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Breathing hyperbaric air or gas mixtures, for example during diving or when working underwater is
known to alter the electrophysiological behavior of neuronal cells, which may lead to restricted cogni-
tion. During the last few decades, only very few studies into hyperbaric effects have been published,
especially for the most relevant pressure range of up to 10 bar. We designed a pressurized measuring
chamber to record pressure effects on the electrical activity of neuronal networks formed by primary
cells of the frontal cortex of NMRI mice. Electrical activity was recorded with multi-electrode arrays
(MEAs) of glass neuro chips while subjected to a step-by-step pressure increase from atmospheric
pressure (1 bar) to 2 and 4 bar, followed by a decompression to 1 bar, in order to record recovery effects.
The effects of pressure on the total spike rates (TSRs), which were averaged from at least 45 chips, were
detected in two cell culture media with different compositions. In a DMEM medium with 6% horse
serum, the TSR was increased by 19% after a pressure increase to 2 bar and remained stable at 4 bar. In
NMEM medium with 2% B27, the TSR was not altered by a pressure increase to 2 bar but increased by 9%
at 4 bar. After decompression to 1 bar, the activities decreased to 76% and 101% of their respective control
levels in the two media. MEA recordings from neuronal networks in miniaturized hyperbaric measuring

chambers provide new access for exploring the neuronal effects of hyperbaric breathing gases.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Investigations on the influence of hyperbaric gases on cells
have been performed with biopsy tissue of human subjects or with
experimental animals (Baddeley et al., 1968; Kerem et al., 1995;
Fenn, 1967; Turle-Lorenzo et al., 1999; Weltman et al., 2000;
Bennett, 1989). Most of the investigations have been carried out
between the 1960s and 1980s and not been confirmed ever since,
using more advanced technologies. One research focus was the
investigation of how micro-bubbles originate and grow in the
blood and tissue volumes, for example with Doppler ultra-
sonography (Balldin and Borgstrom, 1976; lkeda et al., 1989;
Neuman et al., 1976; Daniels, 1984). A second focus was the in-
vestigation of the cognition restriction of subjects under hy-
perbaric conditions with cognitive tests in pressurized chambers
(Baddeley et al., 1975; Biersner and Cameron, 1970; Lewis and
Baddeley, 1981; Logie and Baddeley, 1983, 1985), and a third focus
was the phenomena of decompression accidents, which have been
studied on testing animals, which could be dissected after the
experiments. Human subjects were appointed only under
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controlled conditions and for relatively safe experiments. Nowa-
days, hyperbaric gases (especially oxygen) are also used in the
postoperative or regenerative medicine, i.e. in the treatment of
diving accidents and in the hyperbaric oxygen therapy (Chew
et al.,, 1969; Lillehei et al., 1964; Mutschler and Muth, 2001).

Only few cell-physiological experiments have been carried out
in the pressure range below 10 bar, which is most important for
recreational and commercial diving or underwater work. One
reason was the lack of appropriate experimental methods. The
experimental equipment used in literature reports was compara-
tively bulky and expensive (Jackson, 1968; Hochachka and Storey,
1975; Murphy et al., 1980; Castellini et al., 1985, 1992; Dean and
Mulkey, 2000; Dean et al., 2003; D'Agostino et al., 2009). Never-
theless, many of the experimental results are not comprehensible
and the detected effects only partially understood.

The number of in vitro experiments on the influence of hy-
perbaric gas on the cellular physiology is very limited and only
some of them were carried out on the electric activity of neurons
(Dean and Mulkey, 2000; Stoetzer et al., 2012; Huang et al., 2000;
Sébert, 2010).

It is known, that pressurized inert gases, like nitrogen, helium
or argon may cause symptoms that are comparable to a weak
narcosis or alcohol intoxication (Bennett et al., 1967; Marshall,
1951; Behnke et al, 1935; Haldane, 1941; Hobbs, 2008). A
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consideration of Bunsen's solubility coefficient of gases in oil
showed an increasing narcotic effect for gases of higher liposolu-
bility at 37 °C (Behnke and Yarbrough, 1939; Bennett et al., 1967;
Roth and Seeman, 1972). The different liposolubilities of gases
result in different changes of the physiological, physical and
electrical properties of cell membranes (Seeman and Roth, 1972;
Hills and Ray, 1977; D'Agostino et al., 2009), partly similar to those
already known from alcohols and anesthetics (Frangopol and Mi-
hailescu, 2001; Yun et al., 2002).

The high liposolubility of nitrogen and its incorporation into
the cell membrane increases the lateral membrane pressure,
leading to a “swelling” of the cell membrane (Bennett et al., 1967;
D'Agostino et al., 2009). For neurons, the induced changes in the
geometric and electric properties of their cell membranes may
lead to alterations in the signal quality, magnitude, and propaga-
tion velocity of the action potentials (Grossman and Kendig, 1988;
D'Agostino et al., 2009; Sébert, 2010). Neurons do not only show
altered signal propagation properties along their axons or den-
drites, but also a delay in the signal coupling across their synapses
(Bryant and Blankenship, 1979; Sauter, 1979a,b; Dean and Mulkey,
2000). In networks with a small number of neurons, the electric
activity was found to be reduced by the latter effect (Hills and Ray,
1977; Sauter, 1979a,b; Grossman and Kendig, 1988; Hamilton et al.,
1995; Dean and Mulkey, 2000; Levett and Millar, 2008; Pendergast
and Lundgren, 2009). These properties of nitrogen are probably
the reasons for the similarity of the effects to an alcoholic stupor in
the human brain, which led to the term “rapture of the deep” for
the nitrogen narcosis (Behnke and Yarbrough, 1939; Baddeley
et al., 1968; Roth and Seeman, 1972; Davis et al., 1972; Bennett,
1986).

We present a new miniaturized hyperbaric chamber containing
a custom made glass neuro chip (GNC; Koester et al., 2010; Reimer
et al., 2012) with a multi-electrode array (MEA) (Thomas et al.,
1972; Gross et al., 1977; Gross et al., 1985) for detecting the electric
activity of neuronal networks under the influence of hyperbaric
air. MEAs are common tools for the detection of the spontaneous
electric activity of neuronal in vitro networks under the influence
of certain substances (Gross, 1995; Johnstone et al, 2010;
McConnell et al., 2012; LeFew et al., 2013). Their use for animal
replacement is currently being tested by many groups. Measuring
hyperbaric effects on the electric activity of neuronal networks
with the MEA technique in a hyperbaric chamber is a new ap-
proach. For this, our small custom made GNC (chip size
16 x 16 mm?) is especially suitable. We think that the approach
may contribute to extend our knowledge on the influence of hy-
perbaric air or breathing gases on neuronal networks.

2. Material and methods
2.1. Glass neuro chip

The central element of the measuring setup is a custom made
GNC (Fig. 1) (Koester et al., 2010; Reimer et al., 2012). It consists of
a 16 mm x 16 mm, 1.1 mm thick glass chip carrying 100 nm-thick
platinum sensor structures. Their on-chip connectors are passi-
vated with 1.2 pm - thick silicon nitride layers. A 4 mm high glass
trough with inner and outer diameters of 8 and 10 mm and a
volume of 240 ul was glued onto the glass chip with MED-1511
(Nusil Technology LLC, USA). The GNC is autoclavable and reusable
for more than 16 times. Some of our GNCs are in use for more than
4 years. Besides the MEA with 52 electrode pads (diameter 25 pm,
inter-pad distance 100 um) our GNC features an interdigitated
electrode structure (IDES) for cell-adhesion measurements (Ehret
et al,, 1997; Baumann et al., 1999; Koester et al., 2010; Buehler
et al, 2011), a resistive temperature sensor (PT1000), two pH
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Fig. 1. Sketch of the experimental setup. A: cover; B: high-pressure cylinder; C:
circuit board with connectors; D: holder for spring needle contacts with high-
pressure cylinder; E: chip holder; F: GNC with a: IDES, b: MEA, c: pH sensors for
future use, d: ground electrodes, e: temperature sensor; I: high-pressure connector;
II: knurled-head screws; and III: base plate with heating element.

sensors, and two ground electrodes (Koester et al., 2010; Reimer
et al., 2012). The GNC contact pads (diameter 0.5 mm) at the four
edges of the GNC were electrically contacted by gold-plated spring
needle contacts (compare to Fig. 1).

2.2. Experimental setup

The experimental setup consisted of a base plate with the
heating element of the temperature control unit, a chip holder, the
high-pressure cylinder, a hand pressure pump (WIKA Alexander
Wiegand SE&Co. KG, Germany), a home-made head stage (Koester
et al,, 2010), a Plexon 64-channel amplifier (Plexon Inc., USA) and a
PC.

The pressure was applied through a high-pressure connector to
the high-pressure cylinder, which was fitted over the GNC trough
and sealed with a silicone sealing ring on the chip surface outside
the trough (Fig. 1). The pressure was adjusted with a hand pres-
sure pump. The top ends of the spring needle contacts connected
the chip pads to a circuit board with an electronic standard con-
nector for the head stage. Its output signals were fed into the
Plexon amplifier.

For experiments, the GNC was put into the chip holder and the
silicone sealing ring slipped on the trough (Fig. 1). Besides its role
as a pressure gasket, the ring prevented moisture from reaching
the GNC pads. During the measurements, the GNC was covered
with a 0.025 mm-thin membrane of fluorinated ethylene-propy-
lene (FEP-Teflon® film with a water vapor transmission rate of
6.2 x 1073 g/cm? per day at 40 °C, Bohlender GmbH, Germany)
allowing for the diffusion of gas, though efficiently reducing the
vaporization of water from the culture medium in the GNC (Potter
and DeMarse, 2001). This was important for a stable osmolarity
during the experiments. The pressure setup was assembled at the
base plate using knurled-head screws.

For measurements, the temperature control unit was adjusted
to 37 °C (Fig. 1). Data was recorded with a PC (Windows 8.1 pro)
with MEA-Server and MEA sort client software (version 1.3, Plexon
Inc., USA) as well as VernAC (a generous gift of Prof. G. Gross,
University of Texas, Denton, USA) for data recording.

2.3. Measuring parameter

To consider the electric activity of the networks, the total spike
number of all units per minute, i.e. the total spike rate (TSR) was
used as an integrative parameter for each GNC. Single action po-
tentials were separated by hand, using the MEA sort client soft-
ware. This software allows for separating up to 4 different
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waveforms (units) per electrode, which were assumed to originate
from individual nerve cells. The waveform and time index (of the
AP trigger level) of each action potential were separately recorded.
Besides the TSR, the VernAC program provided the mean spike
numbers per minute of all active units per chip. For data analysis,
only the TSRs were considered.

2.4. Measuring procedure

When the GNCs were taken from the culture, their troughs
were full to the line. Before they were fitted into the measuring
setup 50 pl cell culture medium were removed. This amount was
sufficient to check the osmolarity and pH of the medium with an
osmometer (Osmomat 030, Gonotec GmbH, Germany) and a pH
meter (Seven2Go S2-meter, Mettler-Toledo GmbH, Germany).
After taking the GNCs from the cell culture, their pH and osmo-
larities ranged from 7.5 + 0.2 and 323.3 + 13.25 mOsm/l. From the
literature, osmolarity changes below 50 mOsm/] are known to be
uncritical for neuronal cell cultures (Potter and DeMarse, 2001),
while a decreasing extracellular pH is known to decrease the TSR
by approx. 7.7% per 0.1 pH (Balestrino and Somjen, 1988; Jarolimek
et al.,, 1989; Chesler, 1990; Chesler and Kaila, 1992). The checks
were repeated 24 h after the GNCs were transferred to the setup.
The osmolarities and pH values were protocolled and used to es-
timate their values after 10 h of measurements, assuming linear
changes for both parameters. The recorded TSRs were not used
when the estimated changes were larger than 50 mOsm/l or
0.3 pH.

Measurements on the pressure-dependence of the TSRs were
finished after 10 h. TSR data recorded later than 10 h were only
used to control the long-term stability of the neuronal networks
without medium exchange. The pressure-dependent measure-
ments were started at the ambient pressure of 1 bar. After a stable
TSR was recognized, the control data was recorded for approx.
30 min, before the pressure was doubled to 2 bar and again in-
creased to 4 bar after constant TSRs were observed. Finally, the
system was depressurized to the ambient pressure at a pressure
reduction rate of approx. 1 bar/min in correspondence to the as-
cend velocities recommended in diving tables. Unfortunately, the
adjustment of an exact decompression rate was tricky in our setup
with the hand driven pressure pump.

2.5. Chip handling and cell culture

2.5.1. Chip preparation

For chip cleaning, the chips were washed with distilled water
and incubated for 2 h in a 1% Terg-a-zyme solution (Alconox, Inc.,
USA) at 37 °C. The chips were manually cleaned with Q-tips, de-
posited in ultra-pure water (Carl Roth GmbH&Co. KG, Germany)
for 12 h, finally autoclaved at 121 °C for 15 min and dried.

For cell seeding, the MEA areas of the chips were coated with
10 ul of a 0.05% polyethyleneimine solution (PEI, Sigma-Aldrich
Chemie GmbH, Germany) in borate buffer with a pH 8.5 (Sigma-
Aldrich Chemie GmbH). After incubation at 2-8 °C for 12 h, the
chips were washed three times with ultra-pure water for 5 min.
After drying, a second coating layer of 10 pl laminin solution, di-
luted 1:60 in Dulbecco's modified Eagle's medium (DMEM, Bio-
chrom AG, Germany), was applied to the MEA surface. Before cell
seeding, the chips were stored under 10% CO, at 35.5 °C for at least
1h

2.5.2. Cell culture media

A D10/10 medium contained 79% DMEM with glutamine, 10%
fetal bovine serum (Biochrom AG), 10% horse serum (Biochrom
AG) and 1% penicillin/streptomycin (P/S, Biochrom AG). It was used
for cell-seeding, while the on-chip cell cultures were conducted in

D6 or, alternatively in NMEM +B27 media.

The D6 cell culture medium supported the incubation with 10%
CO, and consisted of 93% DMEM with glutamine, 6% horse serum,
and 1% sodium-pyruvate (Biochrom AG). The NMEM +B27 med-
ium supported the incubation with 5% CO,. This medium con-
tained 10% DMEM, 1% sodium pyruvate, 1% stable glutamine
(Biochrom AG), 2% B27 (Invitrogen, Germany), 1.25% of a 20%
glucose solution (final concentration 7 g/l, Carl Roth GmbH&Co.
KG), 4% of a 5.5% NaHCOs5 solution (final concentration 2.2 g/l,
Biochrom AG) and 80% ultra-pure water. While this serum-free
medium was specially developed to support the growth and via-
bility of neurons (Brewer et al., 1993; Brewer, 1995), both culturing
media were selected for stabilizing the glia and neuron cell
numbers at their in vivo ratio.

2.5.3. Cell preparation

To our knowledge, neuronal networks have been successfully
derived from stem cell lines only by very few groups (Toivonen
et al., 2013; Heikkila et al., 2009) and neuronal cell lines are not yet
used on regular basis for MEA experiments. The main problem in
all approaches is the stability and reproducibility of the differ-
entiation of specific neurons or neuronal subtypes. Because pri-
mary cells are still the gold standard for MEA measurements
(Gross et al., 1977; Gross, 1995; Johnstone et al., 2010; Parenti et al.,
2013), we chose primary cells of the frontal cortex of embryonic
mice for our in vitro model.

Neuronal primary cells, were prepared from 16-day old em-
bryos of NMRI mice, which were provided by the “Animal House”
core facility at the University of Rostock. For the extraction of the
neuronal primary cells of the frontal cortex, the mouse embryos
were stored in cold DISGH-buffer (Ransom et al., 1977). After
harvesting the brains of the embryos, they were stored in cold
DISGH-buffer, the frontal cortex was cut and the olfactory bulbs
and meninges were removed.

For enzymatic digestion of the cortices, the DISGH-buffer was
removed and the cortices were incubated with 3 ml of the papain-
DNase mix for 5 min at 35.5 °C. The mixture of 3 ml papain (Roche
Applied Science, Germany) in DISGH-buffer (10 Units/ml) was
supplemented with 0.2 mg/50 ul DNase I (Roche Applied Science,
Germany). For cell separation, the suspension was gently mixed
three times using a pipette, incubated for 5 min and again gently
mixed before transfer into two falcon tubes. Each falcon tube
contained 3 ml of preheated D10/10 medium. After 10 times of
gentle mixing, the cell suspension was centrifuged at 800 rpm for
2 min. The cell pellets were gently resuspended in 1 ml of fresh
D10/10 medium and the suspension was let at rest to allow for the
sedimentation of debris. The supernatants were pooled in a fresh
falcon tube. After determination of the cell count with a Neubauer
chamber, the cell concentration was adjusted to 5 x 10° cells/ml.
This cell concentration approx. corresponds to half of the mean
neuronal density of 1.32 x 10% cellsymm?> in layer three of the
middle frontal cortex of adult humans (Huttenlocher, 1979). We
found that seeding higher cell counts may cause problems in cell
culturing and does neither increase the signal quality nor quantity.
The day of cell preparation was defined as “day in vitro zero”
(DIVO).

2.54. Glia cell culture

In order to improve the viability of the neurons in the GNCs, the
excess cell suspensions of the cell preparation were used for cul-
turing glia cells in a co-culture. For this, the cell suspensions were
seeded in two cell culture flasks with growth areas of 25 cm?. After
24 h of cell growth, the cells were washed with preheated PBS-
buffer (w/o Ca%?*, Mg?*) and the cell culture medium was ex-
changed. This step was repeated every three to four days. After the
cell layer reached a confluence of 70-80%, the cells were
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resuspended using trypsin-EDTA (PAN Biotec GmbH, Germany),
split 1:3 and cultured in 5 ml D10 medium in two culture flasks.
For co-culture, the glia cells were split again and 50,000 cells were
seeded in cell culture dishes (diameter 6 cm) using 5 ml of D10
medium. After 3 days of glia cell growth (i.e. DIVO of neuronal cell
culture), the D10 medium was exchanged with 10 ml of
NMEM +B27 to allow the glia cells to precondition the medium for
co-culture. Small paraffin spacer spots (height and distance of
approx. 2 mm and 10 mm) in the cell culture dishes ensured the
distance between the bottom of the GNCs and the cell culture
dishes.

2.5.5. On chip cell culture

At DIVO, 5 or 10 pl of the neuronal cell suspension were seeded
onto the MEAs of the GNCs and the cells were allowed to adhere
for 1 h. Then, the D10/10 medium was exchanged by one of the
two cell culture media D6 or NMEM + B27. After 24 h (DIV1), the
D6 containing GNCs were placed in cell culture. This procedure
was repeated with the NMEM+B27 containing GNCs that were
placed in the cell culture dishes containing the prepared glia cells.
The dishes were filled with the respective media to the complete
coverage of the GNC troughs. The GNCs were incubated for 21 days
at 35.5 °C with 10% (D6) or 5% (NMEM+B27) CO,. 1/3 of media
was exchanged only twice a week and the osmolarity checked
regularly. After DIV21 the neuronal networks on the GNCs show
complex and coordinated activity and can be used for measure-
ments (Gross, 1995).

2.6. Gas diffusion time measurements

For measuring the gas diffusion across the cell culture medium
volume, oxygen was used as a tracer, because of the lack of optical
nitrogen sensors, which can be used in the cell culture. The dif-
fusion coefficients of nitrogen (2x107>m?s~!) and oxygen
(24x107° m?s~ 1) are very similar (Lide, 2005). For measure-
ments, fluorescence-based optical oxygen-foil sensors (Presens,
Regensburg, Germany) were used. Spots of the foil sensors were
glued outside the MEA areas onto the bottom inside the GNC
troughs. The oxygen concentrations were measured with an op-
tical fibre from underneath the trough bottoms. To determine the
characteristic diffusion time of oxygen across the cell culture
media, the measuring data was fitted using a three-parameter
exponential rise to maximum function.

2.7. Data analysis

The TSR data analysis was performed using a specially written
Matlab® (MathWorks GmbH, Germany) script. To determine the
TSRs at the given pressure plateaus, the data records of each
network were checked for the stabilization of their TSRs after the
pressure was adjusted to a new plateau. Only data recorded after
TSR stabilization were stored to matrices. Then all data points
were normalized to the average of their respective control values
at atmospheric pressure, before they were summarized in pressure
classes and stored. For statistical analysis a “one-sample Kolmo-
gorov-Smirnov test” (ks-test) was performed to check the data for
a normal distribution at every pressure plateau. For a positive ks-
test, i.e. confirmation of the null hypothesis with a significance
level of 5%, an “one way ANOVA” test and a “multi comparison”
test were used to check for significant differences between the
measuring data at the different pressure plateaus. If the ks-test
failed, “Kruskal-Wallis” (h-test) and “multi comparison” tests were
used to check the measuring data for significant differences at the
different pressure levels (compare to asterisks in Fig. 4 and Ma-
tlab® documentation: kruskalwallis and multcompare). Sigmaplot

(Systat Software GmbH, Germany) was used for data presentation
using box-and-whisker plots.

3. Results and discussion
3.1. Pressurized measurements

During experiments, the GNC was thermostated to 37 °C, the
averaged body core and brain temperatures of humans.

A critical point in the measurement of neuronal activities is the
electric noise of the system. For noise reduction, the silicone
sealing ring was important, which ensured the dryness of the
spring needle contacts with the GNC. The electric noise was gen-
erally below 2 pVp,, allowing for the detection of neuronal signals
down to 2.5 uV.

3.2. Osmolatrity and pH shift

The FEP film covering the GNCs could largely prevent water
evaporation from the cell culture trough. On average, the osmo-
larity changed from 323.3 + 13.25 mOsm/l (mean and standard
deviation) to 377.8 + 38.8 mOsm/l during 24 h, corresponding to
an increase of 16.9%. Accordingly the osmolarity increased by ap-
prox. 7% within the measuring time of 10 h assuming a continuous
evaporation of water. This change is clearly below the critical value
of 50 mOsm/I (Potter and DeMarse, 2001).

Within 24 h the averaged pH decreased from 7.5+0.2 to
7.1 + 1.1 by approx. 6%. From these values, a pH decrease of approx.
0.2 pH steps can be extrapolated within the 10 h of measuring
time. Nevertheless, control measurements without pressure
changes did not show a significant decrease of the TSR within the
measuring time. These considerations let us assume negligible
influences of the observed osmolarity and pH changes on the
detected TSRs.

3.3. Oxygen diffusion time measurements

At every new pressure plateau, 95% saturation of the new
oxygen partial pressure equilibrium was reached throughout the
cell culture medium in approx. 70 min (Fig. 2). For the two cell
culture media, no differences in the diffusion times of oxygen
could be observed. For nitrogen, we estimated an approx. time of
58 min from the differences in the diffusion coefficients.

400
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Fig. 2. Time dependent diffusion of oxygen across a layer of cell culture medium
(height: 4 mm, volume: 200 pl).
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Fig. 3. TSR and oxygen saturation (continuous line) change induced by a pressure
step from approx. 2 bar to 4 bar in NMEM +B27 cell culture medium.

3.4. Pressure dependence of the total spike rate

Fig. 3 shows the changing TSR for a pressure increase from 2 to
4 bar in NMEM+B27 cell culture medium. The TSR increase cor-
responded to the time dependence of the O, partial pressure. The
observed changes in the TSR can be interpreted as the immediate
results of the incorporation of gas into the cellular membrane
phase, especially of nitrogen as a partial gas with a 78% volume
portion in air.

In a number of cases, a decrease of the TSR as shown at
200 min in Fig. 3 could be observed directly after pressure appli-
cation. This probably indicates the influence of the hydrostatic
pressure on the neuronal network as already shown by Bryant and
Blankenship (1979). These authors did not observe the effect in
every experiment. In our experiments, the effect was not
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Fig. 4. Box-and-whisker plot of the pressure dependent TSR in different cell culture
media. The horizontal solid and dashed lines represent the medians and means,
respectively. The crosses mark the 5% and 95% percentiles. Boxes marked with an
asterisk are significantly different to their control (p < 0.05). The numbers of ex-
periments were 27 (D6) and 18 (NMEM+B27). The quantities for the plots are
n=1480, 788, 661 and 2796 for D6 and n=816, 842, 744 and 2210 for NMEM +B27
(left to right).

characteristic for certain networks because once it was observed in
a network, it could usually not be reproduced for other pressure-
increase steps during the same measurement.

The TSRs showed a different pressures behavior in the D6 and
NMEM +B27 cell culture media (Fig. 4). In D6 medium a significant
(p < 0.05) increase of the TSR by approx. 19% could be observed for
a pressure increase to 2 bar. A further increase to 4 bar did not
result in a further increase of the TSR. Also preliminary experi-
ments at 5 and 9 bar did not show any pressure dependent TSR
increase above the 19% already registered at 4 bar. After decom-
pression to 1 bar the TSR decreased to approx. 76% of the control
level.

In NMEM medium with 2% B27, the TSR was not altered by a
pressure increase to 2 bar but increased by 9% at 4 bar (Fig. 4).
After decompression to 1 bar, the TSR decreased to 101% of its
control level.

Interestingly, the TSRs showed a wider variance at the first
pressure plateau (2 bar) than at 4 bar in D6 medium. Especially the
variance was increased to higher TSR. We interpret this as an
evidence for a beginning diffusion of nitrogen into the cell mem-
brane, which may lead to changes in the physical membrane
properties.

In all cases, the TSR showed increased variability after de-
compression to 1 bar than their respective controls. We interpret
this as a decompression effect. One reason probably was that the
manually operated pressure pump did not allow for a continuous
pressure reduction. This might have induced unwanted decom-
pression effects, for example in one case when all cells died after
an accidental zero time decompression. The investigation of such
effects is projected in future experiments, which require the im-
plementation of an automated pressure controller.

With 78%, nitrogen has the highest partial volume in air to-
gether with a high liposolubility. We therefore attribute most of
the observed effects to the incorporation of nitrogen into the
cellular membrane phase (Bennett et al., 1967; Bryant and Blan-
kenship, 1979; Dean and Mulkey, 2000). Fig. 3 suggests that the
TSR increase is an immediate result of this incorporation. Under
high nitrogen partial pressure, a swelling of lipid membranes has
been described by Bennett et al. (1967). These authors predicted
that a nitrogen partial pressure of 5.1 bar absolute pressure,
comparable to a diving depth of 41 m, has the same narcotic im-
pact as a nitrous oxide concentration of 57% under atmospheric
pressure.

Our findings on the pressure dependent TSR increase are in line
with the results presented by Dean and Mulkey (2000). In their
experiments, the TSRs of neurons in rat brain-stem slices increased
by a factor of approx. 3 for a pressure increase to 4 bar. Never-
theless, these authors measured the activity of single neurons in a
network with the patch clamp technique using hyperbaric oxygen
and helium. In an in vitro setup with rat superior cervical ganglia
cells, Sauter (1979a) showed an increase of the electric trans-sy-
naptic response of single ganglions under the influence of nitrogen
(8 bar) while the preganglionic activity of the same fiber remained
stable.

It is not clear, whether the increased in vitro activities may
explain in vivo findings, which rather point at a decrease of the
neuronal activity. Under hyperbaric nitrogen, Marshall (1951) de-
scribed a reduction in the brain waves and reflex activity of frogs
and mice while humans showed a decreased cognition under
hyperbaric nitrogen (Baddeley et al., 1975; Logie and Baddeley,
1985).

Checks of the TSR for up to 24 h suggested a recovery trend of
the TSR under atmospheric pressure after the measuring period of
10 h. This effect was already described by Sauter (1979a) and Dean
and Mulkey (2000). In our current setup, a more thorough in-
vestigation of the long term recovery effect was hindered by the
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changes in pH and osmolarity of the cell culture medium beyond
the tolerable limits.

Our literature review showed that the differences between
in vivo and in vitro findings cannot be consistently explained. One
reason for this situation may be that different neuronal cell types
may respond differently to membrane swelling or hydrostatic
pressure changes. Even if the pressure effects on the different cell
types would be comparably, their different roles within a neuronal
network may yield different results for the network activity. The
suppression of an inhibitory neuron may for example result in an
increased TSR. Currently, we combine a pressure-tight, self-con-
tained perfusion system with the existing MEA setup to ensure
stable cell-culture conditions and continuous nutrition supply over
measuring periods longer than 24 hours.

4. Conclusion

Our literature review showed that many differences between in
vitro and in vivo findings on hyperbaric pressure effects cannot yet
be consistently explained. Neuronal in vitro networks on MEA in
miniaturized GNC chambers provide new access for electro-
physiological measurements under hyperbaric pressure. This new
approach combines existing conventional techniques. The small
measuring chambers are easier to handle than special patch-clamp
setups. A comparison of the new in vitro data from small neuronal
networks with in vivo results may give indications of the me-
chanisms of hyperbaric air and breathing gas effects, for example
on their influence on the electrophysiology of neurons.We ob-
served two different pressure effects in the TSR records of neu-
ronal in vitro networks under the influence of hyperbaric air. As a
first (and reproducible) effect, TSR was correlated to the applied
pressure. This effects depend on the composition of the cell cul-
ture medium. One possible explanation for medium-dependent
effects may be related to the influence of the medium on the glia-
cell proliferation after the seeding of a certain number of neuronal
cells. Such influence of different neuronal cell types on the ob-
served pressure effects needs further investigation. A second, ap-
parently sporadic effect was the immediate TSR reaction to al-
terations in the static pressure, which has already been described
in the literature.
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