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Thermodynamic expressions are derived for the system relative Gibbs free energy, and the relative
Gibbs free energy per bubble, for all possible equilibrium bubble states that can form in a soft
slightly rigid material, initially supersaturated with a dissolved inert gas �N2�. While the
thermodynamic manipulations are exact, the final expressions are approximate, due to an
approximation made in deriving the expression for the elastic free energy of a soft material
containing more than a single bubble. The expressions predict that provided the shear modulus of
the soft material is not negligibly small, free energy wells which stabilize small gas bubbles for
finite periods of time exist in such materials. This is consistent with a previous calculation, based
solely on the bubble pressure equation, which resulted in the conjecture that bubbles found in soft
materials with some rigidity �or shear resistance� are likely to be small. The possible relevance of
this to the field of decompression sickness is outlined. © 2010 American Institute of Physics.
�doi:10.1063/1.3394940�

I. INTRODUCTION

This is the second of two articles about the effect of
elasticity on the pressure and stability of gas bubbles sus-
pended in a soft elastic material. In the first article,1 an es-
sentially exact equation was derived for the pressure of a
single gas bubble suspended in a soft elastic material. From
the basis of that equation, the conjecture was made that soft
elastic materials with a non-negligible shear modulus �be-
low� may stabilize small gas bubbles. Moreover, for materi-
als in which both shear resistance and surface tension forces
exist, it was found that both small and large gas bubbles can
be expected to form, albeit on different timescales. This dif-
fers from the behavior of bubbles in ordinary liquids, where
minimization of the effect of surface tension, in the absence
of shear resistance, acts to stabilize large gas bubbles only.2

A simple physical mechanism, if it exists, that acts to
stabilize small inert gas bubbles in the body, would be highly
relevant to understanding the physical basis of “decompres-
sion sickness” �DCS�. DCS sometimes arises in people and
animals, following a rapid decompression �i.e., a reduction in
external pressure� from an initially stable higher pressure
state. The greater the pressure drop, the greater is the prob-
ability that DCS will occur. DCS can be either “hyperbaric
DCS” �as in scuba diving� or “hypobaric DCS” �as in space
exploration�, depending on whether the initial pressure is,
respectively, greater than or equal to 1 atm.

DCS is believed to be initiated by the growth of pre-
existing gas bubbles in specific tissues of the body, with the
manifest form of DCS dependent on the tissue involved. For
example, two mild forms of DCS are “skin bends” �which
involves itching and/or a rash�, and “pain-only DCS”—more
generally “the bends,” which involves joint pain only. In
these manifestations, the expanding gas bubbles are believed,

respectively, to be in the skin,3,4 and �as has been recently
postulated� inside enclosed pain-sensing organelles, which
are themselves embedded in joint capsules.5 Severe forms of
DCS include “neurological DCS,” �or “CNS DCS”� which is
believed to arise from the growth of gas bubbles in central
nervous system tissue.3,4,6,7 CNS DCS can result in blind-
ness, paralysis, and even death.

It is known from Doppler �ultrasound� measurements
that, subsequent to decompression, an increased incidence of
gas bubbles is found in the major veins of the circulatory
system, relative to their incidence prior to decompression.8,9

These bubbles can be detected even after very mild decom-
pressions that do not result in DCS.9 While there exists a
weak positive correlation between the numbers and size of
bubbles detected by Doppler measurements following de-
compression, and the likelihood of subsequently developing
some form of DCS,9 venous system bubbles per se are not
believed to be causative of DCS. Rather, as indicated above,
DCS is believed to result from gas bubble growth within
specific tissues, and that the presence of significant numbers
of venous system bubbles provides merely a rough indication
that some form of DCS may subsequently occur.

In this second article, the work in Ref. 1 is extended to
elastic media containing more than a single bubble, and ex-
pressions for the Gibbs free energy functions for such a sys-
tem are derived. The main purpose of this second article is to
determine whether the conjecture in Ref. 1—that soft elastic
materials have the potential to stabilize small inert gas
bubbles—is thermodynamically supported. The underlying
motivation for both articles is to try to provide insight into
the influence elasticity of the surrounding medium may have,
on the physical basis of DCS.

In order to try to understand the physical basis of DCS,
it is necessary to know how the pressure and stability of gas
bubbles in tissues vary with the external pressure and with
the properties of the tissues. We will model tissues in thea�Electronic mail: sgoldman@uoguelph.ca.
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body as isotropic elastic materials that have a surface tension
and resist both compression and shear forces. Compression
forces act to reduce the volume of a material without chang-
ing its shape. Shear forces act to change the shape of a ma-
terial without changing its volume. The elastic behavior of a
simple liquid, such as water, involves no resistance to shear
forces �its “shear modulus” is zero� but strongly resists com-
pression �its “modulus of compression” is large�. It is the
shear modulus, which is entirely absent in simple liquids,
such as water, that gives materials whatever rigidity and in-
trinsic shape they may have. Since most tissues in the body
do have intrinsic shapes, it is expected that their shear modu-
lus will be germane to the pressure and stability of inert gas
bubbles within them.

II. THEORY

The Young–Laplace �YL� equation �often called simply
the Laplace equation� for the pressure of a mechanically
stable gas bubble suspended in a fluid medium was recently
generalized. The generalization rendered the YL equation ap-
plicable to elastic materials that have intrinsic shape due to
their having a nonzero shear modulus.1 For materials that
have a surface tension but no shear modulus, such as ordi-
nary liquids, the YL equation is10

PB = P + 2�/RB. �1�

In Eq. �1�, PB, P, �, and RB are the gas pressure in the
bubble, the constant external pressure applied to the medium,
the surface tension, and the bubble radius, respectively. The
generalized-YL �GYL� equation for the pressure of a bubble
in a soft elastic material with both a surface tension and a
shear modulus, to which a constant external pressure is ap-
plied, was found to be

PB = Pf��� + 4a1�2�1 − �f���� + 2�/RB �2�

where

f��� � �1 + �2�/�1 + �2��, �2 � 4�2/3K2,

� = �RB/RS�3, RS
3 = RB

3 + �3V2
0/4���1 + 3a2�,

a2 = �4�2a1� − P�/�3K2 + 4��2� .

In the above, a1 is a constant �−1 /3� for gases at ordinary to
moderately high pressures, �, RS, and V2

0 are the volume
fraction occupied by the bubble, the radius of the system
�bubble+medium� measured from the center of the bubble,
and the initial �undeformed� volume of the spherical shell of
elastic material that surrounds the bubble, respectively. Also
�2 and K2 are the shear modulus and the modulus of com-
pression of the medium, respectively.11–13 Because of accu-
racy concerns �below�, we will restrict out calculations to
soft deformable materials that are only very slightly rigid, for
which �2�O�10−6�. For �2, in this range, the GYL equation
simplifies to

PB � P − �4�2/3��1 − �� + 2�/RB. �3�

Since �2�0, it is seen from Eq. �3� that the effect of a low
degree of shear resistance in the medium is to lower the

bubble pressure, relative to that predicted by the YL equa-
tion. Also, depending on the values of P, �, and �2, PB can,
from the basis of these equations, be negative for some in-
termediate values of RB. In other words, the GYL equation
predicts that there may be soft materials in which both small
and large, but not intermediate sized gas bubbles are ob-
served. This unusual situation stems from the opposing ef-
fects on PB of surface tension and shear resistance. The
former exerts a positive effect on PB, and is relatively impor-
tant for small radii. The latter is relatively important for in-
termediate radii, where it exerts a negative effect on PB.
Also, it was shown in Ref. 1 that the range of radii over
which negative PB values were predicted could be quite large
�e.g., O�10�� or more�. This indicates, intuitively at least,
that any bubbles found in such materials would tend to be
small, since though mechanically stable once formed, large
bubbles may be unlikely to form.

A. Partitioning the medium

We will require expressions for the relative Gibbs free
energy, and for the bubble pressure PB, for a composite sys-
tem comprised of a number of gas bubbles suspended in, and
in equilibrium with an elastic medium. This requires that the
medium be partitioned over the bubbles in the system. A
straightforward method, taken from solid state physics14,15

was used for this. Each bubble is associated with, and is at
the center of, a spherical shell or “domain” of the elastic
medium.15 We assume that the bubble densities will be low
enough so that the bubbles do not directly influence one
another. The inner and outer radii of the elastic domain are
the bubble radius RB and R0, respectively, where the latter,
measured from the center of the bubble, is given by14,15

R0 = RB/�1/3 = RS/NB
1/3. �4�

RS, the system radius, is given by

RS = �NBRB
3 + �3V2

0/4���1 + 3a2��1/3. �5�

The term 3a2 will be determined from boundary conditions.
It provides the so-called “volumetric strain” in the medium,
which is the fractional change in the volume of the medium
that accompanies its deformation, due to different pressures
acting on its surfaces. Here this arises due to the formation of
bubbles of pressure PB within the medium, while the external
or applied pressure is P.1,11

Having decomposed the system into NB spherical sub-
systems, the bubble pressure and the elastic free energy of
the soft material in the subsystems, are determined in the
exact same way as was done for the single-bubble case.1

Therefore, the derivation for these functions that is given
below is brief. It is important to bear in mind, however, that
while the solution is essentially exact for NB=1, the solution
for NB�1, is approximate.

B. The bubble pressure

We use boldface letters for vectors, and the usual con-
vention for representing tensors.11 We use spherical coordi-
nates, summation over the coordinate labels r, �, and 	 is
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understood with respect to all suffixes that appear twice in a
given term, and the summation sign over tensor suffixes is
omitted.

The general condition for mechanical stability of an iso-
tropic material that is deformed by forces applied to its sur-
face�s� is11

2�1 − 
�grad div u − �1 − 2
�curl curl u = 0, �6�

where u is the displacement vector1,11 and 
 is Poisson’s
ratio.11–13 Because of spherical symmetry of the subsystems,
the displacement vectors both in the bubble and in its sur-
rounding elastic shell are purely radial. Consequently the
second term in Eq. �6� vanishes, and the radial components
of the displacement vectors that satisfy Eq. �6� are obtained
from

ur
�i��r� = air + bir

−2 i = 1,2. �7�

In the above ur
�i��r� is the radial component of u in phase i

and ai and bi are constants �i.e., independent of the radial
distance r� to be determined from the boundary conditions.

Using i=1,2 to represent the bubble and its spherical
shell, respectively, it is readily shown1 that b1=0, and pro-
vided the bubble pressure is in a range for which the com-
pressibility factor of the gas in it remains finite, a1=−1 /3.

The remaining two constants, a2 and b2, and the bubble
pressure PB, require three boundary conditions for their de-
termination. Given the subdivision of the full system into NB

spherical subsystems, two of these conditions are exact, and
the third is approximate. The exact conditions are

ur
�1��RB� = ur

�2��RB� �8�

PB = − �rr
�2��RB� + 2�/RB. �9�

Equation �8� stems from the requirement of continuity of the
displacement vector across the gas bubble/elastic shell inter-
face, and Eq. �9� reflects the balance of forces normal to the
surface at this interface. The two terms on the right-hand side
of Eq. �9� give the elastic and surface tension contributions
to the total pressure acting on the bubble, respectively. In Eq.
�9�, �rr

�2��RB�, and � are the radial component of the stress
tenor in the soft material, and the surface tension, respec-
tively, both at this interface.

A third boundary condition, applicable at the sub-
system’s domain radius R0, is needed, and an approximation
is used for it. For NB=1 �or R0=RS�, the exact boundary
condition which was used previously1

P = − �rr
�2��RS� . �10�

This is an expression of the balance of normal forces at the
outer radius of the system where the constant external pres-
sure �P� is applied.

The approximation we will use here for NB�1 is

P � − �rr
�2��R0� . �11�

This means that the negative of the radial component of the
stress tensor at each domain’s outer radius R0, is set equal to
the applied external pressure. A desirable property of this
approximation, is that it is exact at both extremities of the
range of bubble volume fractions �, where NB=1. It will be

shown that these extremities correspond to the lower and
upper critical bubble radii of the system, Rcrit,l, and Rcrit,u

respectively. Therefore, though approximate, Eq. �11� does
not involve the uncontrolled approximation of extrapolating
from low to high �. Eq. �11� is anchored exactly at both
extremities of �.

There are several routes by which this approximation
can be obtained. One is based on making the displacement
vector stationary at each domain boundary, where the influ-
ence of central enclosed bubble is presumed to vanish. Mak-
ing ur

�2��R0� stationary is equivalent to making the radial
component of the strain tensor at the domain boundary
�urr

�2��R0�� zero. This approximation is physically sensible,
since when urr

�2��R0�=0, the material at the domain bound-
ary is radially undeformed.1 Under linear response, the radial
components of the stress and strain tensors are related
through1,11,13

�rr
�2��r� = 2�2urr

�2��r� + 9a2K2�
/�1 + 
�� , �12�

which for the materials of interest here reduces almost ex-
actly to1

�rr
�2��r� � 2�2urr

�2��r� − P . �13�

Using urr
�2��R0�=0 in Eq. �13� gives Eq. �11�.

An alternate route to Eq. �11� is outlined in Ref. 16.
Equations �8�, �9�, and �11� are independent, so that they

can be combined and solved simultaneously for a2, b2, and
PB. The result is

PB = Pf��� + 4a1�2�1 − �f���� + 2�/RB,

f��� � �1 + �2�/�1 + �2��; �2 � 4�2/3K2;

� = �RB/R0�3, �14�

R0
3 = RB

3 + �3/4���V2
0/NB��1 + 3a2�;

a2 = �4�2a1� − P�/�3K2 + 4��2�;

b2 = RB
3�a1 − a2�; a1 = − 1/3.

Equation �14� is isomorphic with Eq. �2�, and correctly re-
duces to it for NB=1. Equation �14�, which generalizes Eq.
�2� from NB=1 to NB�1, will be used for the bubble pres-
sure in the expressions for the free energy for systems in
which NB�1.

C. Gibbs free energy of elastic deformation

The derivation of an expression for the Gibbs free en-
ergy of elastic deformation of the soft material associated
with each bubble, is done exactly as was done for the single
bubble,1 except that the upper limit of integration is now the
domain radius R0, rather than to the system radius RS

�Ref. 17� �R0=RS /NB
1/3�. The expressions used for the stress

and strain tensor components, �ik
�2� and uik

�2�, respectively,
and the details of the contraction and the integration are as in
Ref. 1. Thus, from
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dgelas = − �V2
0/NB�uik

�2�d�ik
�2�,

we get

gelas = − �V2
0/NB��

�ik�RB�

�ik�R0�

uik
�2�d�ik

�2�

= 6�V2
0/NB��2�a1 − a2�2�1 − �2� . �15�

The value of a1�−1 /3� and the expressions for �, R0, and a2,
that are given with Eq. �14�, are used in Eq. �15�. In the
above, gelas is the elastic Gibbs free energy due to shear
resistance, attributed to the elastic domain associated with
each bubble. From this, the elastic Gibbs free energy of the
medium for the full system is simply

Gelas = 6V2
0�2�a1 − a2�2�1 − �2� . �16�

A key property of Eq. �16� that will be germane to the exis-
tence of metastable free energy wells for small gas bubbles
in elastic materials, is its prediction of near constancy of
Gelas, for a given �2. Specifically, we will have a2 /a1

�10−4 so that

Gelas � �2/3�V2
0�2�1 − �2� �16��

��2/3�V2
0�2 �16���

Eq. �16�� follows from Eq. �16�� since we will have �� .03

D. Gibbs free energy of dissolution

We use the process of dissolution from a supersaturated
solution as a means of creating a system with an excess
quantity of gas, relative to what is present at saturation in
solution. Our interest is in the stable and metastable bubble
distributions that arise when excess gas coexists in equilib-
rium, or conditional equilibrium �below�, with a soft elastic
material.

Consider the dissolution process from an initial state
comprised of a supersaturated solution of N2 dissolved in a
soft elastic medium. We need an expression for the Gibbs
free energy of dissolution from this state to all possible two-
phase equilibrium composite states that can form when ex-
cess gaseous N2 is released to the medium as gaseous
bubbles. The term “equilibrium” here refers to a conditional
or partial equilibrium. This means that the bubbles are in
mechanical and thermal equilibrium with the surrounding
medium, and the chemical potentials of N2 in the bubbles
and the surrounding medium are equal,2,18,19 but the bubbles
are constrained to some specified radius RB. The global mini-
mum over all possible conditional minima provides the most
stable possible state for the system as a whole. A macro-
scopic system will always be found in this final state, given
sufficient time.18–20

These states of conditional or partial equilibrium are in
the class of extrapolated or interpolated states that arise in
statistical kinetics.21 They are postulated to exist on a short
time-scale relative to the long time-scale in Thermodynam-
ics. Frenkel discussed what he called the “extended thermo-
dynamic theory” of these states, and gave several examples
of them.21 The best-known example is transition-state
theory19,22,23 �TST�. This theory also deals with a system that

traverses a series of states of conditional or partial equilib-
rium, before reaching the final equilibrium state. Partial or
conditional equilibrium in TST refers to the condition
wherein each reacting species is at all times assumed to be
equilibrated with respect to a Maxwell–Boltzmann
distribution,18,19 but not with respect to its concentration in
the thermodynamically most stable state of the system. It is
only in the final most stable equilibrium state, that the con-
centrations reach their respective equilibrium values.

We are looking for the possible presence of free energy
wells for small gas bubbles which, if present, would provide
them with a degree of longevity. Equations for mass balance,
mechanical stability, and equality of chemical potentials of
N2 in the two phases can be written for all the points along a
conditional equilibrium path, so that it is possible to fully
characterize all the composite states that comprise this path.
It is however not possible to simultaneously satisfy the con-
ditions of mass balance, mechanical stability, and equality of
chemical potentials, over a continuous range of bubble radii
using a single bubble �see Ref. 2 and below�. In order to
generate a continuous range of bubble radii at which the
bubbles are in states of conditional equilibrium, an additional
variable—the number of bubbles in the system at each radius
NB�RB�—must be introduced. It will be shown that NB�RB� is
a single-valued function of RB.

As a consequence, we need an equation for the relative
Gibbs free energy of a composite system comprised of NB

gas bubbles each of radius RB, suspended in, and in condi-
tional equilibrium with a surrounding elastic medium. This
expression will be obtained from the Gibbs free energy
change that accompanies the dissolution process in which a
super-supersaturated one-phase system gives off some of its
excess dissolved gas as bubbles. The process is taken to oc-
cur at a fixed temperature T, a fixed external pressure P, and
within a closed system. These conditions, together with a
further correction discussed below, are required in order that
the modified Gibbs free energy function that will be used be
a valid measure of the relative stability of the states being
generated and compared.

The required relative system Gibbs free energies are ob-
tained by subtracting the Gibbs free energy of the initial
super-saturated state from that of the composite states. �The
initial supersaturated solution can be created by a step de-
compression applied to a pre-existing saturated solution that
had been maintained at the relatively elevated pressure
Pin�Pin� P��. As originally formulated, the Gibbs free energy
function provides an exact measure of the relative stability of
states, provided the states being compared have the same
number of moles of each component, and are all at the same
temperature and pressure as the corresponding external tem-
perature and pressure reservoirs.2,10,20,21,24–28 More precisely,
for the Gibbs free energy function to be a valid measure of
the relative stability of a composite system, all the compo-
nent subsystems of the composite system must have the same
pressure as the external reservoir pressure.2,10,20,21,24–28 In the
problem under consideration however, the actual bubble
pressure PB will generally differ from the external pressure P
because of surface tension and shear modulus effects �see
Eqs. �2�, �3�, and �14��. Therefore the N2 in the bubbles will
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not generally be at the required constant external pressure P.
As described in more detail elsewhere,2,24 this complication
can be dealt with by a two-part corrective procedure. First,
one uses Callen’s reformulated postulatory
thermodynamics29 in place of Gibbs’ original formulation.
This obviates the Gibbs requirement of a reversible path
along which the pressure of all the subsystems in the com-
posite state are at the constant reservoir pressure �which is
here impossible�. Second, for purposes of the composite state
free energy evaluation, one corrects �or rescales� the chemi-
cal potential of the gas in the bubbles to what it would be if
the bubble pressure were P, as opposed to the actual value
PB.2,21,24 The product of this rescaled chemical potential and
the actual number of gas molecules provides the gas phase
contribution to the free energy of the full compound system.
The actual number of gas molecules is determined from the
equality of chemical potentials of N2 in the two phases, with
each phase considered at its actual pressure �below�.

This way of calculating the Gibbs free energy of a com-
posite system that contains a subsystem with a pressure that
is different from the external pressure, was apparently first
used about 70 years ago by Frenkel.21 Later, Abraham wrote
out the method systematically, and called the resultant com-
putational prescription a “postulate” �it is postulate 3� of Ref.
24�, for which the ultimate justification was to be any a
posteriori success it may have in applications.24 Here, as in
Ref. 2, we assume this postulate to be correct. We will find
support for it both in this work �below�, and in the relatively
recent work on nucleation theory by Debenedetti,25,26 and by
Tester and Modell,25,27 who use the equivalent of this method
in related problems. The result is

G�RB,P� = Gfin�RB,P� − Gin�	x�in�
,P� ,

Gin�	x�in�
,P� = �
j=1

2

Nj� j,l�	xj�in�
,P� ,

Gfin�RB,P� = Gelas�RB,P� + Gsurf�RB,P� + Gl�RB,P�

+ Gg�RB,P� ,

Gelas�RB,P� = 6V2
0�2�a1 − a2�2�1 − �2� ,

Gsurf�RB,P� = 4�r2�NB�RB,P� ,

Gl�RB,P� = �
j=1

2

Nj,l�RB,P�� j,l�xj,l�RB�,P� ,

Gg�RB,P� = N2,g�RB,P��2,g�RB,P� ,

N2,g�RB,P� = �4�/3�RB
3PBNB�RB,P�/kT ,

�2,g�RB,P� = �2,g�RB,PB� + kT ln�P/PB� ,

NB�RB,P� = N1kT��x2�in�/x1�in��

− �x2,l�RB�/x1,l�RB���/��4/3��RB
3PB� . �17�

In Eq. �17�, PB� PB�RB , P�, a dependent variable, is the
bubble pressure given by Eq. �14�, Gin�	x�in�
 , P� and

Gfin�RB , P� are the Gibbs free energies in the initial state, and
the corrected �or rescaled� Gibbs free energy in the final
state, respectively, Nj is the total number of molecules of
type j in the system, and � j,�� . � is the chemical potential of
component j in phase � at the conditions defined by the
variables in parenthesis.18,19 Also, Gelas�RB , P� and
Gsurf�RB , P� are the total elastic and surface free energies in
the final state, respectively, Gl�RB , P� is the total Gibbs free
energy of the soft material in the final state in the absence of
shear resistance, and Gg�RB , P� is the total �corrected or res-
caled� Gibbs free energy of the gas phase in the final state.
As indicated above, it is obtained from

Gg�RB,P� = N2,g�RB,P��2,g�RB,P� ,

i.e., from the product of the actual number of gas molecules
in all the bubbles, and the re-scaled chemical potential of the
gas ��2,g�RB , P��, evaluated at P �not PB�.2,21,24–27 Thus, both
the external pressure and the bubble pressure enter into the
evaluation of the gas phase contribution to the total free en-
ergy of the composite system. This is consistent with the
work in Refs 21, 24, 26, and 27.

Nj,l�RB , P� is the total number of molecules of type j in
the soft material in the final state, and xj�in�, xj,l�RB� are the
mole fractions of j in the initial supersaturated state, and in
the soft medium in the composite state, respectively.

The last expression in Eq. �17� for the number of
bubbles NB, was obtained by combining the condition for
mass balance for N2 with the ideal gas law. Additional details
are provided in Ref. 2, where its two-component generaliza-
tion for a nonelastic liquid medium was derived.

Combining the components of Eq. �17� and simplifying
gives

G�RB,P�/NkT = NB�4�RB
2�

− �4/3��RB
3P ln�PB/P��/NkT

+ 6V2
0�2�a1 − a2�2�1 − �2�/NkT

+ �
j=1

2

xj�in�ln�xj,l�RB�/xj�in�� . �18�

g�RB,P� � G�RB,P�/NB,

g�RB,P�/kT = �6�V2
0/NB��2�a1 − a2�2�1 − �2�

+ 4�RB
2� − �4/3��RB

3P ln�PB/P��/kT

+ �N/NB��
j=1

2

xj�in�ln�xj,l�RB�/xj�in�� .

�19�

In these equations, Eq. �14� is to be used for PB, �, a1, and
a2, the expression for NB in Eq. �17�, together with Eq. �14�
for PB, is to be used for the number of bubbles, Eq. �16� was
used for the elastic free energy term in Eq. �18�, and
N�=N1+N2� is the total number of molecules in the system.

G�RB , P� is the �conditional, relative, corrected� Gibbs
free energy for the entire compound system of N molecules
and NB bubbles, at external pressure P, given an equilibrium
bubble radius RB. The global minimum over all possible
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G�RB , P� values provides the most stable state possible for
the system. Given sufficient time, the system will end up in
this state.

On the other hand, g�RB , P� is the �conditional, rela-
tive, corrected� Gibbs free energy of the compound system
per bubble, at external pressure P, given an equilibrium
bubble radius RB. This function will be used to estimate the
radii of small metastable inert gas bubbles in elastic media.

In the derivation of Eqs. �18� and �19�, the equality of
chemical potentials �which ensures zero net flux of N2 into or
out of the bubbles�,2,21,24–27

�2,l�x2,l�RB�,P� = �2,g�RB,PB� ,

written as

�2,l�x2,l�RB�,P� = �2,g�RB,P� + kT ln�PB/P� ,

was used to obtain the chemical potential difference of the
solute in the two phases at P,

�2�RB,P� � ��2,g�RB,P� − �2,l�x2,l�RB�,P��

= − kT ln�PB/P� .

The term �2�RB , P� arises when the components of Eq.
�17� are combined.2 This is the origin of the ln�PB / P� terms
in Eqs. �18� and �19�, which correct the free energy expres-
sions for the difference between the bubble pressure PB and
the external pressure P �i.e., it is the Frenkel/Abraham cor-
rection to these free energy functions�. This term lowers the
free energy for PB� P, and raises it for PB� P. In the latter
case, when PB→0 and P�0, this term raises the free energy
boundlessly so that the likelihood of observing such states
becomes negligible. Thus, it is solely through this correction
term, that negative bubble pressures are thermodynamically
precluded. Since negative pressures can arise from the GYL
equation, but cannot be sustained in a gas phase, we take this
result as a posteriori support for the validity of Abraham’s
postulate 3�. As indicated previously, relatively recent work
on nucleation theory25–27 further supports its validity.

E. Critical bubble radii

The range of possible bubble radii is bounded from be-
low and above, by the lower and upper critical bubble radii,
Rcrit,l and Rcrit,u, respectively. These are the radii of the small-
est and largest possible bubbles that can exist, given the sys-
tem, and the requirements that the bubbles are mechanically
stable, and satisfy both mass balance and equality of chemi-
cal potentials. They are determined by setting NB=1 in the
expression for NB in Eq. �17�, and numerically finding the
two real positive roots of the resulting equation. Additional
details are given in Sec. III B.

Both critical radii are system-size-dependent, but for the
systems and the range of �2’s considered here, Rcrit,l can be
estimated conveniently, without iteration, and to about 1 part
in 104 by using the closed-form infinite-system Rcrit,l��� in
its place an approximation. Rcrit,l��� is obtained by inverting
Eq. �2�, and taking the limit �→0. It is given by

Rcrit,l��� = 2�/�Pin − P�1 + �2� + �4�2/3�� �20�

or

Rcrit,l��� � 2�/�Pin − P + �4�2/3�� . �20��

Equation �20�� follows from Eq. �20� since we will have
�2�10−4.

III. RESULTS

Our results are given graphically in Figs. 1–7, supple-
mented by Table I. In Ref. 34, we provide error estimates for
the calculated free energies and bubble pressures.

A. Parameter choices

The values that were used for the fixed parameters and
the conditions were: initial supersaturation ratio Pin / P=3,
external applied pressure P=1 atm, temperature T
=298.15 K, Henry’s law constant KH=8.5381�104 atm,
initial soft material volume V2

0=106�3, �2

�Lamé’s first parameter�=2�104 atm, the surface tension
at the soft material/gas bubble interface �=70 dyn /cm

FIG. 1. Reduced relative system Gibbs free energy as determined from Eq.
�18�, as a function of the reduced bubble radii �RB

*�RB /Rcrit,l�, and the
reduced shear resistances ��2

*=�2 / P�. All the other parameters and condi-
tions are given in Sec. III A. The curves begin at RB

*=1, and end at RB
*

=Rcrti,u /Rcrit,l. See Table I for the values of the critical radii.

FIG. 2. Components of the reduced relative system Gibbs free energy for
�*=.02, as determined from the individual terms on the right-hand side of
Eq. �18�. All the other parameters and conditions are given in Sec. III A.
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�0.70� atm�. The KH value is approximately representative
of the Henry’s law constant for N2 in water at T
=298.15 K2, the value of � is close to that for the surface
tension of water at this temperature, and the value of �2 is
roughly representative of Lamé’s first parameter for ordinary
liquids. The initial mole fraction of N2 in the one-phase su-
persaturated medium was x2�in�=3.514�10−5, and the �con-
stant� total number of moles of both components, �n1+n2�
=5.5508�10−8 mol. The molecular weight of water
�18.016 g /mol� was used for that of the soft elastic medium.

The calculations were done to elucidate the role of the
shear modulus �2 on the size and stability of gas bubbles to
be expected in elastic media, and so it alone was varied,
while all the other independent parameters ��2 ,� ,KH�, and
conditions �T , P , Pin�, were kept fixed at their respective se-
lected values. �2 was varied from zero to an upper limit of
0.04 atm. This limit arose from several considerations. Pri-
marily, it was determined from trial calculations, in which it
was found that for �2=0.02 atm �and the above values of the

other parameters and conditions�, the effect of shear resis-
tance on the free energy functions is comparable to the effect
of surface tension, for a waterlike � of 70 dyn /cm. This was
the main factor influencing the range selected for �2. Second,
though very few measurements of �2 exist, its values for
some soft elastic materials have been found to be in the
range �1–10 atm.35–37 However, as shown in Ref. 34, the
uncertainty in the calculated value of �g rises sharply with
increasing �2. Since the function �g is central to this work,
we did not want to risk making a significant error in it. So as
a compromise between the desire for generality on the one
hand, and caution on the other, our calculations were re-

FIG. 3. Number gas of bubbles as determined from Eq. �17�, for a range of
values of the reduced bubble radius RB

*, and the reduced shear modulus �*.
See Sec. III A for the other parameters and conditions, and Ref. 13 for the
equations that connect �2, K2, and �2.

FIG. 4. Variation of the mole fraction of dissolved N2 in the medium
�= PB /KH� for a range of values of the reduced bubble radius and reduced
shear resistances. All the other parameters and conditions are given in
Sec. III A.

FIG. 5. Reduced relative Gibbs free energy per bubble as determined from
Eq. �19�, expressed as a �g−RB

*−�* surface. Each of the contour lines on
the surface represents a fixed value of �*. All the other parameters and
conditions are given in Sec. III A.

FIG. 6. Selected cuts through the surface in Fig. 5, using a log-log scale.
The terminal points shown on the left and right are at the lower and upper
critical radii, respectively, for the corresponding plot. The values of these
critical radii, and corresponding critical �g values, are entered in Table I.
The Rcrti,u terminal points for �*=0, .01, and .02, which here cannot be
shown because �g�0, are given in Table I. All the other parameters and
conditions are given in Sec. III A.
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stricted to the range 0 atm��2� .04 atm. As shown in Ref.
34, the uncertainty in the calculated �g values was prob-
ably less than 1%, and almost certainly less than 2%, pro-
vided �2� .04 atm.

We assume that Henry’s law constant �KH�, Lamé’s first
parameter ��2�, and the surface tension ��� are the same for
all the model materials, that the solute concentration in the
soft medium is sufficiently low so that Henry’s law applies,
and that the solute does not influence the characteristic pa-
rameters ��2 ,�2 ,�� of the soft material. Since the dissolved
solute mole fraction x2,l�RB� will be �10−5, last approxima-
tion should be essentially exact.

B. Calculations

The calculations are done by using three independent
equations to numerically solve for three designated primary
unknowns. The values of the other dependent unknowns,
here �� ,a2 ,R0 ,RS�, follow from their relations to the primary
unknowns. The latter relations are given by Eqs. �4�, �5�,
�14�, and �17�. The independent equations are those that en-
sure mechanical stability of the bubbles �i.e. the expression
for PB given in Eq. �14��, equality of chemical potentials �or
equivalently, PH� PN2

=KHx2,e�, which ensures zero net flux
of N2 into or out of the bubbles, and the mass balance con-

dition for N2 �which is contained in, and is equivalent to, the
expression for the number of bubbles NB given by Eq. �17��.

The set of primary unknowns to be determined depends
on the calculation being done. When the critical radii are
being determined, NB=1 by definition, and the primary un-
knowns were taken as �RB ,x2,e , PB�. When the free energies
are being determined, RB is known, having been set to any
desired value greater than Rcrit,l, and the primary unknowns
were taken as �NB ,x2,e , PB�.

The computational scheme described below was used for
all the reported results. It is efficient, and never fails to pro-
vide a correct solution to any desired degree of accuracy.

1. Determination of Rcrit,l „the lower critical
radius…

A value for Rcrit,l is needed initially. One either accepts
an approximate value using Eq �20� or �20��, or improves on
these values by taking into account the system’s finite size.
We briefly indicate below how an accurate value of Rcrit,l is
determined, based on the system’s finite size.

We seek a value of RB that satisfies PH− PB=0 for NB

=1. Here PH is the Henry’s law-based pressure after forma-
tion of the smaller critical bubble �=KHx2l�Rcrit,l��, PB is the
mechanically stable bubble pressure given by Eq. �14� with
NB=1. Any convenient root-finding scheme can be used.
“Bisection”33 was used here, both because it is convenient,
and because, while some other root-finding methods are
faster, Bisection never fails when properly implemented.
Starting lower and upper brackets for the root are needed.
For the finite system Rcrit,l, these were taken as 2� / �Pin− P
+ �4�2 /3�� and 2� / ��Pin− P��, respectively, though other
brackets are possible. For each trial value of Rcrit,l, which is
prescribed by the Bisection routine, the corresponding trial
values of both a2 and � are needed. There are at least two
ways of getting their values. One way is simply to iterate
them to convergence, using their respective expressions
given in Eq. �14�, and setting NB=1. Because it will turn out
that a2 is small �a2=O�−10−5��, a small number of iterations
�three to five�, starting with a2=0, are sufficient. Another
way is to equate the right-hand sides of the expression for a2

in Eqs. �14� and �21�, and to then solve the resulting qua-
dratic equation for �, taking the physically relevant root �the
root between 0 and 1�.

a2 = �C − ��C + V2
0��/3�V2

0,

C = �4�/3�NBRB
3; a1 = − 1/3. �21�

Equation �21� is obtained by inverting the equation for � in
Eq. �14�. Both routes provide the identical trial values of
these functions at the trial Rcrit,l. From these functions, the
expression for PB in Eq. �14�, NB=1, and the ideal gas law,
the number of moles of gas in the critical bubble is obtained.
From this and mass balance, one obtains the mole fraction of
dissolved gas at this trial Rcrit,l, and subsequently PH, and
PH− PB. The cycle over the improving Rcrit,l values is contin-
ued until the desired degree of accuracy is obtained. While
the Rcrit,l values we used were obtained in this way, they
differ from Rcrit,l��� by only about 1 part in 104.

FIG. 7. Components of �g for �*=.02, as determined from the individual
terms on the right-hand side of Eq. �19�. All the other parameters and con-
ditions are given in Sec. III A.

TABLE I. The reduced relative Gibbs free energy per bubble at the lower
and upper critical bubble radii for the shear modulus values considered in
this work. The critical radii were obtained as described in the text �Secs. II E
and III B�. The values for �g were determined from Eq. �19�. The under-
lying parameters and conditions are given in Sec. III A.

�2

�atm� Rcrit,l��� �g�10−12 Rcrit,u��� �g�10−12

0 0.7000 0.673�10−4 19.0 −0.425
0.01 0.6955 0.164 19.1 −0.262
0.02 0.6909 0.328 19.2 −0.0976
0.03 0.6864 0.492 19.3 +0.0662
0.04 0.6819 0.657 19.4 +0.230

164509-8 Saul Goldman J. Chem. Phys. 132, 164509 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2. Determination of the free energies, the number
of bubbles, and the bubble pressure

Once Rcrit,l is determined, the evaluation of PB�RB�,
G�RB�, and g�RB�, using Eqs. �14�, �18�, and �19�, for
RB�Rcrit,l can be completed. This calculation is carried out
somewhat differently from that for Rcrit,l, because in the latter
calculation NB was known �=1� and RB was unknown, and
now RB is known �it is set equal to any value greater than
Rcrit,l�, and NB is unknown. In this calculation, for each se-
lected value of RB�Rcrit,l, we again use a numerical routine
�Bisection� to determine the solute mole fraction in the
medium,x2,l�RB�, at the selected RB. Convenient upper and
lower brackets for x2,l�RB�, valid for all radii, are x2�in� and
zero, respectively. Given a value of RB and a trial value of
x2,l�RB� which is prescribed by the Bisection routine, the cor-
responding trial value of PH�RB� is determined from Henry’s
law �PH�RB�=KHx2,l�RB��, and the corresponding trial value
of NB�RB� is determined from its expression in Eq. �17�, with
PH�RB� used for the bubble pressure. As with the calculation
for Rcrit,l, the corresponding trial values of a2 and � can be
determined either by iterating these variables to convergence,
or by eliminating a2 between Eqs. �14� and �21�, and solving
the resulting quadratic equation for �. Thus, at each selected
value of RB, and trial value for x2,l�RB�, trial values for
PH�=KHx2,l�RB��, PB �from Eq. �14��, and consequently PH

− PB, are determined. As with the Rcrit,l calculation, the cycle
of calculations over the progressively improving values of
x2,l�RB� is continued until the desired accuracy is reached.
The final values of the variables: x1,l�RB�, x2,l�RB�, NB�RB�,
PB�RB�, a2�RB�, and ��RB�, are used in Eqs. �18� and �19� to
determine these free energy functions at the selected value of
RB.

3. Determination of Rcrit,u „the upper critical radius…

The above calculation is repeated, using progressively
larger values of RB, until the value of NB�RB� falls below 1.
The upper critical radius Rcrit,u is then determined by numeri-
cally interpolating to that value of RB in the large RB regime,
for which NB�RB�=1.

C. Values of free energies of bubble formation
and bubble densities

The variation of G with RB is illustrated in Fig. 1, from
which it is seen that for �2� .025 atm or greater, G�0 for
all RB values. Therefore under these conditions the one-phase
homogeneous state is more stable in the long-time thermo-
dynamic limit, than any bubble-containing compound state
that can form. Physically, this occurs because for �2

� .025 atm or greater, the combined positive surface and
shear resistance free energy terms outweigh the negative
pressure correction and composition terms at all possible ra-
dii �see Eq. �18��. On the other hand, for �2� .025 atm or
smaller, one can expect thermodynamically stable composite
bubble states to form, given sufficient time. For these sys-
tems, the right-most terminal point of each of the plots in
Fig. 1 is the global minimum of the corresponding plot and is
the most stable state that can exist. In this respect, soft elastic
materials from which stable bubbles can form behave like

simple liquids, i.e., for both, the largest possible single
bubble state, which occurs at the upper critical radius Rcrit,u,
is the most stable state possible for the system. These termi-
nal points at Rcrit,u have been studied experimentally for a N2

bubble in water.38 For this system our equations, when ap-
plied in the �2→0 limit, correctly predicted the observed
Rcrit,u values.2,38

The contributions of the components of G /NkT are
shown for the �2= .02 atm plot in Fig. 2 from which it is seen
that the shape of the G /NkT curves is determined by the
surface tension, pressure correction, and composition contri-
butions, while the elastic term, which is almost constant,
simply shifts the curves upward by an almost constant
amount. From Eqs. �16�� and �16��, respectively, the upward
shift is given to a good approximation by �2 /3�V2

0�2�1
−�2� /NkT or a little less accurately by �2 /3�V2

0�2 /NkT. The
last expression follows because here �� .03. Also, for a
given �2, � in all these systems increases monotonically with
RB. For example, for �2= .04 atm, � increased monotonically
from �1.3�10−6 at Rcrit,l, to �3�10−2 at Rcrit,u.

In Fig. 3, we show plots of the numbers of bubbles NB

for 0��2�0.04, that satisfy the equilibrium requirements
and mass balance, as a function of bubble radius RB, and Fig.
4 is used to physically account for the plots in Fig. 3. Since
the total number of molecules �N� is fixed, the number of
bubbles is proportional to the bubble number density
�NB /N�. The steep rise in NB shown in Fig. 3, just beyond the
lower critical radii, can be understood from a combination of
mass balance, equality of chemical potentials, and mechani-
cal effects. Specifically, the initial rapid fall in the bubble
pressure PB with RB in this region, which is shown in Fig. 4,
is mechanically based. It is due to the rapidly falling surface
tension term 2� /RB in Eq. �14�. Because x2,l�RB� must re-
main proportional to PB for the equality of chemical poten-
tials to be maintained �or equivalently,x2,l�RB�= PB /KH�,
there must also be a correspondingly rapid and proportional
fall in the dissolved solute mole fraction x2,l�RB� in this re-
gion. This is also shown in Fig. 4. Because mass balance
must be satisfied at all points, a rapid drop in x2,l�RB� means
that the amount of N2 transferred to the gas phase must rise
rapidly in this region. Since the bubbles in this region are
small, this can occur only by a rapid increase in the numbers
of bubbles.

The relative ordering of the curves in Fig. 3 follows
from this as well. Since increasing the shear modulus re-
duces the bubble pressure at a given radius, �see Fig. 4�, the
initial rise in the numbers of bubbles must be more pro-
nounced, the greater the shear modulus. The fall in NB with
RB at large RB can be understood from the combined effects
of the cubic increase in the bubble volume with RB, and the
slowed rate of the fall in PB and x2,l�RB� with increasing RB

at large RB �see Fig. 4�. The combination of these small-RB

and large-RB effects accounts for the asymmetry of the NB

versus RB plots in Fig. 3.
�g ���1 /kT, where k is Boltzmann’s constant�, which

is obtained from Eq. �19�, is shown in Figs. 5–7, in the form
of a �g−�*−RB

* surface, constant �* cuts through this
surface, and the component contributions to one of these
cuts, respectively. Before considering the details, it is worth
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pointing out in a general way why �g takes the form it
does. It is obtained from �G�RB� /NB�RB�, where the nu-
merator varies only moderately over the range of RB �Fig. 1�,
while the denominator spans some three orders of magni-
tude, peaking sharply and asymmetrically at small RB �Fig.
3�. Therefore, as RB

* increases beyond unity, and the num-
bers of bubbles rises to maximum and then falls, the free
energy per bubble, must fall to a minimum, and then rise.
Consequently �g is expected to go through a nonparabolic
minimum at small RB values that corresponds approximately
to the value of RB at which NB peaks.

The surface in Fig. 5 shows the wells as a valley that
runs along the base of the steep inner wall. The valley floor
rises slowly as �* increases, and the inner wall remains steep
at all �*�0. The outer wall gradually gets higher and ex-
tends to greater distances with increasing �*. When �* in-
creases beyond about.025, the outer wall no longer turns
down, but terminates at a Rcrit,u value for which �g�0.

It is seen from Fig. 6 that for �*�0, the minima in these
free energy wells all occur slightly beyond Rcrit,l. The wells
shown are of two types: those at the lower �* values in
which the well leads to a barrier and subsequently a stable
bubble, and those at the higher �* values that involve a well
only. For the latter, the most stable state possible is the initial
one-phase homogeneous state. A bubble in either type of
well will be both mechanically stable and thermodynami-
cally metastable �because G�0�, so that in either case a
bubble in the well can be expected to have a degree of lon-
gevity.

The free energy plot in Fig. 6 for �2
*= .02 is decon-

structed into its contributing components in Fig. 7. It is seen
from this figure that the steep inner wall of the well is due
entirely to the elastic contribution to �g, while the outer
wall has contributions both from the elastic and surface ten-
sion terms. The elastic contribution to �g, given by the
blue curve in Fig. 7, is given by the first term on the right-
hand side of Eq. �19�. The behavior of this term is governed
by the harsh variation of NB in this region �see Fig. 3�. “The
physics” is that the maximum in NB causes a minimum in the
undistorted volume of elastic material associated with the
bubble �V2

0 /NB�, which results in a minimum in the local
elastic free energy �see Eq. �15��. For RB

*�10 the contribu-
tions from the pressure correction and composition terms
which are negative, begin to outweigh the positive surface
and elastic terms, causing �g to turn negative. The full
�g curve �shown in red�, terminates at the thermodynami-
cally stable bubble radius Rcrit,u�19.2�, for which
�g�−9.8�1010 �see Table I�.

The meaning and physical significance of these �g
plots are central to this work. Depending on whether it is
positive or negative, g represents the free energy cost or
gain per bubble, respectively, to create a composite state of
NB�RB� bubbles from the initial supersaturated state. Equiva-
lently, g also represents the reversible work associated with
the creation of one gas bubble of radius RB from the initial
supersaturated state. The bubble is one of the NB�RB� bubbles
in the composite state.

For definiteness, consider first the �*=.02 plot shown in
red in Fig. 6. A bubble in the well shown in this plot will

have a half-life that exceeds what it would be in a nonelastic
material wherein stabilizing meta-stable wells do not form. A
bubble represented by this plot will grow, given sufficient
time, because of the combined effects of fluctuations and the
tendency of the system to reach its global minimum free
energy.39 The driving force for bubble growth here is reduc-
tion of the supersaturation in the medium, and the resultant
reduction in the system free energy. This occurs by a reduc-
tion the chemical potential of N2 in both phases of the sys-
tem as the bubble grows.39 However, a bubble at or near the
bottom of the well �at RB�1��, will be delayed from leaving
the well, because of the free energy �or reversible work�
required to leave. Growth to Rcrit,u cannot occur without the
bubble first acquiring the free energy needed to rise from
�g�min� to �g�max�. �g*���g�max�−g�min��� en-
ters as a negative exponential �exp�−�g*�� in the TST ex-
pression for the rate constant for going over a barrier.19,22,23

A single large step or a series of concerted smaller steps
would be needed for the bubble to get to the barrier top. A
“step” here refers to a set of coupled fluctuations. Since these
are relatively rare �large fluctuations in systems with large
numbers of particles are rare18,22�, the bubble’s growth will
be delayed.

Conversely, a bubble represented by the dashed plots in
Fig. 6 ��*=.03 or �*=.04� will, given sufficient time, shrink
to its lower critical bubble radius, with an increase both in
the bubble pressure and the chemical potentials in the
phases, and ultimately dissolve. This is because for these
systems the initial dissolved state, for which G=0, is the
most stable system state possible. The degree of supersatu-
ration is �in these systems� insufficient to overcome the com-
bined surface and elastic free energy requirements. However,
as with a small metastable bubble which ultimately grows to
a larger stable bubble, here too there will be a delay in get-
ting to the minimum global free energy state, because of the
inner wall to be climbed in shrinking to the lower critical
radius. The inner wall is due entirely to the local elastic free
energy. As indicated previously, the volume of the medium
that a bubble acts upon, and therefore the local elastic free
energy, is a minimum in the vicinity of the NB maximum, or
the �g minimum.

In principle, the curvature �second derivative� of �g in
the vicinity of the minimum can be used to provide informa-
tion on the frequency with which the metastable bubble os-
cillates between smaller and larger radii while residing in the
well.19 It is also noteworthy that, in the region of the well
minima, the bubble number density �NB /N� is some three
orders of magnitude greater than in any stable composite
state, where it is �1 /N� �see Fig. 3�. Consequently, fairly
large numbers of small bubbles with some degree of longev-
ity would be expected to form in a soft elastic materials with
these characteristics.

This behavior differs significantly from what is found for
gaseous dissolution from simple liquids, which is illustrated
by the solid black curve in Fig. 6. This curve has no well,
because it has no inner wall, the existence of which requires
the material to have a nonzero shear modulus �see Fig. 7�.
This curve shows that a critical bubble with radius Rcrit,l,
once formed from gas-like embryonic precursors, can do
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only one of two things: �1� it may acquire sufficient free
energy to get over the barrier and form a stable bubble �by
one large step, or by a series of smaller concerted steps� or
�2� it may dissolve as a consequence of a negative volume
fluctuation. Here, because there is no elastic free energy bar-
rier to slow it down, dissolving would be rapid. Therefore a
critical bubble formed in a simple liquid would be expected
to have a short half-life, relative to one formed in an elastic
medium with a positive shear modulus.

IV. DISCUSSION

Our results may be relevant to the solution of a decades-
old puzzle in the field of DCS: the apparent existence of
long-lived, small, inert gas bubbles in some tissues of the
body. Here, we outline the puzzle, we review an earlier idea
for its solution, and we compare our work with the earlier
work.

A significant body of evidence suggests that, in many if
not all instances, DCS arises from the growth of pre-existing
gas bubbles in tissues of the body, following overly rapid
decompression.3,4,40 An alternative possibility—de nuovo
bubble formation by homogeneous gas bubble
nucleation—is not believed to be a significant causal mecha-
nism in DCS because of the very large activation energies
involved.2,41 Put another way, very large supersaturation lev-
els, well beyond what is usually sufficient to cause DCS,
would be needed for homogeneous gas bubble nucleation to
occur at a significant rate.2,40,41 If, however, DCS can result
from the growth of pre-existing gas bubbles, these pre-
existing bubbles must have been sufficiently stable to have
had non-negligible half-lives. It is here that the pièce-de-
résistance arises. Assuming air is the gas being breathed,
these bubbles will consist mostly of N2 since most of the O2

will have been consumed by metabolism.3,4 Therefore, for a
person equilibrated at 1 atm, the N2 partial pressure in a
bubble will, in the absence of surface tension effects, be
approximately 0.75 atm. This value derives from the require-
ment that the chemical potentials of N2 in a stable bubble
and in the circulatory system be equal. �Because of traces of
other gases, the total pressure in the bubble will be slightly
higher than this, approximately 0.77 atm.42–44� However, on
the basis of the YL equation, such a bubble simply could not
exist because the mechanical pressure acting on it �P
+2� /RB� would, in the absence of surface tension effects, be
1 atm, i.e., significantly greater than 0.77 atm. How to rec-
oncile the requirements of mechanical stability and equality
of chemical potentials in a way that would allow for the
existence of small long-lived gas bubbles is the puzzle.

There is a pre-existing body of work, published in the
applied literature, wherein it was attempted to resolve this
dilemma. The suggestion that received the most attention
was put forward by Yount and co-workers.45–49 These work-
ers suggested that surfactant molecules may exist in the body
which, by adsorbing to the bubble/condensed phase inter-
face, form a protective skin around the gas bubble, thereby
preventing its collapse. The hydrophyllic polar head-group
and the hydrophobic hydrocarbon tail of the putative surfac-
tant were pictured as being, in the aqueous-like condensed

phase and inside the bubble, respectively. The idea was, that
because of polar head-group mutual repulsions, the adsorbed
surfactant would reduce the effect of surface tension term in
the YL equation, thereby reducing the pressure by which the
medium acts on the bubble. Yount and co-workers45–49 and
later Weinke50,51 used this basic idea, and variants of it,46,50,51

to develop models for predicting ostensibly improved �i.e.,
safer� decompression protocols relative to those previously
available. An underlying assumption in these applications is
that the surfactant-stabilized bubbles exist as long-lived gas-
eous seeds, which can expand during rapid decompressions,
possibly leading to the development of DCS.45–51

Problems arose with the Yount/Weinke theory. First,
Vann pointed out that, in the thirty-odd years since the idea
was proposed, not one specific surfactant that exists in any
tissue�s� of the body, and that acts in this way, has been
identified.4 Second, Gaskins et al.52 carried out a series of
experiments to determine the influence of known surfactants
on the extent of bubble formation subsequent to the decom-
pression of water-gelatin solutions containing dissolved N2.
These workers found known surfactants to effect
decompression-induced bubble formation in a direction op-
posite to what is predicted by this surfactant-based theory.
Specifically, as the surfactant concentration was increased,
the increase in extent of bubble formation subsequent to de-
compression that surfactant theory would have predicted was
not found. Instead, a reduction in bubble formation was
found. Notwithstanding these serious concerns, the theory,
the models, and decompression protocols based on them con-
tinued unabated.

A more basic problem with the surfactant theory and its
variants45–51 is the underlying tacit assumption that mechani-
cal stability somehow ensured the existence of long-lived,
small, gaseous bubbles in condensed media. This assumption
has no scientific basis whatsoever. Mechanical stability is a
necessary but insufficient condition for long-term stability. It
is certainly true, that in the absence of mechanical stability,
bubbles cannot exist for any appreciable length of time. But
in order for a bubble to be sufficiently long-lived for it to act
as a nucleation seed for bubble growth in some future de-
compression, it must be both mechanically stable and ther-
modynamically stable or metastable. Thermodynamic stabil-
ity and/or metastability of gaseous bubbles in condensed
media were not considered in this pre-existing work.

The work in this paper provides a new and more viable
resolution to the puzzle. The difficulty of simultaneously sat-
isfying mechanical stability and equality of chemical poten-
tials can be resolved by using a soft elastic material with a
non-zero shear modulus, rather than a simple liquid with a
surface tension, as a model for tissues of the body. In so
doing, the relevant pressure equation becomes the GYL
equation, not the YL equation. The salient difference lies in
the second term in Eqs. �2� and �3�, which is negative. This
term lowers the total pressure acting on the bubble, relative
to the YL-predicted pressure. As shown in Ref. 1, and can be
readily verified by Eqs. �2� or �3�, provided the gas bubble is
�1� in radius, the surface tension is �10–70 dyn /cm, and
the shear modulus is �1 atm, the pressure of the medium
acting on the bubble surface can readily be 0.77 atm, when
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the external pressure is 1 atm. Consequently, it is possible
for such a bubble to simultaneously be mechanically stable
and satisfy the requirement of equality of chemical potentials
of N2. Moreover, variations in the values of the parameters
that characterize the medium, particularly the shear modulus
and the surface tension, will create a range of possible prop-
erties and bubble radii, all of which are consistent with main-
taining a pressure on the bubble of about 0.77 atm when the
external pressure is 1 atm. In other words, our results are
consistent with the possibility that bubbles with some degree
of longevity exist in a variety of tissues of the body, so that
different forms of DCS may potentially arise when these
bubbles expand.

The expressions derived here and in Ref. 1 show that
small, inert gas bubbles, embedded in soft elastic materials
that have a nonzero shear modulus, can be both mechanically
stable and thermodynamically metastable. There is no need
to invoke elusive and nonspecific stabilizing agents that pu-
tatively form protective skins around bubbles, or other nebu-
lous concepts. Rather, it is here suggested that tissue elastic-
ity, which is ubiquitous, may be the physical basis for the
existence of small inert gas bubbles with non-negligible half-
lives in some tissues of the body. If such bubbles exist, they
may act as nucleation seeds for bubble growth following a
decompression.

We conclude with a speculative comment on why “some
degree of longevity” may be sufficient to ensure an essen-
tially continuous supply of small metastable bubbles in some
tissues of the body. Consider two surfaces in adhesive con-
tact with one another that are immersed in a gas-saturated
solution. “Tribonucleation” refers to the phenomenon
whereby the rapid separation of these surfaces from one an-
other results in the formation of new gas bubbles in the
solution.3,4,53–55 The physical explanation is that rapid sepa-
ration of mutually attracting surfaces results in momentary
negative pressures in the solution where the surfaces sepa-
rated. This produces some gas dissolution. Physical exercise
while super-saturated with N2 �for example, immediately af-
ter surfacing from a scuba dive� is known to increase the
likelihood of incurring DCS, and tribonucleation has been
suggested as a possible explanation.3,4 The body is not static,
and tissues within it may not be isolated from effects such as
tribonucleation. Therefore, while any one meta-stable bubble
cannot—by definition—last indefinitely, a very long half-life
may not be necessary for the long-term continuing existence
of small bubbles in tissues. If those small meta-stable
bubbles that are lost because of their finite half-life are re-
placed periodically by in vivo tribonucleation, something
akin to a steady-state may exist. According to this picture,
tribonucleation would be the source, and finite half-lives the
sink, for the generation and loss, respectively, of small
bubbles. Based on this paradigm, the long-term presence of
small gaseous bubbles in tissues becomes plausible.
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