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ABSTRACT

A survey of bubble models in diving applications is presented, underscoring dual phase dynamics
and quantifying metrics in tissue and blood. Algorithms covered include the multitissue, diffusion,
split phase gradient, linear-exponential, asymmetric tissue, thermodynamic, varying permeability, re-
duced gradient bubble, modified gradient phase, tissue bubble diffusion, and linear-exponential phase
models. Defining relationships are listed, and diver staging regimens are underscored. Implementa-
tions, diving sectors, and correlations are indicated for models with a history of widespread accep-
tance, utilization, and safe application across recreational, scientific, military, research, and technical
communities. The past fifteen years, or so, have witnessed changes and additions to diving protocols
and table procedures, such as shorter nonstop time limits, slower ascent rates, shallow safety stops,
ascending repetitive profiles, deep decompression stops, helium based breathing mixtures, permissi-
ble, reverse profiles, multilevel techniques, both faster and slower controlling repetitive tissue half-
times, smaller critical tensions, longer flying-after-diving surface intervals, and others. Stimulated
by Doppler and imaging technology, table and decompression meter development, theory, statistics,
chamber and animal testing, or safer diving concensus, these modifications affect a gamut of activity,
spanning bounce to decompression, single to multiday, and air to mixed gas diving. As it turns out,
there is growing support for these protocols on operational, experimental, and theoretical grounds,
with bubble models addressing many concerns on plausible bases and further testing or profile data
bank analyses requisite.
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Introduction

Gas exchange, bubble formation and elimination, and compression-decompression in blood and
tissues are governed by many factors, such as diffusion, perfusion, phase separation and equilibration,
nucleation and cavitation, local fluid shifts, and combinations thereof. Owing to the complexity of
biological systems, multiplicity of tissues and media, diversity of interfaces and boundary conditions,
and plethora of bubble impacting physical and chemical mechanisms, it is difficult to solve the
decompression problem in vivo. Early decompression studies adopted the supersaturation viewpoint.
Closer looks at the physics of phase separation and bubbles in the mid-1970s, and insights into gas
transfer mechanisms, culminated in extended kinetics and dissolved-free phase theories. Integration
of both approaches can proceed on the numerical side because calculational techniques can be made
equivalent. Phase and bubble models are more general than supersaturation models, incorporating
their predictive capabilities as subsets. Indeed, for most recreational and nonstop diving, bubble and
dissolved gas models collapse onto themselves, that is, they suggest similar staging regimens.

Computational models gain efficacy by their ability to track data, often independently of physical
interpretation. In that sense, the bottom line for computational models is utility, operational reliabil-
ity, and reproducibility. Correct models can achieve such ends, but almost any model with sufficient
parameter latitude might achieve those same ends. It is fair to say that deterministic models admit
varying degrees of computational license, that model parameters may not correlate as complete set
with the real world, and that not all mechanisms are addressed optimally. That is, perhaps, one
reason why we see representative diving sectors, such as sport, military, commercial, and research,
employing different tables, meters, models, and algorithms Yet, given this situation, phase models
attempting to treat both free and dissolved gas exchange, bubbles and gas nuclei, and free phase
trigger points appear preferable. Phase models have the right physical signatures, and thus the
potential to likely extrapolate reasonably when confronting new applications and data. Expect to
see their further refinement and development in the future.

Having said all that, data still plays the crucial role in model determination and applicability.
Dive modeling is often more of an artform than science, and experiments directed at one or another
aspect of unanswered diving questions can often produce divergent conclusions, further caveats, null
results, and scattered-beyond-use data. Plus, macroscopic models cannot always cover all important
aspects of microscopic phenomena. But they should not be at variance, either, with macroscopic
observables. We do not cover data correlations herein. Instead we indicate range of model use, sector
use, history, and some sources for data correlation. The intent here is to present a working view
of physical phase mechanics, then followed by bubble model decompression theory in diving. Such
discussion is neither medical nor physiological synthesis. Such aspects are omitted, and, for some,
certainly oversimplified. This review updates and extends an earlier review [86] on dissolved gas
models.

Model Backscapes

The physics, biology, engineering, physiology, medicine, and chemistry of diving center on pres-
sure, and pressure changes. The average individual is subject to atmospheric pressure swings of 3%
at sea level, as much as 20% a mile in elevation, more at higher altitudes, and all usually over time
spans of hours to days. Divers and their equipment can experience compressions and decompressions
orders of magnitude greater, and within considerably shorter time scales. While effects of pressure
change are readily quantified in physics, chemistry, and engineering applications, the physiology,
medicine, and biology of pressure changes in living systems are much more complicated. Caution is
needed in transposing biological principles from one pressure range to another. Incomplete knowl-
edge and mathematical complexities often prevent extensions of even simple causal relationships in
biological science. With this, models of bubble formation in the body face a tough task.
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The establishment and evolution of gas phases, and possible bubble trouble, involves a number
of distinct, yet overlapping, steps [8,10,34,41,68,72,74,78]:

1. nucleation and stabilization (free phase inception);

2. supersaturation (dissolved gas buildup);

3. excitation and growth (free-dissolved phase interaction);

4. coalescence (bubble aggregation);

5. deformation and occlusion (tissue damage and ischemia).

The computational issues of bubble dynamics (formation, growth, and elimination) are mostly
outside dissolved gas frameworks, but get folded into halftime specifications in a nontractable mode.
The slow tissue compartments (halftimes large, or diffusivities small) might be tracking both free and
dissolved gas exchange in poorly perfused regions. Free and dissolved phases, however, do not behave
the same way under decompression. Care needs be exercised in applying model equations to each
component. In the presence of increasing proportions of free phases, dissolved gas equations cannot
track either species accurately. Computational algorithms tracking both dissolved and free phases
offer broader perspectives and expeditious alternatives, but with some changes from classical schemes.
Free and dissolved gas dynamics differ. The driving force (gradient) for free phase elimination
increases with depth, directly opposite to the dissolved phase elimination gradient which decreases
with depth. Then, changes in operational procedures are suggested for optimality. Considerations of
excitation and growth invariably suggest deeper staging procedures than supersaturation methods.

Other issues concerning time sequencing of symptoms impact computational algorithms. That
bubble formation is a predisposing condition for decompression sickness is universally accepted.
However, formation mechanisms and their ultimate physiological effect are two related, yet distinct,
issues. On this point, most hypotheses makes little distinction between bubble formation and the
onset of bends symptoms. Yet we know that silent bubbles [7,8,67] have been detected in subjects
not suffering from decompression sickness. So it would thus appear that bubble formation, per se, and
bends symptoms do not map onto each other in a one-to-one manner. Other factors are operative,
such as amount of gas dumped from solution, size of nucleation sites receiving the gas, permissible
bubble growth rates, deformation of surrounding tissue medium, and coalescence mechanisms for
small bubbles into large aggregates, to name a few. These issues are the pervue of bubble theories,
but the complexity of mechanisms addressed does not lend itself easily to table, nor even meter,
implementations. Difficulties accepted, model development and data correlation are ongoing efforts
important in table fabrication, meter development, and dive planning software.

Cavitation And Nucleation

Simply, cavitation is the process of vapor phase formation [5,16,18,22,29,45,58] of a liquid when
pressure is reduced. A liquid cavitates when vapor bubbles are formed and observed to grow as
consequence of pressure reduction. When the phase transition results from pressure change in hy-
drodynamic flow, a two phase stream consisting of vapor and liquid results, called a cavitating flow
[3,25,63]. The addition of heat, or heat transfer in a fluid, may also produce cavitation nuclei in
the process called boiling. From the physico-chemical perspective, cavitation by pressure reduction
and cavitation by heat addition represent the same phenomena, vapor formation and bubble growth,
usually in the presence of seed nuclei. Depending on the rate and magnitude of pressure reduction,
a bubble may grow slowly or rapidly. A bubble that grows very rapidly (explosively) contains the
vapor phase of the liquid mostly, because the diffusion time is too short for any significant increase
in entrained gas volume. The process is called vaporous cavitation, and depends on evaporation of
liquid into the bubble. A bubble may also grow more slowly by diffusion of gas into the nucleus,
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and contain mostly a gas component. In this case, the liquid degasses in what is called gaseous
cavitation, the mode observed in the application of ultrasound signals to the liquid. For vaporous
cavitation to occur, pressure drops below vapor pressure are requisite. For gaseous cavitation to
occur, pressure drops may be less than, or greater than, vapor pressure, depending on nuclei size
and degree of liquid saturation. In supersaturated ocean surfaces, for instance, vaporous cavitation
occurs very nearly vapor pressure, while gaseous cavitation occurs above vapor pressure.

In gaseous cavitation processes, inception of growth in nuclei depends little on the duration of
the pressure reduction, but the maximum size of the bubble produced does depend upon the time
of pressure reduction. In most applications, the maximum size depends only slightly on the initial
size of the seed nucleus. Under vaporous cavitation, the maximum size of the bubble produced is
essentially independent of the dissolved gas content of the liquid. This obviously suggests different
cavitation mechanisms for pressure (reduction) related bubble trauma in diving. Slowly develop-
ing bubble problems, such as limb bends many hours after exposure, might be linked to gaseous
cavitation mechanisms, while rapid bubble problems, like central nervous system hits and and em-
bolism immediately after surfacing, might link to vaporous cavitation. But it’s certainly never been
determined either way.

Now we know that the inception of cavitation in liquids involves the growth of submicroscopic
nuclei containing vapor, gas, or both, which are present within the liquid, in crevices, on suspended
matter or impurities, or on bounding layers [1,9,16,18,22,29,43,56,92]. The need for cavitating nu-
clei at vapor pressures is well established in the laboratory. There is some difficulty, however, in
accounting for their presence and persistence. For a given difference between ambient and gas-vapor
pressure, only one radius is stable. Changes in ambient, gas, or vapor pressures will cause the nuclei
to either grow, or contract. But even if stable hydrostatically, bubbles and nuclei, because of con-
stricting surface tension, will eventually collapse as gas and vapor diffuse out of the assembly. For
instance, an air bubble of radius 10−3 cm will dissolve in saturated water in about 6 sec, and even
faster if the water is undersaturated or the bubble is smaller. In saturated solutions, bubbles will
grow by diffusion, and then tend to be quickly lost at free surfaces as buoyant forces raise them up.
A 10−2 cm air bubble rises at the rate of 1.5 cm/sec in water. If nuclei are to persist in water, or
for that matter, any liquid media, some mechanism must prevent their dissolution or buoyant exit.

A number of possibilities have been suggested to account for the presence of persistent, or stabi-
lized, nuclei in undersaturated liquids, liquids that have been boiled, or denucleated. Crevices in the
liquid, or surrounding boundary, may exert mechanical pressure on gas nuclei, holding them in place.
Microscopic dust, or other impurities, on which gas and vapor are deposited, are stabilized already.
Surface activated molecules, (such as hydrogen and hydroxyl ions in water), or surface activated
skins formed from impurities may surround the nuclei and act as rigid spheres, offsetting constrictive
surface tension, preventing diffusion of gas out of the nuclei and collapse. In all cases, the end result
is a family, or group of families, of persistent nuclei. Time scales for stabilization and persistence
of nuclei would obviously equate to the strength and persistence of stabilizing mechanism. Experi-
mentally, trying to differentiate stabilization modes is difficult, because (eventual) growth patterns
of nuclei are the same in all cases. The ultimate crumbling of surrounding shells, release of crevice
mechanical pressure, removal of dust and impurity nucleation centers, and deactivation of surface
chemicals can lead to the onset of bubble growth.

Flow Cavitation (Reynolds Nucleation)
Euler first studied cavitation in fluids, defining a cavitation number, κ. In a flowing fluid, the

cavitation number, κ, is an indication of degree of cavitation, or tendency to cavitate [16,59,92].
Describing the similarity in the liquid-gas system, the cavitation number relates fluid pressure, p, to
vapor pressure, pν , through,

κ = 2
p − pν

ρu2

with ρ and u the fluid density and velocity. Cavitation and cavitating flows have long been of interest
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in shipbuilding and hydraulic machinery, underwater signal processing, propellor design, underwater
detection, material damage, chemical processing, high pressure and temperature flows in nuclear
reactors, volatility of rocket fuels, and bubble chambers for detection of high energy particles, to list
a few. Cavitation processes in flowing blood and nearby tissue are of some interest to decompression
modelers and table designers.

Any flow has a cavitation index, κ. If κ is very large, then p is sufficiently greater then pν and/or
u is fairly small. In such cases, the Reynolds number, Re, with a the cavitation void radius, u stream
velocity, and η fluid viscosity,

Re =
ρua

2η

is small and single phase flow is the result. However, if u is increased, and/or p is decreased,
nucleation will occur at some value, κi, denoted the incipient cavitation index. Cavitation will then
occur in the flowing fluid provided,

κ ≤ κi

At ambient pressure, at 20 oC, water has vapor pressure of roughly 0.03 atm. At 100 oC, water has
vapor pressure of 1.00 atm and boils. Experiments peg the onset cavitation velocity of water near 15
m/sec, at 20 oC, permitting direct estimation of κi, Plugging the above values into the cavitation
index equation, we find for water,

κi = 0.873

The density of water is a nominal 1.0 g/cm3 above. If we consider water flowing at the same speed
at 99 oC, with a vapor pressure of 0.99 atm, the cavitation index is roughly 100 times smaller, that
is,

κ = 0.009

At 100 oC, the cavitation index is obviously zero (spontaneous boiling) for all flow speeds.
Certainly, the cavitation index, κ, is a more complicated function of flow parameters, Reynolds

numbers, vapor pressure, and boundary conditions, but the above approach is extensively employed
in calibrating cavitating flows. As the cavitation index drops further and further below the incipient
value, bubble production increases. In the above, the vapor pressure, pν , is used, suggesting that
the cavitation sites are filled with vapor. In reality, any combination of vapor and gas may fill the
cavitation void, so the vapor pressure is replaced by pc, the vapor-gas pressure,

κ = 2
p − pc

ρu2

The voids may indeed be filled with vapor, or backfilled with noncondensable wake gas just back of
the cavitation site.

A number of notable cavitation patterns [16,45,58] breakout under flow cavitation and are of
considerable interest to hydrodynamicists in high speed, high pressure flow regimes of propellors,
airfoils and hydrofoils, turbine blades, pumps, reactor coolant flows, and fins, to name a few. Four
generic cases (descriptors) are given below, but no connection with cavitation processes in the body
is intimated nor linked therein:

1. cloud cavitation (periodic nucleation) – is a froathy structure resulting from the interaction
of a driving blade or fin with the primary flow wake, and is periodic likely due to shielding
of vortices in the wake, or some other periodic fluctuation induced in the flow, or embodied
within the flow;

2. sheet cavitation (wake nucleation) – is a large scale cavitation carpet structure found on ex-
tended surfaces, resembles velour, and may be completely filled with vapor, and not necessarily
a collection of individual bubbles;
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3. foil cavitation (lift nucleation) – is another extended region of cavitation vapor, or gas, sitting
on the lifting surface (top) of an airfoil, or hydrofoil, reducing lift, and often forming vortex
cavitation ring structures at the foil juncture of upper and lower surfaces;

4. vortex cavitation (turbulence nucleation) – is a localized and focused, highly concentrated,
vorticular cavitation bubble structure, often emanating from the sharp tips of propellors and
fins in streamlines or rotating cascades, cause by pressure reductions within turbulent flow
vortices.

Figure 1 is a photo montage of flow cavitation pictures taken with high speed underwater cameras.
Reading left to right, and top to bottom, foil, cloud, sheet, and vortex cavitation are shown. From a
modelers point of view, all but sheet cavitation are extremely difficult to simulate. From an engineers
point of view, all cavitation processes in high speed flows are destructive and erosive on moving
surfaces. When cavitation bubbles collapse, they fire out high speed shock waves in all directions,
damaging surfaces and producing sharp sounds underwater. Modeling cavitation processes is tedious
and intensive numerically.

Frictional Cavitation (Tribonucleation)
Tribonucleation has been demonstrated in the laboratory by Campbell and others [3,20,43,65],

that is, a process in which solid contacting plates, immersed in a fluid, are separated very rapidly
with the formation of voids and cavitation seeds. Upon separation of hydrophobic and hydrophilic
surfaces, a bridging vapor cavity has been observed. In a fluid, dimensionally, one expects hydrostatic
tension, τ , to depend on fluid viscosity, η, the velocity of separation, u, the cross sectional area of
contacting surfaces, A, and inversely on a small separation volume, V , that is,

τ = ζ
ηuA

V

with ζ a (data fit) constant. Viscous adhesion is another term describing negative tension, τ , devel-
oped when hydrophobic surfaces are pulled apart. On circular plates, experiments suggest, with R
plate radius, h plate separation, and ζ = 1,

A ∝ 4πR2

V ∝ 4
3
πh3

so that,

τ = 3ηu
R2

h3

Linking adhesion to cavitation, one might expect voids when,

p − τ ≤ p − pν

for p fluid gas tension, or simply,
τ ≤ pν

Negative tensions, τ , are generated easily, For instance, in nominal water at 20 oC, plates roughly
1 cm, separated at 0.1 mm, and pulled apart with a separation velocity of 1 cm/sec, produce a
negative tension of 0.03 atm, in the vicinity of water vapor pressure.

Evans and Walder [30] showed that denucleated shrimp were more prone to bubble formation
upon decompression if muscular contractions were performed before decompression. Harvey [36]
demonstrated that damaged excised tissue was more susceptible to bubble formation than healthy
tissue. In plate experiments in olive oil-glycerol-water fluids, Ikels [43] generated tribonuclei between
both hydrophobic and hydrophilic bilayers. This suggests that cavities in vivo might be formed
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by the rupture of cell membrane bilayers under exercise, as detailed by Powell [59]. Stress pro-
duced micronuclei in the body possibly occur with tissue surfaces coming together rapidly, and then
withdrawing. Gas bubbles emerging from capillaries may have their genesis in the following way:

1. muscle contractions compress the capillary walls;

2. subsequent expansion of the capillary walls pushes back on muscle, changing dimensionality;

3. separation of the wall endothelium produces a void momentarily, with an inward flux of active
oxygen, water vapor, and carbon dioxide gases tending to stabilize the hole;

4. when surrounding tissues are oversaturated with inert gas, the cavity experiences an ingassing
gradient, and grows in size;

5. the initial hole is a (water) vaporous cavitation site, but later fills with gaseous components.

While such tribonucleation processes occur on time scales of seconds, the tribonuclei produced might
last for hours, or so, depending on stabilization mechanisms offsetting constrictive surface tension.
Also, the question of stabilization depends on the size of the tribonuclei, as very small ones might
act like beebees and the large ones like soap bubbles under further muscle contraction-extension, gas
loading, and tissue crevice shielding.

Radiation Cavitation (Ionization Nucleation)
Atoms surrounding us in everyday life are not very energetic, something on the order of 0.03 eV

is an average energy on Earth. Though fast moving, molecules and atoms do not have sufficient
energy to tear off each other’s electrons. On the Sun, average kinetic energies of electrons, protons,
and other charged particles in the plasma atmosphere approach 10,000 eV , and move with 1/10
the speed of light, especially in the magnetosphere. But in the outer reaches of space, even higher
energy particles exist commonplace and stream through the Universe, some striking the Earth, and
are collectively termed cosmic rays or cosmic radiation. Their composition has been measured
recently, and cosmic rays are mostly hydrogen ions, with some helium, carbon, and oxygen ions
too. Their energies are enormous, as high as 1014 eV , or 100 TeV . Cosmic ray energies are higher
than energies of ions trapped in the magnetic field of the Earth. Cosmic rays stay around longer in
the Galaxy than starlight, with starlight taking about 5,000 years to traverse the Milky Way, but
trapped cosmic rays (weak galactic magenetic fields) take some 107 years to escape. The cosmic ray
component of total radiation striking the Earth is 13%, and comprises most of the high energy tail
of the spectrum.

Cosmic rays (charged particles, ions) passing through matter ionize the surrounding media in the
process of slowing and stopping. Large amounts of their kinetic energy are deposited locally in the
ionization process. Cavitation voids can be formed as charge separated surfaces emerge. As energy
deposition and ionization rates increase, so do cavitation processes. If the tissue surrounding the
cavitation voids is supersaturated, the seeds so formed can grow. The same holds for radioactive
elements present in the body, such as U238 which decays by nuclear fission and releases many charged
particle fragments into tissue and blood. In their gel experiments, Yount and Kunkle [46,68,89-91]
examined nucleation rates from cosmic rays, including neutrons, and found the collective contribution
to be less than 0.01 nucleation sites per gel sample (roughly 2,5 cm square or round dishes), well
below experimental sensitivities and counting rates.

Cosmic ray energies are indeed huge, but the atmosphere shields us as effectively as a 10 ft
layer of concrete. In the atmosphere, cosmic ray collisions produce high energy fragments in the
GeV range, and some cosmic rays make it to the surface of the Earth, but overall, the intensity of
radiation striking the surface from combined cosmic ray penetration is very small, on the order of
1/1000 the intensity of starlight. This is a very small number, and cavities produced by cosmic ray
passage through the body are not only random, but small in number, on the order of a few a day.

7



Similarly, the fission of U238 in the body is expected to produce a cavity every couple of weeks. In
both cases, it seems highly unlikely that either is an important source of micronuclei production,
and therefore. not a strong contributing DCS factor.

Cavitation Hysteresis (Bubble Memory)
If a set of cavitation nuclei, denoted by number, κi, are observed in a sample following any

process reducing vapor pressure locally below ambient pressure, then restoration of ambient pressure
above vapor pressure to extinguish (remove) all nuclei is not a reversible process [3,16]. In fact,
it’s highly irreversible, in that, if the pressure is then restored to the initial value, the new set of
cavitation nuclei, denoted κn, are different than the original distribution, κi. That is, κn �= κi, akin
to magnetic material hysteresis following a magnetization loop of materials to the same starting
point. Cavitation processes do not conserve entropy, and hence, are highly irreversible. Cavitation
materials retain a cavitation memory, likely due to structural changes following initial pressure
reduction and cavitation void formation. The difference between the two quantities, κh, is called the
hysteresis index,

κh = κi − κn

Cavitation hysteresis, without thinking about it much, has some bold implications for diving
adaptation, reverse and repetitive profiles, tissue damage, denucleation, muscular movements during
diving, and perfusion rates. If, for any forward or reverse profile,

κn ≤ κi

forward or reverse profiles might be indicated. While, if

κn ≥ κi

forward or reverse profiles might be contraindicated. To date, some experiments in vitro suggest the
former, that is,

κn ≤ κi

for successively decreasing pressure titrations. Such is a reason for forward profile diving admonitions,
apart from obvious reductions in gas loadings under the same.

Homogeneous And Heterogeneous Nucleation
In studying holes, or weaknesses, in liquid structures, two dominant cavitation mechanisms

emerge [1,4,5,13,18,29,56,68]:

1. homogeneous nucleation – thermal motions within the liquid form temporary microscopic
voids that produce nuclei rupturing the voids, and subsequently growing into macroscopic
bubbles;

2. heterogenous nucleation – major weaknesses develop at boundary layers between liquid and
solid container walls, or between liquid and small particles suspended in the liquid, facilitating
rupture and bubble growth.

The seemingly simple dichotomy above portends many very complex processes in the real world, not
easily measured nor quantified in bubble science, and especially not in living systems.

Homogeneous nucleation along established classical lines (within the kinetic theory of liquids) only
permits one kind of weakness, namely, the transitory voids that develop due to the thermal motion
of liquid molecules. In real systems, of course, several other types of weaknesses and dislocations are
possible. Nucleation may occur at the junction of a liquid and solid body. Kinetic theories have been
developed quantifying such heterogeneous processes, while also quantifying the relative probabilities
for homogeneous versus heterogeneous nucleation at the same site. Heterogeneous nucleation may
also occur on very small, sub-micron size contaminants in the fluid, with the size of the contaminants
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so small that differentiating homogeneous from heterogeneous nucleation is difficult to impossible in
the laboratory.

Other weaknesses persist in liquids in the form of contaminant microbubbles, possibly present
in crevices within boundaries, within suspended particles, or freely suspended in the liquid. These
persistent weaknesses seem to resist dissolution completely. For instance, in water, microbubbles of
air are virtually impossible to remove completely, perhaps due to interface contamination. While
it’s usually possible to remove such nuclei (denucleate) from small research samples, their presence
persists in most engineering applications [1,58], and likely biomedical systems [56]. Much focus has
centered on water systems, but not other liquids in general. Cosmic radiation is another component
in nucleation processes. A collision between a high energy particle (any source, cosmic or otherwise)
and a molecule of liquid can deposit enough energy locally to initiate nucleation. Such processes,
of course, are fundamental to the operation of cloud and bubble chambers, and can be factors in
promoting nucleation.

Simple homogeneous nucleation theory works very well for certain liquids, such as ether and
n-hexane, in which nearly perfect denucleation has been demonstrated. For water at room tempera-
tures, the opposite has been the case [22,26,28,33]. Homogeneous theory suggests a tensile strength
for water near 1440 atm, corresponding to a critical radius of 10 angstrom (10−3 μm) for vapor
phases formed by random motion of water molecules. The highest tensile strength observed for wa-
ter is 277 atm, while the highest supersaturation pressure sustained without cavitation is 270 atm
in helium gas. Both are about 5 times below theoretical predictions, and this is generally taken
as evidence that impurities (motes) remain present in even highly denucleated media, like water.
Experimental attempts to seed liquids with solid impurities have not been very successful. For ex-
ample, Bateman and Lang [4] tried charcoal, ferric oxide, and sodium bicarbonate with inconclusive
results. Fischer [32] found that salt attracts nuclei into solution, but then dissolves completely so
that nuclei are likely gaseous, and not solid. Polystyrene spheres [22] in the fractional micron size
range, thought to resemble motes in water, were unsuccessful in nucleating gelatin. Cloud seeding
[50,58] with iodine crystals has not produced rain in most circumstances. A consensus today is that
smooth spheres of any size, hydrophobic or hydrophilic, only reduce the tensile strength of water by
25 % at most.

Studies of the formation of vapor voids in pure liquids date back to the pioneering work of Gibbs,
with modern twists provided by Becker and Doring [5], and Zeldovich [92] in the middle 1900s.
The dynamics of homogeneous nucleation are fairly simple. In a pure liquid, surface tension is the
intermolecular force holding molecules together, thus preventing the formation of large holes in the
liquid. Liquid ambient pressure, P , exterior to the bubble surface, is lesser than interior bubble
pressure, Φ, by an amount,

Φ − P =
2γ

r

where γ is the surface tension, and r is the bubble radius. The concept of surface tension (better
yet, surface energy) has been shown to be a very accurate concept even down to a few intermolecular
distances by Skripov and others [13,65]. Perhaps such a simple description over a few molecular
layers is surprising, but is nevertheless very useful.

The Gibbs free energy, G, for homogeneous nucleation processes is the sum of the energy deposited
on the surface of the nucleus, 4πr2γ, plus the work done by the fluid to create the void, 4πr3(p−pb)/3,
with pb the internal bubble pressure and p the external fluid pressure,

G = 4πr2γ − 4
3
πr3(pb − p)

If a Laplace relationship is assumed across the bubble, we have,

pb − p =
2γ

r
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and the usual expression for the free energy results. The work done by the fluid is not necessarily
ideal dynamically, and other structures in, and around, the void may help or hinder the process. In
such case, the Gibbs free energy is written,

G = 4πr2γ − 4
3
πr3Ψ

with Ψ a representation of the effective pressure difference across the bubble surface, (pb − p), for
nonideal gas formation, external effects, bubble nonsphericity, and even heterogeneous impact on
void formation. Some forms include,

Ψ = β(pb − p)

with β a pressure difference multiplier,

Ψ = (pb − p) + δ

with δ an additive tissue compliance,

Ψ = εb ln
[
pb

p

]
for change in volumetric free energy in an isothermal phase expansion, where εb is the energy density
in the bubble,

Ψ =
N∑

n=0

αn(pb − p)n

a virial expansion of the pressure difference, which can be fitted to data like an equation-of-state.
Homogeneous nucleation processes occur in single component systems, while heterogeneous nu-

cleation processes involve more than one component. To describe nucleation, a heterogeneous model,
ascribed to Plesset [58], containing the homogeneous case as a subset, has been useful in applications,
as depicted in Figure 2. A solid hydrophobic sphere, of radius r0, is surrounded by a concentric layer
of vapor, out to a radius r. The instantaneous (Boltzmann) probability, dw, for the state depends
on the difference in free energy, G, associated with the vapor phase,

dw = exp (−G/kT ) dG

at temperature, T , for (Gibbs) free energy change, G,

G =
4
3
πr2γlv +

4
3
πr2

0 (γvs − γls)

and γlv, γvs, and γls surface tensions associated with the liquid-vapor, vapor-solid, and liquid-solid
interfaces. The homogeneous case corresponds to r0 = 0, that is, no solid and only liquid-vapor
nucleation. This particular form of the Gibbs energy is extensively used in Monte Carlo simulations
of bubble excitation [2,21] and growth, homogeneous and heterogeneous.

Tensions, pulling parallel to their respective surfaces, at equilbrium have zero net component, as
seen in Figure 2,

γlv cos θ = γvs − γls

with liquid-vapor contact angle, θ, measured through the liquid. Wetted (hydrophilic) solids exhibit
acute contact angle, occurring when,

γvs − γls > 0

so that the meniscus of the liquid phase is concave. In this case, the solid has greater adhesion
for the liquid than the liquid has cohesion for itself, the free energy required to maintain the vapor
phase is large (because the solid surface tension term is positive), and the probability of nucleation
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is decreased by the solid impurity. For a nonwetting (hydrophobic) solid, the situation is reversed,
that is, the contact angle is obtuse,

γvs − γls < 0

the meniscus is convex, the solid has less adhesion for the liquid than the liquid has cohesion for itself,
the free energy is reduced because the solid surface tension term is negative, and the probability of
formation is increased. In the limiting case, cos θ = −1, the free energy is given by,

G =
4
3
πγlv (r2 − r2

0)

which becomes small for cavity radius, r, near impurity radius, r0.
In the above, a nucleation rate, j, is given by the Boltzmann energy partition function,

j = j0 exp (−Gb)

with Gb the Gibbs number,

Gb =
G

kT

for normalization factor over free energy, j0,

j0 = ρ

[
2γ

πm3

]1/2

with ρ the liquid density, and m the mass of the liquid molecule.
While theories of heterogeneous and homogeneous nucleation work well for a number of liquids,

the application of the heterogeneous model to water with impurities is not able to reduce the tensile
strength to observable values. Recall that the homogeneous theory of nucleation predicts a tensile
strength of water near 1,400 atm, the heterogeneous theory, with a variety of solid impurities, drops
the tensile strength down to 1,000 atm, and the measured value for water is approximately 270 atm.
Yet, in any solution, gas nuclei can be deactivated (crushed) by application of large hydrostatic
pressures. The process of crushing is also termed denucleation. When denucleated solutions are
decompressed in supersaturated states, much higher degrees of supersaturation are requisite to induce
bubble formation. In diving, denucleation has been suggested as a mechanism for acclimatization. If
denucleation is size selective, that is, greater hydrostatic pressures crush smaller and smaller nuclei,
and if number distributions of nuclei increase with decreasing radius (suggested by experiments), than
a conservative deep dive, followed by sufficient surface interval, might in principle afford a margin
of safety, by effectively crushing many nuclei and reducing the numbers of nuclei potentially excited
into growth under compression-decompression. But this has not been proven in diving scenarios.

The mechanisms of nucleation in the body are obscure. Though nucleation most probably is
the precursor to bubble growth, formation and persistence time scales, sites, and size distributions
of nuclei remain open questions. Given the complexity and number of substances maintained in
tissues and blood, heterogeneous nucleation would appear a probable mechanism. In that regard,
the process of tribonucleation at tissue interfaces is a viable candidate for bubble seed production
under even modest pressure reductions, certainly well below the 270 atm measured for water (watery
tissue included).
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Nucleation And Critical Droplets

As water cools to 0 oC, it freezes to ice. The molecules transform from the liquid phase to
the solid, crystalline phase. At atmospheric pressure (1 atm), water will turn to vapor at 100 oC.
Both of these phase transformations are abrupt. The molecule H2O is water at 0.0001 oC and
solid ice at -0.0001 oC. If salt or sugar are added to the water, slush will result over a range of
temperatures. Abrupt phase transitions are called first order transitions. The transformation is
abrupt as temperature changes, but happens more slowly if energy is added slowly. Water and ice
coexist at the freezing temperature. An ice cube floating in water will maintain the freezing point
throughout the cube until heat seeps in and melts the whole cube. Water when heated at the boiling
point forms vapor bubbles. The energy required per unit mass to effect a phase transformation is the
latent heat. Both ice cube in water and vapor bubbles in water have sharp boundaries separating
them from water in the liquid phase. These boundaries are maintained by the surface tension, γ, or
the free energy per unit surface area.

One can supercool or superheat within first order phase transitions. Very pure water, with no
dust nor impurities within, in a very smooth container can be supercooled by many degrees, ΔT ,
below the freezing point and ice formation. Similarly, water vapor can be supercooled even above
110% humidity below the temperature of water droplet condensation. Supercooling and superheating
within first order phase transformations can be effected because there exists a free energy barrier
separating the two phases. Simply put, a large bubble of any new phase needs exist in any old phase
before a new phase can grow. This is the essence of nucleation, providing a new phase site in the
old phase to facilitate growth of the new phase. Small bubbles can’t really grow the new phase well
because the surface tension is large and the volume is small. Small bubbles pay a large cost in free
energy per unit area for a small gain in volume.

Quantitatively, this is seen in the following way [21,28,51], and referring to Figure 3. The creation
free energy, ΔG, for a droplet of radius, r, is the sum of the energy deposited in the surface of the
droplet, 4πr2γ, plus the work done by the fluid in order to create the droplet, 4πr3(p − pb)/3, with
p the fluid pressure, and pb the pressure inside the droplet,

ΔG = 4πr2γ − 4
3
πr3(pb − p)

At the critical radius, rc,

(pb − p)c =
2γ

rc

and formation free energy, ΔGc, becomes,

ΔGc =
4
3
πγr2

c =
16π

3
γ3

(pb − p)2c

Denoting a specific formation energy, Δgc, with m a mass, we have,

(pb − p)c = Δpc = ρ
ΔGc

m
= ρΔgc

whereby, for entropy, sc,
Δgc = scΔT

In a phase transition,

sc =
l

Tc
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with l the heat of transformation. Combining all,

ΔGc =
16πγ3T 3

c

3(ρlΔT )2

Similarly, the critical radius, rc, can be written, using the above,

rc =
2γTc

ρlΔT

Plotting the free energy change, ΔGc, versus radius, rc, as depicted in Figure 3, a number of features
are clear. The critical radius, rc, gets bigger as supercooling or superheating temperature gradient,
ΔT , decreases, and the barrier height, ΔGc, also increases as the gradient decreases, actually as
ΔT 2,

rc ∝ 1
ΔT

ΔGc ∝ 1
ΔT 2

In Figure 3, B = ΔGc, and σ = γ.
The reason, then, that a container of water can be superheated or supercooled is the barrier,

B = ΔGc, in Figure 3. To nucleate a droplet of new phase of radius, rc, you must supply energy, B.
The nucleation probability, n,

n = n0 exp (−B/kT )

gives the relative probability of sitting atop the barrier. For small superheating, or supercooling, ΔT ,
the barrier, B, is large, and the nucleation probability, n, is very small. The nucleation probability
can be so small, even though there is plenty of water and many places for droplets to form, that the
probability of forming ice crystals or gas bubbles is negligible. Similar arguments apply to bubble and
droplet formation in any media, including blood and tissue. Formation and stabilzation processes
for bubbles are precipitous and bounded.

The above assume homogeneous nucleation. If dust particles, material defects, or flaws and
gradations on the boundary surfaces are present, atoms in the unstable phase will use these particles
or surfaces to bypass homogeneous nucleation, using impurities or surface flaws of characteristic
dimensions, rc. This process is then heterogeneous nucleation, as described.

Material Response

Under changes in ambient pressure (and temperature), bubbles will grow or contract, both due to
dissolved gas diffusion and Boyle’s law. An ideal change under Boyle’s law is symbolically written,
denoting initial and final pressures and volumes with subscripts, i and f , we have,

PiVi = PfVf

with bubble volume,

V =
4
3
πr3

for r the bubble radius. The above supposes totally flexible (almost ideal elastomers) bubble films
or skins on the inside, certainly not unrealistic for thin skin bubbles. Similarly, if the response to
small incremental pressure changes of the bubble skins is a smooth and slowly varying function, the
above is also true in low order. Obviously, the relationship reduces to,

Pir
3
i = Pfr3

f
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for an ideal radial response to pressure change.
But for real structured, molecular membranes, capable of offsetting constrictive surface tension,

the response to Boyle’s law is modified, and can be cast in terms of Boyle modifiers, ξ,

ξiPiVi = ξfPfVf

with ξ virial functions depending on P , V , and T . For thin and elastic bubble skins, ξ = 1. For all
else, ξ �= 1. For gels studied in the laboratory, as an instance, surfactant stabilized micronuclei do not
behave like ideal gas seeds with thin elastic films. Instead under compression-decompression, their
behavior is always less than ideal. That is to say, volume changes under compression or decompression
are always less than computed by Boyle’s law, similar to the response of a wetsuit, sponge, tissue
bed, or lung membrane. The growth or contraction of seeds according to an equation-of-state (EOS)
is more complex than Boyle’s law [24,62], A virial expansion has for all P , T , V and mole fractions,
n, for R the universal gas constant,

PV = nRT

N∑
i=0

αi

[
nT

V

]i

or, treating the virial expansion as a Boyle modifier, ξ,

ξPV = nRT

across slowly varying data points and regions. Symbolically, the radius, r, can be cast,

r =
N∑

i=0

βi/3

[
nRT

P

]i/3

or, again introducing Boyle modifiers, ζ,

ζr =
[
nRT

P

]1/3

for α and β standard virial constants. Obviously, the virial modifiers, ξ and ζ are the inverses of the
virial sum expansions as power series. For small deviations from thin film bubble structures, both
are close to one.

Observationally, though, the parameterization can take a different tack, following Yount [89-91].
In gel experiments, the EOS is replaced by two regions, the permeable (simple gas diffusion across the
bubble interface) and impermeable (rather restricted gas diffusion across the bubble interface). In the
permeable region, seeds act like thin film bubbles for gas transfer. In the impermeable region, seeds
might be likened to beebees. An EOS of course recovers this response in both limits. Accordingly,
just in gels, the corresponding change in critical radius, r, following compression, (P − Pi), in the
permeable region, satisfies a relationship,

(P − Pi) = 2(γc − γ)
[
1
r
− 1

ri

]

with γc maximum compressional strength of the surfactant skin, γ the surface tension, and ri the
critical radius at Pi. When P exceeds the structure breakpoint, Pc, an equation for the impermeable
region must be used. For crushing pressure differential, P − Pc, the gel model requires,

P − Pc = 2(γc − γ)
[
1
r
− 1

rc

]
+ Pc + 2Pi + Pi

[rc

r

]3
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where,

rc =
[

Pc − Pi

2(γc − γ)
+

1
ri

]−1

is the radius of the critical nucleus at the onset of impermeability, obtained by replacing P and r
with Pc and rc above. Allowed tissue supersaturation, ΔΠ, is given by,

ΔΠ = 2
γ

γcr
(γc − γ)

with, in the permeable region,

r =
[

(P − Pi)
2(γc − γ)

+
1
ri

]−1

and, in the impermeable region,

r3 − 2(γc − γ)r2 − Pi

ζ
r3
c = 0

for,

ζ = P − 2Pc + 2Pi +
2(γc − γ)

rc

So, allowed supersaturation is a function of three parameters, γ, γc, and ri. They can be fitted to
exposures and lab data. But Boyle expansion or contraction needs be applied ad hoc to the excited
seeds. Additionally, nuclei generate over times scales, ω, such that,

r = r0 + [1 − exp (−ωt)](ri − r0)

with r0. the critical radius at initial time (t = 0). The fourth parameter, ω−1, is on the order of of
minutes to hours, but was never really codified in the Yount gel experiments. In the blood and tissue
of divers, regeneration of seeds links perhaps to exercise and activity, rather than to persistence over
longer time scales, but the exact situation remains unclear [36,68,71].

Blood And Tissue Bubbles

For watery blood (mostly water), densities are nominal,

1.00 ≤ ρ ≤ 1.15 g/cm3

while surface tension depends upon lipid or aqueous preponderance in tissues and blood,

15 ≤ γ ≤ 80 dyne/cm

with smaller values for lipids, and larger values for watery tissue. The ram coefficient varies,

0.5 ≤ ω ≤ 2.0

while the viscosity ranges,
0.0100 ≤ η ≤ 0.0400 dyne sec/cm2

Considering blood flow speeds in the systemic circulation of the body, less than 25 cm/sec (vena cava),
flow regimes for bubbles are mostly laminar, with low Reynolds numbers. Complicated patterns in
and around heart valves are not laminar, but still low speed. Said another way, bubbles in blood
flows can be treated mostly with Stokes parameterization (and simplicity).
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Bubble Flow Regimes
Treating bubbles in the circulatory system as semi-solid spheres of radius a, we can estimate the

onset of turbulent bubble flow as a function of bubble size and blood flow rate (varying considerably
across the body proper). The smaller the bubble, of course, the more persistent is the bubble, and
the solid sphere approximation gets better. Taking 0.50 as rough cutoff Reynolds number for laminar
bubble flow in the body, we have for corresponding cutoff bubble radius, a,

Re =
ρua

2η
≤ 0.50

so that,

a ≤ 2 × 0.50η

ρu
≤ 0.0004 cm

for nominal density and viscosity, and maximum blood flow. Roughly, bubbles smaller than 4 μm flow
smoothly. At slower blood speeds, larger bubbles are accommodated, as well as at larger viscosities.
Interestingly, intercellular cell separations range in the 10 - 20 μm range, likely permitting such flow
regime. Flow speeds 5 times slower suggest laminar bubbles on the order of 20 μm here, impinging
boundaries at the upper end of separations.

Bubble Flow Distortion
Bubbles are pliable and distensible, deviating from sphericity under increasing stress and flow

pressure. Experiment and theory underscore gradual change from spherical bubbles to oblate bubbles
as relative flow speeds between bubble and fluid media increase in magnitude. Beyond extreme bubble
distortion, bubble fracture takes place. Let’s take a look at bubble distortion first.

For a moving bubble in a fluid, solving the two phase equations numerically, and introducing
Eotvos number, Eo, Morton, Mo, Weber number, We, with Reynolds number, Re, and drag coeffi-
cient, κ,

Eo =
ρd2g

γ

Mo =
gκ4ρ3

γ3

We =
ρ2w2d

γ

Re =
wd

γ

κ =
4gd

3w2

for, w, the bubble velocity, d, the bubble diameter,

d =
[
6V

π

]1/3

and V the bubble volume, permits a rough catergorization of bubble distortion as seen in Figure
4. For water and blood at 20 oC, we have Mo = 3 × 10−11 in dimensionless units, with all other
quantities nominally as before. The Eotvos number represents the ratio of gravitational to capillary
forces, the Morton number tags fluid properties only, the Weber number scales inertial to capillary
forces, the Reynolds number tags inertial and viscous force ratios, while the drag coefficient contrasts
gravitational and inertial force ratios. Relative shapes of bubbles are indicated by graph icons.
The diagonal, curved line through the distortion graph tags the transition region for spherical to
nonspherical bubble shapes, while the ascending asymptotes represent constant Morton number, Mo.
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For 1 micron bubbles moving at 25 cm/sec, we have Eo = 2 × 10−6, and Re = 0.50 roughly, so
that much deviation from sphericity is unlikely in the media. For 1,000 micron bubbles moving at
the same rate, we get Eo = 2, and Re = 50, putting us into the distortion regime of flow dynamics.
In the former case, the surface tension and small bubble size make it relatively impervious to flow
distortion, while in the latter case, the large bubble size accommodates considerable flow distortion.

Bubble Flow Fracture
Similar to flow analysis, some ball park estimates on blood bubble breakup can be made. Surface

tension, γ, of course varies across lipid and aqueous tissues, by some factor of 5 to 6, perhaps even
more according to high pressure studies of thin film bubble permeabilities. From the foregoing, we
have the fracture cutoff, a, in watery flows,

a ≥ 4γ

ωρgu2
≥ 0.0068 cm

and, in lipid flows,
a ≥ 0.0408 cm

which are fairly large fracture radii. Below blood speeds of 25 cm/sec, the fracture radii increase
considerably, obviously inversely as the flow speed squared. It would thus appear from these back of
the envelope estimates that flow fracture is unlikely for 100 μm bubbles, and smaller.

Bubble Shock Fracture
Rapidly applying high pressure to a liquid will fracture bubbles and seeds. Tapping a pressurized

container of liquid will often eliminate bubbles (denucleation) when pressure is released. This is often
done with soft drinks. Such procedures generate pressure waves in the liquid which can fracture seeds.
Treating the bubbles as an ideal gas, and denoting the pressure differential across the shock wave,
Pf −Pi, with f and i denoting final and initial shock pressures, we have from the Rankine-Hugoniot
jump equations [25], with cP and cV specific heats at constant pressure, P , and constant volume, V ,
M the Mach number (shock speed divided by sound speed in the media), and M > 1,

Pf − Pi = Pi

[
2cP /cV

cP /cV + 1
(M2 − 1)

]
≥ 2γ

r

as a simple mechanical estimate for a pressure wave to exceed bubble surface tension. Taking
cP /cV = 5/3 for an ideal gas, we see,

Pi ≥
[

8γ

5r(M2 − 1)

]

yielding a threshold pressure, Pi, for fracturing a bubble of radius, r. Turning the equation around,
the threshold radius, r, for fracture under shock passage with initial pressure, Pi, is given by,

r ≥
[

8γ

5Pi(M2 − 1)

]

If the ratio of shock speed to sound speed, M , is small, then large pressures, Pi, are necessary for
fracture. Or, only large bubbles are fractured when the Mach number, M , is small.

Bubble Buoyancy
Gas bubbles in fluids will usually float, but very small bubbles with high density gas trapped inside

can sink. In blood and tissues, a cutoff radius for floating and sinking bubbles can be estimated in
an approximate sense, treating viscosity as a low order effect, or in the case that the bubble velocity
(rising or sinking) is small. For watery tissue and blood, with nominal density, ρ = 1.15 g/cm3,
bubbles of density ρ′ will rise provided,

ρ′ < 1.15 g/cm3
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or, denoting the mass of trapped gas in the bubble, m′,

m′ <
4 × 1.15

3
πa3 g = 4.82a3 g

A bubble will sink, alternatively, for the opposite case,

m′ >
4 × 1.15

3
πa3 g = 4.82a3 g

Table 1 lists the cutoff radii, a, for bubble 1s ranging from 1 g to 1 ng, plus corresponding surface
tension pressure at the cutoff radii.

Table 1. Bubble Cutoff Radii And Surface Tension Pressure
a m′ 2γ/a

(cm) (g) (dynes/cm2)

0.5920 100 28.7
0.2748 10−1 61.8
0.1275 10−2 133.2
0.0592 10−3 286.9
0.0275 10−4 618.3
0.0128 10−5 1332.1
0.0059 10−6 2869.7
0.0027 10−7 6182.4
0.0013 10−8 13319.5
0.0006 10−9 28695.6
0.0003 10−10 61821.8

Bubble masses in the body are thought to roughly range,

10 ≤ m′ ≤ 0.10 ng

where, 1 ng = 10−9 g.
Putting the above together, a few comments about body bubbles seem clear. Bubbles with radii

larger than listed, for given mass, will rise, while those with radii smaller than listed, will sink in
blood and watery tissue. Recall that 1 μm = 10−4 cm, so bubbles in the 1 to 15 micron range exhibit
enormous surface tension in the body, with some floating up to the capillary boundaries and some
sinking. Some will tumble along circulatory boundaries, while others will be be destroyed by the
contact. Others, near hydrodynamic and static equilibrium, will be carried along by the flow. New
bubbles, created by cavitation, nucleation, and crevitation, may dump into the blood flow, or remain
trapped at birth sites. Large bubbles in the blood flow may fracture spontaneously, or possibly
be eliminated by the filter systems of the lung and pulmonary circulation. Some (very small) may
survive all destruction mechanisms, and pass back out into the arterial and systemic circulation. The
scenarios are complex, and virtually intractable. As pressure changes, bubbles support gradients for
gas transport across thin film boundaries, changing bubble sizes and properties along the way. Even
without pressure changes, constrictive surface tension will tend to collapse bubbles with radii less
than critical values.

Blood And Tissue Cavitation
As seen for water, the incipient cavitation index, κi, is of order of 1.0, at room temperature

and sea level pressure (1 atm). This offers a good baseline for spontaneous cavitation estimates in
flowing blood, laminar and turbulent. Taking a maximum blood flow rate of 30 cm/sec, and treating
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blood as water (density), the cavitation index at sea level can be first estimated. Taking water vapor
pressure at body temperature to be as high as 0.10 atm, we see easily,

κ = 2024.50

while at 18,000 ft elevation, with pressure roughly 0.5 atm, we find,

κ = 900.66

Both are far above the incipient value, and laminar blood flow cavitation is highly unlikely. Blood
flows with a rotational component, possibly with small vortices in and around heart valves and
bending constrictions, support higher cavitation numbers, but not below the incipient index. If
vortex pressure reduction is even 25% of ambient pressure, all other factors the same, the cavitation
index is roughly at sea level,

κ = 337.75

and at 18,000 ft elevation,
κ = 56.29

Both cavitation numbers are still far above the incipient value, and rotational blood flow cavitation
remains highly unlikely. Vortex pressure would need be reduced to roughly 0.1005 atm to drop the
cavitation index near unity, and below. Suffice to say that flow cavitation in the blood requires
ambient pressure reductions near vapor pressure for the very low blood speeds in the body. Even if
blood densities are doubled, cavitation numbers are only halved, and cavitation in highly lipid blood
flows remains unlikely. Tissue cavitation is another question, with a more likely probability.

In tissues, cavitation seems likely as tissue surfaces rub together. Tribonucleation might manifest
itself in a number of sites in biological systems. Numerous sites exist where surfaces may contact each
other and rub across one another. Articulating joints are a possibility, whereby synovial fluid may
display a high enough viscosity to mimic experiments in the laboratory, as suggested by Ikels. Small
circulatory vessels may collapse and expand in response to muscle movement, as well as ligatures and
tendons connected to bone joints. Negative tensions, τ , as low as 0.10 atm support bubble formation
between plates submersed in oil and separated with velocity as low as 0.7 cm/sec, The higher the
separation speed, the greater the number of bubbles formed in experiments. We can use these results
to estimate muscle separation speed, u, or contact ratio, χ, that is, the ratio of muscle surface area,
A, to separation volume, V ,

χ =
A

V

for tribonucleation in body tissue interfaces. First, we have,

τ ≤ ηuχ

or,
u ≥ τ

ηχ

Taking tissue (fluid) viscosity, η = 0.02 dyne sec/cm2, a value between water and glycerol, χ =
2 × 107 cm−1 from experiments by Campbell [20], and τ = 0.10 atm, we estimate (minimal) muscle
separation speed, u,

u ≥ 0.25 cm/sec

This targets a speed range of muscle motion with small velocity for producing tribonuclei according
to adhesion dynamics. Rubbing tissues are certainly capable of generating negative tensions in the
atm range, as suggested in kinesiological studies [43]. The contact ratio, χ, is a crucial controlling
factor in tribonucleation. It can vary rapidly for different surface separations in fluids, that is,

19



small changes in surface separations induce large changes in the ratio. Obviously, χ is unknown for
tribonucleation in the body, though η and u can be resaonably estimated.

If the fluid media supports gas tension, p, bubble formation is enhanced, and a Laplacian rela-
tionship is assumed,

p − τ =
2γ

r

with the tension reduced by the negative void pressure, τ . Bubble sizes vary inversely as the pressure
differences, as verified by many investigators [1,4,5,20,29,50,90].

Rayleigh-Plesset Bubble Equation

A detailed picture of a bubble in a moving fluid is afforded by the Rayleigh-Plesset equation
[29,58,63]. It is a useful tool for analyzing cavitation damage and bubble collapse in many flow
regimes, and the dynamics are briefly recounted here. No discussion of bubble mechanics would
likely be complete without it.

A first analysis of problems in cavitation and bubble damage was undertaken by Rayleigh in
1917, detailing the collapse of a cavity in a large mass of fluid, as well as related behavior of a gas
void under isothermal compression. His interest in the problem relates directly to concerns of the
Royal Navy with propellor damage, for which Rayleigh was commisioned to investigate the cause.
Rayleigh, neglecting liquid viscosity and surface tension under the assumption of an incompressible
fluid, showed from the momentum fluid equations that the bubble wall, r, obeyed the relationship,
with ρ the fluid density,

ρr
∂2r

∂t2
+ ρ

3
2

[
∂r

∂t

]2

= pr − p

for p the fluid pressure away from the bubble, and pr the fluid pressure at the bubble surface. From
the Bernoulli relationship, the pressure in the liquid, pr, taking into account liquid viscosity, ν, and
surface tension, γ, was suggested by Plesset,

pr = pb − 2γ

r
− 4ν

r

∂r

∂t

The resulting Rayleigh-Plesset equation takes the standard form,

ρr
∂2r

∂t2
+ ρ

3
2

[
∂r

∂t

]2

= pb − p − 2γ

r
− 4ν

r

∂r

∂t

Both bubble pressure and fluid pressure are functions of time, that is,

pb = pb(t)

p = p(t)

and the usual critical radius, rc, is,

rc =
2γ

pb − p

as before.
The equation has some interesting features. Taking just the homogeneous part,

ρr
∂2r

∂t2
+ ρ

3
2

[
∂r

∂t

]2

= 0

with boundary conditions, r = r0 at t = 0, and r = 0, at t = tc, we find,

r = r0

[
tc − t

tc

]2/5
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representing a collapsing bubble with wall velocity singularity at t = tc, that is,

∂r

∂t
= −2

5

[
tc

tc − t

]3/5

which approaches infinity at tc. The singularity itself predicts cavitation damage via sonic waves
at collapse (sonocollapse). The pressure waves produced by collapse are strong enough to damage
material surfaces (like propellors), and are strong shock waves. If a sinusoidal pressure variation is
imposed on the fluid,

p = p0[1 + ε cos (ωt)]

with p0 average ambient pressure, and ε a small pressure perturbation, the bubble surface will
oscillate at natural resonant frequences, emitting sound while oscillating. Neglecting higher order
harmonics in the oscillation spectrum (higher frequency oscillations damp in time), the lowest (n = 0)
eigenfrequency is given by,

ω2
0 = 5

p0

ρr2
c

− 2γ

ρr3
c

Underwater, the sound emissions crackle like hail on concrete. If the driving amplitude, p0, is high
enough (20% to 40% above ambient pressure), on Rayleigh collapse, the bubble emits a short pulse
of light (sonoluminescence). Drive frequencies in the kilohertz regime are necessary to pump the
bubble. On compression, the gas in the bubble heats up rapidly, and partially ionizes at temperatures
near 14,000 oK. On collapse with recombination, thermal brehmstrahlung is released as characteristic
light emission.

The (famous) evolution of two gas bubbles below a free surface is also treated within the frame-
work of the Rayleigh-Plesset equation, and we sketch details briefly for the interested reader. The
system configuration is shown in Figure 5 (upper part). Assume both bubbles are simultaneously
initiated as high pressure spherical ensembles, both at the same distance, h, from the free surface.
The exclusion distance between their centers is denoted, 2d. The pressure inside each bubble is the
sum of the vapor pressure from the surrounding liquid plus the pressure of the noncondensing gas.
Assuming the noncondensing gas is ideal, and its expansion and compression are adiabatic, the gas
pressure inside the bubble, pb, can be expressed in terms of its volume, V , as,

pb = p + po

[
Vo

V

]κ

with κ = cP /cV = 5/3, Vo the volume of the bubble at noncondensing gas pressure, po, and p the
vapor contribution. The fluid is assumed inviscid, incompressible, and irrotational, with velocity
potential, φ,

∇2φ = 0

so that the fluid velocity, u, obtains from the velocity potential,

u = ∇φ

The potential, φ, derives from a surface Green function, G, integrated across the surface, S, within
solid angles, Ω, subtending fluid points at distance, r, from the boundary surface,

φ =
∫

Ω

[G∇φ − φ∇G] · dS

for,

G =
1

4πr
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and r the distance from the boundary to the fluid point in question. The bubble surfaces are
governed by kinematic and dynamic boundary conditions, namely, in dimensionless scaled distance
and pressure units,

dr
dt

= ∇φ

outside the bubbles, and,

dφ

dt
= 1 +

1
2
(∇φ)2 + δ2(z − ζ) − ε

[
Vo

V

]κ

inside the bubbles, for δ2 = ρgRc/(pb − p), ε = po/(pb − p), ζ = h/Rc, Rc the critical bubble radius,
and,

dφ

dt
=

1
2
(∇φ)2 − δ2z

on the free surface. If buoyancy and boundary effects on bubbles are neglected, the Rayleigh-Plesset
equation reduces to the Rayleigh expression in radial form, closing the bubble set of equations,

R
d2R

dt2
+

3
2

[
dR

dt

]3

= ε

[
R0

R

]3κ

− 1

in dimensionless units also.
The system of equations is only amenable to numerical solution, supercomputers being requisite

for 3D resolution on the types meshes shown in the bottom half of Figure 5. Rayleigh never had
such computing power on his desk, and his accomplishments in bubble dynamics, cavitation, and
material damage are truly remarkable. Even mesh generation in Figure 5 requires supercomputing
power, tetrahedral volume elements laced strategically to smoothly contour all surfaces in 3D.

Micronuclei Distributions And Lifetimes

Most questions of seed distributions, lifetimes, persistence, and origins in the body are unanswered
today [4,18,30,31,36,39,41,46,55,69,72,74,77-79]. And while we have yet to measure microbubble
distributions and lifetimes in the body, we can gain some insight from laboratory measurements and
statistical mechanics. Microbubbles typically exhibit size distributions that decrease exponentially
in radius, r. Holography measurements of cavitation nuclei in water tunnels suggest, fitting data
from Mulhearn [50],

N = N0 exp (−βr)

with,
N0 = 1.017× 1012 m−3

β = 0.0512 μm−1

The Yount experiments in gels also display exponential dependences in cavitation radii,

N = N0 exp (−r/α)

with,
N0 = 662.5 ml−1

α = 0.0237 μm

Both MRI and Doppler laser measurements of water and ice droplets [45] in the atmosphere underline
exponential decrease in number density as droplet diameter increases. Ice and water droplets in clouds
typically range, 2 μm ≤ r ≤ 100 μm. Dust and pollutants [51] are also exponentially distributed,
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potentially serving as heterogeneous nucleation sites. It might be a surprise if micronuclei in the
body were not exponentially distributed in number density versus size.

The lifetimes of cavitation voids are not known, nor measured, in the body. The radial growth
equations provide a framework for estimation using nominal blood and tissue constants. Consider
first the mass transfer equation,

∂r

∂t
=

DS

r

[
Π − P − 2γ

r

]
with all quantities as before, that is, r bubble radius, D diffusivity, S solubility, γ surface tension, P
ambient pressure, and Π total gas tension. The time to collapse, τ , can be obtained by integrating
over time and radius, taking initial bubble radius, ri,

τ =
∫ τ

0

dt =
∫ 0

ri

[ r

DS

] [
1

Π − P − 2γ/r

]
dr =

[
Δpri(4γ + Δpri) − 8γ2 ln (2γ/2γ − Δpri)

2DSΔp3

]

with,
Δp = P − Π

If surface tension is suppressed, we get,

τ =
r2
i

2DSΔp

In both cases, small tension gradients, Δp, and small transport coefficients, DS, lead to long collapse
times, and vice-versa. Large bubbles take a longer time to dissolve than small bubbles. Taking
nominal transport coefficient for nitrogen, DS = 56.9×10−6μm2/sec fsw, and initial bubble radius,
ri = 10.0 μm, for Δp = 3.0 fsw, and γ = 40 dynes/cm, we find,

τ = 0.25 sec

In the Rayleigh-Plesset picture, the radial growth equation takes the earlier form, neglecting
viscosity, [

∂r

∂t

]2

=
2(Π − P )

3ρ

[
r3
i

r3
− 1

]
+

2γ

ρr

[
r2
i

r2
− 1

]

so that the collapse time by diffusion only is,

τ =
∫ τ

0

dt =
[

3ρ

2(Π − P )

]1/2 ∫ 0

ri

[
r3
i

r3
− 1

]−1/2

dr = ri
Γ(5/6)
Γ(1/3)

[
3πρ

2Δp

]1/2

with,
Γ(5/6) = 1.128

Γ(1/3) = 2.679

Suppressing the diffusion term in the growth equation, there similarly obtains,

τ =
∫ τ

0

dt =
[

ρ

2γ

]1/2 ∫ 0

ri

r1/2

[
r2
i

r2
− 1

]−1/2

dr = ri
Γ(−3/4)
Γ(−1/4)

[
πρri

4γ

]1/2

with,
Γ(−3/4) = −4.834

Γ(−1/4) = −4.062
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Collapse time in the Rayleigh-Plesset picture is linear in initial bubble radius, ri, and inversely
proportional to the square root of the tension gradient, Δp, or the surface tension, γ. Taking all
quantities as previously, with density, ρ = 1.15 g/cm3, we find with surface tension suppressed,

τ = 2.91 × 10−3 sec

and, for the diffusion term term suppressed with only the surface tension term contributing,

τ = 2.52 × 10−6 sec

Dissolution times above range,
10−6 sec ≤ τ ≤ 10−1 sec

In the Yount model of persistent nuclei, within the permeable gas transfer region, seed nuclei lifetimes,
τ , range,

10−6 sec ≤ τ ≤ 10−2 sec

The collapse rate increases with both γ and Δp, and inversely with ri. Small bubbles collapse
more rapidly than large bubbles, with large bubble collapse driven most by outgassing diffusion
gradients and small bubble collapse driven most by constrictive surface tension. Between these
extrema, both diffusion and surface tension play a role. In any media, if stabilizing material attaches
to micronuclei, the effective surface tension can be reduced considerably, and bubble collapse arrested
temporarily, that is, as γ → 0 as a limit point. For small bubbles, this seems more plausible than for
large bubbles because smaller amounts of material need adhere. For large bubbles, bubble collapse
is not aided by surface tension as much as for small bubbles, with outgassing gradients taking longer
to dissolve large bubbles than small ones. In both cases, collapse times are likely to lengthen over
the short times estimated above. Additionally, external influences on the bubble, like crevices and
surface discontinuities, may prevent bubble growth or collapse. All this adds to the bubble dilemmas
faced by hydrodynamicists and modelers.

Computational Algorithms

Bubble models address the coupled issues of gas uptake and elimination, bubbles, and pressure
changes in different computational approaches. Application of a computational model to staging
divers and aviators is often called a diving algorithm. Consider the computational model and staging
regimen for some published algorithms, namely, diffusion, perfusion (2), thermodynamic, varying
permeability, reduced gradient bubble, modified gradient phase, tissue bubble diffusion, and linear-
exponential phase algorithms. Dissolved gas models are listed first, followed by dual phase and
bubble models thereafter.

Dissolved gas diving algorithms historically trace back to the original Haldane experiments in the
early 1900s. They are still around today, in tables, meters, and diving software. That is changing,
however, as modern divers go deeper, stay longer, decompress, and use mixed gases.

Diffusion Model (DM)
The DM dates back to the time of Haldane, representing an alternative [37,60,74] to bulk mul-

titissue transfer equations (discussed next) with more structure imbedded. Exchange of inert gas,
controlled by diffusion across regions of varying concentration, is also driven by the local gradient.
Denoting the arterial blood tension, pa, and instantaneous tissue tension, p, the gas diffusion equation
takes the form in one dimensional planar geometry,

D
∂2p

∂x2
=

∂p

∂t
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with D a single diffusion coefficient appropriate to the media. Using standard techniques of separation
of variables, with ω2 the separation constant (eigenvalue), the solution is written,

p − pa = (pi − pa)
∞∑

n=1

Wn sin (ωnx) exp (−ω2
nDt)

assuming at the left tissue boundary, x = 0, we have p = pa, and with Wn a set of constants obtained
from the initial condition. First, requiring p = pa at the right tissue boundary, x = l, yields,

ωn =
nπ

l

for all n. Then, taking p = pi at t = 0, multiplying both sides of the diffusion solution by sin (ωmx),
integrating over the tissue zone, l, and collecting terms gives,

W2n = 0

W2n−1 =
4

(2n − 1)π

Averaging the solution over the tissue domain eliminates spatial dependence, that is sin (ωnx), from
the solution, giving a bulk response,

p − pa = (pi − pa)
∞∑

n=1

8
(2n − 1)2π2

exp (−ω2
2n−1Dt).

The expansion resembles a weighted sum over effective tissue compartments with time constants,
ω2

2n−1D, determined by diffusivity and boundary conditions. Unlike the perfusion case, the diffusion
solution, consisting of a sum of exponentials in time, cannot be formally inverted to yield time
remaining, time at a stop, nor time before flying. Such information can only be obtained by solving
the equation numerically, that is, with computer or hand calculator for given M0, ΔM , a, and b.
Diffusion models fit the time constant, κ,

κ =
π2D

l2

to exposure data, with a typical value from the Royal Navy [38-40,60] given by,

κ = 0.007928 min−1.

The diffusion coefficient, D, however, for the above time constant, κ, above is of order 10−10 cm2/sec,
five orders of magnitude slower than the aqueous tissue value, 10−5 cm2/sec, roughly. As such, it
tracks morely closely the perfusion limited, multitissue model linked originally to Haldane [15]. The
approach is aptly single tissue, with equivalent tissue halftime, τD,

τD =
0.693

κ
= 87.5 min

close to the US Navy 120 minute compartment used to control saturation, decompression, and
repetitive diving. Corresponding critical tensions in the bulk model, take the form,

M =
709 P

P + 404

falling somewhere between fixed gradient and multitissue values. At the surface, M = 53 fsw, while
at 200 fsw, M = 259 fsw. A critical gradient, G, satisfies,

G =
M

0.79
− P =

P (493 − P )
(P + 404)

.
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The staging regimen is,
p ≤ M

Salient features of the bulk diffusion model can be gleaned from extension of the above slab model
in the limit of thick tissue region, that is, l → ∞. Replacing the summation over n with an integral
as l → ∞, we find

p − pa = (pi − pa) ¯erf [l/(4Dt)1/2]

with ¯erf the average value of the error − function over l, having the limiting form,

¯erf [l/(4Dt)1/2] = 1 − (4Dt)1/2lπ1/2

for short times, and
¯erf [l/(4Dt)1/2] =

l

(4πDt)1/2

for long times. The former case recovers the Hempleman [38] square root law for no decompression
time versus depth. A variant of the model couples different compartments in series or parallel, assign-
ing different properties to the compartments, and imposing flux continuity at the boundaries. Such
allows for tissue-blood interface differences, and is called the n-compartment model [6,40,53,54], with
n the number of different tissue cells. It’s been a mainstay in DCIEM [10,53,54] diving applications.

The DM has seen extensive testing, correlation, and use by the Royal Navy. It forms the bases
of British technical and recreational dive tables, as well as other segments of the Europoean diving
community at large. It was the first model employed in a mechanical analog decompression meter
in the early 1970s.

Multitissue Model (MTM)
The multitissue model (MTM) was originally proposed by Haldane [15], with modern correlations

and tunings [6,12,37,44,61,75,85] dating back to the 1950s. Exchange of inert gas, controlled by blood
flow rates across regions of varying concentration, is driven by the gas gradient, that is, the difference
between the arterial blood tension, pa, and the instantaneous tissue tension, p. This behavior is
modeled in time, t, by classes of exponential response functions, bounded by pa and the initial value
of p, denoted pi. These multitissue functions satisfy a differential perfusion rate equation,

∂p

∂t
= −λ(p − pa)

and take the form, tracking both dissolved gas buildup and elimination symmetrically,

p − pa = (pi − pa) exp (−λ t)

λ =
0.693

τ

with perfusion constant, λ, linked to tissue halftime, τ . Compartments with 1, 2.5, 5, 10, 20, 40, 80,
120, 180, 240, 360, 480, and 720 minute halftimes, τ , are employed, and halftimes are independent of
pressure. Compartments correlate roughly from brain to bone, that is, fast (few minute halftimes)
to slow (few hour halftimes) tissues.

In a series of dives or multiple stages, pi and pa represent extremes for each stage, or more
precisely, the initial tension and the arterial tension at the beginning of the next stage. Stages are
treated sequentially, with finishing tensions at one step representing initial tensions for the next step,
and so on. To maximize the rate of uptake or elimination of dissolved gases the gradient, simply the
difference between pi and pa, is maximized by pulling the diver as close to the surface as possible.
Exposures are limited by requiring that the tissue tension never exceed M , written,

M = M0 + ΔM d
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as a function of depth, d, for ΔM the change per unit depth. A set (USN) of M0 and ΔM are fitted
below [10,41,70,71] for nitrogen,

M0 = 152.7τ−1/4 fsw

ΔM = 3.25τ−1/4

which can be contrasted with the original Haldane constant ratio critical tension, M , recognizable
as the 2 − to − 1 law [8,87],

M = 1.58P

In absolute units, the corresponding critical gradient, G, is given by,

G =
M

0.79
− P

with P ambient pressure, and M critical nitrogen pressure. Similarly, the critical ratio, R, takes the
form,

R =
M

P

The staging regimen is the usual,
p ≤ M

In lowest order, critical tensions for helium are the same, with helium halftimes, τHe, 2.65 times
faster than nitrogen halftimes, τN2 , that is, by Graham’s law [19,81,87],

τHe =
τN2

2.65

for the same compartments.
At altitude [8,14,27,61,64,76,81], some critical tensions have been correlated with actual testing,

in which case, the depth, d, is defined in terms of absolute pressure, P ,

d = P − Pz

with surface pressure, Pz , at altitude, z, given by (fsw),

Pz = 33 exp (−0.0381z) = 33α−1

α = exp (0.0381z)

and z in multiples of 1,000 feet. However, in those cases where the critical tensions have not been
tested nor extended to altitude, an exponentially decreasing extrapolation scheme, called similarity,
has been employed. Extrapolations of critical tensions, below P = 33 fsw, then fall off more rapidly
then in the linear case [23,82,83]. The similarity extrapolation holds the ratio, R = M/P , constant
at altitude. Denoting an equivalent sea level depth, δ, at altitude, z, one has for an excursion to
depth d,

M(d)
d + 33α−1

=
M(δ)
δ + 33

so that the equality is satisfied when,
δ = αd

M(δ) = αM(d).

Considering the minimum surface tension pressure of bubbles, Gmin (near 10 fsw), as a limit point,
the similarity extrapolation is usually limited to 10,000 feet in elevation, and neither for decompres-
sion, nor heavy repetitive diving.
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In the bulk diffusion case, depth-time exposures can be limited by a law of the form [38,81],

dt1/2
n = H

with tn the nonstop time limit, and 400 ≤ H ≤ 500 fsw min1/2. One can obtain the corresponding
tissue constant, λ, controlling the exposure at depth d, for nonstop time tn, by differentiating the
MTM tissue equation with respect to depth, d, and setting the result to zero. With pa = 0.79(d+33)
at sea level, there results,

1 − exp (−λtn)(1 + 2λtn) = 0.

Corresponding critical tensions, M , are then easily obtained using d, λ, and tn. In the above case,
the transcendental equation is satisfied when,

λtn = 1.25

Time remaining before a stop, time at a stop, or surface interval before flying can all be obtained
by inverting the tissue equation. Denoting the appropriate critical tension at some desired stage, M ,
and the instantaneous tension at that time, p, at stage, pa, the time remaining, tr, follows from,

tr =
1
λ

ln
[

p − pa

M − pa

]

for each compartment, λ. Then, the smallest tr controls the ascent.
The MTM is an icon in world diving circles, forming the basis for released recreational and

technical dive tables, commercial protocols, and military diving. It is encoded into many Haldanian
decompression meters, particularly before 1995. World Navies have performed extensive wet testing
and collected data for MTM correlations and tables, using the staging paradigm of bringing the diver
as close to the surface as possible. The critical tensions, M , form a springboard for neo-Haldanian
models after 1990.

Split Phase Gradient Model (SPGM)
Multitissue models address dissolved gas transport with saturation gradients driving the elimina-

tion. In the presence of free phases, free-dissolved and free-blood elimination gradients can compete
with dissolved-blood gradients. One suggestion is that the gradient be split into two weighted parts,
the free-blood and dissolved-blood gradients, with the weighting fraction proportional to the amount
of separated gas per unit tissue volume. Use of a split phase gradient is consistent with multiphase
flow partitioning, and implies that only a portion of tissue gas has separated, with the remainder dis-
solved. Such a split representation can replace any of the gradient terms in tissue response functions,
as suggested and implemented by Wienke, Hills, and others [2,16,29,42,63,69,81].

Accordingly, in the split phase gradient model (SPGM), we write the rate equation, given free
phase and tissue partition fractions, γp and γt, in unit tissue volume, as,

∂(p − pa)
∂t

= −γtλ(p − pa) − γp
∂(p − P − δ)

∂t

with internal pressure inside the free phase (bubbles), pb, given by,

pb = P + δ

for δ constrictive surface tension of the separated phase assembly, and P ambient pressure. The above
equation cannot be inverted directly for solution, but numerical techniques can be easily applied,
as the equation is a linear, first order, differential equation. Specification of free-dissolved gradient,
p − pb, and the surface tension, δ, requires knowledge of the dynamics of free phases in tissue and
blood, or at least plausible assumptions about bubble kinetics, bubble numbers, and bubble film
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structures, taken up next. To schedule decompression, critical tensions, critical free phase volumes,
or combinations thereof, can be employed. The partition fractions normalize to one,

γp + γt = 1

and the staging protocol is written generally [82,87],

p ≤ αM + βV

for constants,
0 ≤ α ≤ 1

0 ≤ β ≤ (1 − α)
M

Vi

with V the estimated phase volume, Vi, the nonexcited phase volume, and M the dissolved gas
critical tension.

The SPGM forms a basis for neo-Haldanian decompression meters and commercial software. It
can be imbedded into any MTM to yield deep stops. User choice of conservancy factors relate
directly to α and β, for given M and estimated V and Vi. Parameters are proprietary mostly, but
decompression meters employ the approach. Like the ASTM, the SPGM is found in commercially
marketed software offering neo-Haldanian staging alternatives for dive planning.

Linear-Exponential Model (LEM)
Asymmetric uptake and elimination of dissolved gas can also be tracked by using different tissue

functions for uptake and elimination. The linear-exponential model (LEM) employs exponential
uptake and linear-exponential elimination tissue functions [70,71]. The end result for tissues with
the same perfusion rates is a slower outgassing rate versus uptake rate. That is, simply, for inert
gas uptake, the rate equation is as before, with τ a characteristic tissue-blood flow time scale, not
necessarily arbitrary halftimes as assigned in the MTM and other models,

∂(p − pa)
∂t

= −τ−1(p − pa)

with solution, p = pi at t = 0, for pa arterial partial pressure,

(p − pa) = (pi − pa) exp (−τ−1t)

At some tissue tension, pc, outgassing is clamped, so that the difference between the tissue and
arterial tensions is constant. In that case, gas elimination on decompression is assumed to be linear
until some later time in the ascent when bubbles are assumed ameliorated, and the elimination is
switched back into exponential mode.

∂p

∂t
= −τ−1(pc − pa)

Solution, p = pc at t = 0, is now,
p = −τ−1(pc − pa)t + pc

The clamping is usually applied early in the decompression. In the LEM, the time constant, λ, is
not necessarily linked to any halftime, τ , but carries the same inverse time units. Without loss of
generality, we write,

λ =
1
τ

with τ a representative perfusion rate time parameter. One useful form is given by,

λ = τ−1 =
dq

dt

πb

πt
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with dq/dt the blood perfusion rate in unit tissue volume, and πt and πb the partition fractions of
tissue and blood in that same volume. For well perfused (aqueous) tissue, πb > πt, while for poorly
perfused (fatty) tissue, πb < πt.

The LEM has been employed extensively in air and helium diving by the US Navy, using large
data sets to correlate parameters with DCS incidence rates and risk.

Asymmetric Tissue Model (ASTM)
If gas nuclei are entrained in the circulatory system, blood perfusion rates are effectively lowered,

an impairment with impact on gas exchange processes. This suggests a possible lengthening of
tissue halftimes for elimination over those for uptake. For instance, a 10 min compartment for
uptake becomes a 12 min compartment on elimination. Such lengthening procedure and the split
elimination gradient render gas uptake elimination asymmetric. Instead of exponential uptake and
elimination, exponential uptake and quadratic or linear elimination tissue loading functions can be
used. Such modifications can be employed in any perfusion model, and tuned to the data. Such
approaches are used in many decompression meters and dive planning software [81,86].

The approach in the asymmetric tissue model (ASTM) is simple. Outgassing halftimes, τout, are
slower than ingassing halftimes, τin, by inverse fractions, β, that is,

τout = β−1τin

for given ingassing halftimes, τin, with,

0.0 < β ≤ 1.0

Equivalently, the decay constants are linked,

λout = βλin

Meters and software usually limit β roughly as,

0.3 ≤ β ≤ 1.0

with large decompression debts incurred in the slow compartments when β < 0.30, or so. The tissue
equation for ingassing is the usual,

(p − pa) = (pi − pa) exp (−λint)

while the outgassing equation uses outgassing constants,

(p − pa) = (pi − pa) exp (−λoutt)

Ingassing occurs whenever,
p < pa

while outgassing occurs in the opposite case,

p > pa

Certainly, some compartments are outgassing during a dive while others are ingassing, and vice-versa.
Staging maintains the tensions below critical values,

p ≤ M

The effect of slower outgassing on the NDLs is easy to quantify for single exposure dives. If the
symmetric NDLs are denoted, tn, then the shorter (asymmetric elimination) NDLs, denoted tnn, are
simply reduced by β at depth, d, that is,

tnn = βtn
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While this simple relationship holds for nonstop exposures, a generalization to multilevel, mixed gas
switch, repetitive, reverse profile, and decompression diving is nonexistent. The ASTM is employed
in many neo-Haldanian decompression meters today. For a given set of critical tensions, M , in any
MTM, the ASTM will always be more conservative because outgassing is slower. In meters, user
conservancy knobs are controlled through β.

Dual phase diving algorithms are rather recent innovations, coming online in the past 20 years or
so. They are different than dissolved gas algorithms, because they couple dissolved gases to bubbles,
and lead to deeper staging as a result. Meters, tables, and software employing these algorithms do
exist, and are supplanting traditional models.

Thermodynamic Model (TM)
The thermodynamic model (TM) couples both the tissue diffusion and blood perfusion equations

[41]. Cylindrical symmetry is assumed in the model. From a boundary vascular zone of thickness,
a, gas diffuses into the extended extravascular region, bounded by b. If we wrap the DM planar
geometry into a hollow cylinder of inner radius, a, and outer radius, b, we generate Krogh geometry
[41]. The hollow cylindrical model retains all the features of the planar model, and additionally
includes curvature for small a and b, with l = b − a. Assigning the same boundary conditions at a
and b, namely, the tissue tension, p, equals the arterial tension, pa, writing the diffusion equation in
radial cylindrical coordinates,

D
∂2p

∂r2
+

D

r

∂p

∂r
=

∂p

∂t

and solving yields,

p − pa = (pi − pa)
∞∑

n=1

Xn U0(εnr) exp (−ε2nDt)

with Xn a constant satisfying initial conditions, U0 the cylinder functions, and εn the eigenvalues
satisfying,

U0(εna) =
∂U0(εnb/2)

∂r
= 0

Averaging over the tissue region, a ≤ r ≤ b, finally gives,

p − pa = (pi − pa)
4

(b/2)2 − a2

∞∑
n=1

1
ε2n

J2
1 (εnb/2)

J2
0 (εna) − J2

1 (εnb/2)
exp (−ε2nDt)

with J1 and J0 Bessel functions, order 1 and 0. Typical vascular parameters are bounded roughly
by,

0 < a ≤ 4 μm

10 ≤ b ≤ 32 μm.

Perfusion limiting is applied as a boundary condition through the venous tension, pv, by enforcing
a mass balance across both the vascular and cellular regions at a,

∂pv

∂t
= −κ(pv − pa) − 3

a
SpD

[
∂p

∂r

]
r=a

with Sp the ratio of cellular to blood gas solubilities, κ the perfusion constant, and pa the arterial
tension. The coupled set relate tension, gas flow, diffusion and perfusion, and solubility in a complex
feedback loop.

The thermodynamic trigger point for decompression sickness is the volume fraction, χ, of sepa-
rated gas, coupled to mass balance. Denoting the separated gas partial pressure, PN2 , under worse
case conditions of zero gas elimination upon decompression, the separated gas fraction is estimated,

χPN2 = Sc(p − PN2)
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with Sc the cellular gas solubility. The separated nitrogen partial pressure, PN2 is taken up by the
inherent unsaturation, and given by (fsw),

PN2 = P + 3.21

in the original Hills [41,42] formulation, but other estimates have been employed. Mechanical fluid
injection pain, depending on the injection pressure, δ, can be related to the separated gas fraction,
χ, through the tissue modulus, K,

Kχ = δ

so that a decompression criteria requires the staging paradigm,

Kχ ≤ δ

with δ in the range, for K = 3.7 × 104 dyne cm−2,

0.34 ≤ δ ≤ 1.13 fsw.

Identification of separated phase volume as a critical indicator is a significant development in
decompression theory [39]. The TM was correlated with profiles of Australian pearl divers [49] in
the Torres Straits, and was sporadically tested in the open ocean. Deep stops are central in the TM
to control phase growth, but early dropout in the shallow zone often increases risk. The TM serves
as a springboard for bubble models to follow.

Varying Permeability Model (VPM)
Following development of the TM, Yount and co-workers [89-91] turned to decompressed gel

studies in the laboratory as a model for bubble growth and control in diving environments. Using a
critical volume of bubbles excited into growth following compression-decompression, and gel param-
eters for excitation radii of bubbles, the varying permeability model (VPM) was constructed. The
critical radius, ri, at fixed pressure, Pi, represents the cutoff for growth upon decompression to lesser
pressure. Nuclei larger than ri will all grow upon decompression. Additionally, following an initial
compression, a smaller class of micronuclei of critical radius, r, can be excited into growth with
decompression. If ri is the critical radius at Pi, then, the smaller family, r, excited by decompression
from P , obeys,

2γ

r
− P =

2γ

ri
− Pi

with roughly,
50.0 ≤ γ ≤ 250.0 fsw μm

for P measured in fsw, and r in μm. Excitation radii, r, thus follow,

1
r
− 1

ri
=

P − Pi

2γ

with ri = 0.8 μm at Pi = 33 fsw. The minimum excitation gradient, Gmin, initially probing r, and
taking into account generation of nuclei over time scales τr, is (fsw),

Gmin =
2γ (γc − γ)

γc r(t)
=

11.01
r(t)

with,
r(t) = r + (ri − r) [1 − exp (−λrt)]
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γ, γc film, surfactant surface tensions, that is, γ = 17.9 dyne/cm, γc = 257 dyne/cm, and λr the
inverse of the generation time for stabilized gas micronuclei (many days). Prolonged exposure leads
to saturation, and the largest permissible gradient, Gsat, takes the form (fsw), in all compartments,

Gsat =
58.6
r

− 49.9 = 0.372 P + 11.01.

On the other hand, Gmin is the excitation threshold, the amount by which the surrounding tension
must exceeed internal bubble pressure to just support growth. Although the actual size distribution
of gas nuclei in humans is unknown, experiments in vitro suggest that a decaying exponential is
reasonable,

n = N exp (−βr)

with β a constant, and N a convenient normalization factor across the distribution. For small values
of the argument, βr,

exp (−βr) = 1 − βr

as a nice simplification. For a stabilized distribution, n0, accommodated by the body at fixed pres-
sure, P0, the excess number of nuclei, Λ, excited by compression-decompression from new pressure,
P , is,

Λ = n0 − n = Nβri

[
1 − r

ri

]
.

For large compressions-decompressions, Λ is large, while for small compressions-decompressions, Λ
is small. When Λ is folded over the gradient, G, in time, the product serves as a critical volume
indicator and can be used as a limit point in the following way.

The rate at which gas grows in tissue depends upon both the excess bubble number, Λ, and the
gradient, G. The critical volume hypothesis requires that the integral of the product of the two must
always remain less than some limit point, α V , with α a proportionality constant,∫ ∞

0

ΛGdt = αV

for V the limiting gas volume. Assuming that gradients are constant during decompression, td, while
decaying exponentially to zero afterwards, and taking the limiting condition of the equal sign, yields
simply for a bounce dive, with λ the tissue constant,

ΛG (td + λ−1) = αV.

In terms of earlier parameters, one more constant, δ, closes the set, defined by,

δ =
γcαV

γβriN
= 7180 fsw min

so that, [
1 − r

ri

]
G (td + λ−1) = δ

γ

γc
= 500.8 fsw min.

The five parameters, γ, γc, δ, λr, ri, are five of the six fundamental constants in the varying permeabil-
ity model. The remaining parameter, λm, interpolating bounce and saturation exposures, represents
the inverse time contant modulating multidiving. The depth at which a compartment controls an
exposure, and the excitation radius as a function of halftime, τ , in the range, 12 ≤ d ≤ 220 fsw,
satisfy,

r

ri
= 0.90 − 0.43 exp (−ζτ)
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with ζ = 0.0559 min−1. The generation constant, λr, is on the order of inverse days, that is, λr =
.0495 days−1. Characteristic halftimes, τr and τh, take the values τr = 14 days and τh = 12.4 min.
For large τ , r is close to ri, while for small τ , r is on the order of 0.5 ri. At sea level, ri = 0.8 μm.

Staging on the allowed tissue supersaturation is linked to the bubble surface pressure,

p − P ≤ 2
γ

γcr
(γc − γ)

with, in the permeable region,

r =
[

(P − Pi)
2(γc − γ)

+
1
ri

]−1

and, in the impermeable region,

r3 − 2(γc − γ)r2 − Pi

ζ
r3
c = 0

for,

ζ = P − 2Pc + 2Pi +
2(γc − γ)

rc

according to gel measurements detailed earlier, with Pc near 6 atm. VPM parameters were also
fitted to air and helium diving data in shallow zones. The VPM is available in some dive planning
software for technical diving.

Reduced Gradient Bubble Model (RGBM)
The RGBM employs a phase volume constraint [81,84,88] across the total dive profile. The gel

parameterization is replaced by flexible seed skins with appropriate EOS, permeable to gas diffusion
at all pressures and temperatures. Gas diffuses across the bubble interface, and the bubble is subject
to Boyle expansion-contraction. The phase volume constraint equation is rewritten in terms of a
phase function, φ̇, varying in time, ∫ τ

0

∂φ

∂t
dt ≤ Φ

with, as before,

φ̇ =
∂φ

∂t

for Φ the separated phase, and τ some (long) cutoff time. More particularly, for Π the total gas
tension, taking τ → ∞, holding temperature constant,

φ̇ =
[
∂V

∂t

]
diffusion

+
[
∂V

∂t

]
Boyle

+
[
∂V

∂t

]
excitation

for, [
∂V

∂t

]
diffusion

= 4πβ exp (βε)DS

∫ ∞

ε

nr

[
Π − P − 2γ

r

]
dr

[
∂V

∂t

]
Boyle

= 4πβ exp (βε)
∫ ∞

ε

nr2

[
∂r

∂P

∂P

∂t

]
dr

[
∂V

∂t

]
excitation

= 4π
∂

∂t

[
θ(t − tex)

∫ ∞

ε

nr2dr

]
with all quantities as denoted previously, the seed density normalized to the excited seed volume, V ,

4π

∫ ∞

ε

nr2dr = 4π

∫ ∞

ε

exp (−βr)r2dr = V
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the heaviside function, θ, defined for seed excitation at time, tex,

θ(t − tex) = 0, t ≤ tex

θ(t − tex) = 1, t > tex

with the time derivative of the heaviside function a delta function,

∂θ(t − tex)
∂t

= δ(t − tex)

To simplify EOS lookups, Boyle factors, ξ, are used, so that,

ξPV = nRT

as detailed earlier. Thus the phase function, φ̇, depends on the number of bubbles, n, stimulated into
growth by compression-decompression, the supersaturation gradient, G, seed expansion-contraction
by radial diffusion, ∂r/∂t, Boyle expansion-contraction with pressure changes, P , and inside temper-
ature, T , in general. The excitation radius [16,22,29], ε, depends on the material properties [24,92],
and is taken for nitrogen (μm),

εN2 = 0.007655 + 0.001654
[
T

P

]1/3

+ 0.041602
[
T

P

]2/3

and for helium,

εHe = 0.003114 + 0.015731
[
T

P

]1/3

+ 0.025893
[
T

P

]2/3

for T measured in absolute oK, and P given in fsw, with ranges for virial coefficients, aqueous to
lipid materials, varying by factors of 0.75 to 4.86 times the values listed above. Both expressions
obtain from fits to RGBM mixed gas data across lipid and aqueous bubble films, and are different
from other phase models. Values of excitation radii, ε, above range from 0.01 to 0.05 μm for sea level
down to 500 fsw. This is compared to excitation radii in other models (VPM and TBDM) which
vary in the 1 μm range. In the very large pressure limit, excitation radii (like beebees) are in the
1/1,000 μm range. Table 2 lists excitation radii (air) according to the RGBM.

Table 2. RGBM Excitation Radii

pressure excitation radius pressure excitation radius
P (fsw) ε (μm) P (fsw) ε (μm)

13 0.174 153 0.033
33 0.097 183 0.029
53 0.073 283 0.024
73 0.059 383 0.016
93 0.051 483 0.011
113 0.046 583 0.009

To track Boyle bubble expansion-contraction easily, a set of multipliers, ξ, is tabulated in Table 3
below. For changes in pressure, P , we have,

ξiPiVi = ξfPfVf

as before, with i and f denoting initial and final states. Multipliers represent a 50/50 lipid-aqueous
skin, following Sears [62], Eisenberg [28], Cottrell [24].
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Table 3. RGBM Boyle Multipliers

depth EOS multiplier
(fsw) ξ

30 0.610
90 0.732
150 0.859
210 0.939
270 1.032
330 1.119
390 1.169
450 1.183
510 1.203

To track gas transfer across bubble boundaries, we need mass transport coefficients, DS, for inert
gases. Table 4 lists DS for the same lipid-aqueous surfaces, using Eisenberg [28], Frenkel [33], and
Bennett and Elliot [10],

Table 4. RGBM Mass Transfer Coefficients
gas DS

(μm2/sec fsw)
H2 72.5 × 10−6

He 18.4 × 10−6

Ne 10.1 × 10−6

N2 56.9 × 10−6

Ar 40.7 × 10−6

O2 41.3 × 10−6

Notice that helium has a low mass transport coefficient, some 3 times smaller than nitrogen. Two
parameters, closing the set, are nominally (STP),

Φ = 840 μm3

β = 0.6221 μm−1

fitted to collected (LANL Data Bank) deep, mixed gas, decompression data [80], and with varying
bubble surface tension [26,33],

2γ = 44.7
[
P

T

]1/4

+ 24.3
[
P

T

]1/2

dyne/cm

The inherent unsaturation (oxygen window), υ, takes the form (fsw),

υ = fO2P − 4.87

with P ambient pressure, and fO2 oxygen fraction. Under compression-decompression, some of this
window takes up inert gases, denoted, ζ,

ζ = fO2P − υ

Staging in the RGBM requires the supersaturation gradient to remain under the seed averaged bubble
surface pressure,

p − P ≤ β exp (βε)
∫ ∞

ε

exp (−βr)
2γ

r
dr
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whereby the seed distribution controls the ascent.
Two linked bubble algorithms exist. One is a folded algorithm using phase factors from the full

iterative model to limit repetitive, reverse profile, multiday activities, and flying after diving using
M − values. Detailed next, it is called the modified gradient phase model (MGPM). It uses results
from the RGBM to deduce phase factors for folding. Both are correlated with data in the LANL
Data Bank (2843 profiles and 18 cases of DCS). The folded version is found in many decometers
on the market today. It is mainly employed in the recreational air and nitrox arenas. The bubble
version above is the basis of released mixed gas decompression tables and simplified no-group, no-calc
recreational air and nitrox tables up to 10,000 ft elevation. Meter implementations of the full RGBM
are available and under continuing development. The full up RGBM described above is employed in
the technical, research, and scientific diving communities. It is a mainstay for LANL operations, and
is used now in the commercial, oil patch, sector. Decompression meters and dive planning software
are readily available with the algorithm.

Modified Gradient Phase Model (MGPM)
Classical approaches use a dissolved gas (tissue) transfer equation, and a set of critical parameters

to dictate diver staging through the gas transfer equation. In the Workman [10,41,81] approach, the
critical parameters are called M − values, while in the Buhlmann [10,19,81] formulation they are
called a and b. They are equivalent sets, slightly different in representation but not content. Consider
air, nitrox, heliox, and trimix in the ZHL formalism [19,44,85].

Staging is controlled in the ZHL algorithm through sets of tissue parameters, a and b, listed below
in Table 5 for 14 tissues, τ , through the minimum permissible (tolerable) ambient pressure, Pmin,
by,

Pmin = (p − a)b

across all tissue compartments, τ , with the largest Pmin limiting the allowable ambient pressure,
Pmin.

Table 5. Nitrogen ZHL Critical Parameters (a, b)

halftime critical intercept critical slope
τ (min) a (bar) b

5.0 1.198 0.542
10.0 0.939 0.687
20.0 0.731 0.793
40.0 0.496 0.868
65.0 0.425 0.882
90.0 0.395 0.900
120.0 0.372 0.912
150.0 0.350 0.922
180.0 0.334 0.929
220.0 0.318 0.939
280.0 0.295 0.944
350.0 0.272 0.953
450.0 0.255 0.958
635.0 0.236 0.966

In terms of critical tensions, M , according to the USN, the relationship linking the two sets is simply,

M =
P

b
+ a = ΔM P + M0

so that,

ΔM =
1
b
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M0 = a

in units of bar, though the usual representation for M is fsw. The above set, a and b, hold generally
for nitrox, and, to low order, for heliox (and trimix too). Tuned modifications for heliox and trimix are
tabulated below. According to the MGPM, bubble-like model behavior within critical parameters, a,
b, is established through multidiving reduction factors, f , such that for any set of nonstop gradients,
G,

G = M − P

a reduced set, Gf , obtains from the nonstop set, G, for multidiving through the reduction factors,
f ≤ 1,

Gf = fG

so that,

Mf =
P

bf
+ af = Gf + P = fG + P

but, since,

fG = f(M − P ) = f

[(
P

b

)
+ a − P

]
we have,

af = fa

bf =
b

f(1 − b) + b

The new (reduced) staging regimen is then simply,

Pmin = (p − af )bf

using reduced critical parameters, af and bf . Certainly, as f → 1, then af → a, and bf → b,
as requisite. Now all that remains is specification of f , particularly in terms of repetitive, reverse
profile, and multiday diving, as limited by the bubble dynamical RGBM. The full factor, f , depends
on tissue halftime, τ , generally through the relationship (for nitrox),

f = (1 − f0)
τ

180
+ f0 (f = 1, τ ≥ 180 min)

as the tissue scaling up through the 180 min nitrogen compartment, with multdiving weighting,

f0 = 0.45 frp + 0.30 fdp + 0.25 fdy

where frp, fdp, and fdy are reduction factors for repetitive, reverse profile (deeper than previous), and
multiday (time spans of 30 hrs or more) diving. These forms for multidiving f are dependent on time
between dives, tsur , maximum ambient pressure difference on reverse profile dives, (ΔP )max, maxi-
mum ambient pressure, Pmax, and multiday diving frequency, n, over 24 hr time spans. Specifically,
they are written [84,87],

frp = 1 − 0.45 exp

[
− (tsur − ηrp)2

4η2
rp

]

10 min ≤ ηrp ≤ 90 min

fdp = 1 − 0.45
[
1 − exp

(
− (ΔP )max

Pmax

)]
exp

[
− (tsur − ηdp)2

4η2
dp

]

30 min ≤ ηdp ≤ 120 min
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fdy = .70 + .30 exp

(
− n

ηdy

)

12 hrs ≤ ηdy ≤ 18 hrs

with tsur measured in min, and n the number of consecutive days of diving within 30 hr time spans.
These factors are applied after 1 min of surface interval (otherwise, previous dive continuation).
The difference, (ΔP )max, can be the time averaged difference between depths on the present and
previous dives (computed on the fly). Fits using collected data (LANL Data Bank) cross reference
RGBM and MGPM parameters for recreational and light decompression diving.

The standard set, a, b, and τ is modified for helium mixtures, with basic change in the set
of halftimes, τ , used for the set, a and b. To lowest order, a and b for helium are the same as
those for nitrogen, though we will list the modifications in Table 6 below. Halftimes for helium are
approximately 2.65 times faster than those for nitrogen, by Graham’s law (molecular diffusion rates
scale inversely with square root of atomic masses). That is,

τHe =
τN2

2.65

because helium is approximately 7 times lighter than nitrogen, and diffusion rates scale with square
root of the ratio of atomic masses. The tissue equation is the same as the nitrox tissue equation,
but with helium constants, λ, defined by the helium tissue halftimes. Multidiving fractions are the
same, but the tissue scaling is different across the helium set,

f = (1 − f0)
τ

67.8
+ f0 (f = 1, τ ≥ 67.8 min)

and all else is the same.

Table 6. Helium ZHL Critical Parameters (a, b)
halftime critical intercept critical slope
τ (min) a (bar) b

1.8 1.653 0.461
3.8 1.295 0.604
7.6 1.008 0.729
15.0 0.759 0.816
24.5 0.672 0.837
33.9 0.636 0.864
45.2 0.598 0.876
56.6 0.562 0.885
67.8 0.541 0.892
83.0 0.526 0.901
105.5 0.519 0.906
132.0 0.516 0.914
169.7 0.510 0.919
239.6 0.495 0.927

For trimix, both helium and nitrogen are tracked with tissue equations, and appropriate average
of helium and nitrogen critical parameters used for staging. Denoting nitrogen and helium fractions,
fN2 , and fHe, ambient nitrogen and helium pressures, paN2 and paHe, tissue halftimes are mapped
exactly as listed in Tables 5 and 6, and used appropriately for nitrogen and helium tissue equations.
Additionally,

fO2 + fN2 + fHe = 1

39



Total tension is the sum of nitrogen and helium tensions. Critical parameters for trimix, αf and βf ,
are just weighted averages of critical parameters, aN2 , bN2 , aHe bHe, from Tables 3 and 4, that is,
generalizing to the reduced set, af and bf ,

αf =
fN2afN2 + fHeafHe

fN2 + fHe

βf =
fN2bfN2 + fHebfHe

fN2 + fHe

The staging regimen for trimix is,
Pmin = (Π − αf )βf

as before. The corresponding critical tension, Mf , generalizes to,

Mf =
P

βf
+ αf

Obviously, the above set of equations include any mixture of nitrogen, helium, and oxygen (air,
nitrox, heliox, trimix), The MGPM is employed is used extensively in neo-Haldanian decompression
meters.

Tissue Bubble Diffusion Model (TBDM)
Bubbles shrink or grow according to a simple radial diffusion equation linking total gas tension,

Π, ambient pressure, P , and surface tension, γ, to bubble radius, r,

∂r

∂t
=

DS

r

[
Π − P − 2γ

r

]

with D the gas diffusion coefficient, and S the gas solubility. Bubbles grow when the surrounding
gas tension exceeds the sum of ambient plus surface tension pressure, and vice-versa. Higher gas
solubilities and diffusivities enhance the rate. Related bubble area, A, and volume, V , changes
satisfy,

∂A

∂t
= 8πr

∂r

∂t

∂V

∂t
= 4πr2 ∂r

∂t

Using Fick’s law, a corresponding molar current, J , of gas into, or out of, the bubble is easily
computed assuming an ideal gas,

J = − DS

RTh

[
Π − P − 2γ

r

]

for R the ideal gas constant, T the temperature, and h an effective diffusion barrier thickness. And
the molal flow rate is just the molal current times the interface area, that is,

∂n

∂t
= JA

for n the number of moles of gas. The change in pressure and volume of the bubble, due to gas
diffusion, follows simply from the ideal gas law,

∂(PV + 2γr−1V )
∂t

= R
∂(nT )

∂t
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for V the bubble volume.
Obviously, the above constitute a coupled set of differential equations, solvable for a wide range

of boundary and thermodynamic conditions connecting the state variables, namely, P , V , Π, r, n,
and T . In the Gernhardt [35] treatment, tissue deformation, ξ, is given by,

ξ =
4
3
πr3Y

with Y the tissue bulk modulus, and r the bubble radius. Staging can be applied by limiting tissue
deformation, such that symbolically,

ξ ≤ 4
3
πr3Ymin

Bubble dose, based on the hypothetical volume of an expanding test bubble, can also be linked to
staging for any exposure. Maximum likelihood regression is used to correlate bubble dose parameters
with DCS risk. Staging can be then correlated with dose and risk. This approach is likely employed
in the commercial diving sector.

Linear-Exponential Phase Model (LEPM)
Thalmann and others [70,71,75] have extended USN dissolved gas models to emulate bubble

behavior, using both (either) modified M − values or separated bubble volumes, as critical staging
parameters. The model enjoys correlation with extensive US Navy data sets accumulated over the
years, and is based on statistics gathered for dissolved gas staging but not necessarily deep stops,
likely a data-model mismatch.

In the LEPM, the assumption that gas content remains in solution at all times during decom-
pression is relaxed to acommodate gas bubble formation and growth. Under this relaxation, mass
balance equates the rate of change of tissue compartment dissolved gas tension to the rate of gas
uptake from the blood minus the gas flux into the bubbles. In essence, this is congruent with the
split phase gradient model (SPGM) discussed previously. The particular form of the transfer rate
equation is,

∂p

∂t
=

pa − p

τ
− 1

αtV

N∑
n=1

∂(PnVn)
∂t

with N the number of bubbles, Pn the inert gas pressure in the nth bubble, Vn the volume of the nth

bubble, V the compartment total volume, αt the tissue partition fraction, and τ the time constant.
In the absence of bubbles, the last term vanishes, and the LEM equations are recovered.

Unlike the kinetics of exponential uptake and elimination, regardless of compartment saturation,
the linear exchange kinetics of the LEM and LEPM via arterial-tissue tension clamping occur once
bubbles are assumed to form. While this exact time is not known, the US Navy approach assumes
bubble formation when a set of reduced critical tensions, denoted Mr to distinguish them from
classical M − values of multitissue models, are exceeded. The bubble growth term, ∂V/∂t, has no
seed dynamics imbedded in its definition (unlike RGBM and VPM), but proceeds according to an
expression suggested by Van Liew [73,74]. For r the bubble radius, and all other quantities as defined
before, the growth rate is,

∂V

∂t
= −4πr2αtDt

[
1 − p

pb

] [
δ +

1
r

]
with p tissue tension, pb reduced bubble internal pressure (active gas partial pressures subtracted
from ambient pressure),

pb = P − pH2O − pCO2 − pO2 +
2γ

r
for Dt compartmental bulk diffusion coefficient, and δ a penetration length,

δ2 =
dQ

dt

αb

αtDtVt

41



within tissue volume, Vt. Boyle effects occur instantaneously with changes in ambient pressure, P ,
as in in other bubble models. Staging is effected through the reduced critical tensions,

p ≤ Mr

as a portion of the dissolved gas is assumed to phase transition. As in the dissolved gas LEM,
extensive correlations with USN data are linked to the LEPM, and the model is under continuing
analyses.

Summary

Bubble measurements, wet and dry testing, data collection and analyses, and dual phase models
have spawned some new protocols, worth enumerating at this point, as far as impact on operational
diving [10,12,30,31,39,44,47-49,52,57,66,69,79,83,85]:

1. reduced nonstop time limits;

2. safety stops (or shallow swimming ascents) in the 10-20 fsw zone;

3. ascent rates not exceeding 30 fsw/min;

4. restricted repetitive exposures, particularly beyond 100 fsw,

5. restricted reverse profile and deep spike diving;

6. restricted multiday activity;

7. smoother coalescence of differring algorithm limit points;

8. consistent diving protocols for altitude;

9. deep stops for decompression, extended range, and mixed gas diving with overall shorter de-
compression times, particularly for the shallow zone;

10. use of helium rich mixtures for technical diving, with shallow isobaric switches to nitrox (above
70 fsw roughly);

11. use of pure oxygen in the shallow zone to eliminate both dissolved and bubble inert gases.

These are fairly recent developments on the diving scene, with seemingly no spikes in DCS
incidence rates reported within categories of divers employing them. Yet certainly, few of these
procedures have been tested, particularly in the deep, decompression, and mixed gas diving zones. In
time, many procedures will be tested or analyzed with growing profile data, and protocols validated,
modified, or discarded. Of course, wet and dry testing are expensive, limited in range, and not
always viable operationally. In that respect, profile data banks with diver outcomes are enormously
important to cover a full spectrum of diving not amenable nor feasible for wet and dry testing.
The profile data banks at DAN [64] and LANL [80] are two modern ones, with DAN focused on
recreational diving and LANL concerned with technical deep, mixed gas, and decompression diving.
To say these data banks can help fill holes in the testing arena might be an understatement.
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