 90.9% vc.37.5%;	sham: 8 (80.0) HBO: 5 (31.3)	MBI:8 FMA:3(out of 4)/ FIM: Sham patients had a good outcome than HBO MMSE: deficit in NIHSS	No difference between early improvements (Sham, 31.3%; HBO, 17.7%; P 0.0.44). At 3 months, Sham dominated	patients treated with HBO were between 31% and 53% (absolute) less likely to have a good outcome	No difference: Sham, 31.3%; HBO, 17.7%; P⊡0.44).		Three patients died before the 3-month follow- up period (1 HBO, 2 placebos; P□0.60), with only 1 in the placebo group related to the stroke.
3.	Sarah B.Rockswold	HBO treatment improves brain metabolism and CBF in injured patients, indicated by increased CMRO2 and decreased CSF lactate levels.	5.8 + or - 0.3	consistently obey simple commands or deemed brain dead.	37	MBI:37 FMA:3(of scale 4) FIM: nil MMSE: nil	A shift toward aerobic metabolism after HBO treatment	Patient outcome was not determined because this was not an intent-to- treat study.	nil	ICP>15 mm Hg bef HBO were decreased 1&6hrs after HBO	nil

Table 2: Tabulation of extracted data and outcomes

				1								
	4.	Schiavo S	HBOT shows promise	3-6 CMSAT	significant	stroke -more than	MBI: Recovery	. significant	significant	significant	significant	5 events were
			for improving motor		improvements	3-48 months	FMA: improved upper	improvements in	improvements	improvements	improvements in	attributed to
			function in chronic		in B&BTest,		limb functions	B&BTest, WMF Test,	in B&BTest,	in B&BTest,	B&BTest, WMF Test,	HBOT:
			stroke patients.		WMF Test, and		FIM: HBOT safe in	and SIS test at 12w	WMF Test, and	WMF Test, and	and SIS test at 12w	
					SIS test at 12w		chronic stroke patients	follow-up.	SIS test at 12w	SIS test at 12w	follow-up.	
					follow-up.		MMSE:stroke(3-48		follow-up.	follow-up.		
L							months)					
	5.	Shai Efrati	Improvements from	Brain- SPECT	Brain-SPECT	Baseline:8.53 +	MBI:12.77+ or -7.26	EQ-5D score		Baseline:16.1 +		6 patients had
			both the HBOT-TG	imaging;	imaging;	or -3.62	FMA:2d;p,0.001	improved, both for		OR - 6.52		middle ear
			and the	neurologic	neurologic	post HOt: 5.52+	FIM: EQ-5D score	the HBOT-treated		post HOt 12.77+		barotrauma but
			HBOT-XG	functions	functions-	or -3.59	improved, both for	group and		or -7.26		continued after
				NIHSS,	NIHSS,		the HBOT-treated	the HBOT-treated				rest/2 patients
				ADL, and life	ADL, and life		group and	cross-group				with pre-existing
				quality	quality		the HBOT-treated					seizures had mild
							cross-group					convulsions.
							MMSE: Significant					
							improvement in NIHSS					
F	6	Lin et al	At 3 and 6 months	CG: 10.4	CG: 11.5	Not reported	MBI: nil	Not reported	Not reported	Not reported	Not reported	Not reported
			GOS=2 improvement	HBOT group	HBOT group:		FMA: nil					· · · · · · · · · · · · · · · · · · ·
			(2 vs 3 and 3 vs 4	11.1	13.5		FIM: nil					
			natients) GOS=3	: n>0.05	: p≤0.05		MMSE: nil					
			improvement (2 vs 2	, p [.] 0.05	, p .0.05		Ministry .					
			and 3 vs 2 nationts)									
			GOS=4 improvement									
			(3 vs 4 and 3 vs 6									
			patients [n<0.05])									
			Adverse events:									
			Saizuras (2 nationts)									
			Middle ear barotrauma									
			(2 patients)									
			(2 patients)									
┝	7	Luetal	Farly intensified	GCS score <	Not reported	Not reported	MBI: Group B and	Group B score>	Group B score>	Group B and C	Not reported	Not reported
	/.	Edetai	rehabilitation training	8 in 26, 27	Not reported	Not reported	C seere > CC seere	CG seers at	CG soore at	capra> CG capra	Not reported	Not reported
			LUBOT is more	0 III 20, 27,			(E=5.08 m<0.0001)	1 2 2 months	1 2 2 months	stole Co scole		
			hanaficial to the	in control A			(1-5.08, p<0.0001).	follow up (E=5.01	fallow up	follow up		
			second of TDI	D C arouna			CC asors (E=5.60	nonow=up (1=5.91,	(E=2.00	(E=5.08		
			netionte as companyd to	non ostivalu			<0.0001)	p~0.0001)	(1-5.55,	(1-5.08,		
			UBOT alana	CCS asses			p<0.0001).		p<0.0003)	p<0.0001)		
			TDL at interest	0.12 - 16			FIM. Group B score>					
			able to televite 2/d	7-12 III 10,			<0.0001) =<0.0001)					
			able to tolerate 2/d	12, 15, and			p<0.0001)					
			renaonnation training	15 patients in			MINISE. GIOUP B					
			without sustaining	control, A, B,			score> CG score					
			significant adverse	and C groups			(r=3.99, p<0.0003)					
			enects and the rate of	respectively								
			giving up and missing									
			the training was									
			relatively lower.									
1												

8.	Zhong et al	At 3 months, study	CG:	CG: 9.16± 2.84	Pre-HBOT	MBI: nil	Not reported	Not reported	Not reported	Pre-HBOT ICP in	No. of patients
	0	group prognosis >	6.49±1.15	HBOT group:	NIHSS score in	FMA: nil	*			CG vs HBOT group:	(%) died in
		control group (p<0.05)	HBOT group:	12.06±2.76;	CG vs HBOT	FIM: nil				15.94± 3.46 vs 16.25±	control 13(29)
		as evident by good	6.18±1.44;	p<0.001	group:19.46±	MMSE: nil				3.19; p>0.05	and in HBO
		prognosis [6(14%)	p=0.268		2.64 vs					Pre-HBOT ICP in	group 6(13.64)
		vs 15(54%)], mild			19.61±2.19;					CG vs HBO1 group:	
		vs 9 (20%)] severe			Post-HBOT					4 02: p<0 001	
		disability [11 (25%) vs			NIHSS score						
		9 (20%)], vegetative			in CG vs.						
		state [8(18%) vs			HBOT group:						
		5(11%)] and death [13			14.61±2.33						
		(29%) vs 6(14%)] in			vs 8.46±2.37;						
		patients.			p<0.001						
		GCS score at									
		admission, tracheotomy									
		status, first HBO									
		therapy, and number of									
		are independent									
		prognostic factors in									
		patients with TBI.									
9.	Wang et al	At 6-months follow-	GCS≤8 in	Not reported	Pre-HBOT	MBI: nil	Not reported	Not reported	Not reported	Not reported	Not reported
		up, good prognosis	13 patients,		NIHSS score:	FMA: nil					
		(mRS≤3) in 25(56.8%)	GCS> 8 in 31		10.5 ± 8.7	FIM: nil					
		patients and bad	patients		(range:1-31)	MMSE: nil					
		prognosis (mRS >3) in			Post-HBOT						
		19(43.1%) patients.			NIHSS score:						
		Age, HBOT and			Not reported						
		rehabilitation start time,									
		frequency of									
		hyperbaric oxygen									
		and tracheotomy are									
		independent prognostic									
		factors in TBI patients.									
10.	Chan et al	HBOT improved	CG:	Not reported	Not reported	MBI: Nill	FIM at 6 months	Not reported	Not reported	Not reported	Not reported
		RLAS-R scores (4.98	7.30±2.10			FMA: nill	improved more in				
		$\pm 1.69 \text{ vs } 6.14 \pm 1.32;$	HBOT group:			FIM at 6 months, 80.67	HBOT than CG				
		p = 0.001 at 10 days	7.09±2.96;			± 38.39 in CG and	(p=0.046)				
		and 0.03 ± 1.03 vs 7.37	1 11-11 /110			95.27 ± 20.80 III HBOT					
		+ 1 17: p< 0.001 at 20	p 0.700			group p=0.046)					
		± 1.17; p< 0.001 at 20 days). CRS-R scores	p 0.700			group, p=0.046) MMSE: nil					
		± 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 ± 5.51 vs 14.77	p 0.700			group, p=0.046) MMSE: nil					
		± 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 ± 5.51 vs 14.77 ± 5.96; p = 0.014 at	p 0.700			group, p=0.046) MMSE: nil					
		± 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 ± 5.51 vs 14.77 ± 5.96; p = 0.014 at 10 days), DRS score	p 0.700			group, p=0.046) MMSE: nil					
		\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 \pm 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 \pm 7.94 vs 7.82	p 0.100			group, p=0.046) MMSE: nil					
		\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 \pm 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 \pm 7.94 vs 7.82 \pm 3.72, p<0.001) and	p 0.100			group, p=0.046) MMSE: nil					
		\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 \pm 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 \pm 7.94 vs 7.82 \pm 3.72, p<0.001) and GOSE (3.67 \pm 1.57 vs	p 0.00			group, p=0.046) MMSE: nil					
		\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 \pm 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 \pm 7.94 vs 7.82 \pm 3.72, p<0.001) and GOSE (3.67 \pm 1.57 vs 4.48 \pm 1.42, p=0.018) \pm 6 mer; \pm	p 0.00			group, p=0.046) MMSE: nil					
		\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 \pm 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 \pm 7.94 vs 7.82 \pm 3.72, p<0.001) and GOSE (3.67 \pm 1.57 vs 4.48 \pm 1.42, p=0.018) at 6 months.	p 0.00			group, p=0.046) MMSE: nil					
		\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 \pm 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 \pm 7.94 vs 7.82 \pm 3.72, p<0.001) and GOSE (3.67 \pm 1.57 vs 4.48 \pm 1.42, p=0.018) at 6 months. HBOT decreased TBI-induced	p 0.00			group, p=0.046) MMSE: nil					
		\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 \pm 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 \pm 7.94 vs 7.82 \pm 3.72, p<0.001) and GOSE (3.67 \pm 1.57 vs 4.48 \pm 1.42, p=0.018) at 6 months. HBOT decreased TBI-induced hematoma volumes,	p 0.00			group, p=0.046) MMSE: nil					
		\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 \pm 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 \pm 7.94 vs 7.82 \pm 3.72, p<0.001) and GOSE (3.67 \pm 1.57 vs 4.48 \pm 1.42, p=0.018) at 6 months. HBOT decreased TBI-induced hematoma volumes, promoted recovery	p 2.10			group, p=0.046) MMSE: nil					
		\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 ± 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 \pm 7.94 vs 7.82 \pm 3.72, p<0.001) and GOSE (3.67 \pm 1.57 vs 4.48 \pm 1.42, p=0.018) at 6 months. HBOT decreased TBI-induced hematoma volumes, promoted recovery of EEG rhythms, and	p 2.00			group, p=0.046) MMSE: nil					
		\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 ± 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 \pm 7.94 vs 7.82 \pm 3.72, p<0.001) and GOSE (3.67 \pm 1.57 vs 4.48 \pm 1.42, p=0.018) at 6 months. HBOT decreased TBI-induced hematoma volumes, promoted recovery of EEG rhythms, and modulated expression	p 0.00			group, p=0.046) MMSE: nil					
		$\begin{array}{l} \pm 1.17; \ p<0.001 \ at 20\\ days), CRS-R scores\\ (11.63 \pm 5.51 \ vs 14.77)\\ \pm 5.96; \ p=0.014 \ at\\ 10 \ days), DRS \ score\\ (14.83 \pm 7.94 \ vs 7.82)\\ \pm 3.72, \ p<0.001) \ and\\ GOSE \ (3.67 \pm 1.57 \ vs\\ 4.48 \pm 1.42, \ p=0.018)\\ at \ 6 \ months.\\ HBOT \ decreased\\ TBI-induced\\ hematoma \ volumes,\\ promoted \ recovery\\ of \ EEG \ rhythms, \ and\\ modulated \ expression\\ of \ serum \ NSE, \ S100\beta, \end{array}$	p 2.10			group, p=0.046) MMSE: nil					
		$\begin{array}{l} \pm 1.17; p < 0.001 at 20\\ days), CRS-R scores\\ (11.63 \pm 5.51 vs 14.77)\\ \pm 5.96; p = 0.014 at\\ 10 days), DRS score\\ (14.83 \pm 7.94 vs 7.82)\\ \pm 3.72, p < 0.001) and\\ GOSE (3.67 \pm 1.57 vs\\ 4.48 \pm 1.42, p = 0.018)\\ at 6 months.\\ HBOT decreased\\ TBI-induced\\ hematoma volumes,\\ promoted recovery\\ of EEG rhythms, and\\ modulated expression\\ of serum NSE, S100\beta,\\ GFAP, BDNF, NGF,\\ \end{array}$	p 2.10			group, p=0.046) MMSE: nil					
		\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 \pm 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 \pm 7.94 vs 7.82 \pm 3.72, p<0.001) and GOSE (3.67 \pm 1.57 vs 4.48 \pm 1.42, p=0.018) at 6 months. HBOT decreased TBI-induced hematoma volumes, promoted recovery of EEG rhythms, and modulated expression of serum NSE, S100 β , GFAP, BDNF, NGF, and VEGF.	p 0.00			group, p=0.046) MMSE: nil					
11.	Xu et al	\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 \pm 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 \pm 7.94 vs 7.82 \pm 3.72, p<0.001) and GOSE (3.67 \pm 1.57 vs 4.48 \pm 1.42, p=0.018) at 6 months. HBOT decreased TBI-induced hematoma volumes, promoted recovery of EEG rhythms, and modulated expression of serum NSE, S100 β , GFAP, BDNF, NGF, and VEGF. No difference at one	Not	Not mentioned	NormBot=8	group, p=0.046) MMSE: nil MBI: nil	1 Month: No			Not mentioned	
11.	Xu et al	\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 \pm 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 \pm 7.94 vs 7.82 \pm 3.72, p<0.001) and GOSE (3.67 \pm 1.57 vs 4.48 \pm 1.42, p=0.018) at 6 months. HBOT decreased TBI-induced hematoma volumes, promoted recovery of EEG rhythms, and modulated expression of serum NSE, S100 β , GFAP, BDNF, NGF, and VEGF. No difference at one month; long-term	Not mentioned	Not mentioned	NormBot=8 HyperBot=7	group, p=0.046) MMSE: nil MBI: nil FMA: nil	1 Month: No Diff, 6-month HumePart Mar Part			Not mentioned	
11.	Xu et al	\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 \pm 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 \pm 7.94 vs 7.82 \pm 3.72, p<0.001) and GOSE (3.67 \pm 1.57 vs 4.48 \pm 1.42, p=0.018) at 6 months. HBOT decreased TBI-induced hematoma volumes, promoted recovery of EEG rhythms, and modulated expression of serum NSE, S100 β , GFAP, BDNF, NGF, and VEGF. No difference at one month; long-term follow-up (six months) favored HvnerROT	Not mentioned	Not mentioned	NormBot=8 HyperBot=7	group, p=0.046) MMSE: nil MBI: nil FMA: nil FIM: nil MMSE: nil	l Month: No Diff, 6-month HyperBot>NomBot			Not mentioned	
11.	Xu et al	\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 ± 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 ± 7.94 vs 7.82 \pm 3.72, p<0.001) and GOSE (3.67 ± 1.57 vs 4.48 ± 1.42, p=0.018) at 6 months. HBOT decreased TBI-induced hematoma volumes, promoted recovery of EEG rhythms, and modulated expression of serum NSE, S100 β , GFAP, BDNF, NGF, and VEGF. No difference at one month; long-term follow-up (six months) favored HyperBOT with better outcomes	Not mentioned	Not mentioned	NormBot=8 HyperBot=7	group, p=0.046) MMSE: nil MBI: nil FMA: nil FIM: nil MMSE: nil	l Month: No Diff, 6-month HyperBot≻NomBot			Not mentioned	
11.	Xu et al	\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 ± 5.51 vs 14.77) \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 ± 7.94 vs 7.82) \pm 3.72, p<0.001) and GOSE (3.67 ± 1.57 vs 4.48 ± 1.42, p=0.018) at 6 months. HBOT decreased TBI-induced hematoma volumes, promoted recovery of EEG rhythms, and modulated expression of serum NSE, S100β, GFAP, BDNF, NGF, and VEGF. No difference at one month; long-term follow-up (six months) favored HyperBOT with better outcomes and neurological	Not mentioned	Not mentioned	NormBot=8 HyperBot=7	group, p=0.046) MMSE: nil MBI: nil FMA: nil FIM: nil MMSE: nil	l Month: No Diff, 6-month HyperBot>NomBot			Not mentioned	
11.	Xu et al	\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 ± 5.51 vs 14.77) \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 ± 7.94 vs 7.82) \pm 3.72, p<0.001) and GOSE (3.67 ± 1.57 vs 4.48 ± 1.42, p=0.018) at 6 months. HBOT decreased TBI-induced hematoma volumes, promoted recovery of EEG rhythms, and modulated expression of serum NSE, S100 β , GFAP, BDNF, NGF, and VEGF. No difference at one month; long-term follow-up (six months) favored HyperBOT with better outcomes and neurological consequences (Barthel	Not mentioned	Not mentioned	NormBot=8 HyperBot=7	group, p=0.046) MMSE: nil MBI: nil FMA: nil FIM: nil MMSE: nil	l Month: No Diff, 6-month HyperBot>NomBot			Not mentioned	
11.	Xu et al	\pm 1.17; p< 0.001 at 20 days), CRS-R scores (11.63 ± 5.51 vs 14.77 \pm 5.96; p = 0.014 at 10 days), DRS score (14.83 ± 7.94 vs 7.82 \pm 3.72, p<0.001) and GOSE (3.67 ± 1.57 vs 4.48 ± 1.42, p=0.018) at 6 months. HBOT decreased TBI-induced hematoma volumes, promoted recovery of EEG rhythms, and modulated expression of serum NSE, S100β, GFAP, BDNF, NGF, and VEGF. No difference at one month; long-term follow-up (six months) favored HyperBOT with better outcomes and neurological consequences (Barthel Index, mRS, GOS,	Not mentioned	Not mentioned	NormBot=8 HyperBot=7	group, p=0.046) MMSE: nil MBI: nil FMA: nil FIM: nil MMSE: nil	l Month: No Diff, 6-month HyperBot>NomBot			Not mentioned	

12.	Zhu et al	NWM/HBOT was	Not	Not mentioned	No difference	MBI: nil		No initial		
		effective for IS,	mentioned		before treatment	FMA: nil		difference in		
		improving neurological			but the score	FIM: nil		BI and BBS		
		function, ADL,			reduced after	MMSE: nil		scores. After		
		balance, and inhibiting			treatment			treatment, both		
		inflammatory reactions.						groups improved		
								significantly,		
								with higher		
								scores in the		
								research group.		
13	Rockswold	Combined HBO2/	all closed-	GCS scores	Not mentioned	MBI: nil	8/21 in CG &14/19		No initial ICP	Combined
	2013	NBH treatment in the	head trauma	of 6 7 or 8		FMA: nil	in HBO2/NBH group		difference (n =	HBO2/NBH
		Phase II trial improved	victims w/a	Favorable		FIM: nil	had a favorable		0.2672) HBO2/NBH	group: 16%
		PM raduced ICP	GCS coore	Tavolable		MMSE: pil	outcome		had significantly	lower mortality
		and showed improved				WIWIGE. III	outcome		lawar ICD than the	rower monanty
		and showed improved	of 5-6 after						somerice that the	(429()) (n =
		ducomes, suggesting	resuscitation.						control during and	(42%) (p -
		therapeutic erncacy.							after treatment (p <	0.0482). A nigher
									0.0003, p < 0.0006).	percentage
										(/4%) in CmG
										had a favorable
										outcome
14.	Rockswold	Hyperbaric O2	Average	Not mentioned	Not mentioned	MBI: nil			HBO2 group had	
	2010	effect on cerebral	entry GCS			FMA: nil			lower ICP than	
		metabolism, reaching	HBO2=5.6			FIM: nil			the control group	
		≥200 mm Hg PO2.	NBH=5.9			MMSE: nil			post-treatment (p	
		No O2 toxicity was	Control=6.0						= 0.0010), while	
		observed in severe TBI	Total=5.8						the NBH group	
		treatment.							showed no significant	
									difference; largest	
									decrease in patients	
									with initial ICP > 15	
									mm Hg.z	
15.	Li et al	Intervention groups:	(Median	Not mentioned	(Values in the	MBI:(values in mean:	Group A: Higher		Not mentioned	Lower mortality
		improved MBI/mRS	given) Group		median: 10)	51.25)	MBI, lower mRS.			rates (17-25%
		scores, and decreased	A=9 Group			FIM: nil	B and C had better			decrease) were
		mortality (p < 0.005).	B=9 Group			FMA: nil	trends than D and E.			observed in
		UGIB rates: Groups	C=9 Group			MMSE: nil				Groups B, C, D,
		B/C had higher rates	D=9 Group							and E compared
		than Groups A/D/E (p	E=8 v							to Group A.
		< 0.005), not clinically								Mortality rates
		significant.								were similar in
										all groups

Risk of Bias in Included Studies

We assessed the risk of bias for each clinical trial using the Cochrane Collaboration Risk of Bias tool [24] (Figure 2).

Fifteen articles had a total of 1,482 participants who were eligible for data pooling according to the data extraction. Most of the included studies reported multiple aspects of their trials to appraise the risk of bias assessment which was a predominantly low risk of bias. 5 trials reported adequate detail to indicate a low risk of bias [26, 28, 35, 39, 41].

Random Sequence Generation

Four trials randomly assigned patients either to the intervention or control group, these were deemed to be trials with a low risk of bias [25, 27, 33, 34]. The remaining trials did not report how they randomized or allocated their patients into their respective groups hence we labeled these trials as unclear risk of bias.

Allocation Concealment

Allocation concealment (selection bias) was reported in 6 trials, these trials reported the allocation of concealment and hence were classified as low risk of bias [26, 28, 32, 34, 34, 39]. On the other hand, 4 trials did not mention did not provide any information on this domain so were classified as having unclear risk of bias [29-31, 33]. Lastly, one trial did not adhere to the allocation of

concealment and hence was classified as a high risk of bias [36].

Blinding of Participants and Personnel

Blinding of participants and personnel was reported in 5 trials and therefore we classified them as low risk of bias [26, 28, 34,35, 39]. 5 trials reported that participants were not blinded so we classified them as high risk of bias [29-33]. One trial did not mention whether participants were blinded to the treatment group and hence was classified as an uncertain risk of bias [36].

Blinding of outcome data assessment (attrition bias):

In four trials outcome assessors were blind to participant group allocation therefore we classified them as low risk of bias [26, 28, 34, 36]. 5 trials reported that outcome assessors were not blinded to participant group allocation hence we classified them as high risk of bias [29-33]. Lastly, two trials did not provide any statement about blinding of outcome assessment and so were classified as having unclear risk of bias [35, 39].

Incomplete outcome data reported:

All included trials reported that there were no withdrawal of participants or loss to follow-up that appeared in the analysis in any of the trials hence all trials were considered low risk of bias for this domain.

Selective reporting (reporting bias):

We classified all trials as low risk of bias because protocols were available for each trial.

Risk of bias for cohort studies

Using the Newcastle-Ottawa Scale (NOS), two separate writers evaluated the methodological quality and bias risk of the cohort studies that were included [25]. The NOS evaluates the effectiveness of non-randomized research' designs, including cohort and case-control studies. An overall score out of nine was given for the selection criteria, comparability, and result (cohort) or exposure (case-control). According to the NOS score, the risk of bias in the overall study was rated as high, moderate concern, or low (Figure. 3,4). If any of the three domains (selection criteria, comparability, or result) obtained a high risk of bias grade, the study was assessed to have a high risk of bias overall.

Study Outcome

Most of the included studies were of good quality and had a low risk of bias. Studies were conducted in various countries including Japan, USA, Canada, Israel, Taiwan, and China. The outcomes assessed for each study are described in Table 2. Six studies supported the use of HOBT in traumatic brain injuries (TBI); 4 studies concluded the effective use of HOBT for ischemic strokes; one supported the use of HOBT in hemorrhagic stroke; one approved the use of HOBT in intracerebral hemorrhage; one reported the effectiveness of HOBT in patients with acute subarachnoid hemorrhage (aSAH) and one displayed the effectiveness of HOBT with Edaravone in patients with acute embolic stroke. The studies showed that most patients' conditions improved after receiving several sessions of HOBT hence can be deemed to be an effective measure in the management of patients who have had a subarachnoid hemorrhage to improve health outcomes and reduced mortality. The results in most studies showed that patients were given 100% oxygen, this was safe and favorable for patients who suffered from either TBI, ischemic, embolic, or hemorrhagic stroke, intracerebral, and acute subarachnoid hemorrhage. The complication related to treatment were minor, many of the studies reported that patients experienced transient otalgia, hypertension and tachycardia, lower back pain, claustrophobia, minor seizures treated with anticonvulsants, and middle-ear barotrauma. Although, one trial reported that three patients in the HBO group died due to pneumonia (two) and heart failure (one) and one patient died in the control group due to heart failure [33]. Overall, it is relatively safe to use HBO in the treatment of brain-related hemorrhage, strokes, and injury as there were no major complications reported. Many of the studies did not have a large sample size hence it is difficult to conclude the true adverse effect of HBO therapy, adverse effects should be studied further in a larger sample size. Wang et al. determined the use of HBO therapy on patients with subarachnoid hemorrhage treated with rehabilitation treatment. The mean age group of patients enrolled was 57.0±11.6 (16 males and 28 females), and the mean NIHSS score was 10.5 ± 8.7 , of which 21 participants had moderate to severe neurological impairment. The total number of HBO treatments was 8 to 70 times (28.3 ± 17.9) , at the end of the 6-month follow-up period. mRS (modified Rankin scale) score was used to determine the long-term functional prognosis, mRS \leq 3 (good prognosis) points were found in 25 cases, of which 12 patients with high-grade aSAH recovered. Poor prognosis was prevalent in patients who experienced delayed cerebral ischemia, this was true for 22.7% of patients in this study.

Discussion

The use of HBOT in the treatment of hemorrhage is long been evaluated for its effectiveness and efficacy. Subarachnoid hemorrhages account for 5-10 % of all strokes and hemorrhage is more common in the young population. The mortality rate in SAH is quite high and around 1/3rd of the patients have long-lasting disabilities after the hemorrhage [19]. Historically, Hyperbaric Oxygen (HBO) therapy was not commonly administered during the early stages of Subarachnoid Hemorrhage (SAH) and was only considered useful in cases where patients experienced cerebral vasospasm after the bleeding in the subarachnoid space.

In this study, we focused on the efficacy of hyperbaric oxygen therapy in treating subarachnoid hemorrhage. This systematic review included a total of 15 studies including 11 randomized control trials and 4 cohort studies. In the systematic review, we found that HBOT is an effective treatment option for patients with different types of brain injuries including traumatic brain injury, intracerebral hemorrhage, embolic stroke, ischemic stroke, and subarachnoid hemorrhage. In addition, most of the included studies have shown that HBOT could significantly improve patient conditions after several sessions of HBOT. The studies that are included in the review are conducted in multiple countries and are at low risk of biased.

In all the included studies no withdrawal of the participants or loss to follow-up periods was reported. While certain weakness of the trial includes the complications that were reported by patients including otalgia, hypertension and tachycardia, lower back pain, claustrophobia, minor seizures treated with anticonvulsants, and middle-ear barotrauma. While more severe complications including some life-threatening ones were reported in the studies. In the study, there have been 3 deaths that were reported in the HBOT group two due to pneumonia whereas one of the deaths occurred after heart failure. Whereas one patient in the control group also died of heart failure [33]. Whereas in the study of one death of the patients occurred before the follow-up period [34]. in one of the studies included in the review by the patient outcome was not determined as the study was not related to treating the patient and addressing the outcome. 2 of the studies reported mild to moderate barotrauma in the ear and chest pain [30, 35, 36].

No direct comparison can be made between the present systematic review and any previous review as we found none. There is a possibility of publication bias as only the published data were included. The studies included in the review did not have longterm follow up so long-term outcomes of the therapy could not be assessed. Although this study is the first to explore the effect of hyperbaric oxygen therapy in patients with subarachnoid hemorrhage, there are certain limitations to this systematic review which weaken the strength of retrieved evidence mainly due to the small sample size and different populations involved. Although the review points towards that the HOBT is an effective treatment option in patients with subarachnoid hemorrhage, the overall quality of evidence for the effective treatment of subarachnoid hemorrhage by HOBT therapy is still low due to the small study population in the review. The study protocols also vary from study to study with different follow-up duration and the treatment that is provided which further limits the efficacy of the review.

References

- 1. Collaborators GS (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet Neurol 20: 795-820.
- 2. Bath PM, Lees KR (2000) ABC of arterial and venous disease. Acute stroke BMJ (Clin Res Ed) 320: 920-923.
- 3. O'Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, et al. (2010) Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 376: 112-123.
- Bennett MH, Wasiak J, Schnabel A, Kranke P, French C (2005) Hyperbaric oxygen therapy for acute Ischaemic stroke. Cochrane Database Syst Rev 3:Cd004954.
- 5. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, et al. (2019) Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American heart association/American stroke association. Stroke 50: e344-418.
- 6. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, et al. (2018) Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 378: 11-21.
- 7. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, et al. (2018) Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 378: 708-718.
- 8. Al-Waili NS, Butler GJ, Beale J, Abdullah MS, Hamilton RW, et al. (2005) Hyperbaric oxygen in the treatment of patients with cerebral stroke, brain trauma, and neurologic disease. Adv Ther 22: 659-678.
- 9. Weaver LK (2014) Hyperbaric oxygen therapy for carbon monoxide poisoning. Undersea Hyperb Med 41: 339-354.
- 10. Lou M, Eschenfelder CC, Herdegen T, Brecht S, Deuschl G (2004) Therapeutic window for use of hyperbaric oxygenation in focal transient ischemia in rats. Stroke 35: 578-583.
- 11. Schabitz WR, Schade H, Heiland S, Kollmar R, Bardutzky J, et al. (2004) Neuroprotection by hyperbaric oxygenation after experimental focal cerebral ischemia monitored by MRI. Stroke 35: 1175-1179.
- 12. Obiagwu C, Paul V, Chadha S, Hollander G, Shani J (2015) Acute pulmonary edema secondary to hyperbaric oxygen therapy. Oxf Med Case Reports 2015: 183-184.
- Covington DB, Giordano C (2013) Hyperbaric Medicine: Indications for and Application of Hyperbaric Oxygen Therapy. Case Studies in Clinical Psychological Science: Bridging the Gap from Science to Practice 2023: 1-7.
- Ling LIH (2019) Successful management of nose arterial occlusion and impending skin necrosis after filler injection. Journal of Cosmetic Medicine 3: 108-113.
- 15. Chung E (2021) Penile Glans Necrosis following Prostatic Artery Embolization for the Treatment of Benign Prostatic Hyperplasia: A Rare but Serious Complication. Case Rep Urol 2021: 1-3.
- 16. Gandhi J, Seyam O, Smith N, Joshi G, Vatsia S, et al. (2018) Clinical utility of hyperbaric oxygen therapy in genitourinary medicine. Med Gas Res 8: 29-33.
- 17. Mu J, Ostrowski RP, Krafft PR, Tang J, Zhang JH (2013) Serum leptin levels decrease after permanent MCAo in the rat and remain unaffected by delayed hyperbaric oxygen therapy. Med Gas Res 3: 8.
- 18. Çelik Ö, Bay HH, Arslanhan A, Oroğlu B, Bozkurt SU, et al. (2014) Effect of hyperbaric oxygen therapy on cerebral

vasospasm: a vascular morphometric study in an experimental subarachnoid hemorrhage model. Int J Neurosci 124: 593-600.

- 19. Ostrowski RP, Stępień K, Pucko E, Matyja E (2017) The efficacy of hyperbaric oxygen in hemorrhagic stroke: experimental and clinical implications. Archives of Medical Science 13: 1217-1223.
- 20. Tinay I, Celik O, Sekerci CA, Cadirci S, Cevik O, et al. (2020) Hyperbaric oxygen therapy prevents subarachnoid hemorrhage-induced apoptosis and impaired contractility of the rabbit bladder. Neurourol Urodyn 39: 1276-1282.
- 21. Xin Y, Gao X, Ju X, Li A (2016) Successful treatment with hyperbaric oxygen therapy for severe brain edema characterized by radiological appearance of pseudosubarachnoid hemorrhage in a child. Exp Ther Med 12: 1625-1627.
- 22. Wu X, Zhang L, Chen Y, Li H, Yang L, et al. (2020) Effectiveness and Influencing Fac-tors of Comprehensive Rehabilitation Therapy in Patients with Aneurysmal Subarachnoid Hemorrhage. J Behav Brain Sci 10: 387-99.
- 23. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, et al. (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372.
- 24. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, et al. (2011) The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 343.
- 25. Ottawa Hospital Research Institute n.d. https://www.ohri.ca/ programs/clinical_epidemiology/oxford.asp (accessed June 6, 2023).
- 26. Li X, Li J, Yang X, Sun Z, Zhang J, et al. (2017) Hyperbaric-Oxygen Therapy Improves Survival and Functional Outcome of Acute Severe Intracerebral Hemorrhage. Arch Med Res 48: 638-652.
- 27. Zhu Y, Zhu X, Chen Z, Cao X, Wang L, et al. (2022) The Efficacy of Needle-Warming Moxibustion Combined with Hyperbaric Oxygen Therapy for Ischemic Stroke and Its Effect on Neurological Function. Comput Math Methods Med 1-7.
- 28. Xu Q, Fan S bo, Wan Y lin, Liu X lan, Wang L (2018) The potential long-term neurological improvement of early hyperbaric oxygen therapy on hemorrhagic stroke in the diabetics. Diabetes Res Clin Pract 138: 75-80.
- 29. Rockswold SB, Rockswold GL, Zaun DA, Liu J (2013) A prospective, randomized Phase II clinical trial to evaluate the effect of combined hyperbaric and normobaric hyperoxia on cerebral metabolism, intracranial pressure, oxygen toxicity, and clinical outcome in severe traumatic brain injury. J Neurosurg 118: 1317-1328.
- Rockswold SB, Rockswold GL, Vargo JM, Erickson CA, Sutton RL, Bergman TA, et al. (2001) Effects of hyperbaric oxygenation therapy on cerebral metabolism and intracranial pressure in severely brain injured patients. J Neurosurg 94: 403-411.
- 31. Rockswold SB, Rockswold GL, Zaun DA, Zhang X, Cerra CE, et al. (2010) A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. J Neurosurg 112: 1080-1094.
- 32. Zhong X, Shan A, Xu J, Liang J, Long Y, et al. (2020) Hyperbaric oxygen for severe traumatic brain injury: a randomized trial. J Int Med Res 48.
- 33. Imai K, Mori T, Izumoto H, Takabatake N, Kunieda T, et al. (2006) Hyperbaric oxygen combined with intravenous

edaravone for treatment of acute embolic stroke: a pilot clinical trial. Neurol Med Chir (Tokyo) 46: 373-378.

- Rusyniak DE, Kirk MA, May JD, Kao LW, Brizendine EJ, et al. (2003) Hyperbaric oxygen therapy in acute ischemic stroke: results of the Hyperbaric Oxygen in Acute Ischemic Stroke Trial Pilot Study. Stroke 34: 571-574.
- 35. Schiavo S, Richardson D, Santa Mina D, Buryk-Iggers S, Uehling J, et al. (2020) Hyperbaric oxygen and focused rehabilitation program: a feasibility study in improving upper limb motor function after stroke. Appl Physiol Nutr Metab 45: 1345-1352.
- Efrati S, Fishlev G, Bechor Y, Volkov O, Bergan J, et al. (2013) Hyperbaric oxygen induces late neuroplasticity in post stroke patients--randomized, prospective trial. PLoS One 8.
- 37. Wang Y, Gao Y, Lu M, Liu Y (2020) Long-term functional prognosis of patients with aneurysmal subarachnoid hemorrhage treated with rehabilitation combined with hyperbaric oxygen: Case-series study. Medicine 99.
- 38. Chen Y, Wang L, You W, Huang F, Jiang Y, et al. (2022) Hyperbaric oxygen therapy promotes consciousness, cognitive function, and prognosis recovery in patients following traumatic brain injury through various pathways. Front Neurol 13.

- 39. Lu Y, Zhou X, Cheng J, Ma Q (2021) Early Intensified Rehabilitation Training with Hyperbaric Oxygen Therapy Improves Functional Disorders and Prognosis of Patients with Traumatic Brain Injury. Adv Wound Care (New Rochelle) 10: 663-670.
- 40. Lin JW, Tsai JT, Lee LM, Lin CM, Hung CC, et al. (2008) Effect of hyperbaric oxygen on patients with traumatic brain injury. Acta Neurochir Suppl 101: 145-149.
- 41. Rusyniak DE, Kirk MA, May JD, Kao LW, Brizendine EJ, et al. (2003) Hyperbaric oxygen therapy in acute ischemic stroke: results of the Hyperbaric Oxygen in Acute Ischemic Stroke Trial Pilot Study. Stroke 34: 571-574.
- 42. McGuinness LA, Higgins JPT (2021) Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods 12: 55-61.
- 43. Yang ZJ, Camporesi C, Yang X, Wang J, Bosco G, et al. (2002) Hyperbaric oxygenation mitigates focal cerebral injury and reduces striatal dopamine release in a rat model of transient middle cerebral artery occlusion. Eur J Appl Physiol 87: 101-107.

Copyright: ©2023 Javed Iqbal, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.