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The human body is not adapted for living under-

water, but mankind’s abilities to invent, create, and 

use  technical equipment allows underwater breath-

ing. The activity of diving started as free diving, where the 

diver’s lung capacity was the limiting factor. In the 18th 

century the invention of the diving suit made it possible to 

supply divers with air from the surface. Although econom-

ically profi table, this invention was disastrous for divers, 

who sometimes suffered from extreme pain, permanent 

paralysis, and occasionally death. These symptoms were 

initially named caisson disease [1] but are now classifi ed as 

decompression sickness (DCS). 

Diving (see Figure 1) involves breathing either pressur-

ized air or a gas mixture consisting of oxygen plus one or 

more inert gas, typically nitrogen or helium. Oxygen is 

transported in blood 99% bound to hemoglobin and is 

metabolized in cellular processes. However, the pressur-

ized inert gas reaches equilibrium with its environment by 

rapid diffusion across the alveoli membrane in the lungs to 

the arterial side of the circulatory system. This gas is trans-

ported in the bloodstream to body tissues, where it accu-

mulates over time [2]. 

During ascent to the surface, the inert gas may come out 

of solution and form gas bubbles, which cause DCS. This 

process is similar to what occurs when the cork is popped 

from a bottle of champagne, where bubbles instantly form 

when the pressure drops. To prevent bubble growth, decom-

pression procedures are performed to allow divers to ascend 

safely from depth. By making controlled stops during the 

ascent to the surface, time is allowed for the blood circula-

tion to wash out the excess inert gas through the lungs, thus 

preventing a pressure drop sufficient to cause significant 

bubble growth. These procedures are calculated by a decom-

pression algorithm, which is implemented either as a precal-

culated table, dive-planning software, or a real-time 

dive-computer algorithm. A decompression procedure is 

used by the diver if the combination of bottom depth and 

time exceeds a no-decompression-limit (NDL). 

The first decompression model, created in 1908 [3], uses 

multiple, parallel tissue compartments with different time 

constants, where first-order linear equations describe 

inert-gas partial pressures. A drop in ambient pressure 

results in supersaturation, which is defined as the ratio 

between the compartment-gas partial pressure and the 

ambient pressure. The decompression procedures are cal-

culated by setting a threshold for acceptable supersatura-

tion at each instant of time. This approach yields a simple, 

analytical solution for how long the diver must remain at 

each decompression stage. Despite more than 100 years of 

decompression research, this model remains the founda-

tion of most current algorithms and tables.

Advances in electronics and computer technology over 

the last few decades have given birth to dive computers. A 

diver carries these small electronic devices during the dive 

and continually measures depth and time spent under 

water. The decompression algorithms used to calculate 

FIGURE 1 Diver in water. Decompression along an anchor line is 

cold, boring, time wasting, and generally undesirable. The objec-

tive of the work presented in this article is to minimize the time 

spent decompressing.
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decompression tables for predive planning are adapted for 

dive computer implementation. The methodology for cal-

culating decompression procedures is simple enough for 

fixed-point arithmetic in low-power, embedded processors. 

Since these algorithms are based on a supersaturation 

threshold, the underlying models use arbitrary stress pre-

dictors, and hence the model outcome itself is not of inter-

est. Furthermore, since the algorithms are benchmarked 

only on their success in preventing DCS, they do not offer a 

quantitative risk assessment. The model parameters are 

empirically tuned to achieve an acceptable risk of the 

binary outcome, namely DCS or no DCS. These statements 

are also true for modern decompression algorithms, such 

as the varying permeability model (VPM) [4] and the 

reduced-gradient bubble model (RGBM) [5]. 

Although more complex gas-separation models are 

available [6]–[8], their practical use is limited by model 

outputs, which are not measurable stress predictors. The 

bubble dynamics model developed in [9] uses the integral 

of bubble volume as a risk function. This model is vali-

dated using logistic regression analysis with an extensive 

database of DCS incidence. However, bubble volume is not 

measurable, resulting in model mechanics that are weakly 

validated by data fitting. A common property of these 

dynamic bubble-formation models is that the calculation of 

decompression procedures is difficult. Since analytical 

solutions are not available for these models, iterative, 

numerical methods that simulate the predicted model 

output are needed. However, no such methodology is 

available, and thus these models are not close to being 

operational for dive-computer implementation. 

The nonlinear, dynamic, dual-phase bubble model 

Copernicus [10] uses venous gas emboli (VGE) as the 

decompression stress predictor. This model is validated 

against measured data using ultrasound imaging and 

Doppler ultrasonic methods to detect vascular gas bubbles 

[11] and is further refined to account for individual differ-

ences and in-dive workload estimates [12]. VGE is cur-

rently the only known quantitative measure of 

decompression stress, and as shown in [13] and [14], VGE is 

a sensitive and reliable risk predictor for DCS, where an 

absence of large numbers of VGE is a strong predictor of 

symptom-free dives. 

For all diving activity, including commercial, recre-

ational, technical, and military, the time spent on decom-

pression is undesirable. A decompression procedure can 

thus be considered to be a compromise between safety and 

time efficiency. The approach described in this article uses 

the Copernicus model to repeatedly solve, using numerical 

methods, the optimal control problem to minimize total 

decompression time. The constraint is a critical limit to the 

post-dive bubble volume as determined by model predic-

tive control (MPC) [15]. MPC was initially developed for 

the chemical process industry and further adopted by the 

biomedical sciences [16], [17]. Optimal control theory is 

used in [18] to analyze ascent rates from a dive under a 

supersaturation model. 

By using a model with a measurable stress predictor as 

the foundation, the predictor can provide additional useful 

information to the diver. The consequence of not following 

the advised profile exactly can be evaluated, for example, 

by observing the extent of bubble-growth constraint viola-

tion after an emergency ascent. Since the Copernicus model 

is individually adaptive and compensates for in-dive work-

load, the calculated decompression profiles take these fac-

tors into account. The purpose of this article is thus to 

present the diving decompression problem as an optimal 

control application. Additional technical issues are studied 

in [19] and [20].

DYNAMIC MODEL

Copernicus is a dual-phase dynamic model of vascular 

gas-bubble formation in divers [10]. Using imaging and 

Doppler methods, the model is fit to ultrasonic measure-

ments of VGE following human dives [11]. The optimal 

control problem is designed to set a threshold for tolerated 

VGE peak, which is considered to be associated with a suf-

ficiently low risk of DCS. The VGE peak can be numerically 

integrated using the dynamic model 
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The input P
#

amb , which is the measured depth change 

response of the diver, is the parameter used to recommend 

control actions in terms of an ascent profile to the diver 

through the user interface of the dive computer. The vector 

w  contains parameters that can be considered as known 

disturbances to the model. The measurement function (4) is 

a scalar output expressing the number of bubbles detected 

in the venous pool over time using ultrasonic image scan-

ning [21]. The parameter cs  is given by [10]

 cs5 r0
3aPamb,surf 112 fN2,air 2 1 2g

r0

2 Pmetab,  (9)

where Pamb,surf  is the ambient pressure at surface, and 

fN2,air5 0.78  is the fraction of nitrogen in air. All other 

parameters of the model are given in Table 1. The model 

has two distinct purposes in a dive computer, namely, to be 

used as a model-based state estimator to find the initializ-

ing parameter vector for the optimal control problem and 

to predict the future response for the optimal control algo-

rithm. Thus, there are some slight differences in how the 

model is interpreted. 

State Estimator
At each time during the dive, the state of the diver is 

updated. Model (2)–(8) is implemented as a state 

observer with DT5 4  s sampling time using Euler inte-

gration, that is, 

 xk115 xk1DTf 1xk, uk, wk 2 .  (10)

However, the state vector is not observable through avail-

able measurements in real time since only the input u  and 

noise w  are measured, and thus the observer must be run 

open loop. Thus, the reliability of the procedure is entirely 

dependent on the accuracy and robustness of the model 

itself. The input u  is measured by a pressure sensor and is 

a result of the diver’s own diving objectives and interpre-

tation of the feedback from the computer. The signal w  

Par. Description Unit Value Refs.

Estimated parameters

et,1 Time constant correction muscles — 0.189 [11] 

et,2 Time constant correction fat — 0.900 [11] 

g Surface tension 1023 N/m 39.0 [11]

Km,1 Measurement gain muscle — 1.079 3 10–5 [11] 

Km,2 Measurement gain fat — 0.6886 3 10–4 [11]

Model coefficients

r0 Initial bubble radius mm 1 [7] 

D
h

Diffusivity mm/min 300 —

ab Blood solubility 1/kPa 1.58 3 1024 [35] 

at,1 Tissue solubility in muscles 1/kPa 2.78 3 1024 [35]

at,2 Tissue solubility in fat 1/kPa 6.4 3 1024 [35]

Pmeta Partial pressure of metabolic gases 1/kPa 17.73 [8]

V1 Tissue volume muscles dm3 28.4 [36] 

V2 Tissue volume fat dm3 11.7 [36] 

V0 Dead volume for detection # bubbles/

cm 2 /min
0.005 —

State space, input, and noise

ri Bubble radius mm — —

pt,i Tissue partial pressure kPa — —

Pamb Ambient pressure kPa — —

fN2
Fraction of nitrogen in breathing gas — — —

v i Blood perfusion 1/min — —

TABLE 1 Overview of the parameters of the Copernicus model. The estimated parameters are a result of the numerical 
parameter estimation in [11], whereas the model coefficients are given in the cited literature. Values for the diffusivity 
D/h and the dead volume for detection V0 are not available. The solubility in muscle tissues at,1  is chosen based on a 
fraction of water and fat content. The state space, input, and noise parameters describing the vectors x , u, and w are 
defined in (7) and(8).
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represents measurable disturbances to the model, namely, 

the fraction fN2
 of nitrogen in the current breathing gas as 

well as the blood perfusion v i  to muscle and fat tissues, 

which can be estimated from heart-rate measurements [12].

Predictor
In the formulation of the optimal control problem we want 

to use model (2)–(8) to predict the output for a given 

decompression procedure defined through the input trajec-

tory of u . Future expectations are required for the blood 

perfusion vi , which is assumed to have a fixed, expected 

value. If the diver has any expectations about the workload 

for the dive, then he or she can manipulate the predicted 

vi . The term fN2
 can change according to scheduled tank 

switches during the dive. A block diagram showing the 

structure of the optimal control problem in conjunction 

with the state observer is given in Figure 2.

As seen from (1), bubble growth r
#
i  is positive for a nega-

tive input u,  hence the output starts growing immediately 

upon ascending. However, in a typical dive, significant 

growth appears after reaching the surface, when positive 

supersaturation in the tissues pt,12 Pamb  and pt,22 Pamb  

keeps r
#
i  positive for a period of time. At some point the 

bubble volume reaches its peak and starts decaying again 

due to the oxygen window [22]. It is this peak we want 

to limit through the formulation of a constrained nonlin-

ear optimization problem. For the input trajectory 

U5 3u0 u1 c un21 4  there exists an output trajectory 

Y 1U, xk 2 5 3y1 y2 c yn 4  given by numerical integration of 

(2)–(8), where xk  is the current state from the observer and 

n is the number of integration steps over the predicted hori-

zon. Consequently, the peak output is given by

 ypeak 1U, xk 2 5max 1Y 1U, xk 22 .  (11)

Optimal Control Formulation
A decompression procedure can be expressed in terms of 

the vector of stop times

 t5 c t1 t2
c    tm d ,  (12)

where m  is the number of stops and ti  is the stop time at the 

pre-defined design-variable stop depth ri , which is a com-

ponent of the stop vector 

 r5 cr1 r2
c rm d ,  (13)
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FIGURE 2 Dive-computer implementation. This diagram illustrates how the model equations (2)–(8) are used for the state estimator and 

model predictive control formulation. The pressure sensor provides the input u  to the estimator, whereas the current selected gas mix 

fN2
 and tissue blood perfusion v i  are treated as components of the model noise w . The signal v i  is explicitly estimated from heart-rate 

measurements through the physiological model. The state vector x  is the parameter vector of the optimization problem. The vector x  

is also provided to the measurement function hm 1x,w 2,  which is used to visualize bubble growth on the computer display for the diver. 

The suggested optimal stop schedule is interpreted by the diver, and the pressure measurement provides feedback for an updated 

model estimate.
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where ri , ri11 . The stop depths are given in meters sea 

water (msw), which is a pressure unit for the equivalent 

depth in sea water. The pressure in water increases by 

approximately 10 kPa for each meter depending on tem-

perature and salinity. Traditionally, intervals of 3 msw are 

chosen for decompression stops, but alternative stop 

regimes are used. For example, Revision 6 of the U.S. Navy 
Diving Manual [23] skips the shallowest stop at 3 msw, a 

practice also known from technical diving, where 100% 

oxygen is commonly used as the final decompression gas at 

6 msw. The combination of t  and r  can explicitly describe 

the input trajectory U  for the prediction horizon. Since we 

want the optimizer t  to be continuous, the integration of 

(2)–(8) is done by keeping nconstant and adjusting DT  to 

achieve the desired horizon. 

Decompression wastes time, costs money, and increases 

the risk of a dive by prolonging it and can thus be consid-

ered as a ”necessary evil” for preventing DCS. Conse-

quently, divers want to minimize the time spent under 

water decompressing. This amount of time is expressed by 

the cost function 

 J 1 t 2 5 a
m

i51

ti.  (14)

Reparameterization of the Decompression
The vector t  represents a staged decompression. According 

to the characteristics of the Copernicus model, the VGE 

peak ypeak 1U, xk 2  is often weakly associated with how the 

decompression time is distributed between the various 

stop depths [11]. The two quantities that dominate the out-

come of a decompression are the total decompression time 

and how deep the schedule starts. Hence, it is advanta-

geous to reparameterize the vector t  to be described by 

these two quantities. 

Additionally, an arbitrary shape generated by t  is not 

wanted from a practical perspective. Divers prefer a predict-

able ascent scheme with as few surprises as possible. Tradi-

tionally, decompression schedules follow an exponentially 

decaying shape due to first-order gas-elimination dynamics. 

This practice is proven to provide safe decompression and is 

popular and convenient to follow by divers. Hence, we aim 

to design an exponential schedule parameterized by the 

total decompression time and onset depth, that is, 

 z5 3ttotal, ronset 4,  (15)

where ttotal  is the total decompression time and ronset  is a 

continuous variable defining the decompression onset 

depth. Alternative shapes that yield smaller ttotal  are possi-

ble [19], however, we do not recommend such untested 

regimes since the data foundation is too weak to extrapo-

late the model domain. The linear ascent from the onset 

depth ronset  to ttotal  can be expressed as the accumulated 

decompression time 

 ta,lin 1r 2 5 apr1 bp,  (16)

where ap5 2 1ttotal/ronset 2  and bp5 ttotal . The desired shape 

is achieved by extending the parameterization with a 

polynomial function described by a curvature parameter 

k,  which gives 

 ta 1r2 5 1

bp
k
1apr1 bp 2 k11.  (17)

The value k5 2 , which enforces a practically convenient 

decompression shape, is used in the examples below. Equa-

tion (16) is plotted for several values of k  in Figure 3, which 

illustrates how the accumulated decompression time is 

given for the discrete stop depth ri . The individual stop 

times are then given by

 ti5 ta 1ri21 2 2 ta 1ri 2 ,  (18)

where r05 0 . Expression (17) explicitly yields the vector t  

in (11), reparameterized by z,  which can describe any 

decompression procedure for practical applications. To 

achieve the desired decompression procedure, a threshold 

for model-based bubble growth is added to the con-

straints. The resulting optimization problem is formu-

lated as 

 V *5min
z

J 1 t 1z22 ,  (19)

subject to

 ttotal $  0,  (20)

 ronset $  0,  (21)

 ypeak 1U 1z 2 , xk 2 #  ythresh ,  (22)

ta

ttotal

κ = 0

κ = 1
κ = 2κ = 3κ = 5

ρ1 ρ2 ρ3 ρ4 ρρonset

ta(ρ), κ = 0

ta(ρ), κ = 2
ta(ρi), κ = 2

κ = 1, 3, 5

FIGURE 3 Two-variable representation of the decompression 

 profile. The profile is explicitly defined by the parameters r onset 

and t total. Equation (16) is illustrated here for several values of k . 

A stepwise procedure at the stop depths in r  is shown for k5 2. 

Note that time is on the vertical axis since accumulated decom-

pression time ta  is a function of ri .
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where V *  is the optimal cost function, ypeak 1z, xk 2  is 

obtained from (10) parameterized by z , and ythresh  is the 

peak value of VGE considered to be adequately safe. The 

problem (19)–(22) can be solved using a numerical optimi-

zation algorithm suitable for nonlinear constrained prob-

lems, where z*  denotes the optimal solution. 

Example 1
All simulation examples use the model parameters given 

in [11], which are repeated in Table 1. To illustrate the 

characteristics of (19)–(22), a dive to 30-msw depth and 

30-min bottom time is simulated to give the initial state 

xk  from (2)–(8). The constraint function (10) is then plot-

ted in terms of z , as illustrated in Figure 4. A tolerable 

VGE peak ythresh5 1.5 is plotted as a transparent plane. 

The optimal solution in this simulation example is found 

to be

 z*5 c ttotal
* ronset

* d 5 c18.2  min 10.7  msw d .  (23)

The time response of this optimal solution is plotted in 

Figure 5. z*  yields t5 311.3 5.23 1.49 0.08 4  for r5 33 6 9 12 4,  
which gives the input trajectory U 1z 2.  The optimal depth 

profile is plotted together with the model- predicted output 

peak, which reaches the threshold ythresh5 1.5 .

TRANSFORMATION TO BOX-CONSTRAINED 

NONLINEAR OPTIMIZATION

To improve computational efficiency, (19)–(22) can be 

transformed to a simpler problem. The nonlinear constraint 

(21), which is always active for feasible decompression 

dives, yields 

 ypeak 1 ttotal, ronset, xk 2 5 ythresh.  (24)

If there exists a decompression procedure, that is, a non-

zero ttotal  for which the equality (23) holds, then the total 

decompression time can be given as a function of the onset 

depth ronset , that is, 

 ttotal5 Jt 1ronset, xk 2 ,  (25)

where Jt  is a transformed cost function found by solving 

the nonlinear equation (24) with respect to ttotal . The func-

tion Jt  requires logic to handle cases where (24) is unsolv-

able, for instance, when the dive is too short to require 

decompression and ythresh  is not reached even with a free 

ascent. Now ronset  can be selected as the transformed opti-

mizer, and the box-constrained nonlinear problem can be 

formalized as 

 Vt
* 1xk 2 5min

ronset  

Jt 1ronset, xk 2 ,  (26)

subject to (20) and (21).

Problem (26) is computationally more efficient than 

(19)–(22) since the computationally demanding model 

predictor is moved from the constraints to the cost func-

tion, leaving only optimizer bounds as constraints. Such 

problems, which are classified as box constrained, can be 

solved with unconstrained optimization solvers, which 

are simpler than methods handling nonlinear con-

straints. The dimension of the optimizer is also reduced 

from 2 to 1. The original optimizer is computed by 

 z*5 3Vt
* 1xk 2 ronset

* 4.  (27)

Computational efficiency can be further improved by 

using a barrier function for the model-predicted constraint 
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[19]. This approach avoids solving the nonlinear equation 

(23) and the logic handling. 

Example 2
Example 1 is now used to demonstrate the transformed 

problem (25). The transformed cost function is plotted in 

Figure 6. The minimum of the curve yields the same solu-

tion as in Example 1. 

SIMULATION RESULTS

Feedback from Heart-rate Measurement
The optimal control law in (25) is solved at each instant of 

time with updated information of uk  and wk . This approach 

of calculating the input is called an MPC problem. To illus-

trate the effect of measurement feedback on MPC, we simu-

late a dive where the workload during decompression is 

higher than anticipated in the predictor. As a baseline we 

use the same 30-msw depth and 30-min bottom time as in 

Example 1, and the results are shown in Table 2. Without 

knowledge about future heart rate, the optimal control 

problem is solved with the predictor using a fixed heart 

rate of 95 beats per minute (b/min). However, the state esti-

mator is continually updated with the current heart-rate 

measurement of 120 b/min to provide an updated state 

vector for the MPC problem throughout the decompres-

sion. The results illustrate how the elevated workload 

during decompression increases nitrogen washout, thereby 

allowing the predictor to try shorter stop times without 

violating the bubble-growth constraint. This lowered par-

tial pressure gradually shortens the next decompression 

stop and, consequently, the total decompression time. 

However, after the first 12-msw stop, we see a slight 

increase from 18.2 min to 18.5 min total decompression 

time because the workload at 12 msw slightly increases 

nitrogen on-gassing at this depth. In total, this elevated 

workload reduces total decompression time from 18.2 min 

to 13.9 min. 

Exposure Scaling
In [24] it is shown that if the combination of 

time and depth is too strenuous, then the 

risk of DCS increases regardless of the 

decompression model used. This study con-

firms the empirical observation that the risk 

of DCS depends on the type of exposure. In 

contrast, most decompression tables and 

computer algorithms are designed to satisfy 

a fixed level of risk. The Haldanian princi-

ple [3] sets a tolerable supersaturation ratio, 

which is refined by using M-values, gradi-

ent factors, free-gas volume, or other instan-

taneous stop criteria. From a theoretical 

perspective it is expected that the proce-

dures from a given model keep the diver at 

a consistent level of risk regardless of exposure. The men-

tioned study indicates that this is not the case. The same 

point was emphasized as early as 1951 when it was stated 

that “. . . there are sharply demarcated limits of perhaps 5 ft 

in diving depth and several thousand feet in altitude ascent 

separating injury from a state of well-being” [25]. 

Evaluating how the required total decompression time 

scales with more strenuous exposures is a relevant bench-

mark for illustrating how various algorithms differ in 

practice for the diver. To maintain a consistent level of 

bubble formation and DCS risk, the decompression time 

required is expected to increase more rapidly for scaling 

exposures than traditional algorithms suggest. To demon-

strate the effect of MPC on this issue, we compare the total 

decompression time of Copernicus with procedures from 

other algorithms, namely, RGBM, VPM-B, and Bühlmann. 

The procedures are calculated using V-Planner [26] and 

GAP [27] software using the configurations RGBM 
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FIGURE 6 The transformed cost function. By forcing the inequality 
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TABLE 2 Results from Example 3. The optimal decompression schedule 
for a dive to 30-msw depth and 30-min bottom time is presented as the 
vector t5 3t1 t2 t3 t4 4 . The result is reoptimized at each depth after 
completion of the planned stop time, and a new vector is presented for the 
upcoming stop depths. The total decompression time t total at each line is 
calculated as the sum of the previous stops and the remaining time after 
reoptimization. t total gradually decreases due to elevated heart rate during 
decompression. Note that the initial solution at 12 msw is identical to the 
solution in Example 1.

Depth ri [msw] Reoptimized schedule t [min] t total [min] ti [min]
30 —  — 30 

12 [11.312, 5.2195, 1.4841, 0.0784] 18.2 0.0784

9 [11.571, 5.3387, 1.5180, 0.0000] 18.5 1.5180

6 [10.933, 5.0430, 0.0000, 0.0000] 17.6 5.0430

3 [7.2336, 0.0000, 0.0000, 0.0000] 13.9 7.2336
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 (nominal), VPM-B (12), and Bühlmann (ZH-L16B GF20/85). 

We initiate the calculation on four exposures, where 

bottom time is fixed for two simulations and depth is fixed 

for the two remaining simulations, and where total decom-

pression time is calculated for a range of depths and 

bottom times, respectively. For Copernicus, a consistent 

VGE peak threshold of ythresh5 1.5  is used. 

The results plotted in figures 7 and 8 show how total 

decompression time increases much faster in Copernicus 

for scaling  exposures. In particular, long bottom times 

appear to be punished significantly by Copernicus. This 

result is coherent with the U.S. Navy’s conclusions as stated 

in the preface of [23], where particularly long and shallow 

air exposures give an unacceptable high risk of DCS. 

DISCUSSION

Decompression of divers is a complex process involving 

bubble formation, as described by nonlinear differential 

equations. There exists no analytical solution to limit 

bubble formation by using state feedback. Since bubble 

growth and DCS onset are delayed events following 

decompression, a feasible approach to designing optimal 

control laws is through an MPC formulation. A natural 

step forward in decompression modeling is to adopt tools 

from modeling and control applications. 

Explicit MPC
While the purpose of this article is to present the basic 

concepts of optimal decompression procedures in the 

context of MPC, it is clear that certain aspects need care-

ful consideration before the procedures can be robustly 

implemented in a typical dive-computer architecture 

constrained by low cost and a minimum number of 

clock cycles to ensure that battery endurance is as high 

as ten years. The use of explicit nonlinear MPC [28] is 

ideally suited for this purpose, where an approximate 

explicit state-feedback law in terms of a piecewise con-

trol law is precomputed and stored in a lookup table for 

efficient online computations. It has been demonstrated 

that optimal decompression procedures for dives down 

to 50 msw and up to 64 min can be implemented with 

online processing of only 20 fixed-point arithmetic 

operations per recalculation, typically every 4 s [20]. 

Using the approach in [29], a lookup table containing 

about 4600 quadratic control laws is precomputed to 

approximate the optimal solution, which means that the 

flash memory of the dive computer is the limiting com-

puter resource. A different solution strategy for the opti-

mal control problem is described in [19], where barrier 

functions are used to efficiently handle cases when no 

feasible solution exists or free ascent is feasible. Consid-

ering the high-volume consumer market for dive com-

puters, it is possibly beneficial to design dedicated 

integrated circuits for the dive-procedure calculations, 

such as ASICs that can implement explicit nonlinear 

MPC control law computations using about 20,000 tran-

sistors [30], in addition to memory, or FPGAs that have 

similar complexity. 

Measurement Sensors
The lack of measurable objective outputs entails challenges 

when developing modeling and control systems. Without 

an adequate model, it is difficult to define a control law 

with known properties. Despite its relevance for DCS being 

disputed, VGE is gaining more acceptance and is widely 

accepted in decompression research as the only objective 

measure of decompression stress. 

Ultrasonic measurement of vascular bubble formation 

has a major weakness in that it cannot be measured during 

the dive or throughout the decompression. The techniques 

are also coarse and do not provide measurements of the 

expansion or compression of bubbles in the periphery, 

which is relevant during the dive. Since techniques are not 
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available for measuring the state vector in real time, it is 

not possible to develop a state observer for bubble forma-

tion in a diver. The accuracy of the model’s predictive con-

trol formulation is limited by the partial open-loop model 

estimate of bubble formation, with feedback only from 

ambient pressure and, possibly, heart beat. 

Efforts are being made to develop techniques for mea-

suring micro bubbles at an early stage, for example, 

dual-frequency ultrasound and optical instruments. 

However, these techniques are not close to being opera-

tional. If it were possible to measure the compression of 

bubble nuclei and the very first expansion during ascent, 

a more accurate feedback state observer, such as an 

extended Kalman filter, could be designed. Also the 

measurement of gas partial pressure in blood and tissue 

would improve observability of the system and provide 

feedback to the state observer. However, there is a simi-

lar lack of operational measurement techniques. A feed-

back observer would greatly improve the accuracy and 

consistency of risk reduction for decompressions calcu-

lated using MPC. 

Practical Implications
Shifting the shape of the decompression procedure to shal-

lower or deeper stops has been extensively tested experi-

mentally, although with mixed results [31]–[34]. The 

concept of deep stops has received considerable interest 

during the last decades both among divers and in the scien-

tific community. The idea was born when Richard Pyle dis-

covered a personal benefit for his dives when he added 

deep stops on top of traditional procedures. This practice 

was picked up by the technical diving community and is 

now incorporated into various practices, which indicates 

that traditional procedures are sometimes inefficient. The 

formulation in this article considers optimal stops, and 

thus modifying the procedures by adding deep stops is not 

needed. Stopping shallower or deeper than the optimal 

depth schedule results in a suboptimal solution. If a more 

conservative procedure is desired, the schedule can be cal-

culated with a lower ythresh.

Another aspect demonstrated by results derived from 

Copernicus is how rapidly total decompression time 

increases with dive exposure. It appears to be a challenge 

to avoid violating the constraint of the optimization prob-

lem for longer and deeper dives. Making the assumption 

that the Copernicus model is valid, the formulation in this 

article defines a consistent stress level, which suggests that 

the decompression algorithms that are compared to Coper-

nicus do not cope with longer and deeper dives in a satis-

factory manner. The present results conclude that there is a 

need for the decompression time scale to be increased far 

more rapidly than anticipated.

CONCLUSIONS

Decompression modeling of divers is a research field that is 

over 100 years old and since the beginning has been studied 

mainly as a clinical and biomedical problem. The topic is 

largely unexplored by the technological sciences using 

methods and theories for modeling and control. This article 

outlines a structure where the process of bubble formation 

is modeled as a nonlinear dynamic model and then used to 

design a state estimator and model-based predictor. Proce-

dures are then calculated using explicit MPC. We further 

discussed dive-computer implementations using approxi-

mate explicit solutions. Finally, we showed practical differ-

ences for divers using computers that implement this 

approach. When future advances in sensor technology are 

made, the present structure can be further developed to 

include more feedback control of the estimator and optimal 

control formulation. 
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