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A new form of admissible pressure for Haldanian
decompression models
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Abstract

In this article, we propose and study a new form of admissible pressure in the

Haldanian framework. We then use it to study the surjectivity of the Gradient

Factors on the space of the reachable decompression profiles, and investigate a

particular case. This case leads to the proposition of a decompression strategy,

whose crucial parameter is the ascent rate. An appropriate ascent rate is sug-

gested as recommended by COMEX, through a physiologically relevant method.

This new strategy enables the unification of the COMEX approach (not based

on a tissue saturation theory) with the Haldanian method.

Keywords: Scuba diving, Decompression sickness, Haldanian models,

Admissible pressure, Personalized decompression

1. Introduction

Scuba diving is a recreational activity practiced by approximately 7 million

regular divers. In addition to those who practice recreationally, there are approx-

imately 10,000 diving professionals, including military and civilian underwater

workers. At the end of an immersion, divers have to manage their return to the5

surface using protocols that can include empirical tables (ultimately based on

mathematical models) or models implemented in dive computers.
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The so-called Bühlmann models are among the most frequently used models in

dive computers. They were derived from the work of Dr. Albert A. Bühlmann

(physician at the University of Zurich), and published for the first time in 198410

[1]. Although initally criticized by technical divers (interested in helium div-

ing), the Bühlmann model and its derivatives are now widely used, due to the

Gradient Factors introduced by Erik C. Baker in 1998 [2], which enriched the

initial model and improved its flexibility.

Although satisfactory, Bühlmann models do not take into account the individual15

characteristics of their users and epidemiological and physiological approaches

provide clear evidences of inter and intra-individual variations in decompres-

sion sickness (DCS) susceptibility. For instance it is now clear that rats have

eritable determinants of decompression sickness ([3]) and some divers produce

large amounts of bubbles during decompression while others do not ([4], [5], [6]).20

Adapting the settings of the decompression algorithms to the divers’ character-

istics with regard to known risk factors is relevant.

To introduce more flexibility in the decompression calibration, given the

limitations of mathematical models alone, we propose a dual approach based

on:25

• A calibration of the Bühlmann model using empirical protocols such as

MN90, COMEX, or MT92 tables in a specific application framework.

• A new form of conservatism that is combined or added to the Gradient

Factors.

To achieve this double approach, we developed a new form of admissible30

pressure and investigated the relevance of a new strategy related to the speed

of ascent. We then suggested choosing it according to COMEX protocols from

which the French MT92 dive tables are derived. This article is organized as fol-

lows : in the first part, we briefly recap the principle of the Haldanian framework

and Bühlmann’s model, along with the Gradient Factors (GF). In the second35

part, we introduce the new form of admissible pressure that allows us to study
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the question raised about the Gradient Factors in the third section. The fourth

section is dedicated to the new ascent strategy. In the fifth and final sections,

we discuss of the importance of the ascent speed.

2. Notations and framework40

We present in this section the general notations used in the article and briefly

remind Haldane’s assumption and Bühlmann’s model.

2.1. Notations

Please note that some specific notations may be used in some paragraphs.

• D is the depth45

• P is the ambient pressure

• Q is the ambient pressure admissible by the diver

• A is the inert gas pressure in one general compartment

• N is the number of compartments

• Ai is the inert gas pressure in the the compartment i = 1...N50

• Qi is the ambient pressure admissible by the compartment i

• R is the inert gas ratio

• PS is the surface pressure

• T is a general fixed time

• tf is the final time of a given dive55

• CH is the sum of the partial pressures in all of the compartments at the

end of the dive

• K is a compact of R+ of the form [0, T ]

3



• t is the current time

• v is the diver’s vertical speed (rate of ascent or descent)60

• l and h are the low and high Gradient Factors, respectively

• τ and τi are the characteristic time of one general compartment and the

characteristic time of compartment i, respectively.

We make the following regularity hypothesis of the diving profiles:

Assumption 1. All diving profiles P are at least twice differentiable with re-65

spect to time, and their second-order derivatives are continuous. They have a

finite compact support K contained in R+. Because they are continuous over a

compact, they are bounded. Finally, they are always positive.

We use the term ”rectangular profile” for a dive constituted by a straight descent

followed by a phase spent at a fixed depth. To simplify the framework, we also70

make the following assumption:

Assumption 2. We study open circuit dives, with one inert gas ratio R. All

of the results are applicable to

• the semi-closed and closed circuit cases, by simply using the oxygen partial

pressure in the equations75

• the multiple inert gas cases, by simply using the partial ratios in the equa-

tions.

We use Haldane’s and Bühlmann’s framework and a parallel compartment

model. As this is the most common model used in the majority of diving

computers, we propose slight and incremental modifications, while using its80

flexibility to approximate empirical protocols.
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2.2. The existing framework

Haldane assumed that the body is divided into N compartments. We con-

sider 16 for the numerical applications in this article, but nothing changes if we

increase or decrease this number. If A is the inert gas pressure in any compart-

ment, Haldane formulated that this pressure is linked to the external pressure

by the equation:
dA

dt
= k (RP −A), (1)

where k is a real constant, and the initial condition is A(0) = A0. Note that k

satisfies:

k =
ln 2

τ

We solve equation (1) to obtain:

A(t) = A0e
−kt + kR

∫ t

0

P (ν) exp(−k(t− ν)) dν (2)

See [7] for more details. When the pressure is constant over the dive, that is,

when P (s) = P̂ :

A(t) = A0 + (RP̂ −A0)(1− 2−t/τ ) (3)

Bühlmann’s work proposed a form for the minimum admissible pressure Qi

of each compartment i: ∀ t ∈ K:

Qi(t) = bi (Ai(t)− ai) (4)

For the global minimum admissible pressure

Q(t) = max
i=1..N

Qi(t) (5)

The Gradient Factors were defined by Eric C. Baker in [2]. They are widely

used, especially by technical divers. This study was initiated by a question that

will be addressed in a later section. The two Gradient Factors l and h define a

slope ∆:

∆ =
l − h

DM −D1
,

5



where DM is usually the maximum depth reached, and D1 is the last stop,

generally 0. The global Gradient Factor G is:

G(t) = h+ ∆D(t) ∀ t ∈ K

and the new admissible pressure is expressed as follows for a general compart-

ment:

Q(t) =
A(t)−G(t) a

G(t)

b
−G(t) + 1

∀ t ∈ K (6)

Remark 1. As DM is the maximum depth reached during a dive, for a rectan-

gular profile, throughout the descent and planar phase, G = l.85

2.3. Preliminary property

A simple but useful property is now described. Starting from the equation

with Qi as a function of Ai

Qi =
Ai − ai(h+ α(l − h)D)

1 +
(

1
bi
− 1
)

(h+ α(l − h)D)
with α =

1

DM

and because

ai(h+ α(l − h)D) > 0 and

0 ≤ h+ α(l − h)D ≤ 1

then

Ai − ai(h+ α(l − h)D) < Ai and

1 +

(
1

bi
− 1

)
(h+ α(l − h)D) ≥ 1

resulting in

∀ i = 1..N ∀ t ≥ 0 Qi(t) < Ai(t) (7)
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3. New form of admissible pressure

3.1. Justification and definition

In Bühlmann model, as expressed by equation (5), the minimum admissible

pressure is the maximum value calculated across the admissible pressure over90

all of the compartments. Regarding this choice:

• We consider only the compartment that matters the most at a given time

but do not directly account for the computations of the other compart-

ments, even if their admissible pressure is as close as possible to the one

reaching the maximum,95

• As those compartments are not real and physiological compartments in

the body, it seems rigid to use such an abrupt assumption and not di-

rectly consider in the computation of the minimum admissible pressure

the compartments whose admissible pressure is not the greatest.

This last point is of paramount importance: we work with theoretical models,100

and fixing in them strict mathematical boundaries may be somewhat harsh.

Indeed, by considering only the leading compartment, we may not optimize the

decompression with respect to some of, or all the other ones. Therefore, in a

different way we consider all of the compartments in the computation of the

minimum admissible pressure.105

The maximum in equation (5) is an N∞ norm that is the limit of the Np

norm when p tends towards +∞, it appears natural to suggest the new kind of

admissible pressure defined herein.

Proposal 1. We propose a new form of minimum admissible pressure, depend-

ing on the admissible pressures in each compartment: ∀ t ∈ K

Q(t) =

(
N∑
i=1

Qi(t)
p

) 1
p

(8)

Due to assumption 1 and equation (2), we know that this quantity is defined,

and has at least the same regularity properties as P .110
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3.2. Some numerical results

This section presents some results to show the form of the new proposed

admissible pressure. We consider a random test dive, approximately 55m deep,

with GF 0.3/0.45, which was the GF selected by the diver after a DCS that

occurred during the dive. The following four values are used for parameter p:115

• p = 80 as close as possible to Bühlmann’s original algorithm

• p = 16 not conservative

• p = 12 mildly conservative

• p = 7 very conservative

We use p = 80 only for validation purposes for the first GF to show that we120

can get as close as possible to Bühlmann original algorithm, and will not use

it afterwards. Figure 1 is a simulation of a Bühlmann classical decompression

ceiling for GF 0.3/0.45 in a thin green line, and p = 80 for the same GF in thick

blue line. The 2 curves are perfectly identical. BU represents Bühlmann and

TD denotes the new proposed form of minimum admissible pressure.125

Appendix B shows simulations of various Gradient Factors.

In the graphs that follow, the ascent phase is highlighted as we are interested

in the decompression. This new form of minimum admissible pressure, for a

couple of higher Gradient Factors, crosses the Bühlmann nominal admissible

pressure for the hard GF couple of 0.3/0.45, as shown in this example. Hence,130

this new way of computing the admissible pressure is another method of making

the decompression profile more conservative, but different from the technique

that the Gradient Factors enable.

In the following tables, the new minimum admissible pressure is tested on

rectangular profiles, along with the pure Bühlmann algorithm, with and without135

Gradient Factors. For a given p leading to the duration of a dive, we found a

set of Gradient Factors leading to the same duration. We also studied the total

sum of the compartments’ partial pressures at the end of the dive, namely

8



Figure 1: Diving profile in a thin black line and pure Bühlmann decompression ceiling in a

thin green line, indiscernible from our proposed decompression ceiling of p = 80 in a thick

blue line, both for GF 0.3 / 0.45

CH =

N∑
i=1

Ai(tf )

Of note:

• For a given dive duration tf , the proposed new form tends to add time140

to decompression stops that are closer to the surface compared to those

added by some Gradient Factors

• for a given dive duration tf , the proposed new form lowers the sum CH

of the partial pressures in the compartments at the end of the dive.

Hence, our new minimum admissible pressure does not replace the Gradient145

Factors, but can be used with them, as it differently modulates the decompres-

sion. The new proposed form of admissible pressure is smoother and can be

9



Figure 2: Thin red line: Bühlmann GF 0.3/0.45, Thick blue line: Bühlmann GF 0.7/0.7,

Medium green line: new pressure p = 7 GF 0.7/0.7

implemented more easily than the pure Bühlmann’s algorithm, which requires

elucidating the maximum at each time step.

3.3. Condition over p150

This section considers any dive of maximum pressure PM and duration T .

The maximum value that the inert gas pressure of any compartment can reach

is RPM . This can easily be verified using equation (3). A boundary over Q(T )

must be found. Starting from equation (8) and using equation (7) and the fact

10



Figure 3: Comparison of the new admissible pressure (TD) and classical Bühlmann (BU) with

Gradient Factors for a rectangular profile D=35m for T=40 minutes

that ∀ i = 1..N , Ai(T ) ≤ RPM :

Q(t)p =

N∑
i=1

Qi(t)
p

Q(t)p <

N∑
i=1

Ai(t)
p

Q(T )p < NRpP pM

leading to

Q(T ) < N
1
pRPM

11



Figure 4: Comparison of the new admissible pressure (TD) and classical Bühlmann (BU) with

Gradient Factors for a rectangular profile D=50m for T=25 minutes

Hence, choosing p such that N
1
pR < 1 obtains Q(T ) < PM .

Property 1. For any dive of maximum pressure PM and duration T , choosing

p such that

p > − lnN

lnR

ensures that

Q(T ) < PM

A numerical application for N = 16 and R = 0.79 obtains p ≥ 12.

12



3.4. Further steps to introduce variability

Using the exact same algorithm for everyone is not a realistic assumption, as

people differ and are not equal with respect to decompression sickness. Hence,155

introducing variability leverages in the models is necessary to personalize the

protocols. These leverages are not manipulated by the divers themselves, as they

are complex to elucidate and program in a diving computer, but in the future,

a physiological individualized approach will enable engineers and physiologists

to personalize a diver’s computer with these variabilities.160

Multivariate p. Starting from the new proposed admissible pressure defined in

equation 8, we propose the following form: ∀ t ∈ K

Q(t) =

(
N∑
i=1

Qi(t)
pi

) 1
p

with p =

N∑
i=1

pi

This enables variable modulation over each compartment, depending on their

relative importance.

Higher degree polynomials. Equation (4) expresses a linear dependency between

the pressure admissible by a compartment and its inert gas pressure. This

dependency is a first degree polynomial, but a higher degree dependency could

be tried, with appropriate coefficients. This is expressed as

Qi(t) =
s∑

k=0

ci,kA
k
i (t) (9)

Again, this enables more possibilities for introducing variability, for example an

empirical protocol with an Haldanian approach.

Remark 2. In this article, we do not suggest changing the coefficients ai, bi165

and τi proposed by Bühlmann, because, for the time being, we want to be able

to return to his original protocol, as it is the most widely implemented method

in diving computers. Parameter p could be a simple enough variable for divers

to set and adjust directly, such as the Gradient Factors, which many divers

13



set themselves on their own computers. Nevertheless, coefficients ai, bi and τi170

should be considered as well as optimization and personalization leverages.

The underlying concept for all the new leverages is to be able to set them for each

diver, using his or her physiological characteristics. No method is provided in

this article to directly find the best values for p or the other proposed coefficients,

but we are working on such methods, and already designed one taking into175

account physiological parameters. This will be the subject of a future article.

4. Surjectivity of the Gradient Factors

This section answers a question asked by a scuba diver: could we generate

any decompression profile using the two previously presented Gradient Factors?

4.1. Framework180

M(l, h) is the function that associates, to a given depth dive profile D :

t 7→ D(t), the corresponding admissible pressure profile Q̂ : t 7→ Q̂(t) for the

Gradient Factors (l, h)

M(l, h) : D 7→ Q̂

Whether or not we can generate any possible decompression profile using

the two Gradient Factors l and h can be reformulated as follows: for every dive

profile D and every admissible pressure Q̂, is there a couple (l̂, ĥ) verifying

M(l̂, ĥ)(D) = Q̂

4.2. Surjectivity

For compartment i, equation (6) is

Qi(t) =
Ai(t)− aiG(t)

1 +
(

1
bi
− 1
)
G(t)

If we momentarily drop the time dependency to simplify the notations, this can

be rewritten

Qi =
Ai − ai(h+ α(l − h)D)

1 +
(

1
bi
− 1
)

(h+ α(l − h)D)
with α =

1

DM

14



The new admissible pressure defined in equation (8) is now used instead of

the maximum defined in equation (5) and used by the pure Bühlmann algo-

rithm. Before explicitly looking for (l̂, ĥ), the problem is rewritten with the

new pressure and studied. Taking the power p, the new admissible pressure is

then

Q̂(t)p =

N∑
i=1

[Ai(t)− ai(h+ α(l − h)D(t))]
p

[1 +
(

1
bi
− 1
)

(h+ α(l − h)D(t))]p
(10)

Multiplying this by the products of all the denominators obtains:

Q̂(t)p
N∏
i=1

[
1 +

(
1

bi
− 1

)
(h+ α(l − h)D(t))

]p

=

N∑
i=1

[Ai(t)− ai(h+ α(l − h)D(t))]
p
∏
j 6=i

[
1 +

(
1

bj
− 1

)
(h+ α(l − h)D(t))

]p
Ai is defined by equation (2), with the proper coefficients for the compartment

i. We then obtain a 2p multinominal equation in (l, h). Given any D and

any admissible Q̂can (l̂, ĥ) stay on the parametrized surface defined by this

multinomial form? This is too constrained to be satisfied, and the best way to

demonstrate it is with a counter example, using the rectangular profile defined

by

P (t) =


PM
t1
t 0 ≤ t ≤ t1

PM t1 ≤ t ≤ t2

Equation (2) is used to compute Ai from P and easily obtain: ∀ t ≤ t1

Ai(t) = Ai,0 exp(−kit) + PMR
t

t1
− PMR

kit1
(1− exp(−kit)) t ≤ t1 (11)

and ∀ t ∈ [t1; t2]

Ai(t) = Ai,0 exp(−kit)+PMR+
PMR

kit1
exp(−kit)(1−exp(kit1)) t1 ≤ t ≤ t2

(12)

From remark 1, ∀ t ≤ t2 and G = l, and we use only the low gradient factor l.

15



Hence, rewriting equation (10) for t ≤ t2 obtains the simpler form:

Q̂(t)p
N∏
i=1

[
1 +

(
1

bi
− 1

)
l

]p
=

N∑
i=1

[Ai(t)− ail]p
∏
j 6=i

[
1 +

(
1

bj
− 1

)
l

]p
(13)

Equations (11) and (12) clearly demonstrate that the right-hand side of the

equation is a linear combination of exponential terms, multiplied by constant or

linear terms in t (there is no case in which all of the exponential terms vanish,

as the ki are different). As a counter example, we consider any polynomial form185

for Q̂, with no exponential in it. Even Q̂(t) = Q0
t
T is a valid choice. Thus,

equation (13) can not be satisfied, and we obtain the desired counter example.

Property 2. For a given diving depth profile D, we cannot generate any ad-

missible pressure Q (decompression ceiling) using only the two Gradient Factors

l and h.190

The new proposed form of admissible pressure does not permit the generation

of any admissible pressure. However, new generalized and more variant forms

such as the one suggested in equation (9) might.

5. A new approach, by iteration

5.1. Decompression strategy195

Targeting the decompression ceiling. A random dive of duration T , without the

ascent phase, is considered. We assume that, even if the profile is not rectangular

and the diver has already begun to ascent, he or she has not crossed his or her

decompression ceiling Q(T ) at the time T .

Assumption 3. We consider a dive of duration T , noton necessarily rectan-200

gular, and we suppose that Q(T ) < P (T ). The notation P1 = Q(T ) is used in

this paragraph.

At time T , the diver tries to reach Q(T ) with an ascent speed v (in bar/min).

What happens to Q from this moment? Even if the diver was saturated at the
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pressure P (T ), the non-trivial form of each Qi

Qi(t) =
Ai(t)− aiG(t)

1 +
(

1
bi
− 1
)
G(t)

prevents us from asserting that Qi will decrease, and that Q will decrease from

T . This is normal: if the ascent is slow, some of the compartments may still

load in inert gas during it. We do not know if Q will increase or decrease, and205

we do not even know if the diver will not cross his or her decompression

ceiling Q while ascending.

Waiting for Q to decrease. Hence, we propose that the diver reaches P1 and

then, if necessary, waits for the decompression ceiling to decrease enough (in a

sense defined in what follows) at pressure P1. As demonstrated by property 5210

given in Appendix A, all of the inert gas compartments’ pressures Ai have the

same limit RP1 < P1, each reaching it by lower or upper values. Equation (7)

demonstrates that

• if Ai reaches RP1 by increasing, then ∀ t ≥ T , Qi(t) < RP1

• if Ai reaches RP1 by decreasing, then ∀ ε > 0, ∃ ti,ε such that ∀ t > ti,ε,

we have Ai(t)−RP1 < ε and

Qi(t)−RP1 < ε

From this and the definition of Q, ∀ t > max
i
ti,ε

Qp(t) =

N∑
i=1

Qi(t)
p < N(RP1 + ε)p

leading to

Q(t) < N
1
pRP1 + ε′

with ε′ defined as a function of ε. Since we chose p such that N
1
pR < 1, we

choose a positive real λ such that

N
1
pR < λ < 1 (14)
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Here is the important part of the reasoning: we can use the smallest ε that we

want, and especially so

N
1
pRP1 + ε′ < λP1

This is summed up in the following property215

Property 3. λ is a fixed positive real number satisfying

N
1
pR < λ < 1

and we consider a random dive of duration T without the ascent process, and

such that the assumption 3 holds. We suppose that, from the time T , the diver

reaches Q(T ) with an ascent speed v > 0, and then stays at the pressure Q(T )

as long as needed. There is a finite time t̂ such that, ∀ t > T + t̂

Q(t) < λQ(T )

5.2. The recurrence defining the strategy

The profile alternates between linear ascent phases and planar phases, to

give Q enough time to sufficiently decrease if necessary. Hence, λ is fixed and

satisfies equation (14). We define the steps of the sequence from T , for n ∈ N

and while Q(tn) ≥ PS as follows:

P (t) = P (tn)− vn(t− tn) tn ≤ t ≤ tn + t̂n,1

P (t) = Q(tn) tn + t̂n,1 ≤ t ≤ tn + t̂n,1 + t̂n,2

tn+1 = tn + t̂n,1 + t̂n,2

t0 = T

t̂n,1 =
P (tn)−Q(tn)

vn

t̂n,2 = min{t /Q(tn + t̂n,1 + t) < λQ(tn) }

vn > 0

(15)
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The definition of t̂n,1 is such that P (tn + t̂n,1) = Q(tn). The previous

paragraph demonstrated the existence of finite times t̂n,2. We must verify that

this process converges in a finite number of steps, and that the diver can reach

the surface. From property 3 and the definition of the sequence, we can infer

that ∀n ∈ N, Q(tn+1) < λQ(tn) , leading to:

Q(tn) < λnQ(T )

As this sequence tends towards 0 when n tends to infinity, there exists nS ∈ N

such that ∀n ≥ nS , Q(tn) < PS . Hence, the diver can reach the surface in a

finite time, which can be summarized in the following property:220

Property 4. Under assumption 3, the process defined by equation (15) to as-

cend after a dive of duration T converges after a finite number of steps.

5.3. Speed and experience

We did not explain how the speed vn was selected, which is the subject of the

next section. When the ascent speed is positive, the process converges, but if the225

speeds are too slow, the compartments will load considerably during the ascent,

forcing the diver to remain underwater for a long time. Conversely, if the ascent

speed is too rapid, the diver may risk DCS. Regarding this, it is important to

understand that this new proposed process will be calibrated against

the experience, and shall be simulated numerically for many dives before it230

is considered a usable diving ascent strategy.

6. The speed’s importance

6.1. A naive comparison

Before selecting the speeds, the existing decompression models are discussed.

Two main classes of decompression models have emerged during the last century235

of research on the subject, namely:
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• The Haldanian class: models that take into account only the dissolved

phase of the inert gas. As such, this approach is considered macroscopic:

these models ignore the bubbles to view the gas from a distance.

• The class considering the free phase, that is the bubbles: on the contrary,240

these models take a close look to the gas, so their approach is microscopic.

As described by B. R. Wienke in his comprehensive book [8], the behaviors

dictated by these approaches are directly opposite: the macroscopic approach

tends to bring the diver as close as possible to the surface, while the microscopic

one tends to keep him or her as deep as possible to crush the bubbles. Wienke245

unified those two approaches in his Reduced Gradient Bubble Model (RGBM).

As shown by an experiment conducted by the Navy Experimental Diving

Unit, and whose results are summarized in [9] and discussed in [10], deep stops

can increase the risk of DCS. Obviously, this shows that the control and/or the

understanding that we can have of the dissolved phase is better than the control250

and/or the understanding of the free phase at the moment.

The need to control the ascent rate is common in these two approaches and

is presently well established.

This is exactly what the protocol proposed by the COMEX, one of the

most advanced and known organisation for commercial diving, does: control255

the speed. Hence, we chose it as a useful starting point.

6.2. The COMEX approach

The COMEX decompression protocol is an ascent curve (see [11]) giving the

position of the diver over time, hence imposing a given speed. It is unfortunately

given for a rectangular profile: a dive at the constant depth D0 during the time

T . For such a dive, the ascent depth over time is:

D(t) =
D0

1 + λT−
5
2D−30 (t− T )

∀t ∈ [T ; Tf ]
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in which λ is a parameter.

This form does not suggest that this protocol takes into account, like Hal-

danian ones do, the amount of inert gas in the bodys. This type of saturation260

protocol depends, in one way or another, on the integral of the pressure over

time. To the best of our knowledge (after a few trials to find an integral form),

it is not, but perhaps it is simply a matter of finding the right convolution ker-

nel. This decompression protocol, with its associated parameters and range of

validity (not reported in this article) has proven very efficient, as it is directly265

derived from COMEX’s knowledge of intensive dives.

6.3. Selection of the speed

Revisiting the correct speed to adopt to reach our decompression ceiling, take

the speed suggested by the COMEX protocol... but which one? As was exposed

in the previous section this speed varies over the ascent. We know the COMEX270

protocol only for rectangular profiles, so we do not know the correct speed to

adopt if the profile is not trivial. We therefore again consider a rectangular dive

of depth D0 and suggest 2 choices:

Proposal 2 (Decompression ceiling). After a non trivial dive of duration

T , we adopt the COMEX ascent speed for the rectangular dive of duration T275

leading to the exact same admissible pressure following Bühlmann’s approach

(with or without our new type of admissible pressure).

Appendix A.2 demonstrates that such a dive exists. Another choice can be

made:

Proposal 3 (Compartments state). After a non-trivial dive of duration T ,

we adopt the COMEX ascent speed for the rectangular dive of duration T leading

to the closest state of the overall inert gas pressure in the compartments following

Bühlmann’s approach (with or without our new type of admissible pressure).

This closeness is judged in the same Np norm as the one used in the Bühlmann
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approach selected. Hence, if Ãi is the inert gas pressure of compartment i after

the non-trivial dive, D0 is

D0 = arg min
D

(
N∑
i=1

|Ai(T )− Ãi(T )|p
) 1

p

Determining which of the two proposals is more relevant from a physiological280

perspective, and especially more robust with respect to DCS, requires more

numerical simulations.

We briefly illustrate the adapted Bühlmann protocol for a dive with the

following principal characteristics:

• Maximum depth: 40m285

• Total duration T = 40 minutes

• Depth at T : 20m

• Gradient Factors l = 0.8 and h = 0.8

• p = 60 to be close to the original Bühlmann algorithm

• Targeting the admissible pressure each meter, to simplify the calculation.290

Our proposed decompression protocol begins at T = 40 minutes: from this time,

the profile successively targets the minimum admissible pressure and then waits

for it to sufficiently decrease.

7. Conclusion

Understanding DCS and proposing efficient and physiologically based models295

to generate decompression schedules is a goal far from being achieved, especially

integrating personalization parameters. Hence, in the meantime, mathematical

artifacts can be used to improve current models, which are widely implemented

in diving computers. This article proposed a new form of minimum admissible

pressure in the Haldanian framework of parallel compartments. This form, even300

if not more closely linked to physiology than previous methods:
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Figure 5: A random dive and our proposed protocol beginning at T = 40 minutes

• can be set as close as possible to the original Bühlmann minimum admis-

sible pressure,

• provides more freedom than other methods to adjust decompression pa-

rameters,305

• enables the modulation of the decompression profile in a different way

than Gradient Factors (and can be used along with them),

• is mathematically well defined and has an attractive smoothness property.

We also proposed two other possible methods of introducing personalization

leverages. In future research, they could be used as optimization parameters to310

get as close as possible to empirical protocols, using for example DCS databases

linked to physiological data.
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As COMEX protocol, based on the control of the ascent speed, has proven

its efficiency but cannot be integrated into classical decompression models, we

proposed an ascent strategy enabling to unify the selection of the speed with a315

classical Haldanian approach.

The new form of minimum admissible pressure and the new decompression

strategy must be tested and calibrated against real dives. Indeed, as the under-

lying models are far from representative of any kind of physiology, experience

continues to drive them. Nevertheless, we hope that, combined with the increas-320

ing knowledge of decompression sickness risk factors, our approach will enable

some degrees of personalization, and that new decompression strategies can be

tried to aim, as always, for safer dives.
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Appendix A. Intermediate properties

This appendix presents intermediate properties that are used in the body

of the article. First, the conditions are assessed to ensure that, with the new

admissible pressure defined in equation (8), we have ∀ t > 0, Q(t) < P (t).360

Appendix A.1. Remaining at a constant pressure

In this paragraph, we drop the index i and suppose that, from t = 0 to

simplify, the diver remains at the pressure P̂ . Then the inert gas load in the

compartment is, from equation (2):

A(t) = A0e
−kt +RP̂ (1− e−kt) (A.1)
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A tends to RP̂ when t tends toward +∞, and as

.

A(t) = k(RP̂ −A0) e−kt (A.2)

A can be increasing or decreasing, depending on the sign of RP̂ −A0.

Property 5. When P (t) = P̂ is constant from a given finite time, then the

inert gas pressure of each compartment i has the same limit

Ai(t) −→
t→+∞

RP̂

by lower or upper values, depending on the sign of RP̂ −A0,i.

Appendix A.2. Surjectivity of the rectangular profiles application

We try to demonstrate that, given a decompression ceiling Q(T ) at the time

T , obtained after a random dive (not necessarily rectangular), there exists a

rectangular profile of depth DM leading, after an identical time T , to the same

decompression ceiling. For this, we need to start from equation (8) defining Q.

From equation (10) we obtain

Q̂(t)p =

N∑
i=1

[Ai(t)− ail]p

[1 +
(

1
bi
− 1
)
l]p

(A.3)

Following equation (12):

Ai(t) = Ai,0 exp(−kit)+PMR+
PMR

kit1
exp(−kit)(1−exp(kit1)) t1 ≤ t ≤ t2

where t1 is the descent time and PM is the pressure corresponding to DM . We365

take the value of those functions in T and, considering the last equations, we

can remark that, T being fixed, the application

C : DM 7→ Q(T ) (A.4)

is continuous, and satisfies

C(0) ≤ PS and C(DM ) −→
DM→+∞

+∞ (A.5)

Hence, it is surjective on [PS ; +∞[ and we can deduce the following property:
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Property 6. For a given dive time T , for each descent time t1 such that t1 < T

and each decompression ceiling Q(T ) ∈ [PS ; +∞[, there exists a finite depth DM370

such that Q(T ) is the decompression ceiling of the rectangular dive of depth DM

during T with the descent time t1.

Please note that DM (as PM ) is solution of a non-trivial polynomial equation

of degree p, that we do not know how to solve explicitely. Nevertheless, this

equation has a root, and we can numerically find it quite easily.375

Appendix B. Numerical results

The following paragraphs show simulations for various Gradient Factors.

The color code for the curves is as follows:

• Thin black line: diving profile. Does not change along the simulations.

• Medium green line: admissible pressure for Bühlmann (BU) with GF380

0.3/0.45. Does not change along the simulations.

• Thin red line: admissible pressure for Bühlmann (BU) with the GF con-

sidered in the paragraph, if not GF 0.3/0.45. Changes each paragraph.

• Thick blue line: new form of minimum admissible pressure (TD) with the

GF considered in the paragraph. Changes each figure.385
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Figure B.6: p = 16 for GF 0.3 / 0.7

Figure B.7: p = 12 for GF 0.3 / 0.7
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Figure B.8: p = 7 for GF 0.3 / 0.7

Figure B.9: p = 16 for GF 0.5 / 0.8
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Figure B.10: p = 12 for GF 0.5 / 0.8

Figure B.11: p = 7 for GF 0.5 / 0.8
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Figure B.12: p = 16 for GF 0.8 / 0.8

Figure B.13: p = 12 for GF 0.8 / 0.8
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Figure B.14: p = 7 for GF 0.8 / 0.8
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