APPLIED PHYSICS LETTERS 104, 000000(2014)

$_{\rm 1}$ Improvement of micro-bubble sizing using multi-harmonic excitations under ² the transducer bandwidth constraint

- 3 Damien Fouan, 1 Younes Achaoui, 2 and Serge Mensah 2 4
	- ¹BF SYSTEMES, Technopole de la Mer, 229 chemin de la Farlède, 83500 La Seyne-sur-Mer, France
	- ²Laboratoire de Mecaniqueet d'Acoustique, Universite d'Aix-Marseille and CNRS,31 chemin JosephAiguier,
- 6 13420Marseille, France

5

⁷ (Received 22October 2013; accepted15 January2014; published online xx xx xxxx)

 A microbubble sizing method basedon the useof the odd harmonics of square-like excitations is presented. The microbubble resonance signature is determined by measuring the backscattered signals using the Dual Frequency Method combined with a time-frequency representation. The efficiency and the limitations of this method are describedin the caseof sine-like excitations. It is then established that the harmonics of square-like excitations can be usedto significantly enlarge the range of microbubble detection and sizing. These findings were confirmed and explained 14 by theoretical studies on microbubble dynamics basedon the Keller-Miksis formulation. \sqrt{v} 2014

¹⁵ AIP PublishingLLC.[http://dx.doi.org/10.1063/1.4868654]

 Measuring microbubbles' size distributions in multipha- sic media is still a crucial issuein fields suchasoceanology, biology, medicine, and industry (nuclear reactors). During exposure to hyperbaric decompression as in diving and hyperbaric medical procedures, both the absolute ambient and the absolute inspired pressures decreaseand small bub- bles (10–700 lm)¹ may develop from pre-existing gas nuclei (0.1–5lm) presentin tissue.² Thesemicro-bubbles constitute a potential risk to subjects such as divers³ and astronauts,⁴ since they can result in severediseasessuch asjoint pain and neurological manifestations.⁵ Information about the size, density, and at least the existence of bubbles in liquids and solids are usually processedusing optical or acoustical meth- ods. Although photographic and holographic methods give high-resolution images, they are uselessin the caseof opa- que media where acoustical methods are therefore more suitable.

 Several methods of detecting, sizing, and estimating bubble populations have beendeveloped during the last four decades in order to prevent decompression sickness. For example, the presence of micro-bubbles can be detected 37 using the classical B-mode imaging method⁶ or with the 38 widely used Doppler systems.⁷ The latter systems can be used to clearly distinguish the signals backscattered by sta- tionary tissues and microbubbles circulating in blood. However, they can be applied exclusively to bubbles in 42 motion, and these methods provide no information about the bubble size. In addition, Doppler signals require a trained ear to interpret even approximately the amount of bubbles pass-45 ing through the right ventricle.

 In 1985, Chapelon et al. developed the Dual Frequency 47 Ultrasound Method basedon the simultaneous insonification of low and high frequency ultrasound waves.⁸ A frequency modulation is applied to the low frequency (LF) wave, the spectral band of which covers the resonancefrequency range of the bubble to be sized. The high frequency backscattered wave is modulated by the microbubble cross-section, the am- plitude of which increases when the bubble is resonating. The micro-bubble radius can therefore be calculated by 55 applying Minnaert's formula.⁹ This approach has proved to

be efficient when applied to stationary bubbles in tissues. $10,11$ 56 In the case of moving bubbles in blood, the range of radii 57 involved is known to be much larger. For this technique to ⁵⁸ be applicable to circulating bubbles, the following require- ⁵⁹ ment hasto be fulfilled. The contract of the c

The measurementsshould be performed within a very ⁶¹ short time. The time during which microbubbles can be 62 assumed to pass through the acoustical field has been esti- 63 mated at 20 to 50 ms, depending on the stage in the cardiac 64 cycle.¹² These measurementstherefore have to take less than 65 10ms. This makes it possible to average successive ⁶⁶ responsesoriginating from the samebubble. Previous studies 67 on the Dual Frequency Method have not dealt with practical 68 issues of this kind, since they focused on the feasibility of 69 the method on almost stationary bubbles. In this Letter, we ⁷⁰ extend the use of the Dual Frequency Method to a larger 71 range of bubble radii, thanks to the use of non-sinusoidal ⁷² excitations. Since bubbles are sensitive to both the funda- ⁷³ mental component and the excited harmonics, the use of suit- 74 ably chosen chirped non-sinusoidal excitations adapted to ⁷⁵ the transducer bandwidth makes it possible to characterize a 76 large population of microbubbles passing through the right 77 ventricular. 78

Since the mass density of water and blood are almost 79 identical, and dumping due to viscosity does not affect the 80 resonance frequency in the case of large bubbles, $13,14$ the 81 experiments described in this paper were performed in water. 82 We therefore useda 2 m 3 m water tank in order to reduce 83 standing wave effects. Micro-bubbles ranging between ⁸⁴ 20 Im and 200 Im in size were produced in this tank by a 85 hydrojet (Braun OralB). A thin wire was placed on the path 86 of the rising bubbles, and measurementswere performed on 87 a single tethered bubble (Figure $1(a)$). Using this simple 88 method, several measurementswere carried out under practi- 89 cally the same conditions and compared. The micro-bubble 90 radius was assumedto be constant during the 100-ms dura- ⁹¹ tion of the measurement.The acoustically characterized bub- ⁹² bles were monitored optically at the same time by means of 93 a CCD camera. The acoustic measurements were performed 94 using three confocused transducers. The first transducer

000000-2 Fouan, Achaoui, and Mensah Appl. Phys. Lett. 104, 000000 (2014)

FIG. 1. (a) A 81-lm bubble photographed with a CCD camera,(b) TF spectrogram of the imaged bubble, and (c) averagecross section of the ten measurementscalculated from the TF spectrogram.

96 radiated the LF pumping wave (Ultran, GMP 50 kHz; [35–70] kHz bandwidth), and the other two were responsible for the emission and reception of the imaging wave (Imasonic, 1MHz, f ¼90 mm). The two emitting transducers were connectedto an arbitrary waveform generator(LeCroy, ArbStudio 1104, four channels). The receiving transducer was connected to an oscilloscope (Agilent Technologies, Infini-iVision DSO5014A,100MHz).

 Since the exact size of the microbubble to be character- ized was assumedto be unknown, the consecutive pumping 106 waves were replaced by sweepsin order to size bubbles with a radius ranging between55lm and 110lm in radius. The corresponding resonance frequencies amounted to 60 and 30kHz, respectively. The imaging wave wascontinuous, and 110 its frequency f_i was kept at 1 MHz. The transmitted acoustic 111 power applied should be as low as possible, especially at low frequencies, in order to avoid newly developing microbub- bles from cavitation and biological damagefrom occurring in saturated media.¹⁴ The voltage of both signals was there- fore set at 12V pp, resulting in pressurelevels of 10kPa and 500Pa at the focal point in the case of high and low fre- quency waves, respectively. Automated recordings proc- essed10 sweepsat a time, and the results were displayed in 119 a Time-Frequency (TF)-diagram (Figure $1(b)$). It is worth noting that the chirp rate depended on the length of the sweep. As explained below, this slope is one of the key pa- rameters for obtaining accurate microbubble sizes. In the 123 TF-diagram (Figure $1(b)$), the maximum amplitude of the backscattered modulated waves was observed at 160.0395 MHz. The exactsizeof the tetheredmicrobubbles was determined by averaging the TF-profiles and applying 127 the Minneart formula (Figure $1(c)$). The correspondence between the acoustical and optical data is presented in 129 Figure $1(c)$, taking the 2.3-lm optical resolution of the cam-erainto account.

 Several measurementswere then performed in order to 132 determine the signal to-noise-ratio of broadband excitations versusthe time sweepduration. The resulting signal-to-noise ratios obtained on 5 different bubbles with sizes of around 80-lm measured 8 times each are presented in Figure 2. With the bubblesunderinvestigation, the effects of the chirp rate were found to be negligible at frequencies of less than 138 5kHz/ms. Beyond 25 kHz/ms, the detection became practi-139 cally impossible since we reached the noise level. Between these two values, the signal magnitude lost around 1 dB ev- 140 ery 3.5kHz/ms. In order to identify a broad rangeof bubble ¹⁴¹ AQ1 radii in the right ventricle within the time dependingon, the 142 sine-like method of excitation is no longer suitable since vo- 143 luminous bubbles take a longer time to oscillate. It was ¹⁴⁴ therefore proposed to compare the casesof two bubbles dif- ¹⁴⁵ fering significantly in size (62 lm and 15 lm) under the ¹⁴⁶ sine-like and square-like conditions of excitation.

For this purpose, simulations were performed omitting ¹⁴⁸ the transducerbandwidth information with a view to describ- ¹⁴⁹ ing the bubbles' dynamics. Time-dependent changes in the 150 bubble radius were then calculated using the Keller-Miksis ¹⁵¹ equation combined with thermal damping terms based on ¹⁵² Eller's model. $15,16$ The dynamic responseof the 62-lm bub- 153 ble excited by asine-like [10–300kHz]-chirped signal is pre- ¹⁵⁴ sented in Figures $3(a)$ and $3(b)$ where it can be seen that the 155 maximum energy of about 2% corresponds to a resonance ¹⁵⁶ frequency of approximately 52kHz. The signature of the ¹⁵⁷ bubble's non-linearity can also be identified at twice the ¹⁵⁸ component resonance frequency (Figure $3(a)$). The square- 159 like [10–90kHz]-chirped signal subsequently applied in ¹⁶⁰ order to make comparisons with the former caseis presented ¹⁶¹ in the form of three sine-like signals, namely, [10–90kHz], ¹⁶² [30–270kHz], and [50–450kHz], taking the corresponding 163 Fourier coefficients into account (Figures $3(c)$ and $3(d)$). The 164 TF-diagram in Figure $3(c)$ shows the enhancement of both 165

FIG. 2. Signal to noise ratio of the classical method versus TF sweepslope.

000000-3 Fouan, Achaoui, and Mensah Appl. Phys. Lett. 104, 000000 (2014)

FIG. 3. (a) Theoretical TF diagram obtainedwith the 62-lm-bubble using a[10–300kHz]-sine-like chirp. (b) Time-dependantbubble responsecorresponding to (a). (c) and (d) asin (a) and (b) in the caseof [10–90kHz]-square-like excitation. (e), (f), (g), and (h) are, respectively, the exact equivalent of (a), (b), (c), and (d), respectively, in the caseof a 15-lm-bubble. The white arrows indicate the secondharmonic due to the non-linearity of the bubble in order to avoid any confusion with the excitations harmonics. In all the theoretical part, the pressurevalue wassetto 500Pa.

166 the fundamental dynamic response of the bubble and the sec-167 ond harmonic due to non-linearity. The time related changes 168 in the radius variation in Figure $3(d)$ faithfully reflect the ¹⁶⁹ amplification of the resonanceby a factor of almost two. In ¹⁷⁰ addition, the strategy presented here gives the multiple ¹⁷¹ detection from the third harmonic in the [30–270kHz] fre-172 quency range and more imperceptibly, the fifth harmonic ¹⁷³ [50–450kHz]. Simulations of sine-like and square-like exci-¹⁷⁴ tations applied to tiny bubbles are presented in Figures 175 $3(e)-3(h)$. As in the previous case, the TF-diagrams clearly 176 show the resonance frequency of such bubble around ¹⁷⁷ 210kHz under both sine-like and square-like excitation. 178 Although the detection can be monitored by the third and ¹⁷⁹ fifth harmonics of the square-like signal, the sine-like signal 180 is more suitable for thesetiny bubbles, since the fundamental ¹⁸¹ of the square-like excitation cannotreachthis frequency.

 In order to specify the rangesin which eachexcitation is suitable, we performed a series of simulations of a number 184 of bubbles ranging from 5 lm to 150 lm in size. Figure $4(a)$ gives the relative changesversus the radius under both sine- like and squarelike excitations for the sake of comparison. Theseresults show that below radii of 20lm, the sine-like excitation describes the dynamics of the bubble better than the third and fifth harmonics (below 12lm) of the square- like excitation. This is obviously due to the Fourier coeffi- cients. However, becauseof the low chirp rate, the detection of voluminous bubbles is noticeably enhanced.Since the lat- ter bubbles are more dangerous during decompression sick- ness, the priority of the method is to detect these microbubbles accurately. In more concrete situations where the transducer bandwidth and the noise level are inevitable

and therefore have to be taken on board, a suitable choice of ¹⁹⁷ swept square signal would result on the detection of further 198 tiny bubbles. As shown in Figure $4(b)$, tiny bubbles are eas- 199 ily detectable since their resonance frequency falls within 200 the 250kHz-transducer bandwidth. In addition, large bubbles ²⁰¹ whose the frequency resonance lied outside the transducer 202 bandwidth were quite detectable. 203

Based on these theoretical results, tethered or moving ²⁰⁴ bubbleswill predictably vibrate under the Fourier harmonics ²⁰⁵

FIG. 4. Maximum amplitude recorded from the time bubble responseversus the bubble radius using the [10–300kHz]-sine-like (blue cross) and [10–90kHz]-square-like (green plus) excitations, (a) without and (b) taking into account the 250kHz-transducer bandwidth. The red and black lines representthe exact 250kHz-transducer bandwidth and the noise level estimated in the experiments, respectively. The figure was colored to highlight which harmonic takes the control of the process when using the [10–90kHz] square-like signal.

000000-4 Fouan, Achaoui, and Mensah Appl. Phys. Lett. 104, 000000 (2014)

FIG. 5. (a) Experimental TF-diagram obtained for the 62-lm-bubble using the [10–90kHz]-square-like excitation using the 250kHz-transducer. (b) Average cross section of the ten measurements calculated from the TF-diagram. The blue, red, and green lines represent the fundamental, the third, and the fifth harmonics, respectively. (c) and (d) as (a) and (b) in the case15-lm-bubble.

 of a non-sinusoidal periodic signal aslong asthey communi- cate enough energy. We therefore carried out experimental investigations on the two former bubble radii, namely, 62- lm and 15-lm bubbles under square-like excitations using the 250kHz-transducer [200–300] kHz bandwidth. In the 211 TF-diagram presented in Figure $5(a)$, the fundamental slope can be observed near the resonance frequency. The reso- nance frequency of the 62-lm-tethered bubble was deter- mined by averaging the TF-profiles (Figure $5(b)$: the blue, red, and green lines represent the fundamental, the third and fifth harmonics, respectively). Becauseof the low values of the Fourier coefficients and the weak electromechanical con- version by the transducer near the resonance frequency (52kHz), the bubble could not be distinguished from the noise level (red andgreenlines). However, the insonification of the 15-lm-tethered bubble gave no responsesin the fun- damental sweep(blue line) since the resonancefrequency of the bubble is out of it. The third and fifth harmonics, there- fore, took the control of the process (red and green lines, respectively). The frequency corresponding to theseresonan- ces was 208kHz, which corresponds to a 15.4-lm resonant ²²⁷ bubble.

 Lastly, 26 measurementswere conducted on a 78-lm bubble dissolving in undersaturatedwater during the well- known natural diffusion process.¹⁷ Figure 5, which summa- rizes this process,showsthat the bubble could be sized down to a radius of 9lm. Thesemeasurementswere performed in two steps.Measurementsbasedon sine-like excitations were first performed using the 50-kHz transducer, taking advant- age of its bandwidth while exciting the bubble with the [10–90kHz] chirped signal used. Values marked with blue starsdescribing the evolution of the bubble diffusion process were used as reference values. The 50-kHz transducer was

FIG. 6. Characterization of a 78-lm bubble diffusion process,taking full advantage of the [10–90kHz]-square-like excitation (red pluses) using a 250kHz-transducer. The blue stars give the reference values obtained using the [10–150kHz]-sine-like chirped waveradiatedby a 50-kHz transducer.

then replaced by the 250-kHz one and measurementswere ²³⁹ carried out with [10–90kHz]-square-like signals. It is worth ²⁴⁰ noting that the values recorded between 15 and 85 nm] ²⁴¹ AQ2 match the reference values quasi-perfectly. In addition, the ²⁴² micro-bubble could still besizedup to aradius of 98nm, and ²⁴³ the final size detected correspondedto a 9-lm-bubble. The ²⁴⁴ two discrepancies observed at around 5 and 95min were due ²⁴⁵ to the noise and to the lower and upper limits of the ²⁴⁶ [10–90kHz] excitation, respectively. ²⁴⁷

In conclusion, square-like excitations can be used to size 248 microbubbles using the Dual Frequency Method and time- ²⁴⁹ frequency diagrams in a wide range of radii. This extension ²⁵⁰ of the method wasmadepossible by lowering the fundamen- ²⁵¹ tal component chirp rate in order to cope with the inertia ²⁵² associated with large bubbles. The odd harmonics make it ²⁵³ possible to deliver at the sametime a suitable level of energy ²⁵⁴ for exciting down to six times smaller bubbles. Theseresults ²⁵⁵ can be improved by carefully taking the transducer band- ²⁵⁶ width into account, using non-linear frequency sweepssuch 257 asexponential modulations (Figure 6). ²⁵⁸ AQ3

This work was partly supported by the French Research ²⁵⁹ Ministry under the Smart US project, Ref. ANR-10-BLAN- ²⁶⁰ 0311, the Provence-Alpes-Cote-d'Azur Council, in the 261 framework of the Comedies project, the PACA Cancerople ²⁶² and the French Ministry of Defense under the BORA ²⁶³ project. 264

- 4 B. A. Hills and B. D. Butler, UnderseaBiomed. Res.8(3), 163 (1981). 266 $\overline{\rm AQ5}$
²T. R. Hennessy in International Symposium on Supersaturation and 267 $2T$. R. Hennessy, in International Symposium on Supersaturation and 267 Bubbles Formation in Fluid-Sand Organism (1989). 268
³R D Vann, E.K. Butler, S. J Mitchell, and R. E. Moon, The Lancet 377, 269
- 3 R. D. Vann, F. K. Butler, S. J. Mitchell, and R. E. Moon, The Lancet 377, 269
153–164 (2011) 270 153–164 (2011).
R. Y. Nishi and and P. J. Sullivan. in First Panel on U.S./Japan Diving ?71
- 4 R. Y. Nishi and and P. J. Sullivan, in First Panel on U.S./JapanDiving Physiology, Technology and AerospaceMedicine (UJNR) (2000). 272

⁵T. J. Francis and S. J. Mitchell, Pathophysiology of Decompression 273 Sickness(Elsevier, 2004), pp. 165–183. ²⁷⁴ AQ4

- 6 O. S. Eftedal and A. O. Brubakk, Med. Biol. Eng. Comput. 31, 627–633 275
(1993) 276 (1993). 276
- ⁷K. Kisman, Ultrasonics 15, 105–110 (1977).
⁸J. Y. Chanelon P. M. Shankar and V. L. Newhouse J. Acoust. Soc. Am., 278
- ⁸J. Y. Chapelon, P. M. Shankar, and V. L. Newhouse, J. Acoust. Soc. Am. 278 78(1), 196–201(1985). 279
- ⁹M. Minnaert, Philos. Mag. Series 7 16(104), 235–248 (1933). 280
- ¹⁰J. C. Buckey, D. A. Knaus, D. L. Alvarenga, M. A. Kenton, and P. J.281
Magari, Acta Astronaut, 56(9–12), 1041–1047 (2005). Magari, Acta Astronaut. 56(9-12), 1041-1047 (2005).

265

000000-5 Fouan, Achaoui, and Mensah Appl. Phys. Lett. 104, 000000 (2014)

- 283 ¹¹B. R. Bollinger, J. C. Wilbur, T. G. Donoghue, S. D. Phillips, D. A. 284 Knaus. P. J. Magari. D. L. Alvarenga. and J. C. Buckey. Undersea
- 284 Knaus, P. J. Magari, D. L. Alvarenga, and J. C. Buckey, Undersea Hyperbaric Med. 36(2), 127-136(2009).
- 286 ¹²K. D. Horton, R. W. Meece, and J. C. Hill, J. Am. Soc. Echocardiogr. 22,
287 776–792 (2009).
- 287 776–792 (2009).

View publication stats

- ¹³D. B. Khismatullin, J. Acoust. Soc.Am. 116, 1463 (2004). ¹⁴R. E. Apfel and C. K. Hollad. Ultrasound Med. Biol. 17. 179–185 (1991). 289
- 29. E. Apfel and C. K. Hollad, Ultrasound Med. Biol. 17, 179–185(1991). 289 $\overline{AQ6}$
¹⁴R. E. Apfel and C. K. Hollad, Ultrasound Med. Biol. 17, 179–185(1991). 289 $\overline{AQ6}$
¹⁵J. B. Keller and M. Miksis. J. Acoust. S
- ¹⁵J.B. Keller and M. Miksis, J. Acoust. Soc.Am. 68, 628 (1980). ²⁹⁰
¹⁶A. I. Eller. J. Acoust. Soc.Am. 47(5B). 1469–1470 (1970). ²⁹¹
- ¹⁶A. I. Eller, J. Acoust. Soc. Am. 47(5B), 1469–1470 (1970).
¹⁷P. S. Epstein and M. S. Plesset. J. Chem. Phys. 18. 1505 (1950). 292
- ¹⁷P. S. Epstein and M. S. Plesset, J. Chem. Phys. 18, 1505 (1950).