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Abstract: Increasingly popular, recreational diving is a physical activity that takes place
under extreme environmental conditions, which include hyperoxia, hyperbaria and expo-
sure to cold water. The effects of these factors on the human body induce increased levels
of reactive oxygen and nitrogen species in divers” bodies, which may modulate damage-
associated molecular pattern (DAMPs), their receptors and the antioxidant response. This
study involved 21 divers who descended to a depth of 40 metres. Determinations of selected
intracellular DAMPs (high-mobility group box protein 1, HMGB1, 5100 calcium-binding
proteins A9 and A8, S100A8 and S100A9, heat shock protein family A member 1A, HSPA1A
(Hsp70), heat shock protein family B, (small) member 1, HSPB1(Hsp27), thioredoxin, TXN),
their receptors (Toll-like receptor 4, TLR4 and receptors for advanced glycation end prod-
ucts, RAGE), nuclear factor-«B (NF-kB) and antioxidant defence markers were performed
before, after and 1 h after the dive. A significant transient reduction in HMGB1 expression
was observed immediately after the dive at both the mRNA and protein levels. We noted
an increase in SI00A9 expression, which occurred 1 h post-dive compared to the post-dive
time point, and a post-dive decrease in TLR4 expression only at the mRNA level. Diving
also influenced the expression of genes encoding key enzymes associated with glutathione
synthesis, (glutamate-cysteine ligase, catalytic subunit, GCLC and glutathione synthetase,
GSS), and reduced plasma glutathione levels. However, no significant changes were ob-
served in the expression of NF-kB, nitric oxide synthase 2 (NOS2) or circulating DAMP
receptors (TLR4 and RAGE). The findings suggest an adaptive response to diving-induced
oxidative stress, which appears to be a protective mechanism against an excessive inflam-
matory response. To our knowledge, this is the first study to analyse the role of intracellular
DAMPs in recreational divers.

Keywords: damage-associated; molecular patterns; antioxidant markers; recreational diving

1. Introduction

Diving has become a popular recreational activity in Poland. It is recognized as a
form of moderate physical activity conducted in extreme environmental conditions. High
pressure, increased inspired partial O, pressure (pO;) and low water temperature during
diving affect organ function and induce transient metabolic changes [1]. Recreational
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divers have a depth limit of 40 m. This is the maximum depth at which it is generally
possible to ascend without requiring decompression. They use compressed air or Nitrox (a
mixture of oxygen and nitrogen) as breathing gases, with the oxygen content not exceeding
40% [2]. Breathing compressed air is only feasible up to a depth of approximately 50 m.
This limitation is due to the risk of oxygen toxicity at greater depths [3].

Oxygen is responsible for forming reactive oxygen species (ROS), which are responsi-
ble for generating oxidative stress. Under normal physiological conditions, approximately
1% to 2% of inhaled O; is directly converted to ROS. However, this rate increases in re-
sponse to the hyperoxia that occurs during diving [4]. A state of oxidative stress damages
lipids, proteins and the DNA of cells and can also affect endothelial function. It is known
that excessive accumulation of ROS can lead to cell damage and death [5]. On the other
hand, ROS also function as important signalling molecules, essential for cell viability, play-
ing various regulatory roles [6]. Endothelial dysfunction and oxidative stress have been
extensively studied in diving [4,7,8]. As a result of hyperbaric and hyperoxic conditions
during diving, ROS production increases. These molecules function as signalling agents,
inducing cellular adaptations that improve oxidative stress tolerance. For example, the an-
tioxidant enzyme thioredoxin reductase has increased activity in breath-hold divers [9,10].
In SCUBA (Self-Contained Breathing Apparatus) divers, the hyperoxia-induced rise in ROS
activates the expression of various antioxidant enzymes [11]. The glutathione system also
plays a role in ROS balance and is affected in SCUBA and saturation divers [12-14] as well
as during hyperbaric oxygen therapy (HBO) [15].

Diving also induces nitrosative damage, known as nitrosative stress. A rapid ascent
at the end of a dive can cause barotrauma in the lungs and sinuses. As ambient pressure
drops, nitrogen absorbed during the dive is released from body fluids, forming gas bubbles
in the blood and tissues [16,17]. Nitric oxide (NO) is a free radical produced in vivo by
three isoforms of NO synthase. The three isoforms are neuronal NOS (type I), inducible
NOS (type II) and endothelial NOS (type III). Since oxygen is a necessary substrate for
NO synthesis, hyperoxia increases the activity of all three NOS isoforms [4]. ROS reacting
with NO produces ONOO™ (peroxynitrite), which impairs NO-mediated vasodilation
and endothelial function [18]. Furthermore, peroxynitrite exacerbates oxidative stress by
increasing xanthine oxidase activity and impairing antioxidant defenses [19,20].

Reactive nitrogen species (RNS), primarily nitric oxide and peroxynitrite, play key
roles in regulating inflammation in the human body [21]. These molecules regulate HMGB1
(high-mobility group box protein 1) metabolism and its receptors, among other physio-
logical processes [22-26]. HMGBI is classified as a damage-associated molecular pattern
(DAMP). DAMPs are endogenous molecules released from the extracellular matrix or
dying cells [27]. Intracellular DAMPs are molecules released during the breakdown of
necrotic and apoptotic cells, including calcium-binding proteins S100, HMGBI, thioredoxin
(TXN), heat shock proteins (HSPs) and uric acid. In contrast, extracellular DAMPs con-
sist of components of the extracellular matrix, such as glycoproteins, proteoglycans and
glycosaminoglycans [27-29]. The biological activity of DAMPs is mediated by pattern
recognition receptors (PRRs), including Toll-like receptors (TLRs) and receptors for ad-
vanced glycation end products (RAGE) [30]. Both hyperoxia and physical exertion induce
intracellular oxidative stress, which can increase TLR expression in various cell types, lead-
ing to the release of inflammatory cytokines [31,32]. TLR4, a member of the TLR family, can
be recruited by peroxynitrite [25,26,33]. The interaction of DAMPs with pattern recognition
receptors initiates inflammatory cascades, activating multiple transcription factors, includ-
ing nuclear factor-«B (NF-«kB), a key regulator of the inflammatory response [34]. Moreover,
the NF-«kB pathway also plays a role in HMGBI release. Suppressing the canonical NF-«B
pathway reduces HMGB1 secretion in activated immune cells [35-37].
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HMGBI is a non-histone nuclear protein that functions both intracellularly and ex-
tracellularly. Many studies indicate that ROS play a crucial role in the active secretion
and passive release of HMGBI in various cell types [5]. In addition to inducing active
HMGBI secretion, ROS can promote its passive release during different forms of cell
death [38]. HMGBI activity has been observed in skeletal muscle and the central nervous
system. In vitro studies have shown an increase in HMGBI levels in muscle fibres and
infiltrating leukocytes during skeletal muscle regeneration, coinciding with the antioxidant
response [39]. HMGB is a recognized biomarker of post-exercise inflammation [40]. Study
outcomes indicate that HMGB1 can undergo oxidation in the cytoplasm by ROS [41]. Stud-
ies suggest that after oxidation, HMGBI is converted into a pro-inflammatory agent that
induces an inflammatory response via TLR4 [42].

In addition to HMGB1, TLR4 can serve as a receptor for other DAMPs, such as heat
shock proteins and S100 calcium-binding proteins [43]. RAGE is another receptor for
DAMPs that recognizes HMGB1 and S100 proteins [44,45]. Analysis of the transcriptome
of experienced divers showed that prolonged dives led to persistent changes in cellular
signalling pathways, including HSP60/HSP70 activation via TLR4 and pathways mediated
by NF-«B [46]. In this study, we investigated the expression of selected intracellular DAMPs,
their receptors and NF-«kB in relation to markers of antioxidant defence in recreational
divers who performed dives to a depth of 40 m.

2. Results

The influence of diving to a depth of 40 m on the relative mRNA expression of the
studied genes encoding selected intracellular DAMPs in the group of recreational divers is
presented in Figure 1. Among intracellular DAMPs, dives triggered a significant transient
reduction in the mRNA relative expression of HMGB1. On the other hand, SI00A9 mRNA
expression significantly rose between the post-dive and 1 h post-dive points (Figure 1a,c).
A Friedman analysis of baseline, immediate post-dive and 1 h post-dive results showed no
statistically significant changes in the mRNA relative expression in the rest of the analysed
intracellular DAMPs (5100A8, HSPA1A, HSPB1, TXN) (Figure 1b,d—f).

Within the DAMP potential receptors selected for this study, we noted that only the
mRNA relative expression of TLR4 was affected by dives. It was significantly decreased
immediately after the dive, while no statistically significant difference was observed be-
tween baseline and 1 h post-dive values. The decline in AGER’s relative expression (gene
encoding receptor RAGE) was not statistically significant (Figure 2a,b).

Similarly, the decrease in the relative mRNA expression of NF«kB was also insignificant
(Figure 3).

Within selected genes encoding proteins linked to antioxidant status, we observed a
transient decrease and a significant increase in GCLC (glutamate-cysteine ligase) mRNA
expression at the 1 h post-dive time point compared to immediately post-dive (Figure 4a).
The mRNA relative expression of GSS (glutathione synthetase) was diminished at the
analysed time points after dives in comparison to baseline (Figure 4b). Both genes encode
enzymes necessary for glutathione synthesis (Figure 4a,b). On the other hand, dives did
not significantly affect the relative expression of NOS2 (Figure 4c).

The impact of dives to a depth of 40 m on the selected intracellular DAMP protein
levels in recreational divers’ plasma is shown in Figure 5. Except for the transient decline of
HMGBI protein level immediately after dives (Figure 5a), we did not note any significant
differences in studied protein concentrations after performing Friedman analysis of variance
(S100A8, S100A9, TXN, HSPA1A, HSPB1) (Figure 5b—f).



Int. J. Mol. Sci. 2025, 26, 3061

40f18

1.80 1.80 1.80
Rl P 005 ® " F s100a8 @' £ s10049 L
140 0 0
g 120 0.0 g 120 8120
$ 1.00 § 100 €100
; ) :: 80 £ om0
3 060 % 0.60 E 0.60
0.40 0.40 0.40
0.20 0.20 0.20
0.00 0.00 0.00
HMGB1 $10048 S100A9
mbaseline mpost-dive @1 hour post-dive mbescioe mposi-dive 1 houspost-dive Wbaseline @post-dive @1 hourpost-dive
1.80 1.80 1.80
@ " E Hspata © | Hspa1 o o b DN
140 0
S 1.20 20
£ 1.00 1.00
é 0.80 80
:j‘ 0.60 0.60
0.40 0.40
0.20 0
00 0
HSPATA
@baseline @post-dive @ 1 hour post-dive

Figure 1. The influence of diving to a depth of 40 m on the relative mRNA expression of (a) HMGBI,
(b) S100AS8, (c) S1I00A9, (d) HSPA1A, (e) HSPB1 and (f) TXN in the group of recreational divers
(medians and interquartile range). The data are presented as fold differences. Significance levels of
differences observed between analysed time points (baseline vs. post-dive vs. 1 h post-dive) were
assessed using Friedman’s analysis of variance followed by post-hoc Dunn’s test. HMGB1—high-
mobility group box protein 1, SI00A8—5100 calcium-binding protein A8, SI00A9—S5100 calcium-
binding protein A9, TXN—thioredoxin, HSPB1—heat shock protein family B, (small) member 1,
HSPA1A—heat shock protein family A (Hsp70) member 1A.
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Figure 2. The influence of diving to a depth of 40 m on the relative mRNA expression of (a) TLR4
and (b) AGER in the group of recreational divers (medians and interquartile range). The data are
presented as fold differences. Significance levels of differences observed between analysed time
points (baseline vs. post-dive vs. 1 h post-dive) were assessed using Friedman'’s analysis of variance
followed by post-hoc Dunn’s test. TLR4—Toll-like receptor 4, AGER—advanced glycosylation
end-product-specific receptor.
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Figure 3. The influence of diving to a depth of 40 m on the relative mRNA expression of the NF-«B in
the group of recreational divers (medians and interquartile range). The data are presented as fold
differences. Significance levels of differences observed between analysed time points (baseline vs.
post-dive vs. 1 h post-dive) were assessed using Friedman'’s analysis of variance followed by post-hoc
Dunn’s test. NF-kB—nuclear factor-«B.
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Figure 4. The influence of diving to a depth of 40 m on the relative mRNA expression of (a) GCLC,
(b) GSS and (c) NOS2 in the group of recreational divers (medians and interquartile range). The
data are presented as fold differences. Significance levels of differences observed between analysed
time points (baseline vs. post-dive vs. 1 h post-dive) were assessed using Friedman’s analysis of
variance followed by post-hoc Dunn’s test. GCLC—glutamate-cysteine ligase, catalytic subunit,
GSS—glutathione synthetase, NOS2—mnitric oxide synthase 2.
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Figure 5. The influence of diving to a depth of 40 m on (a) HMGB], (b) S100A8, (c) SI00A9, (d) Hsp70,
(e) Hsp27 and (f) TXN protein levels in the group of recreational divers (medians and interquartile
range). Significance levels of differences observed between analysed time points (baseline vs. post-
dive vs. 1 h post-dive) were assessed using Friedman’s analysis of variance followed by post-hoc
Dunn’s test. HMGB1—high-mobility group box protein 1, S100A8—S100 calcium-binding protein
A8, S100A9—S5100 calcium-binding protein A9, Hsp27 (HSPB1)—heat shock protein family B, (small)
member 1, Hsp70 (HSPA1A)—heat shock protein family A member 1A, TXN—thioredoxin.

Selected DAMP receptors—soluble forms of TLR4 and RAGE—did not significantly
differ between time points after diving (Figure 6).
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Figure 6. The influence of diving to a depth of 40 m on the protein levels of (a) TLR4 and (b) RAGE in
the group of recreational divers (medians and interquartile range). Significance levels of differences
observed between analysed time points (baseline vs. post-dive vs. 1 h post-dive) were assessed
using Friedman’s analysis of variance followed by post-hoc Dunn’s test. TLR4—Toll-like receptor 4,
RAGE—receptor for advanced glycation end products.
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We noted that the concentrations of the reduced and oxidised forms of glutathione in

plasma successfully declined at the analysed time points (Figure 7a,b).

We did not observe any changes in NOS2 (Figure 7c) and NFkB (Figure 8) protein levels.
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Figure 7. The influence of diving to a depth of 40 m on the levels of the (a) GSH, (b) GSSG and
(c) NOS2 in the group of recreational divers (medians and interquartile range). Significance levels of
differences observed between analysed time points (baseline vs. post-dive vs. 1 h post-dive) were
assessed using Friedman’s analysis of variance followed by post-hoc Dunn’s test. GSH—reduced
glutathione, GSSG—glutathione disulfide (oxidised glutathione), NOS2—mnitric oxide synthase 2.
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Figure 8. The influence of diving to a depth of 40 m on the NF«B protein level in the group of recre-
ational divers (medians and interquartile range). Significance levels of differences observed between
analysed time points (baseline vs. post-dive vs. 1 h post-dive) were assessed using Friedman’s
analysis of variance followed by post-hoc Dunn’s test. NF-kB—nuclear factor-«B.

3. Discussion

Characterized by hyperoxia, hyperbaria and moderate exertion, diving triggers an
inflammatory response [10,11]. This immune response, known as ‘sterile inflammation’,
is a low-grade inflammatory reaction triggered by environmental, mechanical or stress
factors [47]. Although inflammation is essential for tissue repair, unresolved chronic
inflammation can contribute to inflammatory diseases [28,47,48].

We demonstrated the transient decline of damage-associated molecular pattern,
HMGBYI, at both the gene and protein levels in recreational SCUBA divers. Among other
studied DAMPs, we noted only a significant increase in SI00A9 mRNA expression at the
1 h post-dive time point compared to immediately post-dive. Within the DAMP recep-
tors selected for this study, we noted that only the mRNA relative expression of TLR4
significantly decreased immediately after the dive. The dives to a depth of 40 m did not in-
fluence the soluble forms of TLR4 and RAGE receptor levels in the recreation divers’ blood.
We did not observe any significant changes in NFkB expression, neither on the gene nor
protein level.

Reactive oxygen and nitrogen species through cellular damage contribute to HMGB1
leakage. Depending on the concentration of ROS and RNS and the duration of exposure,
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HMGBI proteoforms with different biological activities are formed [49]. HMGBL can exist
in three redox states that significantly affect its half-life and function: the fully reduced
form, the disulphide form and the oxidised form with sulfonated cysteines. The first
two are active, while the oxidised form is inactive and predominates when inflammation
is suppressed. The fully reduced form activates inflammatory pathways through RAGE,
while the disulphide form is the most stable and acts through TLR4 [50]. Typically, increased
oxidative stress leads to the oxidation and inactivation of HMGB1. Also, HMGBI itself, by
binding to its receptor, may contribute to increased oxidative stress and its inactivation.
For example, activation of RAGE receptors by HMGBI in eosinophils accumulating at
necrotic sites stimulates eosinophil peroxidase to generate ROS that inhibit the function of
this protein [51]. On the other hand, results from some studies indicate that ROS-induced
modification of HMGBI in specific situations does not necessarily lead to a loss of its
biological activity. For example, studies on ageing cell lines showed that oxidation of the
cysteine residues of HMGB1 improved its ability to bind to TLR4 and increased the release
of inflammatory cytokines [52].

Hyperoxia typically increases the expression of HMGB1 [24,53,54], as well as HMGB1-
binding receptors, both TLR4 [25,26,33,55] and RAGE [55,56]. The consequence of this
condition is TLR4- and NF-kB-dependent activation of cellular pathways leading to an
increase in inflammatory cytokine secretion [57,58]. Hyperoxia-induced activation of
TLR4 can, for example, lead to brain tissue damage [59] or pathological myocardial re-
modelling [60]. NF-«B is also involved in hyperoxia-dependent activation of the RAGE
receptor [54,56,58]. Results from studies in knockout mice with genes for TLR4 and RAGE
showed that these receptors play a key role in HMGB1-induced inflammatory responses
by regulating each other. On the one hand, RAGE is involved in the translocation of TLR4
to the cell membrane without affecting its transcription; on the other hand, TLR4 affects
both the membrane transport of RAGE and its transcription. HMGBI1 generates cytokine
production by increasing the expression of both receptors and leading to activation of
MAPK (mitogen-activated protein kinases) pathways [61].

However, in our study, where the time from exposure to diving-related hyperoxia
to the assays was relatively short, we did not observe significant changes in RAGE and
NF-«B expression at the mRNA or protein level. However, we observed a transient de-
crease in mRNA for HMGBI and a decrease in mRNA for TLR4 immediately after the
dive. A study on mouse endothelial cells isolated from the lung showed that the hyperoxia-
associated increase in RAGE expression at the protein level was accompanied by a decrease
in mRNA levels for RAGE four hours after exposure compared with cells cultured in
normoxia [56]. A similar situation was observed in our study concerning mRNA expres-
sion for TLR4. However, in contrast to the cell line studies, we did not observe changes
in protein levels for either TLR4 or RAGE. This is most likely related to the limitation
of our study to the determination of soluble forms in blood due to its preliminary na-
ture. For both receptors, soluble forms are formed by the proteolytic action of metallo-
proteinases. TLR4 is cut by ADAM10/17 (a disintegrin and metalloproteinase domain-
containing protein 10/17) [62], whereas RAGE is formed by the action of MMP-9 (matrix
metalloproteinase-9) and ADAMI0 [63]. In addition, approximately 25% of circulating
RAGE is its variant formed by an alternative splicing pathway, endogenous secretory
RAGE (esRAGE). The production of esRAGE is induced by the interaction of membrane-
anchored RAGE with its ligands (also with DAMPs, e.g., HMGB1 and 5100 proteins),
which leads to the activation of signalling pathways associated with the activation of the
transcription factor NF-kB [63]. Soluble forms are thought to be structurally identical to
their membrane-bound counterparts but do not participate in the pathways initiated by
these receptors [62]. Soluble forms act as decoy receptors for both TLR4 [64] and RAGE [65].
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This involves preemptively binding ligands of these receptors (including DAMPs) and
blocking their interaction with receptors located in cell membranes, resulting in inhibition
of their activity and reduced expression of inflammatory genes [55,62,65,66]. In metabolic
diseases, the circulating form of RAGE is regarded as a specific biomarker of ligand-RAGE
pathway overactivity. The lower the circulating level of soluble RAGE, the higher the
activity concerning ligand binding to the membrane-bound receptor and the worse the
prognosis [67,68]. Thus, the lack of change in soluble RAGE levels in our study seems to
demonstrate the lack of effect of diving to a depth of 40 m on the interactions between
membrane-bound RAGE receptors and their ligands in such a limited study time. In
contrast, circulating soluble TLR4 is formed by proteolytic cleavage of membrane TLR4,
secretion from the intracellular pool and alternative splicing [69,70]. Given the many factors
potentially contributing to the formation of plasma levels of soluble TLR4, no correlation
between membrane-localised TLR4 and soluble TLR4 is noted [69]. In our study, we did not
observe significant fluctuations in soluble TLR4 levels; however, mRNA relative expression
for TLR4 significantly decreased after diving.

Most underwater conditions such as hyperoxia and hyperbaria can be simulated in
the hyperbaric chamber. Studies in animals and humans following acute spinal cord injury
indicate that the use of hyperbaric oxygen therapy (HBO) is associated with a significant
reduction in the expression of TLR4, NF-«B and HMGB1 at both mRNA and protein lev-
els [71-73] as well as RAGE [74]. A similar effect was produced by the application of HBO
in rabbits with osteoarthritis, where a reduction in HMGBI1 expression in chondrocytes was
noted. This effect was explained by the effect of HBO on increasing miR-107 expression,
which in turn inhibited HMGB1 and its dependent receptors RAGE and TLR4 as well as
NF-kB activation [54]. The mechanism for the downregulation of HMGB1 expression by
hyperbaric oxygen therapy is also explained by its induced increase in sirtuinl (SIRT1)
expression. In an in vitro study in a mouse model of ischaemic stroke, HBO was ob-
served to inhibit HMGBI1 via SIRT1-dependent deacetylation [75]. In contrast, a study of a
30 min recreational dive to a depth of 30 m after a winter non-diving period showed that
not SIRT1 but SIRT3 expression is stimulated in response to oxidative stress. A substantial,
significant increase in mRNA expression for SIRT3 was reported 6 h after the dive, while
SIRT1 expression decreased [76].

Of the intracellular DAMPs we studied, we observed a transient decrease and a
significant increase in SI00A9 mRNA expression at the 1 h post-dive time point compared
to immediately post-dive. DAMP-belonging S100 proteins act through TLR4 and RAGE
receptors to promote the inflammatory response [43,45,77]. By acting through RAGE, they
may also contribute to increased ROS production [78]. S100 proteins are markers of many
inflammatory diseases [79]. It appears that hyperbaric oxygen therapy exerts an inhibitory
effect on these proteins and may alleviate their course. For example, in the treatment of
femoral head osteoarthritis, it reduces serum levels of SI00A9 protein, thus contributing to
improved tissue vascularisation [80,81], while in Crohn’s disease, it has a down-regulating
effect on SI00A8/S100A9 heterotetramers (calprotectin) [82]. A post-exercise increase in
5100 proteins, associated with tissue repair processes, is also noted. For example, plasma
levels of the S100A8/A9 complex increase in many types of exercise, such as high-intensity
interval training, treadmill running, cycling and dynamic exercise [83]. S100 proteins
may also provide important information on tissue damage associated with decompression
illness (DCI). Divers who completed four consecutive non-decompression dives to a depth
of 18 metres recorded a significant increase in S100b post-dive, which was most likely
related to skeletal muscle rather than central nervous system damage [84]. A transient
increase in serum S100B levels was also observed in apnoeic divers, and this increase was
comparable to that seen in patients after ischaemic stroke [85]. In our study, the expression
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of S100A9 and S100A8 proteins, although not statistically significant, seems to have a
decreasing trend. Longer follow-up of our divers would perhaps yield significant results.
Also belonging to the intracellular DAMPs, the heat shock proteins Hsp70 (HSPA1A)
and Hsp27 (HSPB1), which we studied, did not show significant changes in expression
either at the mRNA or protein level. In experiments on hyperoxia-treated mice, heat shock
proteins, particularly Hsp70, have a protective role against lung endothelial cells. There,
Hsp70 is an important ligand for TLR4 and the adaptor protein Trif, whose activation
contributed to increased survival in these animals [86]. In contrast, another protein of
the heat shock protein family, Hsp70L1, is responsible for enhancing the response of Th1
helper lymphocytes precisely through TLR4 [87]. Intracellularly localised Hsp70 is known
to have an immunosuppressive effect by inhibiting NF-«xB. However, when it is located
outside the cell, due to active or passive release, it can act as DAMPs through TLR2 and
TLR4 and thus promote inflammation [88,89]. On the other hand, HSP induction may
exert beneficial effects on endothelial cells. It has been observed, for example, that HSP
activation is associated with reduced vesicle formation in decompression sickness [90].
In our study of recreational divers, we observed a slight upward trend for Hsp70, which
would possibly have gained statistical significance if observation of recreational divers
had been possible over a longer time interval. In opposition to our study, in professional
divers performing simulated dives to depths of 30 m and 60 m in a hyperbaric chamber, a
significant, substantial decrease in HSP70 levels was observed [91]. The opposite response
may be due to the obvious better adaptation of the organisms of professional divers.
When examining recreational divers descending to a depth of 40 m, we found no
significant changes in the expression of the last DAMP we analysed, thioredoxin. Hyper-
oxia leads to the induction of many antioxidant enzymes, including TXN [56]. During
hyperbaric oxygen therapy, TXN as an antioxidant enzyme acts cytoprotectively by sup-
porting other antioxidants in inactivating excess ROS and preventing redox imbalance.
However, its priority function in HBO is related to its role in stabilising and stimulating the
expression of hypoxia-inducible factors (HIFs), which are crucial for the formation of new
blood vessels [92,93]. Thioredoxin reductase is closely associated with the maintenance of
physiological TRX function. In repeatedly descending apnoeic divers whose bodies are
subjected to alternating hypoxia and reoxygenation, an adaptive increase in the activity
of this enzyme has been observed [9]. This is similar to the physiological responses of an
organism subjected to exhaustive exercise, where post-exercise skeletal muscle recovery is
associated with an increase in antioxidant enzymes such as superoxide dismutase (SOD)
and TXN and an increase in free thiols [39]. Stimulatory effects on the levels of one of the
more important thiols, total and reduced glutathione, may also be exerted by hyperbaric
oxygen therapy [15]. On the other hand, a reduction in GSH levels associated with the
generation of oxidative stress during exposure to HBO has been observed [94]. Studies on
simulated diving and breath-hold diving also provide contrasting results. Simulated diving
preceded by heat stress was reported to increase GSH levels by 62% [95], while a series of
dives to a depth of 20 m for 20 min contributed to a reduction in thiol levels [18]. In our
study, there was also a decrease in glutathione concentrations, both reduced and oxidised,
and a decrease in the mRNA expression of one of the key enzymes to its synthesis—GSS.
The mRNA expression of GCLC transiently decreased and significantly increased at the
1 h post-dive time point compared to immediately post-dive. Reduced levels of GSH and
GCLC are characteristic of macrophages during the inflammatory response [96]. Oxidative
stress associated with hyperoxia may also be the cause of the reduced GSH in our study. The
hyperoxia state associated with diving increases the production of superoxide anion [97],
which when converted to HyO, reacts with NO to form peroxynitrite [98,99]. H,O, is
known to oxidise the thiol groups of cysteine [99], which may be the main reason for the



Int. J. Mol. Sci. 2025, 26, 3061

10 of 18

reduced glutathione levels observed in our study. Our results indicate that the decrease in
blood glutathione concentration may be related to the inhibitory effect of diving to a depth
of 40 m on the expression of genes encoding enzymes involved in glutathione synthesis. In
our study, the expression of the GSS gene was significantly lower immediately after the
dive and one hour later.

The inducible nitric oxide synthase encoded by the NOS2 gene plays an important
role in the body’s defence against oxidative stress. Heat shock proteins (Hsp70 and Hsp90),
which activate the IKK-NF-«B signalling pathway [100], are required to initiate transcription
of the NOS2 gene. Studies in sedentary rats have shown that NO produced by iNOS can
support the defence of vascular endothelial cells against the attachment of bubble precursors
to the vessel wall during simulated diving [101]. We did not observe significant changes
in iNOS expression at mRNA and protein levels in the divers we studied descending to a
depth of 40 m. Similarly, in a study by Sureda et al. where divers descended to a depth
of 50 m, no changes in iNOS levels were recorded; however, indicative of the activity of
this enzyme, nitrite levels in neutrophils increased after the dive and after a 3 h recovery
period [10]. In another study, where divers simulated a descent to a depth of 60 m in a
hyperbaric chamber, iNOS levels did not change [91] as in our study.

Study Limitations and Perspectives

Our study focused exclusively on middle-aged divers due to the financial barriers
associated with diving in Poland. The high cost of equipment makes the sport largely
accessible to established professionals with stable incomes, which effectively limits access
for younger people. Additionally, our research did not include female participants, as
recreational diving in Poland remains male-dominated.

We measured intracellular DAMPs and other selected parameters on gene and protein
levels at a small number of time points. Supposedly, downward or upward trends in
protein concentrations and gene expression may reach statistical significance if the group
is observed longer. Gathering a homogeneous and sufficiently large group of recreational
year-round divers who would agree to stay at the dive base for an extended time and
multiple blood draws is challenging. In the future, we intend to expand the study by
including additional HMGB1-related proteins, refining our methodology and monitoring
divers for longer periods.

4. Materials and Methods
4.1. Study Design and Participant Characteristics

Twenty-one recreational divers who dive regularly throughout the year were recruited
for the study. Dives were carried out in Lake Irisko (Ifisko Lake region, Western Pomerania,
north-western Poland). The dives took place from June to July 2024 at a depth of 40 m and
took a total of 50 min. The temperature of the surface layer of the lake ranged from 15 to
19 degrees Celsius, the water temperature up to 12 m was 19 degrees Celsius, the water
temperature from 12 m—thermocline—was 8 degrees Celsius, the temperature near the
bottom (about 40 m) varied from 5 to 6 degrees Celsius, and the air temperature varied from
25 to 30 degrees Celsius. Typically, diving operations took place between 10:00 and 12:00,
with a descent to a maximum depth of 40 metres, followed by an immediate ascent to the
surface without requiring a decompression stop. Diving equipment included open-circuit
SCUBA diving equipment that used compressed air (21% O) as a breathing gas, dive
computers and dry suits.

Study participants underwent anamnestic examination to exclude acute or chronic
diseases. The divers were non-smokers and were urged not to use drugs or food supple-
ments before performing the dives. Before obtaining written consent, we informed all study
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participants of the risks and potential inconveniences associated with blood sampling.
The study was conducted according to the guidelines of the Declaration of Helsinki and
approved by the Bioethics Committee of the Pomeranian Medical University in Szczecin
(no. KB-006/30/2022). The anthropometric characteristics of the participants in the study
are presented in Table 1.

Table 1. Anthropometric characteristics of the study participants (median and interquartile range).

Recreational Diver Group

N=21
age [years] 50.0 (48.00—61.00)
height [cm] 1.80 (1.76—1.81)
weight [kg] 89.5 (85.0—-92.5)
BMI [kg/m?] 27.8 (26.5—28.7)

N—number of participants, BMI—body mass index.

4.2. Blood Sampling

Blood samples intended for ELISA tests and RNA isolation were collected three times
from the cubital vein: before diving (baseline), right after diving (post-dive) and 1 h
following diving (1 h post-dive). Venous blood was gathered into 7.5 mL S-Monovette
tubes containing an anticoagulant (EDTA K3, 1.6 mg EDTA /mL blood) and into 7.5 mL
S-Monovette tubes with a clot activator (SAR-STEDT AG&Co., Niimbrecht, Germany). A
portion of EDTA-anticoagulated blood for RNA isolation was promptly mixed with Lyse
Blood buffer (EURx, Gdarnisk, Poland), left at room temperature for 30 min, transported
in a cooled container and subsequently stored at —80 °C, following the manufacturer’s
instructions. Blood samples for ELISA testing were centrifuged at once at 3000 rpm for
10 min. The collected plasma and serum samples were transported in a cooled container
and kept at —80 °C until they were processed.

4.3. ELISA

The plasma or serum levels of the proteins under study, including HMGB1, S100AS,
S100A9, TXN, HSPA1A, HSPB1, NF«B, TLR4, RAGE and NOS2, were determined using
the immunoenzymatic ELISA technique with commercial assay kits from ELK Biotech-
nology (Wuhan, China). The methodology followed the instructions provided by the
manufacturer. Measurements of absorbance were taken using an Asys UVM340 microplate
reader (Biochrom, Cambridge, UK) and MikroWin 2000 4.35 software in two replicates. The
concentrations of the proteins HMGB1, S100A8, S100A9 and TXN were reported in pg/mL,
whereas those of HSPA1A, HSPB1, NFkB, TLR4, RAGE and NOS2 were reported in ng/mL.
GSH and GSSG levels were noted in pmol.

4.4. RNA Isolation and Reverse Transcription

Total RNA was isolated from peripheral blood leucocytes sourced from thawed blood
samples utilising the Gene MATRIX Universal Blood RNA Purification Kit (EURx, Gdansk,
Poland) as per the manufacturer’s guidelines. This procedure included DNase I (EURX,
Gdansk, Poland) treatment to prevent genomic DNA contamination. Subsequently, the
RNA samples’ concentration was measured using a BioTek Take3 Microvolume Plate
and Synergy H1 Plate Reader (BioTek, Winooski, VT, USA) and Gen5 2.00 software. Then,
0.6 pg of total RNA from each sample was converted into cDNA using the Thermo Scientific
RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, Waltham, MA, USA) in a
20 pL reaction volume, following the manufacturer’s instructions.
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4.5. Real-Time qgPCR Protocol

mRNA levels were analysed using qRT-PCR on a CFX96™ Touch Real-Time
PCR Detection System (Bio-Rad, Hercules, CA, USA) and Bio-Rad CFX Manager 3.1
software with SG qPCR Master Mix (2x) from EURx, Gdansk, Poland. Gene amplifi-
cation was performed under the following conditions: an initial denaturation at 95 °C for
10 min, followed by 40 cycles at 94 °C for 15 s, at 60 °C for 30 s and at 72 °C for 30 s.
The list of primers used for qPCR reactions is available in the supplementary materials
(Table S1). Following qPCR, melting curve analysis was performed on all samples. Under
these amplification conditions, a single PCR product was detected. The relative expres-
sion of the target gene, normalised to f2-microglobulin, was calculated using the 2~AACt
method to determine fold change and subjected to statistical analysis. Each sample was run
in duplicate.

4.6. Statistical Analysis

Statistical analyses were conducted utilising Statistica version 13 software (2017;
TIBCO Software Inc., Palo Alto, CA, USA). A significance level of p < 0.05 was employed.
Data were expressed as medians with interquartile ranges. Initially, we assessed data
normality using the Shapiro-Wilk test. As the data were not normally distributed, we
performed non-parametric statistical analysis. To evaluate differences across the three
time points analysed (baseline vs. immediately post-dive vs. 1 h post-dive), we applied
Friedman's repeated-measure analysis of variance followed by Dunn’s post-hoc test.

5. Conclusions

For understandable reasons, professional diving has received more attention in diving
research. However, due to the growing interest in this activity, recreational diving has
begun to be recognised as a form of physical activity. It is therefore worth highlighting
both the health risks and benefits associated with this activity. We observed a transient
down-regulation of HMGB1 expression after diving at the mRNA and protein levels, as
well as a reduction in TLR4 and an increase in S100A9 expression at the mRNA level
only. These changes may indicate an adaptation of the divers against the oxidative stress
accompanying diving, which was reflected in our study by a decrease in the levels of
glutathione and the expression of the gene encoding one of the key enzymes responsible
for its synthesis—GSS. The results of our study may contribute to a better understanding
of how recreational diving affects the immune response in the context of oxidative stress,
potentially offering insights into its long-term impact on health and adaptation. To our
knowledge, this is the first study to investigate the role of intracellular DAMPs in the
inflammatory response in recreational divers.

Supplementary Materials: The following supporting information can be downloaded at https:
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gPCR reactions in the study.
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ADAMI10 A disintegrin and metalloproteinase domain-containing protein 10

ADAMI10/17 A disintegrin and metalloproteinase domain-containing protein 10/17
AGER advanced glycosylation end-product-specific receptor
DAMP damage-associated molecular pattern
esRAGE endogenous secretory RAGE
GCLC glutamate-cysteine ligase, catalytic subunit
GSH reduced glutathione
GSSG glutathione disulfide (oxidised glutathione)
GSS glutathione synthetase
HBO hyperbaric oxygen therapy
HIFs hypoxia-inducible factors
HSPA1A (Hsp70) heat shock protein family A member 1A
HSPB1 (Hsp27) heat shock protein family B, (small) member 1
HMGB1 high-mobility group box protein 1
IKK IkappaB kinase
MAPK mitogen-activated protein kinases
MMP-9 matrix metalloproteinase-9
NF«B nuclear factor-xB
NOS2 nitric oxide synthase 2
PRR pattern recognition receptors
RAGE receptors for advanced glycation end products
RNS reactive oxygen species
ROS reactive nitrogen species
S100A8 5100 calcium-binding protein A8
S100A9 5100 calcium-binding protein A9
SCUBA Self-Contained Breathing Apparatus
SIRT1 sirtuinl
SIRT3 sirtuin3
SOD superoxide dismutase
TLR4 Toll-like receptor 4
TXN thioredoxin
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