OPTIMIZATION OF DIVING WITH "NITROX" OVER-OXYGENATED BREATHING MIXTURES, TO DEPTHS OF 15 ÷ 50 METRES Mircea DEGERATU*, Simona RUS**, Ana ION***

*Technical University of Civil Engineering Bucharest, Romania, **Diving Center, Constanta, Romania, ***"Mircea cel Bătrân" Naval Academy of Constanta, Romania,

degeratu.mircea@yahoo.com, simona elena rus@yahoo.com, ana ion ana@yahoo.ro

Abstract: The efficiency of diving activities carried out by divers should be increased. Improving the efficiency of interventions made with divers at depths greater than 15m has brought into focus the problem of increasing underwater working time by using over-oxygenated synthetic breathing mixtures in order to optimize the relation between working time and duration of decompression. The "NITROX" binary mixture best meets the requirements of diving at depths within the range of 15 to 50 meters. NITROX is used for depths in the range of 15 to 50 m. When this mixture is used, the decompression time shortens and the respiratory resistance decreases. Therefore, the use of NITROX leads to an improvement in diving efficiency, by increasing underwater working time, and by reducing the decompression time.

Keywords: streamlining of divers interventions, binary synthetic breathing mixtures, immersion depth, diver's breath, inert gas.

1. Introduction

The efficiency of diving activities carried out by divers should be increased. Improvement of the efficiency of interventions with divers, at depths greater than 15m, have brought into focus the problem of increasing the underwater working time, by using over oxygenated synthetic breathing mixtures, in order to optimize the relation between working time and duration of "NITROX" decompression. The binarv breathing mixture is the gas that best meets the requirements of diving at depths within the range of 15 to 50 meters.

The increased safety ensured by the over oxygenated synthetic breathing mixtures, which comprise inert nitrogen gas, drew attention to the need to further research on diving with NITROX, which proved to be superior to breathing mixtures with air.

2. Objectives

The main objectives of the study are: • increasing of diving safety by reducing the DOI: 10.1515/kbo-2015-0113 decompression time;

• raising the divers' level of comfort by means of NITROX mixtures, which are superior to air mixtures since they use binary mixtures with nitrogen inert gas, which has a high partial oxygen pressure; the former types of mixtures have important consequences over divers' activity;

• increasing the diving efficiency as the ratio of underwater working time, and the amount of time necessary for diving, work and decompression; this is a fundamental desideratum for autonomous diving (for which the respiratory mixture reserve is limited) and for surface-supplied gas;

Therefore, we reiterate the main objective of this study: raising the efficiency of divers' interventions, to depths between 15 and 50 meters, using synthetic overoxygenated breathing mixtures by means of nitrogen inert gas, which tends to reduce the ratio of effective working time, and the duration of decompression.

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

666

3. Case Study

For this study we took into consideration eight blends of NITROX mixtures, as follow: 60/40, 50/50, 40/60, 36/64, 32.5 / 67, 32/68, 30/70 and 28/72 (O2 [%] / N2 [%]).

As it can be observed, the concentration of O2 is higher than the concentration of O2 (21%) existing in air, and is between 28% and 60%.

The results of calculations were summarized in the tables below (figure 4, 5, 6, 7).

3.1. Generalities about air breathing mixtures

Normally, air is the gas used for diving in

safe conditions, up to 57 meters.

Air is a natural breathing mixture. It has to be clean, dry and filtered; it does not have to contain any oil, water or other contaminants, above the levels required by professional standards.

If air is used as a breathing mixture at depths greater than 57 meters, divers' lives can be threatened; in returning to surface fatigue problems may arise. It is therefore necessary to adapt the level of decompression, i.e. to stop the diver at different depths levels, for a certain period of time, so as the body gradually can adapt to the atmospheric pressure (to reduce the remaining inert gas bubbles).

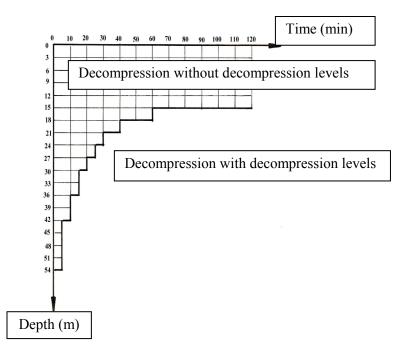


Figure 1: Use of diving air tables depending on depth and duration of dive

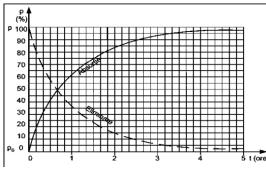


Figure 2: The theoretical curves of absorption and elimination of nitrogen from human tissueThis study intends to contribute to the10% (we are referring to the advantage ofimprovement of diving efficiency by at leastdiving with NITROX over diving with air)

667

using respiratory gas mixtures and specific NITROX decompression tables. Therefore, figure 2 [1, p. II-1] shows the theoretical curves of absorption and elimination of nitrogen from human tissue resulting from the tests.

Decompression is that stage of diving in which the diver returns to the atmospheric pressure.

It is the stage in which the reversible process of releasing the inert gas dissolved in the tissues (desaturation) and its elimination through the lungs takes place.

Desaturation, as can be seen in the figure above (figure 2), is an exponential function which is initiated when the diver starts to ascent towards the decompression site; the desaturation process is interrupted when the diver starts to breath normally.

The decompression speed is given by the rate of elimination of the inert gas dissolved in the body tissues during exposure to pressure.

Figure 3 [1, p. II-10] shows the variation of the partial pressure of inert gas according to time, in a tissue with saturation period H, during decompression in a period of time "t", measured in minutes, in accordance with the partial pressure of the inert gas P_{hgi} .

The desaturation curve is asymptotic to the partial pressure of inert gas, and it stops at a value \leq to the maximum allowable voltage, P_{adm} of inert gas dissolved in the tissue.

In diving with binary over-oxygenated mixtures, a significant decrease in the time needed for diver's return to normal air is observed (table no. 1), as compared to the situation when compressed air is used.

Decompression time is calculated by adding the times for each level listed in the diving tables (irrespective of the mixture used, i.e. air or synthetic mixtures) usually used in the diving process, according to the breathing mixture.

Following this line, the present study will demonstrate that by replacing air with NITROX binary mixtures, at different depths and for different periods of time ($t_s = t_c+t_l$), the decompression stage (t_d) will be shorter, thus improving diving efficiency.

This approach represents a novelty in our country.

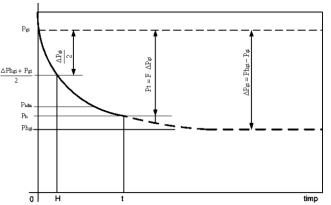


Figure3: Variation of the inert gas partial pressure in a H period tissue, during decompression, for a time "t" measured in minutes

Research has shown that this can stand true for certain diving depths and specific periods of immersion depths and can effectively use certain NITROX mixtures for other diving depths and durations.

3.2. Generalities about "NITROX" overoxygenated breathing mixtures

The divers' gas cylinders are filled with NITROX (used only for this type of mixture); the maximum depth of immersion and the type of respiratory mixture is written on the cylinders. NITROX is used for depths in the range 15 to 50 m. By using this mixture, the decompression time shortens, and the respiratory resistance

decreases.

Therefore, the use of NITROX leads to an improvement of diving efficiency, by increasing the underwater working time, and by reducing decompression.

The purpose of this paper is to study the ways of increasing diving efficiency by using NITROX binary mixtures.

For NITROX dives, special tables are used for decompression; the values in the tables correspond to a depth lower than the real depth; it is called equivalent depth, calculated by formula (1).

Divers can use autonomous open, closed, semi-closed and mixed-circuit devices.

The calculation formula for the equivalent depth is:

$$h_{ech} = h \frac{(p_{N2})_{am}}{(p_{N2})_{air}}$$
(1)

where: h_{ech} = equivalent depth, h = depth of immersion (m), $(p_{N2})_{am}$ = partial pressure of nitrogen in the breathing mixture (bar (sc. abs.)), $(p_{N2})_{air}$ = partial pressure of nitrogen in the air (bar (sc. abs.)).

The partial pressures of nitrogen in the breathing mixture and in the air are calculated with the following relations:

$$(p_{N2})_{am} = (r_{N2})_{am} \cdot p$$
 (2)

$$(\mathbf{p}_{N2})_{air} = (\mathbf{r}_{N2})_{air} \cdot \mathbf{p} \tag{3}$$

where, $(r_{N2})_{am}$ = the volumetric participation of N₂ in the breathing mixture, $(r_{N2})_{aer}$ = volumetric participation of N₂ in the air, p = the pressure corresponding to the depth of immersion [bar (abs. sc.)].

The researchers and engineers working in the CPSA Lab. and Hyperbaric Laboratory, belonging to the Diving Center, an also to University the Technical of Civil Engineering of Bucharest, among others, have made many attempts, over time, in the Hyperbaric Laboratory; here, leaving behind the old decompression process, which took into account the equivalent depth, they specialized calculated diving decompression tables for diving on "NITROX" type breathing mixtures, along with decompression tables for diving on NITROX mixtures under saturation, based on a calculation method similar to the method used to calculate decompression table after diving with compressed air. This new method is more efficient than the method that used the equivalent depth.

Table 1 [3, p. 113] shows a comparison between the over-oxygenated NITROX breathing binary gas mixtures and air during decompression periods.

These mixtures are considered overoxygenated because O_2 has a higher concentration, i.e. 21% (O_2 in air).

100 minute diving at a depth of 30 meters						
Breathing mixture used for decompression	Air	"NITROX" over-oxygenated breathing mixtures 30% O2 40% O2 50% O2				
Total duration of decompression	88,4	45,6 20,8 2,8				

669

 Table 1 Comparison between over-oxygenated "NITROX" and air during decompression periods

 100 minute diving at a depth of 30 meters

A permanent care should be taken concerning the O_2 partial pressure; it should not exceed the toxicity limit.

The breathing mixture should be checked before each dive, so as to correspond to the depth planned; also, the dosage of the synthetic breathing mixture should be correctly adjusted. Using a wrong gas dosage can lead to hypoxya or hyperoxia, i.e. lack of oxygen, or intoxication with oxygen, which may endanger the divers' lives.

3.3. The study

The study involved conducting hundreds of calculations whose results were placed in tables, such as those in fig. 4, 5, 6, 7. They will briefly be presented in the paragraph below.

All research has focused on calculations regarding:

- deepest immersions,

- decompression times (regarding surface ascent) $t_r = t_d$ calculated for different NITROX mixtures, different depths h, and different times of immersion t_s ,

- efficiency of diving with air η_s^{aer} ,

- efficiency of diving with NITROX mixtures $(\eta_s^{am})^{ac}$,

- determination of the values of efficiency $(\Delta \eta)^{\alpha c}$ resulting from diving that used NITROX type over-oxygenated binary

mixtures, as opposed to diving with air. For the present case study 8 types of NITROX mixtures ($O_2[\%]/N_2[\%]$) were considered, as follow: 60/40, 50/50, 40/60, 36/64, 32.5 / 67.5, 32/68, 30/70 and 28/72. Using approximate relationships, calculations were made for values of equivalent depths, at different depths of immersion. The results are summarized synthetically in tables 2.1 ÷ 2.8 (see figure 4 and 5).

Figure 4 and 5: Calculation of the values of equivalent depths, for different depths of immersion

New W20 (LAL)	2.	5.	.5.	<u>.</u>	.5.	.5.	2	.5.
1 5 57 607	" m" " m" pat s s - m" bay"		- m" - m" + m" + + - m" (+)*	" an" (" an" an" is a " key" (b.)"	"(d)"(-) _ / / "(d)"(-) _ (-)	5" 157" 5" 157" (49" 1 1 5" (50)" (b)"	" an" = an" as" + + = = a" a.)"	" 10" " 10" 10" 1 1 C 10" 10"
H MA N N	HIN IN IN IN IN IN IN IN IN	Here has been been been been been been been bee	A B BAR BAR BAR BAR BAR BAR	R R R R R R R R R R	B B B B B B B B B B B B B B B B B B B	and and and and and and and and		H M M M M M M
2 436 3 3	1							
3 639 64 3 3	1							
5 845 6 6								
7 832 9 9								
9 452 9 9								
12 840 84 17 6								
12 636 12 12 13 638 67 13 12	10 11.0 0.01.00.00 12.00 0.01.00.00 0.00 0.	-						
H 472 B B	11.1 0.1 12.1 120.1 12 0.7 12.5 0.20 0.80 0.							
B 4.5 B B				104	100	4		
16 4.76 4.8 18 15 17 4.85 19 19	ता जास संवेचाभ्यक्ष क्ष	्राज्य स्वात्राज्य सम्ब राजे स्वातस्य स्वय स्वय	201 58:000 201 52 64 94 639 694 633	214 14 114 114 11 64 204 657 658 63	343 353 5668 3868 313 64 2344 638 649 68			
U 6M U U								
19 417 X H	स्त्र स्त्र आध्य स्त्र स्त्र स्त्र स्त्र	70 212 Mai 212 Cal Mai 212 Cal Mai 212 Cal		90 2021 5721 1022 5024 1021 6021 6225 6430 643	=====================================	100 1948 2148 1940 1114 1440 441 1947 427 428 409	130 274 263 2674 3664 254 64 3553 672 640 652	
20 030 03 21 33	80 142 24 742 64 22 64 742 644 676 62	70 26 26 26 26 26 26 26 26 26 26 26 26 26 2	मा तथ्य प्रकृत्वका सन्द्र स्थानिक स्थान का	80 10.1 17.0 10.1 10.0 10.1 40.0 40.0 40.0 40.0 40	100 110 120 120 120 120 120 120 120 120 120	20 20 120 200 120 120 120 120 120 120	130 213 213 213 2142 2142 2142 2142 2142 214	
13 555 A 13 13 556 26 21						10	18	120
		গুসৰ লহালৰ সহাজ্য আৰু প্ৰায় আৰু আ						
23 039 10 34 21 38 132 38 34	स्व संबद्ध स्व स्व स्व स		N2 222 202 102 203 63 00 00 07 000	NU 221002 282 00 00 NJ 00 0.5 00	42 33 222 333 340 60 83 660 623 68	ST 27 121 121 121 121 121 121 121 121 121	82 39 122 389 23 69 86 68 63 63	कर्य सर्वज्ञात्र जन्म कर्य स्व
	*	70 10 424 2021124 2002 122 108 000 000 000 000	2	*	100	220		
8 18 11 77 34		20 424 2011224 2021 22 10 60 600 604 60 70 70						
0 10 0 0								
8 19 10 17	*	म सन् अन्त्राप्तन् अस्य प्राप्ते प्राप्तक कर्म कर्म अ		100	712 112 1723 1923 208 13 108 037 048 049	113 413 1023 1713 200 13 2010 657 046 067		
a .u		20 103 140 157 121 121 121 121 121 121 121 121 121 12		18				
	24 4 50 74 54 54 54 59 59	N THE NO. 123 N. 123 N. 100 012 012	414 24/204 114 192 13 183 044 023 01	524 352 824 382 224 12 464 68 638 62				
		20 220 2041220 204 1/2 1/2 7/2 8/2 8/0 6/2 6/2		X8 94 1X8 194 24 14 948 60 6/8 62				
31 120 30 30	204 204 1004 1004 10 12 404 644 64	0 MM 104 MM 102 177 17 74 649 659 66	444 214 204 1714 172 17 804 647 699					
12 125 25 30	त्रव प्रवस्थक स्थव से स्वतन्त्र स्थव		মা নামা চন চন্দ্রী নামা না না না					
3 12 13 3 3	আৰ প্ৰথমৰ আৰ মানাৰাকৰ কৰা ক	हे सने हनेअले प्रति गरी प्रति की की	अने सर्वज्यने एपरे छन्। मही बनी बनी बन					
8 12 8 3	**************************************	70 17 20 70 20 10 10 10 10 10 10 10 10	NU MANA MA 22 LA 754 040 040 04					
8 18 8 8	AND NALESCO DOM SET LA SUM AND AND AN	त् यत्र प्रसंग्रह अस्त यत्र भावन्त का	মা দৰ্মা দৰ্মা হয় বে কাৰবা বৰ বল					
96 138 14 96 33	क्ष सन्त 2011-254 1314 अन्द्र 1-4 2-4 4-4 4-55 43	স গতের সর্যায়ের সর্বায় মেরার্কন করা বহ	શ્રી પ્રદાર અન્ય પ્રદાર પ્રમત છે.2 દન 70ન તેનવે તેમને તેર					
17 LA 10 H	त्र स्वाप्त्र संस्वाध्य स्वास्त	। । । । । । । । । । । । । । । । । । । ।	त्य साहय सा स्वेतास्वास्य स्व	अत्र प्रजासित साथ अत्र रहे अत्र देखें देखें देखें.	2011 201221 101 21 101 01 001 001 00	1001 CALINAL ICA SALISTIS CH CU CU		
N 14 N N	NOT HAT DO LIKE 22 LO HAT COL CH	70 2011 2011 2011 2011 2011 10 403 0.40 0.40 0.00	1011 1211 2201 2211 228 13 738 638 648 658					
N 10 N N		79 20 2014 15 30 2714 2753 264 164 164 664 664 664 66						
60 130 13 62 36		2 962 863 923 724 123 14 84 649 649 64			70	1		
21 198 D 18	x	N 258 708 259 259 249 14 244 531 542 55	7		and solved and real of solved and and	1		
Q 130 Q 39		8 534 764,034 1364 147 147 147 644 64 10 11 147 147 147 147 147 147 147 64						
0 19 18 0 19		N 454 202 84 222 84 222 122 122 123 684 642 69 N		×	80	71		
4 12 5 3	201 BA X01 6A 14 1 23 64 65 6	a en est an set 12 12 23 66 66 68	2 X4 G8 X4 D8 124 L X3 524 54 59	NA 201244 201 2/1 43 03 00 00	and united and 21 1 23 02 00 00	run armana run vi riarien est es		
8 18 8 8 10 4 19 17 4 4		1						
8 17 8 8 8 17 8 8		1						
46 1.77 52 45 10 1.00 1.8 10 45	-	1						
11 110 11 44		1						
U 18 10 U 4		1						
10 100 F 11	1	1						
94 E 194 E 104 S 14		1						

Figure 6: Calculation of the efficiency of diving for different immersion depths

670

Tabe	447								
	Nitrax 30/70 (O ₂ /N ₂)		0,04)	5 Jacol	1. Intel	in the second se	t, jacij	L Indi	1 Inii
A.	1	Σţ)" (55")"	$ \begin{array}{c} c^{\mu\nu} & c^{\mu\nu})^{\mu\nu} & c^{\mu\nu} & c^{\mu\nu})^{\mu\nu} & (10)^{\mu\nu} & 1_{\mu} & c^{\mu\nu} & (c^{\mu\nu})^{\mu\nu} & (b_{\mu})^{\mu\nu} \\ \hline c^{\mu\mu} & [aaa] \\ \hline c^{\mu\nu} & c^{\mu\nu})^{\mu\nu} & (c^{\mu\nu})^{\mu\nu} & (c^{\mu\nu})^{\mu\nu} & (c^{\mu\nu})^{\mu\nu} & (c^{\mu\nu})^{\mu\nu} & (c^{\mu\nu})^{\mu\nu} & (c^{\mu\nu})^{\mu\nu} \\ \hline c^{\mu\nu} & [aaa] & [aaaa] & [aaaa] & [aaaa] & [aaaa] & [aaaa] & [aaaaa] & [aaaaaa]$		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	다" ((**)* (** ((**)* (20*), 1, 1, (** (**)* (bi))* (***) (***) (***) (***) (***) (***) (***) (***) (***) (***) (***) (***) (***) (***) (***) (***) (***) (***) (***)	다" ((가) ²⁰ (가 ((가) ²⁰ (0) ²⁰ ()) (((((((((((((((((((((((((((((((1 ⁴⁴ (1 ⁴⁴) ⁴⁴
3	105	v	24	60 33.4 34.4 95.4 84.4 11 1.8 59.8 0.62 0.76 01		30 7 48년 362 128년 11552 132 1.0 798 0.61 0.68 0.67			110 82,2 62,2 192,2 172,2 20,0 1,0 599,0 0,57 0,60 0,67
26	108 1	1 0	24	6	x	84 94 95 1284 126 126 126 107 108 000 000 000 000 000 000 000 000 000	90	300	110
v	111	v	24	60 35.4 24.4 95.4 84.4 131 1.3 56.9 662 6.70 60	70 38 42.4 30.2 112.4 390.2 12.2 1.1 66.9 0.65 0.69 0.6	80 7 48-4 56-2 129-4 126-2 13-2 1.1 76-9 0.61 0.66 0.67	90 7 62.4 42.2 151.4 152.2 19.2 1.3 88.9 0.59 0.67 40	300 8 72.2 52.2 172.2 152.2 38.0 1.1 96.9 6.57 0.65 0.00	110
28	134	х	v	70 2228 6.4 9238 76.4 16.4 11, 66.9 0.74 0.96 0.2	50 26 33.6 15.4 113.6 96.4 17.2 1.1 76.9 0.69 0.82 0.	90 2 43.6 24.4 135.6 124.4 29.2 1.1 10.9 4.67 6.76 0.11	100 1 52.6 30.2 152.6 130.2 22.4 1.1 94.5 0.65 0.76 4.		
29	117	ю	n	70 22.8 6.4 52.8 76.4 16.4 1.2 66.8 0.74 0.96 62	80 34 33.4 16.4 113.6 96.4 17.3 1.2 78.8 0.69 0.82 0.3	30 2 43.6 24.4 133.6 134.4 39.2 1.2 18.8 4.66 0.76 0.11	308 1 52.4 30.3 152.6 130.2 22.4 1.2 94.8 0.65 0.76 4	3	
30	1.29 1	2 30	v	70 22.8 6.4 92.8 76.4 16.4 1.2 68.8 0.74 0.96 0.1	50 26 33.6 16.4 123.6 96.4 17.3 1.2 76.8 0.69 0.82 0.5	90 2 43.6 24.4 233.6 254.4 29.2 1.2 88.9 0.66 0.76 0.11	100 1 52.6 30.2 152.6 130.2 22.4 1.2 91.8 0.60 0.76 0.	2	
31	123	33	30	70 78:4 52:6 148:6 122:6 14 1.2 46.4 0.89 0.56 0.1	80 87 84.86 67.47.364.86 147.46 17.21 1.21 78.86 0.448 0.559 0.64	90 6 96.6] 81.4]188.6 171.4] 172 1.2 88.8 6.4.7 0.52 0.05	8	1	
22	125	33	50	70 764 524 1464 1224 13 13 642 648 659 61	80 87 84.66 67.46 364.66 367.46 17.26 17.26 17.26 0.46 0.53 0.60	90 94.6] 81.4] 338.6] 37.4] 37.2] 1.3] 36.7] 6.52] 6.65	5		
33	139 1	3 33	30	70 70.6 52.8 140.6 122.9 14 1.9 68.7 0.89 0.59 0.	80 87 84.6[67.4] 364.6[367.4] 37.2[1.3] 78.7[0.48] 0.55[0.0	30 94.6 31.4 33.4 37.4 37.2 1.5 38.7 4.47 6.52 6.05			
м	132	36	н	60 66.8 50.6 136.0 130.6 16.2 1.4 56.6 0.44 0.53 00	70 87 85.8 78.6 255.9 548.6 55.2 1.4 68.6 0.44 0.49 0.0	80 5 501.8 54.6 101.8 154.6 172 1.4 76.6 0.43 0.44 0.07	8		
35	135	3	33	60 66.8 50.6 126.0 120.6 15.0 1.4 50.6 0.46 0.53 0.	70 87 85.8 78.6 155.8 148.6 15.2 1.4 68.6 0.44 0.49 0.0	80 5 501.8] 84.6] 131.8] 364.6] 37.7] 1.4] 71.6] 0.43] 0.44] 0.05	5		
ж	138 1	A 36	33	00 66.0 50.6 126.0 130.0 16.2 1.4 50.6 0.44 0.53 01	70 87 85.8 78.6 135.8 348.6 15.2 1.4 68.6 0.44 0.49 0.0	80 5 501.8 54.6 101.8 164.6 172 1.4 70.6 0.43 0.44 0.05			
37	14	39	33	30 27.2 15.0 57.2 45 12.2 1.5 28.5 6.50 6.61 6.1	40 24 45.0 29.4 85.0 68.0 25.7 1.5 38.5 0.45 0.55 0.5	50 57.0 42.0 107.0 102.0 14.2 14.2 14.5 0.52 0.05	60 7 79:0 50:6 139:0 130:1 28:4 1.5 58:5 0.42 0.55 0.	70 3 381.4 70.6 171.4 140.6 51.7 1.5 68.5 0.46 0.49 0.09	80 138.8 67.4 199.8 147.4 52.4 1.5 78.5 0.39 0.55 0.34

Figure 7: Optimization of diving efficiency (see and figure 6)

In the case of diving with open-circuit breathing apparatus, using NITROX type over-oxygenated binary mixtures, the recommended maximum partial pressure of oxygen in the mixture, p_{O2max} , should be between 1.4 and 1.6 bar; the value of 1, 4 bar is recommended for amateur diving.

In our application, for professional diving, the upper limit of oxygen partial pressure $p_{o_2}^{max} = 1,5$ bara was selected (toxicity limit). For this value table 2 shows the maximum depth of immersion h_{max} for different NITROX type breathing mixtures.

Table 2 The maximum depth for diving with different "NITROX" types mixtures

The maximum depth h_{max} [m] for $p_{o_2}^{max} = 1.5$ bara (bara = bar in absolute scale)									
	$NITROX (O_2 / N_2)$								
50 / 50	40 / 60	36 / 64	32.5 / 67.5	32 / 68	30 / 70	28 / 72			
20	27	31	36	36	40	43			

671

In this paper, the method of the equivalent depth was used, and initially, the depth correction calculation based on an approximate relation was made; after that, the depth corrections were also carried out with a real calculation relation.

To calculate the tables through the equivalent depth method, we started from the tables (LH82) for diving with air; the calculation was carried out in the Hyperbaric Laboratory; such calculations are common activities of the Diving Center. As aforementioned, this approach is new, its result showing that a special type of NITROX mixture will be used for diving at certain depths, while for the other ranges of diving and duration, compressed air will be used.

The approximate calculus relations are:

$$(h_{c,e}^{am-aer})^{ac} = h \cdot \frac{p_{N_2}^{am}}{p_{N_2}^{aer}}$$
(4)

$$(h_{c,e,3}^{am-aer})^{ac} = (h_{c,e}^{am-aer})^{ac} + (0...3)$$
(5)

The calculus relations are:

$$(\eta_s^{am})^{ac} = \frac{t_l}{(t_t^{am})^{ac}},\tag{6}$$

$$\eta_s^{aer} = \frac{t_l}{t_t^{aer}},\tag{7}$$

$$(\Delta \eta)^{ac} = (\eta_s^{am})^{ac} - \eta_s^{aer}.$$
(8)

3.4. Optimization of diving activities using NITROX type breathing mixtures

The study involved conducting hundreds of calculations and placing the results in tables such as those presented in figure 4, 5, 6 and 7.

Starting from the tables 3.7 simplifications were made with the aim of increasing the efficiency of diving with NITROX binary mixtures, for different depths of immersion, and there has resulted figure 7 (shown in the above 4.7 table) as a synthesis on $(\Delta \eta_s)^{ac}$

optimization.

What we had in view throughout the study was the partial pressure of oxygen in NITROX type mixtures; the pressure was not allowed to exceed 1.5 bar (toxicity limit - see § 3.3), and the total dive time (t_t) was not allowed to exceed the time limit exposure to different oxygen partial pressures in NITROX breathing mixtures. The O₂ partial pressure of 1.5 bar did not exceed 1,5 bar; this value was considered when the specific calculations were made for professional divers'.

From tables $3.1 \div 3.8$ simplifications were made, having in view the increase of the efficiency of diving with NITROX type binary mixtures, for different depths of immersion. The result (on $\Delta\eta_s$ optimization) can be seen in synthesis table (these tables are not presented in present paper).

What the authors have had in view throughout the study was that the partial pressure of the oxygen in the NITROX type mixtures be no higher than 1.5 bar (see § 3.2) and the total diving time (t_t) not exceed the exposure time limit to different oxygen partial pressures of the oxygen contained in the NITROX type breathing mixtures. The partial pressure of O₂ did not exceed the value of 1.5 bar, which is the reference value taken into consideration in professional divers underwater work.

4. Comments and conclusions

New opportunities have been revealed with regard to immersion, which led to the desire of a continuous improvement of techniques in diving activities. This paper has established at what depths and underwater working time can this method of using NITROX type breathing apparatus be applied for open circuit diving apparatus, so that the diving efficiency can have a significant effect.

The present study focused on the calculation of the diving depth limit, of decompression time ($t_d = t_r$) calculated for air, and for the eight types of NITROX binary mixtures studied, for different working depths (h), as well as for different immersion times t_{s_s} so as to determine a significant increase of diving.

In the end, we determined the values of the increase in efficiency $(\Delta \eta)^{ac}$ resulting from the unitary diving with open - circuit breathing apparatuses that used synthetic, binary, and over-oxygenated breathing mixtures, of NITROX type, against the use of compressed air as a natural breathing mixture. For this, the efficiency of diving with air η_s^{aer} , along with that of diving with NITROX type binary mixtures $(\eta_s^{am})^{ac}$ were calculated; all these results were shown in tables, devised for this purpose (see figure 7). These tables showed what types of diving would increase the efficiency by at least 8%. The results of all these calculations were noted in tables, and summarized in the paper's figures 4, 5, 6, and 7.

Bibliography

- [1] Degeratu, Mircea, Petru, Aron, Georgescu, Ștefan, Ioniță, Sergiu, *Tehnologii hiperbare pentru scufundări unitare și în saturație*, MATRIX ROM Publishing House, Bucharest, 2008.
- [2] Manualul de Instruție al Scafandrului, FN 22/6, 2010.
- [3] Norme privind pregătirea, organizarea și protecția muncii în activitatea de scufundare, FN 1995, published by the General Staff of the Navy, in *Official Gazette*, MO no. 272 from 23.11.1995.
- [4] Petru, Aron, Degeratu, Mircea, Ioniță, Sergiu, *Ghidul scafandrului autonom*, OLIMP PRESS Publishing House, Bucharest, 1992.