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Individual Changes in Respiratory 
Compliance Upon Immersion May Predict 
Susceptibility to Immersion Pulmonary Edema
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Abstract 

Background Immersion pulmonary edema (IPE) is a frequent diving accident, and it is the primary cause of hos‑
pitalization for young military divers during training. The objective of this study was to identify immersion‑induced 
parameters predicting individual susceptibility to IPE.

Methods Eighteen experienced male divers having completed at least 100 dives were recruited. Eight divers had 
previously been hospitalized for IPE (IPE), and the other ten had never developed IPE (non‑IPE). The two groups were 
matched for age, BMI, and number of dives performed. Ventilatory function and overall compliance of the respiratory 
system (Crs) were measured on land and during head‑out‑of‑water immersion. Subjects also performed 30 min of fin 
swimming in a channel at 33 m  min−1. Following this exercise, the presence of extravascular lung water, revealed by 
ultrasound lung comets (ULC), was assessed.

Results In the whole group, the decrease in Crs upon immersion correlated with the immersion‑induced alterations 
to expiratory reserve volume, ERV (r2 = 0.91; p < 0.001), inspiratory reserve volume, IRV (r2 = 0.94; p < 0.001), and tidal 
volume, Vt, changes (r2 = 0.43; p < 0.003). The number of ULC correlated strongly with immersion‑induced changes in 
ventilatory function (r2 = 0.818; p < 0.001 for ERV, r2 = 0.849; p < 0.001 for IRV, r2 = 0.304; p = 0.0164 for Vt) and reduced 
Crs (r2 = 0.19; p < 0.001).

The variations of ERV, IRV, and Crs at rest induced by head‑out‑of‑water immersion and the number of ULC measured 
after swimming for 30 min were significantly greater in IPE subjects.

Conclusion In the face of similar immersion stresses, the extent of alterations to ventilatory function and the number 
of ULCs were very different between individuals but remained statistically correlated. These parameters were sig‑
nificantly greater in divers with a history of IPE. Alterations to pulmonary function and, in particular, to pulmonary 
compliance induced by head‑out‑of‑water immersion, through their effects on work of breathing appear to allow 
the identification of divers with a greater susceptibility to developing IPE. Measurement of these parameters could 
therefore be proposed as a predictive test for the risk of developing IPE.

Key Points 

• Immersion Pulmonary Edema (IPE) can occur in highly fit individuals, such as military divers and triathletes, 
and is the leading cause of hospitalization among young military divers during training.
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• To preserve the health of young divers, predictive tests of individual susceptibility to IPE should be proposed, 
similar to those proposed for High Altitude Pulmonary Edema (HAPE).

• Our findings confirm the fundamental role of immersion-induced changes in lung function in the development 
of IPE. Alterations in pulmonary function, particularly pulmonary compliance, appear to allow for identification 
of divers with a higher susceptibility to developing IPE.

Keywords Immersion pulmonary edema, Pulmonary compliance, Work ok breathing, Individual susceptibility

Background
Immersion pulmonary edema (IPE) consists of an 
increase in transmural pulmonary capillary pressure 
that induces transudation into interstitial tissue. [1]. IPE 
causes dyspnea while swimming, scuba, or breath-hold 
diving, and may be accompanied by cough, hemoptysis, 
and severe hypoxemia; it can even lead to death [2–5]. 
IPE is a non-trivial phenomenon for emergency physi-
cians, even though rest and normobaric oxygen therapy 
usually produce rapid relief of symptoms without seque-
lae [6]. Death is generally due to drowning and/or revers-
ible myocardial dysfunction [7]. Factors predisposing to 
the development of IPE include age over 50 years, cardio-
vascular risk factors, and/or high blood pressure [8–10]. 
However, the condition also occurs in very fit people, 
such as military divers and triathletes. [4, 11–13]. Thus, 
in our hyperbaric medicine department, IPE has become 
the primary cause of hospitalization of young military 
divers during training.

The accumulation of fluid in the lungs can extend to 
the alveolar air spaces [14], leading to the appearance 
of Ultrasound Lung Comets (ULC) [15]. The number 
of ULC is an indication of the extent of accumulation 
of extravascular lung water (EVLW). In healthy young 
divers exposed to similar immersion constraints (same 
depth and duration of immersion, swimming speed and 
breathing apparatus), some subjects systematically pre-
sent a significantly higher number of ULC. The concept 
of individual susceptibility to Immersion Pulmonary 
Edema (IPE) has been suggested [6]. Wilmhurst et  al. 
[16, 17] conducted a study examining this susceptibility 
and its association with vascular responses in individu-
als undergoing cold water immersion. They observed that 
individuals prone to IPE exhibited a greater increase in 
forearm vascular resistance compared to control sub-
jects when their head and neck were exposed to ice-cold 
water. These findings suggest that abnormal vascular 
responses, particularly vasoconstriction, may contrib-
ute to the development of IPE in susceptible individuals. 
The heightened vasoconstrictive response indicated by 
the increased vascular resistance in the forearm has the 
potential to result in elevated pulmonary capillary pres-
sures and subsequent pulmonary edema.

Research has suggested that certain genetic variants, 
such as polymorphisms in genes involved in the regu-
lation of inflammation and vascular permeability, may 
influence the individual response to immersion and 
increase the risk of IPE [18]. In previous studies, young, 
healthy professional scuba divers finning exercises at 
shallow depth were found to have widely different ULC 
scores [19, 20]. Because IPE presents an immediate risk 
of drowning but also of myocardial dysfunction, with a 
risk of recurrence estimated by Gempp et al. [8] at 15%, 
military divers having developed IPE are declared unfit—
at least temporarily—contributing to the attrition of mili-
tary divers.

Both IPE and High-Altitude Pulmonary Edema 
(HAPE) share similar underlying mechanisms, includ-
ing increased pulmonary capillary pressure, alterations 
in vascular permeability, and inflammatory responses, 
all of which can lead to the accumulation of fluid in the 
lungs [21–23]. Additionally, individual predispositions 
can increase the risk of developing potentially life-threat-
ening HAPE [24–27]. Given the difficulty in predicting 
HAPE, especially in individuals without prior high-alti-
tude exposure, various altitude simulation tests have 
been developed and validated [28, 29]. It seems appropri-
ate to initiate a similar approach for IPE to identify divers 
who have a high susceptibility to IPE occurrence.

Immersion modifies pulmonary function, leading to 
a decrease in expiratory reserve volume (ERV), forced 
vital capacity (FVC) [30, 31], and overall compliance of 
the respiratory system (Crs) [32–34]. This immersion-
induced alteration of the Crs is not without consequence, 
as it is associated with an increase in the work of breath-
ing (WOB) both on land [35, 36] and during immersion 
[30]. Retrospective analysis of individual ventilatory 
function parameters, and how they vary upon immer-
sion, shows extensive interindividual variability [33, 34].

WOB plays a fundamental role in the occurrence of 
IPE, as inspiratory work specifically promotes the accu-
mulation of EVLW both on land [35, 36] and during 
immersion [30]. An increase in WOB leads to increased 
transmural hydrostatic pressure differences between the 
lumen of the lung capillaries and the interstitial fluid in 
bronchial bundles and alveoli [9], alters cardiac function 
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[37], and can trigger acute pulmonary edema [3]. Sig-
nificantly, WOB is greater during immersion than on 
land, because the external hydrostatic pressure creates a 
greater transpulmonary pressure difference [12, 38–41]. 
With identical immersion constraints, WOB values are 
extremely variable between individuals [41], although 
they remain strongly correlated with the number of 
ULCs. This dispersion of WOB values in young, healthy 
subjects remains unexplained.

Understanding the causes of interindividual variabil-
ity in WOB during immersion is crucial to identify the 
pathophysiological mechanisms of IPE, determine its 
causes, and identify individuals at higher risk. Given the 
challenges of measuring individual WOB during immer-
sion, we sought a more accessible ventilatory test to 
assess susceptibility to IPE.

The main objective of this study was to determine 
whether the changes in lung function and, in particular, 
lung compliance induced by head-out-of-water immer-
sion are significantly different between individuals who 
had previously developed IPE and individuals who had 
never experienced IPE.

This was done with the intention of potentially sug-
gesting the use of pulmonary function measurement as a 
means of identifying individuals who are more suscepti-
ble to IPE.

Methods
Subjects
Eighteen male volunteers were enrolled in the study. All 
subjects were healthy non-smokers without known pul-
monary or cardiovascular disease or symptoms. Subjects 
gave their written informed consent for participation in 
the study. All the experimental procedures were con-
ducted in line with the declaration of Helsinki, and the 
study protocol was approved by the local ethics commit-
tee (Comité de Protection des Personnes « ile de France 
II» n°: 21.05.05.35821 RIPH1 HPS; N° ID RCB: 2021-
A01225-36). The diver in the photograph in Fig.  1 gave 
his written consent for use of this image.

Participants were assigned to two groups. A control 
group composed of ten experienced divers having already 
performed at least 100 dives without ever having pre-
sented an IPE (non-IPE), and a group of eight divers who 
had previously been hospitalized for IPE (IPE). The two 
groups were matched for age, BMI and number of dives 
performed (Table 1).

Study Design
A series of measurements were taken for each subject in 
the following order:

1.A lung ultrasound at rest on land, to verify the 
absence of ULC,

2.Analysis of ventilatory function and measurement of 
Crs at rest on land,

The subject was then immersed, head above water, in 
an experimental pool, and

3.Ventilatory function and Crs were once again meas-
ured while immersed,

4.The subject then performed a swimming exercise in 
the "swim flume" for 30 min,

5.At the end of the exercise, a second lung ultrasound 
was performed to count the number of ULCs present.

The air temperature in the laboratory and the water 
temperature in the swim flume were both maintained at 
27 °C. Each subject performed all the tests within a single 
day in the IRBA Physiology Lab.

Ultrasound Lung Comets (ULC) Assessment
Ultrasonographic examinations were performed by an 
experienced sonographer using a commercially available 
ultrasound system (Vivid I; GE Médical, Horten, Nor-
way) with a 1.5- to 4-MHz phased array transducer. The 
presence of EVLW was assessed on lung ultrasounds by 
counting the number of B-lines or ULC [42].

Fig. 1 A subject during measurement of immersed static respiratory 
compliance. The subject is kneeling upright and wearing a nose clip. 
The water comes up to the subject’s sternal notch. A pressure sensor 
is integrated in the mouthpiece, which is connected through a pipe 
to the calibrated syringe injecting or sucking up the preset volume

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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Spirometric Measurements
A Cosmed Quark PFT Ergo device (Cosmed, Rome, Italy) 
was used to assess the slow vital capacity (VC), expira-
tory (ERV) and inspiratory reserve volume (IRV), and 
tidal volume (Vt), according to the guidelines published 
by the American Thoracic Society and the European Res-
piratory Society [43]. Each subject repeated the spiro-
metric maneuver five times in each condition. For each 
condition, the two extreme values were discarded and the 
mean of the remaining three was retained.

Static Compliance of the Respiratory System (Crs)
Crs was measured in the following two conditions: 
upright, standing on land (out of the water) as control 
condition, and upright, on the knees immersed up to 
the sternal notch as immersed condition (head-out-of-
water). Tests were performed with the subject wearing a 
nose clip and breathing only through the mouthpiece. A 
subject during measurement of immersed static respira-
tory compliance is presented in Fig. 1.

Respiratory compliance was determined by replicat-
ing the protocols previously described [33, 40]. For each 
subject, a static pressure–volume curve was constructed 
in each of the four conditions using values obtained 
thanks to a specific device, designed in house [40, 41]. 
The device contains a pressure sensor (MPXV70007DP 
Freescale), with a ± 70-mbar measurement range, placed 
immediately behind a mouthpiece, followed by a flow-
meter and a three-way valve. Depending on the setting 
of the three-way valve, the subject, wearing a nose clip, 
inspired air either from the room or from a syringe filled 
with one of the following preset volumes: 0.2, 0.5, 1, 1.5, 
2, 2.5 and 3 L.

For the measurement cycle, the subject initially 
breathed ambient air freely. At the expiratory end of a 
quiet tidal volume cycle (i.e., a relaxation volume held 
without any effort and nominated as Vrelax), the valve 
was closed and the subject remained apneic with an open 
glottis. This relaxed volume was similar to that described 
by Taylor and Morrison [33]. The mouth pressure in 
these conditions should be 0  mbar (equal to ambient 

barometric pressure). If this was not the case, the sub-
ject was asked to repeat the maneuver. The pulmonary 
gas volume corresponds to the spontaneous relaxation 
volume in each condition. In the Up-Air condition, this 
relaxation volume corresponds to the forced residual 
capacity (FRC). Once this parameter had been measured, 
the valve was opened toward the syringe and the subject 
inspired the preset air volume. As soon as the syringe was 
empty, the valve was closed, and the subject remained 
apneic with an open glottis for 4–6 s during which time 
the airway pressure was recorded. After each inspired 
volume, the airway pressure was negative (lower than 
the ambient atmospheric pressure). The maneuver was 
performed in a similar manner with the subject starting 
from Vrelax to exhale a preset volume (i.e., syringe plunger 
set and expiration starting with an empty syringe). The 
volumes to be exhaled were as follows: 0.1; 0.2; 0.5; 1; 
1.5; 2; 2.5  and 3  L. As soon as the plunger reached the 
preset stop, the valve was closed and the airway pressure 
was recorded during the 4–6  s apnea with open glottis. 
After each expired volume, the pressures recorded were 
positive (i.e., higher than atmospheric) and reflected 
the transpulmonary pressure. Subjects were trained to 
perform the maneuvers so as to reproduce the relaxa-
tion volume and the open glottis apnea for each preset 
volume (i.e., the syringe content or the preset maximal 
filling allowed). Training required from 30 to 60  min, 
depending on the subject. Each airway pressure meas-
urement with open glottis at each inspired and expired 
volume was repeated five times. The two extreme values 
were discarded before averaging the three remaining val-
ues. When the subject could not successfully complete 
the maneuvers despite several training cycles, their data 
were excluded from the study.

Four curves, one in each condition, were constructed 
for each subject. Curves had an average of 32 ± 8 points 
depending on the number of volume points achieved. 
Each curve was fitted using a second square polynomial 
regression:

P = aV
2
− bV − c

Table 1 Morphological characteristics of the subjects in both populations

The control group of divers (non-IPE) had never developed an immersion pulmonary edema (IPE). Divers in the IPE group had previously been hospitalized for an 
immersion pulmonary edema. In BMI, body mass index, statistical significance was determined using the Mann–Whitney test for unpaired data

Age (years) Height (cm) Weight (kg) BMI (kg  m−2)

Non-IPE IPE Non-IPE IPE Non-IPE IPE Non-IPE IPE

Median 32.3 35.5 178.3 181.5 76.4 76.1 24.1 23.8

Mean 32.5 35.9 178.6 181.9 76.5 76.9 24.2 23.7

SD 6.35 7.63 6.59 6.52 6.47 6.37 3.98 3.82

p n.s n.s n.s n.s

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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where P is the pressure measured, and V is the gas vol-
ume inspired or expired from Vrelax. All volumes were 
corrected for body temperature and partial pressure of 
water.

Each curve was characterized by a value representing 
compliance of the respiratory system (i.e., combining 
lung + chest wall, Crs), which corresponds to the regres-
sion slope for the 1-L increase in volume above Vrelax (in 
the relevant condition) relative to the pressure increase 
associated with this 1-L volume (Crs = ∆V/∆P).

Fin Swimming Exercise
All fin swimming exercises were conducted in a motor-
ized swimming flume (Endless Pools, Dilsen-Stokkem, 
Belgium) located within the IRBA Physiology Lab. The 
linearity and the relationship between engine power and 
water speed were fully calibrated using a water flowme-
ter. Subjects performed a 30-min fin swimming exercise 
at a constant flume speed of 33 m  min−1. This speed cor-
responds to the fin swimming speed required of military 
divers in training and during missions.

Statistics
Data were statistically analyzed using Prism 6 software 
(GraphPad Software, La Jolla, California). Data distri-
bution was assessed using a Kolmogorov–Smirnov test. 
Normally distributed values recorded at two differ-
ent times or between both populations were compared 
using the Student t test for paired data; Wilcoxon’s paired 
signed rank test was used for non-normally distributed 
data. Correlations between parameters were assessed 
using the Pearson’s test or Spearman’s test (depending 
on whether values were normally distributed). Differ-
ences were considered statistically significant at p < 0.05. 
All values are expressed as median, 25–75% interquartile, 
mean, ± SD.

Results
Morphological characteristics of the subjects are pre-
sented in Table  1. No differences in age, height, body 
mass, and BMI were observed between the two groups of 
subjects.

For the whole study population, immersion-induced 
changes in spirometric parameters (VC, Vt, ERV, and 
IRV), and Crs and the number of ULC measured in 
all divers at the end of the fin swimming exercise are 
reported in Table 2. Values for individual subjects can be 
found in Additional file 1.

Immersion-Linked Changes to Spirometric Lung Volumes
Head-out-of-water immersion was accompanied at 
rest by a collapse of ERV (−  77%; p < 0.0001) that was 
not totally compensated by the increase in IRV (+ 40%; 
p = 0.0002). Consequently, the slow VC was signifi-
cantly decreased (− 9%; p < 0.0001), and mean Crs values 
dropped by 85% (p < 0.0001). Following the fin swimming 
exercise, the number of ULC averaged 15.9, with a very 
high interindividual variability. No ULC were observed in 
any subject before immersion.

In the whole group, the decrease in Crs upon immer-
sion correlated with the immersion-induced alterations 
to ERV (r2 = 0.91; p < 0.001), IRV (r2 = 0.94; p < 0.001), and 
Vt changes (r2 = 0.43; p < 0.003) (Table 3). The Crs values 
were not related to the VC alterations.

The number of ULC observed at the end of the fin 
swimming exercise was not correlated with the varia-
tion in VC induced by immersion, but was weakly corre-
lated with Vt variations, and very strongly with variations 
in ERV and IRV (Fig. 2). The changes in Crs induced by 
head-out-of-water immersion at rest very strongly corre-
lated with the number of ULC observed at the end of the 
fin swimming exercise (Fig. 2).

The variations of ERV, IRV, and Crs at rest induced by 
head-out-of-water immersion and the number of ULC 

Table 2 Changes to spirometric data (VC, Vt, ERV, and IRV), and Crs induced by head‑out‑of‑water immersion, and number of ULCs 
measured at the end of fin swimming exercise for the whole study population

Changes to spirometric data (VC, Vt, ERV, and IRV), and Crs induced by head-out-of-water immersion, and number of ULCs measured at the end of fin swimming 
exercise for the whole study population. Individual subject values are available in Additional file 1. Median values are shown, along with 25% /75% percentile, mean 
and standard deviation. Data variation is also expressed as a percentage (%). Statistical significance was determined using the Student’s t test for paired data when 
data were normally distributed, or Wilcoxon’s paired signed rank test for non-normally distributed data

Vital capacity (VC); expiratory reserve volume (ERV); inspiratory reserve volume (IRV); tidal volume (Vt); ultrasound lung comets (ULC)

∆VC (L) ∆ERV (L) ∆IRV (L) ∆Vt (L) ∆Crs (L/kPa) ULC

Median − 0.44 − 1.13 0.49 0.20 0.93 16.5

25%/75% percentile − 0.50/− 0.41 − 1.52 /− 0.8 0.14 /0.87 0.16 /0.22 0.70 / 1.36 7.2 / 24.2

Mean − 0.45 − 1.19 0.54 0.20 1.01 15.9

S.D 0.06 0.46 0.45 0.03 0.46 11.3

Variation ↘9% ↘77% ↗40% ↗18% ↘85% –

Statistical significance p < 0.0001 p < 0.0001 p = 0.0002 p < 0.0001 p < 0.0001 –
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measured after swimming for 30  min were significantly 
greater in IPE subjects (Fig. 3). No significant difference 
in VC values was observed between the two groups.

Discussion
To the best of our knowledge, this is the first study to 
investigate the impact of pulmonary function on IPE 
occurrence.

In our study, we found that individuals who had pre-
viously experienced Immersion Pulmonary Edema (IPE) 
showed significantly greater impairment in lung func-
tion, specifically lung compliance, compared to those 
without a history of IPE. By quantifying and comparing 
these alterations, we aimed to identify markers that can 
accurately predict the risk of IPE occurrence.

Firstly, we delved into the step-by-step analysis of 
the alterations in ventilatory function, starting with the 
simplest changes and progressing toward the examina-
tion of pulmonary compliance. Secondly, we explored 
the reasons why these alterations in ventilatory function 
were closely linked to the development of IPE. Lastly, 
we addressed the possibility of utilizing pulmonary 

Table 3 Correlation between changes in Crs and changes in 
spirometric data (VC, ERV, IRV, and Vt) induced by head‑out‑of‑
water immersion

Correlation between changes in Crs and changes in spirometric data (VC, ERV, 
IRV, and Vt) induced by head-out-of-water immersion. Individual subject values 
are available in Additional file 1. Statistical significance was determined using 
Spearman’s test

Compliance of the overall respiratory system (combined lung and chest wall) 
(Crs); vital capacity (VC); expiratory reserve volume (ERV); inspiratory reserve 
volume (IRV); tidal volume (Vt); ultrasound lung comets (ULC)

∆ Crs (L/kPa) 
vs. ∆ VC (L)

∆ Crs (L/kPa) 
vs. ∆ ERV (L)

∆ Crs (L/kPa) 
vs. ∆ IRV (L)

∆ Crs (L/
kPa) vs. ∆ 
Vt (L)

r2 0.1164 0.9131 0.94 0.4269

p 0.1659  < 0.0001  < 0.0001 0.0033

a b

c d

Fig. 2 Correlation between number of ULCs measured at the end of fin swimming exercise and spirometry data (VT, ERV, and IRV), and Crs 
induced by head‑out‑of‑water immersion. Correlation between ULCs measured at the end of the fin swimming exercise and spirometry data, and 
compliance of the respiratory system induced by head‑out‑of‑water immersion. a Correlation between ULCs and variation of ERV. b Correlation 
between ULCs and variation of IRV. c Correlation between ULCs and variation of Vt. d Correlation between ULCs and variation of Crs. Ultrasound 
lung comets (ULC); expiratory reserve volume (ERV); inspiratory reserve volume (IRV); tidal volume (Vt); compliance of the overall respiratory system 
(combined lung and chest wall) (Crs). Each point corresponds to the values for an individual subject. Divers in the non‑IPE group are represented by 
black dots (n = 10); divers in the IPE group are represented by red dots (n = 8). r2 and statistical significance was determined using Spearman’s test

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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a b

e

c d

Fig. 3 Changes to VC, ERV, IRV, and Crs induced by head‑out‑of‑water immersion and ULC observed after fin swimming exercise in both 
populations (non‑IPE vs. IPE). Changes to VC, ERV, IRV and Crs induced by head‑out‑of‑water immersion and ULC observed after fin swimming 
exercise in both populations (non‑IPE vs. IPE). Each point corresponds to the value observed for an individual subject. Divers in the non‑IPE group 
are represented by black dots (n = 10); the red dots correspond to divers in the IPE group (n = 8). Statistical significance was determined using 
a Mann–Whitney test. Compliance of the overall respiratory system (combined lung and chest wall) (Crs); vital capacity (VC); expiratory reserve 
volume (ERV); inspiratory reserve volume (IRV); tidal volume (Vt); ultrasound lung comets (ULC)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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function analysis as a marker for assessing the risk of IPE 
occurrence.

Effect of Immersion on Lung Volumes
The effects of immersion on lung volumes have been well 
documented in previous studies [30–32, 44–47]. Immer-
sion and lying supine both result in a cephalad displace-
ment of the diaphragm and a subsequent reduction in 
lung volumes [30, 48]. Our findings of an increased IRV 
and decreased ERV during immersion are consistent 
with the results reported by Paton and Dahlbäck [30, 31]. 
Furthermore, intrathoracic pooling of blood volume has 
been shown to contribute to the decrease in lung gas vol-
ume [31, 49, 50].

Effect of Immersion on Lung Compliance
The amplitude of the decrease in overall Crs induced 
by head-out-of-water immersion reported here was in 
agreement with data in the literature [32, 33, 40].

This decrease in Crs is the result of a combination of 
three factors: first, the decreased compliance of pulmo-
nary parenchyma, related to the increase in lung blood 
content induced by immersion [31, 50–52], second, the 
decrease in lung volume induced by water immersion 
[53], and third, the increased chest wall elasticity, which 
plays a substantial role in the reduction in lung volume 
upon immersion[33]. The contribution of each compo-
nent probably varied between subjects [44, 45]; it thus 
remains impossible to circumscribe this parameter based 
solely on the measurements presented here. However, the 
strong correlation between the individual decreases in 
ERV and Crs values suggests that the reduction in lung 
volume upon immersion may play a significant role.

Furthermore, immersion causes pulmonary blood 
flow redistribution, but also enlarges VA’/Q’ disparities 
relative to the increasingly uneven distribution of alveo-
lar ventilation and to gas trapping in the airways [31, 
48]. Strong indirect evidence indicates that immersion 
induces similar changes in cardiac and pulmonary blood 
volume [49].

The characteristics of the chest walls and lung paren-
chyma are highly variable between individuals. This 
probably explains why the magnitude of the alterations in 
Crs induced by immersion was so large between subjects 
(min-max, 0.28–1.86 L/kPa).

Effects of Crs Impairment on WOB and IPE Occurrence
Crs impairment results in increased WOB both on 
land [35, 36] and during immersion [30]. In response to 
decreased Crs, enhanced transthoracic depressions are 
required to mobilize gas, resulting in increased WOB. 
This increased WOB favors the occurrence of acute lung 
edema.

Acute pulmonary edema due to increased WOB may 
develop on land, in healthy subjects, in response to a 
high inspiratory effort and the resulting large negative 
intrathoracic and alveolar pressures [37]. An increased 
negative intrathoracic pressure induces dilation of both 
the right atrium and the right ventricle, resulting in a 
drop in right heart pressure. The ensuing increase in 
the pressure gradient between the vena cava and the 
right atrium creates an increase in venous return to the 
right heart [54]. Right ventricular contractility is thus 
improved thanks to the Frank-Starling mechanism [55]. 
The combination of this higher hydrostatic pressure in 
the pulmonary capillary and the lower interstitial pres-
sure in the lung promotes extravasation of fluid from the 
plasma, initially into interstitial tissues and then across 
the alveolar membrane into the alveolar air space [56].

During diving, the mechanisms linking WOB and IPE 
occurrence have already been described [12, 19, 41]: each 
tidal inspiration requires a greater WOB than on land, 
achieved through substantial lowering of thoracic, air-
way and mouth pressures. This increased negative airway 
pressure enhances fluid extravasation from the pulmo-
nary capillaries [9].

As there is a very large interindividual variation in the 
alteration of Crs induced by immersion [30, 33, 34, 40], 
it is not surprising to observe a strong variation in WOB 
between subjects in the same immersion conditions.

Perspectives
Due to its high rate of recurrence, military divers who 
have been hospitalized for IPE are declared medically 
unfit for further scuba diving.

The correlation between lung function alterations 
induced by head-out-of-water immersion and the num-
ber of ULC described in this article is statistically robust. 
Furthermore, we observed significantly lower alterations 
to lung function and ULC counts in non-IPE divers. 
Therefore, it can be hypothesized that pulmonary func-
tion measurements during immersion can predict the 
number of ULCs that will be observed following an apnea 
exercise.

Measurement of immersion-induced alterations to 
ventilatory function and Crs could be a good predictive 
test for the development of IPE. Performing these meas-
urements could help detect subjects with a greater indi-
vidual susceptibility to IPE.

Future studies, including a larger number of divers, 
should allow us to define the threshold Crs value 
beyond which the risk of occurrence of IPE increases 
significantly.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Page 9 of 11Castagna et al. Sports Medicine - Open            (2023) 9:39  

Limitations
To explain the observed link between the decrease in Crs 
and the number of ULC, (via the increase in WOB), we 
relied on previous work. However, in the present study, 
we did not actually verify this parameter. A future study 
combining joint measurements of lung compliance, 
WOB, and the number of ULC will allow us to confirm 
this hypothesis.

We also note that Crs values measured simply on land 
did not correlate with the number of ULCs (p = 0.265). 
Only the head-out-of-water-induced decrease in Crs was. 
Thus, measurement of Crs on land cannot be used to pre-
dict susceptibility to ULC. It is necessary to analyze the 
changes in pulmonary function induced by immersion 
and, in particular, the alteration of Crs.

In addition, we divided the subjects in our study into 
two groups (non-IPE vs. IPE). Although we were careful 
to include only experienced divers with at least 100 dives, 
it is not possible to certify that within the non-IPE group, 
some subjects will not go on to develop a true IPE. There-
fore, the separation of our population into two groups 
was relatively artificial.

The study population was relatively small (18 divers); 
consequently, any conclusions drawn from the results 
will need to be confirmed.

Conclusion
Although more thorough investigations will be required, 
the results from this work do offer several advances. 
WOB is one of the main factors in the occurrence of IPE 
[12, 41], but the causes of the high interindividual varia-
bility observed were not known up to now [19, 41]. Based 
on the results presented here, we hypothesize that the 
interindividual variation in WOB upon immersion is due 
to a similarly large variation in Crs.

Our results confirm the fundamental role of immer-
sion-induced changes in lung function in the occurrence 
of IPE. Indeed, the changes to lung function (decrease in 
ERV, VC, and Crs, accompanied by an increase in IRV) 
induced by head-out-of-water immersion all signifi-
cantly correlated with the number of ULCs (evidence of 
increased EVLW) observed after a snorkeling exercise.

Furthermore, in the face of similar immersion stresses, 
the extent of alterations to ventilatory function and the 
number of ULCs were very different between individu-
als but remained statistically correlated. These param-
eters were significantly greater in divers with a history of 
IPE. This variation in immersion-induced lung function 
impairment could be explained by individual genetic dif-
ferences. Indeed, genetic makeup is known to govern the 
physical properties of the lungs and how they will react 
to immersion, thus contributing to individual susceptibil-
ity to IPE.

Alterations to pulmonary function and, in particu-
lar, to pulmonary compliance induced by head-out-of-
water immersion, through their effects on WOB appear 
to allow the identification of divers with a greater sus-
ceptibility to developing IPE. Measurement of these 
parameters could therefore be proposed as a predictive 
test for the risk of developing IPE.
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