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Abstract: We examined data from Naval Sea Systems Command grant project N0463A-12-C-001,
“Hypercapnia: cognitive effects and monitoring”, with the objective of validating or repudiating heart
rate variability (HRV) as a warning sign of cognitive impairment from diving gas narcosis or oxygen
toxicity. We compared HRYV feature scores to their temporally corresponding cognitive outcomes
under normal and narcotizing conditions to identify specific HRV features associated with cognitive
changes. N0463A-12-C-001 was conducted between 17 September 2013 and 29 January 2016 and
employed NASA’s multi-attribute task battery (MATB-II) flight simulator to examine the independent
effects of CO,, Ny, and O, partial pressure on diver performance at simulated depths up to 61 msw
(200 fsw). We assessed the association of 23 distinct HRV features scores from 432 of the study’s
analyzable exposure stages in relation to MATB-II's four performance subclasses (motor, memory,
attention, strategy) while controlling for exercise and CO,, Ny, and O, gas partial pressure. Perfor-
mance decrements were associated with normalized high-frequency HRVfeatures (HFnu, p = 0.0016)
and the number of pairs of successive R-R intervals that differed by more than 50 ms (NN50countl,
p = 0.04). Secondary analysis with stratification restricted to non-exercise stages showed that several
HRV parameters, including root mean square of the successive difference (RMSSD, p = 0.0015), width
of Poincaré plot (p = 0.0017), NN50countl (p = 0.0019), and standard deviation of normal-to-normal
R peaks (p = 0.0082), were associated with performance impairment. The RMSSD association re-
tained statistical significance after Bonferroni correction for multiple tests. HRV features collected
from divers tested under narcotizing conditions of breathing gas partial pressure and exercise were
associated with performance impairment.

Keywords: heart rate variability; diving; narcosis; nitrogen; carbon dioxide; oxygen toxicity;
cognitive testing; cognitive impairment; MATB-II; anesthesiology; mission; hypercapnia; hyperoxia;
underwater breathing; flight simulator; inert gas; undersea; navy; rapture of the deep; random forest;
support vector machine; k-nearest neighbor classifier; SMOTE

1. Introduction

Inert gas narcosis, sometimes called nitrogen narcosis, and CNS oxygen toxicity are
operational risks for all divers because they adversely affect cognitive performance in the
underwater environment. Narcosis is a reversible condition which consists of symptoms
such as euphoria, impaired neuromuscular coordination, delays in auditory, visual, and
tactile responses [1], diminished memory, and impaired concentration that adversely
affects operational performance in divers. It was first reported in the early 19th century
by Colladon (1826), Junod (1835), and Green (1861) [2-9], and it remains incompletely
understood. Divers experience decreased psychomotor performance when exposed to
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higher than normal inspired partial pressures of Ny, CO;, other inert gases, and possibly
O, [10,11]. High inspired partial pressures of oxygen are dangerous for divers because
they cause CNS toxicity, including seizures [11-13]. Although several alternatives exist to
treat and prevent the risks of gas narcosis [14,15], early detection is the key to minimizing
deleterious effects [16].

Previous studies have shown that diving affects the autonomic nervous system
(ANS) [17-22]. Heart rate variability (HRV) analysis is a widely used noninvasive tool
to assess ANS, making it a potentially promising approach to detect gas narcosis. HRV
involves calculations that correlate the variability of the time intervals between consec-
utive heart beats in the electrocardiogram (ECG) with clinical outcomes [23]. Variations
in heart rate represent dynamic interactions between parasympathetic and sympathetic
nervous activities in the heart, which modulate the oscillations in the intervals (ms) be-
tween consecutive heartbeats [22-25]. The basis of these calculations is routine ECG tracing,
a measurement that is easily and non-invasively obtained using standard cardiogram de-
vices. Abnormal HRV was first noted in neonates during the mid-twentieth century [26,27]
and has since been associated with post-cardiac infarction mortality [28,29], autonomic
neuropathy in diabetic patients [30,31], and changes in cognitive function [32]. Because
HRYV is a non-invasive approach that provides insights into aberrant neurological activity,
it has the potential to provide early warning signs for narcosis and CNS oxygen toxicity
in divers. If HRV features are shown to predict, coincide with, or even echo narcosis or
oxygen toxicity symptoms, it could be a valuable tool to predict these potentially fatal
symptoms in divers.

To the best of our knowledge, no prior studies have assessed HRV in association
with diving narcosis. Previous studies using HRV have shown that diving affects the
ANS [17-21]. A simple analysis of HRV that could continuously and non-invasively assess
the degree of sympathetic and parasympathetic balance in a diver’s autonomic nervous
system would provide early warning of dangerous conditions. Previous studies have
shown that changes in autonomic activity may predict central nervous system (CNS)
oxygen toxicity [33] and that cardio—pulmonary baroreceptor afferent signals can work in
the reverse direction (from the periphery to the central system) to modulate brain excitation
and influence susceptibility to oxygen toxicity seizures [34]. HRV has been shown to be
correlated with scores on tests of global cognitive performance [32,35-37].

We examined data from a previous study to test whether heart rate variability (HRV)
could provide warning signals to avoid cognitive impairment during a dive [38]. HRV
studies have shown that diving affects the autonomic nervous system [9,17-20,39-41] and
that changes in autonomic activity may predict CNS oxygen toxicity [33]. If changes in
HRYV reliably precede the onset of narcosis or oxygen toxicity, then they could be used as
measures to predict and potentially avoid dangerous cognitive risks associated with the
dive. We extracted several HRV features in both the time domain and frequency domain and
analyzed their association with NASA Multi-Attribute Task Battery (MATB) II test scores.
Furthermore, we applied machine learning algorithms to classify normal vs. impaired
cognitive performance based on HRV parameters [42,43].

2. Materials and Methods

This study analyzed data from Duke University Medical Center’s institutional review
board’s approved re-review of a previously published trial that examined cognitive ef-
fects of potentially narcotizing mixtures of oxygen, nitrogen, and carbon dioxide during
simulated dives to depths up to 61 msw (200 fsw) [38]. Between 17 September 2013 and
29 January 2016, 50 subjects selected to meet US Navy age and fitness profiles [44] were
tested during 31.5 °C (88.7 °F), head-out, water-immersion exposure in a 10 by 18-foot
hyperbaric chamber using NASA’s MATB-II flight simulator [45].

The fifty male volunteers were between 20 and 48 years of age and met US Navy fitness
profiles [44]. ECG signals for HRV analysis were collected using 3M Red Dot Ag/AgCl elec-
trodes and a Hewlett-Packard (Palo Alto, CA, USA) M1094B/M1176A monitoring system.
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The analysis to extract HRV features from the ECG signals is described in detail below. All
data were used if adequate “R” wave identification, a control stage, and compliant MATB
responses were present. Stages with technical failures and stages from subjects who were
not compliant with the experimental protocol were not included in the analysis. Signs of
noncompliance included surreptitious breathing around the mouthpiece (confirmed by
discordant arterial inspired or end-tidal O, or CO; partial pressure measurements), the
strategic use of multiple anticipatory keystrokes (identified from repetitive programmatic
keystroke patterns with excessive numbers of “false positive” responses), low effort (ev-
idenced by non-exposure-associated lack of focus on the simulator tasks or repeatedly
ignoring requests to not remove the mouthpiece to talk). The consort diagram is shown in
Figure 1. After all exclusions, 37 subjects and 432 stages remained.

50 IRB approved
subjects
(514 data stages)

Less 96 stages from 8
pilot subjects 42 trial subjects

(514 possible stages)
Less 64 stages from 5 subjects with unusable

MATB or HRV data. Less 17 stages from 4

subjects with gas delivery failure (9) poor 37 remaining subjects

effort (2) isolated joystick failure (2) HRV 432 remaining stages
motion artifact (2), ear clearing failure (2)

Figure 1. Consort Diagram.

2.1. Consort Diagram

Subjects were randomly assigned to one of four protocols (A-D) that encompassed
a total of 20 distinct environmental exposure stages defined by their gas partial pressure
and exercise conditions. To increase statistical power, stages with conditions of high N,
exposure at PiN, = 446.8 kPa and 565.4 kPa (4.41 and 5.58 ATA) were combined into single
exposure group, thereby yielding 16 separate gas and exercise pooled exposure groups. Table 1
shows the pooled exposure groups.

Table 1. Pooled exposure groups.

Pooled Exposure

Group (N = 16) ATA Kpa FiCO, PiCO, ATA FiN, PiN,_ATA FiO, PiO,_ATA Exercise

. 1013 ) ) ) 0

01_air 1 ors  0.00% 0 79.00% 0.79 21.00% 021 0

02_CO, 1 1013 7.50% 0.1 71.50% 0.72 21.00% 021 0

03.0, 1 1013 0.00% 0 0.00% 0 100.00% 1 0

04 CO,0, 1 1013 750% 0.1 0.00% 0 92.50% 0.93 0
47 4762 0.00% 95.50% 4.49 450%

05_N; 538 5877 0.00% 0 96.40% 558 3.60% 021 0

06 N,O, 58 5877 0.00% 0 78.00% 451 21.00% 122 0
47 4762 1.60% 93.90% 441 4.50%

07_CO:N; 58 5877 1.30% 0.1 95.10% 55 3.60% 0.21 0

08_CO,N,O, 58 5877 130% 0.1 77.70% 45 21.00% 122 0

09_ex_air 1 1013 0.00% 0 78.00% 0.78 21.00% 021 1

10_ex_CO, 1 1013 7.50% 01 71.50% 0.72 21.00% 021 1

11_ex O, 1 1013 0.00% 0 0.00% 0 100.00% 1 1

12_ex_CO,0, 1 1013 7.50% 0.1 0.00% 0 92.50% 0.93 1
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Table 1. Cont.

Pooled Exposure

Group (N = 16) ATA Kpa FiCO, PiCO, ATA FiN, PiN,_ATA FiO, PiO,_ATA Exercise
47 4762  0.00% ] 4.49 4.50%
13_ex N, 538 5877 0.00% 0 95.50% 5.58 3.60% 021 1
14_ex_N,O, 538 5877 0.00% 0 78.00% 451 21.00% 1.22 1
47 4762 1.60% 93.90% 441 4.50%
15_ex COzN, 538 5877 1.30% 0.1 95.10% 55 3.60% 021 1
16_ex_CO,N,O, 538 5877 1.30% 0.1 77.70% 45 21.00% 122 1

ATA, pressure in absolute atmospheres; FiCO,, FiNy, FiO,, fraction of respective
breathing gases; PiCO,, PiNy, PiO,, partial pressure of respective breathing gases.

2.2. Data Acquisition Methods

Electrocardiograms, radial arterial blood pressure, heart rate, respiratory rate, tidal
volume, end-tidal CO,, end-tidal O, and end-tidal N, were continuously monitored and dig-
itally captured using ADInstrument’s LabChart 7 Pro software (Colorado Springs, CO, USA).
An Apple iPad running FilemakerGo version 11 (https://www.claris.com (accessed on
11 February 2024)) provided a detailed playbook for each individual experiment and
recorded the precise timing of each experimental event. A FilemakerPro version 16 database
collected, stored, and synchronized each subject’s personal information along with the
performance and physiological data from the multiple experimental gas, pressure, and
exercise conditions. All devices were synchronized to an internet-obtained time signal.

2.3. HRV Analysis

ECG tracings for HRV analysis and physiology data (arterial line tracings, end-tidal
gas partial pressures, work, and respiratory rates) were selected for each 5 min experimental
stage [31] and saved as separate files using a custom designed macro in LabChart 7. The raw
ECG signal was filtered using a variable-frequency complex demodulation (VFCDM)-based
denoising method [46]. Baseline drift was removed from the raw ECG using the moving
window median filtering technique described by Brennan [47]. R-wave peaks were detected
using an empirical method based on adaptive noise decomposition (CEEMDAN) [48]. After
automatically detecting the R-wave peaks, tracings were manually reviewed and corrected
if needed. An instantaneous HR signal at a sampling rate of 4 Hz was created using the
technique described by Berger [48,49]. HR signals were then downsampled to 1 Hz with
the mean and low-frequency trends removed. HRV analysis was conducted after a 2 min
“gas wash-in” delay following each gas switch. Outcomes were reported as percent change
from air breathing at rest baseline measurements. Three classes of HRV calculations were
conducted on the HR sequences: (1) time-domain features (TD); (2) power spectral density
(PSD) features; and (3) principal dynamic mode features (PDM). A total of 23 distinct HRV
features were calculated.

2.3.1. Time-Domain Features (TD)

TD calculations were made from instantaneous R-R intervals. Low frequency (LF) was
defined as 0.04-0.15 Hz. High frequency (HF) was defined as 0.15-0.4 Hz. LF represents
both sympathetic and parasympathetic tones whereas HF represents the parasympathetic
tone [50]. For autoregressive (AR) modeling we used the even-sampled HR sequence [49].
Table 2 lists the fifteen TD HRYV features.

Table 2. Time-Domain HRV Features.

Feature Description Interpretation
AE Approximate entropy Measure of irregularity in HRV signal
AR_1 AR(2) model parameter al Reflects the HRV signal dynamics
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Table 2. Cont.

Feature Description Interpretation
AR 2 AR(2) model parameter a2 Reflects the HRV signal dynamics
AR_noise_var Normalized variance of innovation signal Reflects the overall HRV variations
meanHR mean Heart rate Represents ANS activity
meanNN mean NN interval Represents ANS activity
Number of pairs of adjacent NN intervals differing by .
NN50count more than 50 ms in the entire recording (NN50 count) Estimate of short-term HRV
Number of pairs of adjacent NN intervals differing by .
NNS0countl more than 50 ms in the entire recording (NN50 count) Estimate of short-term HRV
Number of pairs of adjacent NN intervals differing by .
NN50count2 more than 50 ms in the entire recording (NN50 count) Estimate of short-term HRV
pNN50 NN50 count d1v1.ded by the total number of all NN Estimate of short-term HRV
intervals (pNN50)
r_RR correlation coefficients of the lagged Poincaré plot
RMSSD root mean square of the successive difference Estimate of short-term HRV
SD1 width of Poincaré plot Reflects the short-term variability
SD2 length of Poincaré plot Reflects short-term and long-term variablity
SDNN standard deviation of normal-to-normal R peaks Reflects overall variability in HRV
2.3.2. Power Spectral Density Features (PSD)

PSD values of the heart rate sequences were calculated using the Welch periodogram
method [51]. From the PSD analysis, we calculated the mean spectral power (total psd)
in the LF and HF bands, and the LF-to-HF ratio. A 128-point fast Fourier transformation
with a frequency resolution of 0.0078 Hz and a Hanning window with 50% overlapping
segments was used. In keeping with the recommendation from the HRV task forces [50]
we assigned the LF and HF bands to 0.04-0.15 Hz and 0.15-0.4 Hz, respectively. The
eight PSD features calculated from the PSD are listed in Table 3.

Table 3. HRV Power Spectral Density Features.
Feature Description Interpretation
HF Power of high-frequency band (0.15-0.4 Hz) Reflects parasympathetic activity
HFnu Normalized units of HF power (0.15-0.4 Hz) Reflects parasympathetic activity
Reflects both sympathetic and parasympathetic activity
LF Power of low-frequency band (0.04-0.15 Hz) .
(more sympathetic)
LF_HF LF-HF ratio The ratio of sympathetic to parasympathetic activity
LFnu Normalized units of LF power (0.04-0.15 Hz) Reflects both sympathetic and para§ympathetlc activity
(more sympathetic)
. Ratio of power in frequency band (f < 0.6) to frequency Reflects spreading of the spectrum, mainly due to
Power ratio .
band (f > 0.6) exercise
total_psd total power
VLF Power of very-low-frequency band (<0.04 Hz) (VLF)

2.3.3. Principal Dynamic Mode Features (PDM)

PDM feature analysis is a nonlinear technique that uses eigenvalue decomposition. In
this study, we applied PDM feature analysis to separate dynamic components of the
sympathetic and parasympathetic nervous system from within the ECG signal. The
two dominant PDM features, PDMsymp and PDMpara, in the LF and HF bands derived
from PSD, are considered to correspond to sympathetic and parasympathetic nervous
system activity, respectively [52,53]. The major difference between PDM and PSD is that
PDM specifically accounts for the inherent nonlinear dynamics of HR control, which PSD
cannot. PDM employs the statistical technique of principal components analysis (PCA).
PCA selects only the dominant eigenvectors and eigenvalues, as these are closely related
to the true characteristics of the signal, since non-dominant eigenvectors and eigenvalues



Sensors 2024, 24, 7726

6 of 18

represent noise or nonessential characteristics. A minimum set of basis functions were
determined using principal component analysis.

The PDM features were calculated using the Volterra—Wiener kernels based on expan-
sion of Laguerre polynomials [54]. Among all possible choices of expansion bases, some
require the minimum number of basis functions to achieve a given mean-square approxi-
mation of the system output. This minimum set of basis functions is termed the principal
dynamic mode of the nonlinear system. Thus, principal component analysis separates only
the essential dynamic characteristics from a signal that is likely to be corrupted by noise and
non-system related dynamics. The PDM method requires both the input and output data,
but since we had only the output signal of HR recordings, we used the following steps to
create an input signal. The aim was to create an input signal with broadband characteristics.
We used HR delayed by one unit as the input and undelayed HR as the output signal to
obtain the PDMs. We used the first four PDMs to reconstruct the output signal. The justifi-
cation for using the first four PDMs is because they accounted for our set threshold value of
90% of the HR dynamics. These first four PDMs reflected the dynamics of the sympathetic
and parasympathetic systems [21]. PDM outputs were converted to the frequency domain
using fast Fourier transform to facilitate interpretation of the two ANS activities; these are
usually illustrated in the frequency domain. For this study, we used 8 Laguerre functions
with a memory length of 60. The detailed steps involved in the calculation of PDMs as
well as for determining the Laguerre functions and the memory lengths were as previously
described [55]. The two PDM features are listed in Table 4.

Table 4. HRV Principal Dynamic Mode Features.

Feature Description Interpretation
PSymp Parasympathetic parasympathetic (non-linear calculation)
Symp Sympathetic sympathetic (non-linear calculation)

2.4. Cognitive Testing Platform (MATB-I1)

NASA’s MATB-1I was the cognitive testing platform used: a multi-tasking JavaScript
flight simulator created in 1992 and revised in 2014 [45]. It has 4 simultaneously admin-
istered and independently scored subtasks: motor (TRACKING), attention (MONITOR),
memory (COMMUNICATION), and strategy (PUMPS). The sequence of subtask events
can be programmed into a single events file that can be reused for each subject, ensuring
identical sequence and nearly identical timing of the individual queries for all subjects.
Subtask impairment thresholds were assessed at the 15%, 30%, and 45% levels of ad-
verse changes from subject’s air breathing at resting baseline. After a sensitivity analysis,
a 30% decrement from baseline was chosen, based on the R? values for the regression lines
of the individual subtask scores against the number of impaired subtasks for each stage.
An overall impairment score, the stage impairment score, was defined as the 5-level (04,
none to severe) sum of the “impaired” MATB subtasks.

2.5. Machine Learning Analysis

We used a supervised machine learning algorithm to distinguish between normal
and impaired operational performance [56,57]. Fifteen separate HRV features with direct
physiological interpretation were selected for machine learning analysis. The input vectors
were each diver’s HRV data during every stage of the protocol. The output vectors were
class labels (normal or impaired). We tested 4 different machine learning techniques:
random forest, support vector machine with radial basis function kernel, linear support
vector machine, and k-nearest neighbor classifier. We chose kernel SVM, and random
forest [58] as classifiers because of their interpretability. The dataset was split into training
and test sets using leave-one-subject-out (LOSO) cross-validation in order to learn and create
a decision boundary between the two classes. This was equivalent to k-fold cross-validation
with k = 37, but the data was split subject-wise instead of sample-wise. In order to perform
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a subject-independent evaluation, we followed a “leave-one-subject-out” strategy where
one subject was left out for testing and the remaining ones were used for training as
depicted in the Figure 2. We optimized the model parameters using 10-fold cross validation
along with a grid search technique on the training data in the first iteration. The same
model parameters were used in the subsequent runs. For the SVM, we varied the parameter
C from 0.001 to 1000 with an increment of 10 times the previous value. For KNN, we varied
the number of neighbors from 2 to 5 with an increment of 1, and for random forest, we
varied the number of estimators (20 to 100) and maximum depth of the trees (3 to 20).
Since we had a relatively small dataset, the model parameter ranges were determined
appropriately to reduce overfitting. The optimized model parameters were as follows:
for KNN, 3 nearest neighbors; for SVM, C = 1; and for random forest, 30 estimators and
a maximum depth of 5.

Subject 1 Subject 2 Subject 3 e Subject N

Subject 1 Subject 2 Subject 3 .. Subject N

Subject 1 Subject 2 Subject 3 . Subject N
Testing set Training set

Figure 2. Machine learning LOSO validation scheme.

We computed the accuracy and F1 score of the machine learning model for perfor-
mance evaluation, where accuracy was the measure of all the correctly identified cases.
The F; score was the harmonic mean of the precision and recall, where precision refers
to the ratio of the number of true positives and the number of all positives, and recall
represents the ratio of the number of true positives and the number of all the samples that
should have been identified as positives. We selected the best machine learning model
in terms of F1 score. The best machine learning model was then trained using the entire
dataset in order to determine the feature importance for that model. Because the data
were unbalanced, the most frequent classes (in the training data) were balanced using
a recognized upsampling strategy called SMOTE [59]. The predicted class labels were
then compared to the assigned (reference) labels from their stage impairment scores and
evaluated for accuracy and F1 score. We used nonlinear soft margin because it can assign
class designations when classes are overlapping [57].

2.6. Statistics Employed

All notes and raw data files from N0463A-12-C-000 were reviewed for technical errors
before being processed and analyzed for this study. Repeated-measures linear regression
identified associations of environmental exposure settings (gas mix, exercise), subject
characteristics (age, diving experience, video games experience, stage order), and HRV
metrics with cognitive impairment as reported by the stage impairment score. Analysis was
performed in SAS v 9.4. Summary statistics, t-tests, 95% CI graphs, and correlations were
calculated in SPSS V23. p < 0.05 was considered significant. Machine learning non-linear
regression analysis was performed using a support vector machine with RBF kernel, with
the HRYV features used to regress the cognitive performance scores. Performance was
evaluated using the leave-one-subject-out cross-validation strategy. Classification and
interpretation techniques included random forest, support vector machine with radial basis
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function kernel, linear support vector machine, and k-nearest neighbor classifier [56—60].
For a measure of fitness of the model, we report the average R-squared value and the
average root mean squared error (RMSE) of the fitted regressor on the testing samples.

3. Results
3.1. HRV Feature Scores Were Associated with Performance Impairment

Gas partial pressures and HRV scores were significantly associated with performance
impairment. In our initial model, we found independent impacts of high CO;, Ny, and
O, partial pressures, but not diver’s age, video games experience, or dive training, on
cognitive impairment (Table 5). A subsequent model of main effects and two-or three-
way interactions identified an interactive impact of gas mix with exercise, but there were
no 2-way interactions between gases without the addition of exercise (Table 6). These
results confirmed that exercise, CO, Np, and O, partial pressures were strongly and
independently associated with performance impairment, as seen in the initial study [38].
When we included HRV metrics in a repeated-measures linear regression that controlled
for exercise and gas mix, there were significant associations between HFnu (p = 0.025)
and LF(p = 0.041) and cognitive impairment (the stage impairment score) (Table 7). When
we explored the potential for interaction effects between the HRV feature scores and
stage impairment scores we found that HFnu (p = 0.0016) and NN50count1 (p = 0.0404) had
significant interactions, and total_psd (p = 0.066) and LFnu (p = 0.079) had near-significant
interactions with exercise. Therefore, due to the large effect of exercise, we stratified
the dataset by exercise. Secondary analysis restricted to non-exercising stages identified
RMSSD (p = 0.0015), SD1 (p = 0.0017), NN50countl (p = 0.0019), NN50count1 (p = 0.0049),
SDNN (p = 0.0082), SD2 (p = 0.0228), and AR_1 (p = 0.0319) as being significantly associated
with cognitive impairment (Table 8). After Bonferroni correction for multiple testing, the
association with RMSSD in the non-exercise stages retained statistical significance.

Table 5. Repeated-measures linear regression between each of the below-listed features and stage

impairment scores.

Effect Estimate (95% CI) p-Value

Intercept —0.14 (—0.51, 0.24) 0.4592

Exercise 0.33 (0.18, 0.49) <0.0001

High N, 0.72 (0.55, 0.89) <0.0001

High CO, 0.56 (0.4, 0.71) <0.0001

High O, 0.21 (0.06, 0.37) 0.0070

Age 0(—0.01,0.01) 0.7845

Diving experience 0.06 (—0.13, 0.24) 0.5505
Video games experience 0.02 (—0.09, 0.12) 0.7721
Order (reversed vs. standard) 0.04 (—0.17,0.24) 0.7114

Table 6. Repeated-measures linear regression interactions between each of the below-listed features
and stage impairment scores.

Degrees of Freedom F Value p-Value

Exercise 72 41.59 <0.0001
High N, 33 76.74 <0.0001
High CO, 71 60.51 <0.0001
High O, 70 14.42 0.0003
exercise*high_N, 33 14.3 0.0006
exercise*high_CO, 71 21.09 <0.0001
high_Ny*high_CO, 32 1.34 0.2558
exercise*high_Ny*high_CO, 32 4.66 0.0386
exercise*high_O, 70 9.86 0.0025
high_Ny*high_O, 19 4.10 0.0572

exercise*high_Ny*high_O, 19 0.97 0.3380
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Table 6. Cont.

Degrees of Freedom F Value p-Value
high_CO,*high_O, 70 0.46 0.4987
exercise*high_CO,*high_O, 70 0.19 0.6607
high_N,*high_CO,*high_O, 19 3.99 0.0604
exercise*high_Nj>*high_CO,*high_O, 19 0.00 0.9885

Table 7. Repeated-measures linear regression between each of the below-listed features and stage

impairment scores.

Effect Estimate (95% CI) p-Value
HFnu 0.161 (0.062, 0.261) 0.0016
NNb50countl 0.026 (0.001, 0.052) 0.0404
SDNN 0.099 (0.000, 0.198) 0.0500
NN50count2 0.013 (0.000, 0.026) 0.0524
SD2 0.108 (—0.003, 0.219) 0.0569
AR 2 0.374 (—0.111, 0.858) 0.1306
HF 0.054 (—0.019, 0.127) 0.1432
LF —0.114 (—0.267, 0.04) 0.1467
SD1 0.023 (—0.012, 0.058) 0.2038
RMSSD 0.021 (—0.012, 0.054) 0.2081
total_psd —0.189 (—0.519, 0.141) 0.2612
LFnu —0.113 (—0.321, 0.095) 0.2875
AE —0.114 (—0.344, 0.117) 0.3339
meanNN 0.377 (—0.456, 1.21) 0.3739
AR_1 —0.264 (—0.926, 0.397) 0.4325
meanHR —0.256 (—0.904, 0.392) 0.4377
Symp 0.076 (—0.149, 0.3) 0.5068
PSymp 0.077 (—0.169, 0.322) 0.5384
VLF 0.022 (—0.066, 0.111) 0.6188
NNb50count 0.002 (—0.007, 0.012) 0.6237
PowerRatio 0.014 (—0.067, 0.096) 0.7268
AR_noise_var —0.003 (—0.033, 0.027) 0.8595
PNN50 0.001 (—0.009, 0.01) 0.8966
r_RR 0.001 (—0.019, 0.021) 0.9245
LF_HF 0 (—0.04, 0.039) 0.9842

Table 8. Repeated-measures linear regression between each of the below listed-features and stage

impairment scores restricted to non-exercise stages.

Effect Estimate (95% CI) p-Value

RMSSD 0.095 (0.037, 0.153) 0.0015
SD1 0.095 (0.036, 0.154) 0.0017
NN50countl 0.034 (0.013, 0.056) 0.0019
NNb50count2 0.016 (0.005, 0.026) 0.0049
SDNN 0.145 (0.038, 0.252) 0.0082
SD2 0.149 (0.021, 0.276) 0.0228
AR_1 —1.735(—3.319, —0.152) 0.0319
AR 2 —0.705 (—1.621, 0.211) 0.1304
VLF 0.07 (—0.036, 0.176) 0.1933
total_psd 0.266 (—0.183, 0.715) 0.2434
r_RR —0.109 (—0.302, 0.083) 0.2642

AE —0.086 (—0.26, 0.088) 0.3313
AR_noise_var 0.019 (—0.022, 0.06) 0.3644
NN50count 0.004 (—0.005, 0.012) 0.3874
LFnu —0.068 (—0.227, 0.092) 0.4034
PowerRatio —0.031 (—0.135, 0.072) 0.5496
HFnu —0.057 (—0.265, 0.15) 0.5878
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Table 8. Cont.

Effect Estimate (95% CI) p-Value

PNN50 0.002 (—0.006, 0.009) 0.6971
meanNN —0.157 (—0.957, 0.644) 0.7002
LF_HF 0.004 (—0.024, 0.033) 0.7601
meanHR 0.063 (—0.511, 0.638) 0.8279
HF 0.013 (—0.124, 0.151) 0.8467
Symp —0.014 (—0.195, 0.167) 0.8771
PSymp —0.014 (—0.214, 0.186) 0.892
LF —0.009 (—0.156, 0.139) 0.9059

3.2. Machine Learning Analyses of the Utility of HRV to Predict Cognitive Impairment in
Individual MATB-II Subclasses

Cognitive performance during an individual stage was defined as impaired if it
showed a 30% or more adverse change from baseline performance. Moreover, since there
were four different cognitive tasks, we calculated an overall impairment score depending
on how many of these tasks showed impaired performance. Thus, a subject could score
from 0 to 4 (where 0 meant no impaired performance at all and 4 meant all four cognitive
performance metrics were impaired) for the combined four stages. The dataset contained
420 samples from 34 different subjects. In order to find the best association between
HRV features and the cognitive performance scores, we tested four different machine
learning algorithms (namely, random forest, support vector machine (SVM) with radial
basis function (RBF) kernel, linear SVM, and k-nearest neighbor classifier (KNN)) for
classification of the different impairment scores and regression of impairment scores from
HRYV features. We first used machine learning classifiers to differentiate between normal
and impaired performance for each of the MATB subtasks. Table 9 shows accuracies and
F1 scores of non-stratified machine learning classification assignments by MATB subtask.

Table 9. Accuracies and F1 scores of machine-learning class assignments by MATB subtask.

Classifier Accuracy F1 Score
TRACKING (motor) mean + sd% mean =+ sd%
Random forest 81.29 £ 12.65% 66.63 £ 17.96%
Kernel SVM 79.88 + 11.86% 66.86 + 16.35%
MONITOR (attention) mean + sd% mean + sd%
Random forest 86.39 £ 9.18% 73.46 £ 16.23%
Kernel SVM 84.61 £+ 10.4% 72.43 £+ 16.76%

COMMUNICATIONS (memory)
Random forest

mean + sd%
86.11 =9.11%

mean =+ sd%
68.76 4 17.84%

Kernel SVM 84.61 £+ 10.4% 69.36 + 16.5%
PUMP (strategy) mean + sd% mean =+ sd%
Random forest 81.11 £ 10.98% 70.4 £+ 17.86%

Kernel SVM 77.05 £+ 13.53% 68.93 + 16.31%

To further test the utility of the machine-learning algorithms for making class assign-
ments, we performed nonlinear regression using a support vector machine algorithm with
RBF kernel whereby the HRV features were regressed against the stage impairment score (0—4).
The regression performance was evaluated using the leave-one-subject-out cross-validation
strategy. We calculated the average R-squared value, a measure of fitness of the model,
and the average root mean squared error (RMSE) of the fitted regressor on the testing
samples (Table 10). Figure 3 is a graph that shows two examples of the machine-learning
predicted output (orange line) and corresponding observed scores for the MATB subtasks
(blue line). The figures indicate how the regression prediction followed the true score, with
a decent overlap between the predicted and the actual score; note the complete overlap in
scores for the MATB subtasks between true and predicted values for samples 3-6 in the
left panel and 2-7 in the right panel of Figure 3). When machine-learning techniques were
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employed, HRV feature scores predicted stage impairment scores at accuracies around 80%
for all MATB subclasses.

Table 10. Machine learning regression values.

Regressor Average R-Squared Value Average Testing RMSE
SVM with RBF kernel 0.7699 0.987
I'rue score 3 True score

—— Predicted score —— Predicted score

(&)

6 8 10 12 14
Samples

Samples

Figure 3. Prediction of performance score using regression.

3.3. Use of Machine Learning to Address Confounding by Exercise

While the multiclass classification and the regression analysis showed promising
association of HRV features with cognitive impairment, confounding by exercise led us
to stratify and analyze the exercise and resting stages separately. Machine learning clas-
sifications for resting and exercise stages were generated independently. Out of the total
420 examples, 230 examples were collected during resting and 190 examples were collected
during exercise. Since the number of samples was highly reduced after separating resting
and exercise stages, we defined combined scores of 1 to 4 as one class (impaired) and
scores of 0 indicated non-impaired performance. Then, we performed machine learning
classification separately for the resting and exercise stages. The performance of the clas-
sification process is reported in Table 11. Machine learning analysis performed slightly
better using the exercise strata of the HRV feature scores than with the non-exercise model.
The reason behind the poor classification performance with the resting-stage data was the
imbalanced impairment of cognitive performance, as most subjects had impairment score
of 1, a few had a scores of 2, and there were no scores of 3 or 4. Hence, the impairment
during resting stage was largely represented by the score of 1, considered mild impairment
in the range from 1-4. In addition, an impairment score of 1 indicated that only one of
out the four subtasks was not completed correctly; hence, there might not have been much
difference between normal and impaired in these cases. In contrast, the classification
during the exercise stages showed more promising results. Since all the training and testing
example data were acquired during exercise, we can ignore the effect of exercise among
them. Moreover, the impairment scores were not as imbalanced as in the resting case;
the scores were more distributed between 14 albeit, there were more impairment scores
of 1 or 2 than 3 or 4. Thus, given these more balanced impairment scores, the HRV features
were more effective in classifying impaired performance, which supports association of
HRYV features with cognitive performance.

Table 11. Classification for resting and exercising stages.

Classifier Average Accuracy Average F1 Score
Resting stages
Random Forest 58.26% 33.37%

Kernel SVM 59.94% 43.46%
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Table 11. Cont.

Classifier Average Accuracy Average F1 Score
Linear SVM 61.82% 36.74%
KNN 56.26% 36.34%
Exercise Stages

Random Forest 62.62% 65.42%
Kernel SVM 67.14% 71.35%
Linear SVM 61.90% 67.20%
KNN 61.67% 63.21%

4. Discussion
4.1. HRV as a Predictor of Diving-Related Cognitive Impairment

This study shows that HRV during 3.5 min of analysis was associated with impaired
cognition in divers under narcotizing conditions. When using repeated-measures linear
regression, the association was stronger in the non-exercising strata of the data. Machine-
learning techniques demonstrated reasonable predication accuracy (Table 7) even when
applied to the exercise strata of the data.

4.2. HRV as an Early Warning of Diving Narcosis

Although some HRYV features were associated with cognitive impairment, the utility
of HRV as an early warning signal remains unproven and deserves further study. We
established a 90 s “gas wash-in” time before beginning HRV sampling; therefore, the
sampling intervals for the 5 min stages were only 210 s in duration, probably an imprecise
period for temporal resolution to provide a useful warning signal. Therefore, the answer
to the practical question of whether a diver’s autonomic state precedes, coincides with, or
echoes narcosis-induced cognitive impairment is likely to require longer sampling periods.

4.3. HRV as an Autonomic Signal in Diving

Although these findings do not have sufficient temporal resolution to function as
an early warning system for narcosis, they may provide insight into the causal relation-
ships that exist between the autonomic nervous system and cognition. The effects of the
immersed-diving environment and narcotic gases on cognition and the ANS are entwined.
The ANS is influenced by immersion and by changes in O, partial pressure [20,34,40,61-65].
Narcotizing gases influence BP and HR [38] and immersion alone has been hypothesized as
a cause of cognitive impairment [66,67]. There are known associations between executive
function and HRV [32,68]. However, we do not know whether HRV directly reflects current
ANS status or whether it is a link in the chain of causality, transmitting signals generated
by environmental conditions (gas and exercise state) to autonomic centers in the brainstem.
Figure 4 summarizes five of many possible theoretical options that are consistent with
long-standing theories of diving narcosis [13]. These models all begin with the assumption
that a diver’s environmental exposure drives downstream effects on physiology, cogni-
tion, and presumably, HRV. The downstream effects could be independent of each other
(Figure 4, parallel model 1) or possibly subsequent to other inputs (Figure 4, serial and
combined models 2-5). Models 4 and 5 assume a primary role for the environmental state
with a subsequent upstream role for the traditional narcosis-driven cognitive changes that
generate downstream responses in BP, HR, and HRV. These models are supported by our
findings that HRV feature scores were actually better correlated with divers’ perception of
impairment than with actual impairment itself (Table 12).

Divers’ own perceptions of their cognitive impairment are known to be poorly cor-
related with actual measurements made by unbiased and independent observers [38,69].
Therefore, if HRV is a narcosis-driven autonomic response to environmental conditions,
then, model 5 would be the parsimonious choice. However, if model 5 is correct, then warn-
ing changes in HRV would be most likely to occur too late to usefully warn of impending
cognitive impairment. Moreover, if perception of cognitive impairment, existent or not,
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drives autonomic responses, an HRV-based alarm could trap a diver in a recursive loop
in which stressful emotions, like stage-fright, generate, where stressful emotions generate
autonomic responses triggering cognition alarms which then dangerously amplify the
warning circuit. Further study is needed.

Causality: parallel or serial?

Physiology (autonomic) effects (BP/HR)

1 Environmental
- Cognitive effects (MATB
parallel ~(gas/ex) exposure g ( )

HRV
2 ) Physiology Cognitive
carial Environmental (autonomic) effects === effects ——p HRV
(gas/ex) exposure (BP/HR) (MATB)
. Physiology .
3. Environmental » HRV (autonomic) effects Cognitive
serial  (gas/ex) exposure (BP/HR) = effects
(MATB)
4 . Cognitive Physiology
vial Environmental effects =P (autonomic) effects ===p HRV
seria (gas/ex) exposure (MATB) (BP/HR)
5 Ehed tal Cognitive Physiology (autonomic)
combined VrONMeNtal —p  effects — effects (BP/HR)
(gas/ex) exposure (MATB) HRV

Figure 4. Chain of causality.

Table 12. Pearson correlation: HRV feature score with stage impairment score (rest and exercise).

Pearson Correlation Sig. (2-Tailed) N
Stage impairment 1 432
score
AE 0.147 ** 0.003 415
AR_1 —0.298 ** 0 415
AR_2 —0.206 ** 0 415
AR_noise_var 0.255 ** 0 415
meanHR 0.271 ** 0 415
meanNN —0.297 ** 0 415
NNb50count —0.003 0.946 405
NN50countl 0.024 0.636 382
NN50count2 0.048 0.332 405
PNN50 —0.021 0.668 405
r_RR —0.059 0.233 415
RMSSD 0.049 0.316 415
SD1 0.049 0.322 415
SD2 —0.042 0.395 415
SDNN —0.014 0.777 415
HF 0.024 0.662 341
HFnu 0.047 0.384 341
LF 0.028 0.61 341
LF_HF 0.045 0.411 341
LFnu 0.066 0.223 341
PowerRatio —0.224 ** 0 415
total_psd —0.221** 0 341
VLF 0.06 0.27 341
PSymp —0.092 0.09 341
Symp —0.083 0.126 341

** denotes statistical significance.

4.4. Machine Learning to Predict Cognitive Performance Using HRV Scores

Note that while the cognitive performance impairment classification results for the
resting stages were poor (F1 score around 40%), the results for the exercise stages were
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relatively accurate. The reason behind such poor classification performance during the
resting stages was the imbalance that characterized the cognitive performance impairment
scores during the resting stages, as almost all of the impaired stages during resting had
an impairment score of 1, very few had 2, and there was no score of 3 or 4. Therefore, it is
likely that a score of 1 during resting did not properly represent impairment, since some of
the subjects could have neglected one particular task to score higher on other tasks.

In contrast, the classifications of exercise stages showed some promising results. Since
all the training and testing examples were from during exercise, we can ignore the effect of
exercise among them. Thus, the results demonstrate that these HRV features were effective
in classifying impaired performance, which confirms a significant association of HRV
features with cognitive performance. It is logical that most of the impaired performance
happened during exercise. However, this result shows that HRV features were able to
distinguish the impaired and non-impaired exercise examples with significant accuracy. If
we are able to identify whether the subject is resting or exercising, we can deploy classifiers
of cognitive performance impairment tailored to the type of physical activity, and higher
accuracy can be achieved.

The machine learning predictions of cognitive performance using the HRV scores
showed promising and moderate success. However, because of technical shortcomings with
the data, we believe this area requires further study. A few limitations of this study included
the short ECG length (3 min, whereas more than 5 min for HRV analysis is recommended
in the literature), low ECG sampling frequency (100 Hz, whereas a minimum of 250 Hz
is recommended [23]), ECG problems (motion artifacts, respiratory artifacts), and loss of
cognitive data from subjects who did not finish some of the stages. Moreover, the relatively
small cognitive performance dataset is insufficient to reach a definitive conclusion about
the usability of HRV for predicting divers’ risk of narcotizing environmental exposure.
Therefore, we believe further study is required in this area, with a better and relatively
larger dataset. We believe HRV should be supplemented by other measurements designed
to assess autonomic condition, such as electrodermal activity (also known as galvanic
skin response) [70,71].

5. Conclusions

Because of its simplicity and wide usage, HRV is an attractive technique to assess
divers’ autonomic state. The experience gained from this study should be helpful for
later projects. Moreover, the N0463A-12-C-000 dataset will remain an import resource for
further investigations. The main finding of this study is that we identified several HRV
parameters that were associated with performance impairment, and that machine learning
models were able to predict diving-related cognitive impairment with reasonable accuracy
via the use of HRV parameters. Although HRV features can partially predict cognitive
impairment, we conclude that HRV should be supplemented by other techniques designed
to assess autonomic condition, such as electrodermal activity (also known as galvanic skin
response) [70]. The MATB flight simulator remains a useful tool to assess performance in
a multi-tasking environment, but a more modern multi-tasking program that combines
the ease of administration of the MATB-II with simple-to-score, mission-relevant subtasks
would be very useful for future investigators. Longer measurement times and a careful
search for symptoms of impairment or incipient O, toxicity are underway, with an ongoing
NAVSEA-funded study at Duke University. This study also aims to associate autonomic
function with neurological function, employing the MATB. The work may also answer
remaining questions about incipient O, toxicity and the nature and validity of the concept
of O, narcosis.

Study Limitations

Methodological problems included (1) ECG motion and respiratory artifacts, (2) absence
of cognitive data from subjects too narcotized to complete their assigned stage assess-
ments; and (3) no accounting for mechanoreceptors and ventilatory response; meanwhile,
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(4) baroreceptor sensitivity analysis and other early warning assessments were not built
into the study from the beginning; and (5) longer stage times or longer time without change
in gas or exercise state are recommended.
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