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A B S T R A C T   

Construction is a highly hazardous industry characterized by numerous occupational fatalities, injuries, and 
illnesses, with fatigue identified as a major causal factor. To prevent construction accident fatalities and injuries, 
extensive research efforts have been directed toward fatigue among construction workers. However, no sys-
tematic review has been reported regarding the identification, evaluation, control, and management of fatigue 
among construction workers. To elucidate the state-of-the-art research, uncover related issues, and propose 
potential improvements, this study presents a systematic review of fatigue-related research on construction 
workers, focusing on the causes of fatigue, evaluation methods, and related interventions. Based on a mixed- 
review approach combining systematic review and bibliometric analysis, this study examines the evolution of 
research themes and methods related to worker fatigue and highlights key findings. The analysis reveals various 
causes of worker fatigue, including work-related, environmental, and personal factors. Additionally, this study 
highlights subjective and objective practical methods for measuring, monitoring, and predicting worker fatigue 
and describes interventions to alleviate fatigue, from individual- to industry-level measures. Moreover, the 
relevant research challenges are identified, and future research directions are recommended. The findings of this 
study can promote further research on construction worker fatigue and contribute to the enhancement of 
occupational health and safety in the construction industry.   

1. Introduction 

The construction industry is widely recognized as one of the largest, 
most complex, and dynamic sectors, contributing to 13 % of the world’s 
gross domestic product and providing employment opportunities for 
millions of people worldwide (Ribeirinho et al., 2020). However, this 
sector involves various risks, with a high incidence of fatalities, occu-
pational injuries, and illnesses reported annually (Employment and 
Social Development Canada (ESDC), 2020; Eurostat, 2020; Occupa-
tional Safety and Health Administration (OSHA), 2021). For instance, 
the construction industry in the European Union accounts for over one- 
fifth of all workplace fatalities (Eurostat, 2020), and approximately 50 % 
of European construction workers suffer from considerable pain and 
musculoskeletal disorders (MSDs) (European Agency for Safety and 
Health at Work (EU-OSHA), 2020). In the United States, less than 5 % of 
the workforce is employed in the construction industry. However, the 
industry accounts for one in five work-related deaths (OSHA, 2021). 

Moreover, 43 % of construction workers suffer from back MSDs, and 16 
% have reported shoulder MSDs (United States Bureau of Labor Statistics 
(USBLS), 2015). In Ontario, Canada, the construction industry is 
responsible for over 25 % of occupational fatalities, and MSDs account 
for over 40 % of all lost-time compensation claims (Workplace Safety 
and Insurance Board (WSIB), 2013). 

Construction workers are susceptible to occupational fatigue as they 
must typically perform physically demanding tasks in awkward working 
postures over long working hours (Aryal et al., 2017). Such conditions 
may lead to frequent errors, thus increasing the risk of work-related 
accidents and other occupational health problems (Wang et al., 2023). 
Fatigue is widely acknowledged as a principal cause of construction 
accidents (Wong et al., 2019), has been categorically identified as one of 
the “fatal four” causes of fatalities in the construction industry (OSHA, 
2015), and is the primary contributor to approximately four out of five 
accidents in oil and gas construction projects (Chan, 2011). Therefore, it 
is necessary to investigate construction worker fatigue (CWF) to identify 
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the causes of fatigue and effective strategies for its evaluation and 
alleviation. These strategies could yield tremendous interventions to 
safeguard construction workers against occupational illnesses and harm. 

Given the significance of fatigue in the construction industry, many 
review studies have been conducted on CWF (Abuwarda et al., 2022; 
Ahn et al., 2019; Anwer et al., 2021). Some reviews have outlined the 
physiological metrics used for measuring physical fatigue among con-
struction workers (Abuwarda et al., 2022), and some have summarized 
the wearable sensing technologies for fatigue measurement (Ahn et al., 
2019; Anwer et al., 2021), and data processing methods for the physi-
ological signals captured by such devices (Anwer et al., 2024). However, 
these previous reviews have focused mainly on the fatigue measure-
ments of construction workers and have failed to provide a systematic 
understanding of the broader research landscape for the identification, 
evaluation, control, and management of CWF-related issues. Investi-
gating the root causes of fatigue helps comprehend the internal mech-
anisms of fatigue incidence among construction workers and lays a 
foundation for subsequent research on CWF measurement, evaluation, 
and alleviation. It is also essential to explore effective interventions for 
CWF since it can help protect construction workers from occupational 
diseases and accidents induced by fatigue and improve work efficiency 
and productivity. In general, previous reviews have neglected the root 
causal factors of CWF and potential alleviation strategies, failing to 
provide a comprehensive overview of CWF from its origins to evaluation 
methods and potential interventions. 

To fill this gap, this study presents a systematic review of CWF- 
related studies by analyzing published literature on a wide range of 
research topics, from the root causes of fatigue to potential in-
terventions. The findings can help pave the way for future researchers to 
capture a comprehensive and clear understanding of the topic and 
conduct more in-depth research. Specifically, this study contributes to 
the field in the following ways: (1) This systematic review of CWF 
provides an enhanced understanding of the related causes, evaluation 
methods, and interventions. Additionally, by examining the state-of-the- 
art advancements and identifying the challenges related to fatigue 
evaluation and intervention, this review facilitates the proposal of 
various promising directions for further research. (2) This review pro-
vides practical insights into effectively measuring, monitoring, pre-
dicting, and mitigating CWF. Through these guiding principles and best 
practices, construction companies and relevant stakeholders can effec-
tively manage CWF, thereby improving the safety management level of 
the industry. Overall, this systematic review can promote further studies 
on CWF and contribute to improving the occupational health and safety 
of construction workers. 

2. Definition of fatigue 

Fatigue is a prevalent symptom in both acute and chronic illness, as 
well as in the daily lives of healthy individuals (Aaronson et al., 1999). 
According to the Oxford English Dictionary, fatigue in humans is defined 
as “lassitude or weariness resulting from either bodily or mental exer-
tion” (Oxford English Dictionary, 2023). Several researchers have pre-
sented relevant definitions of this concept (Hancock and Verwey, 1997; 
Phillips, 2015; Van Der Linden et al., 2003). From these definitions, the 
following shared characteristics of fatigue can be summarized:  

• Caused by exertion, resulting in feelings of discomfort, tiredness, or 
exhaustion;  

• Correlated with physical or mental tiredness and exhaustion;  
• Causes a temporary reduction in functional capacity. 

Workers’ fatigue remains a prominent issue in numerous industries 
and is primarily attributable to the demanding nature of jobs, prolonged 
working hours, disruptions to circadian rhythms, and accumulation of 
sleep debt, for instance, in the case of vehicle drivers (Sikander and 
Anwar, 2019), clinicians (Gaba and Howard, 2002), nurses (Geiger- 

Brown et al., 2012), and seafarers (Wadsworth et al., 2006). In the 
construction industry, due to the heavy workload and dynamic hazards 
on construction sites, construction workers must exert significant 
physical energy and exhibit a high degree of mental alertness to ensure 
on-site safety. Therefore, both physical and mental fatigue have 
garnered significant research attention. Physical fatigue is commonly 
defined as a decrease in the ability to engage in physical work due to 
prolonged physical exertion (Anwer et al., 2021; Gawron et al., 2000). In 
contrast, mental fatigue arises after prolonged mental workloads and 
may lead to deteriorated performance in tasks requiring alertness and 
manipulation and retrieval of information stored in memory (Boksem 
et al., 2005; Boksem and Tops, 2008). Since both physical and mental 
fatigue have a significant impact on the work performance of con-
struction workers, they may pose potential risks to their occupational 
health and safety on construction sites. Consequently, this review fo-
cuses on the root causes, evaluation methods, and interventions of both 
physical and mental fatigue among construction workers. 

3. Research methodology 

After reviewing the definition of fatigue, the mixed-review approach, 
which incorporates both quantitative (bibliometric analysis) and qual-
itative (systematic review) methods, was used to explore the major 
research findings. Bibliometric analysis is a common method that uti-
lizes descriptive statistics to provide an overview of existing literature 
(Linnenluecke et al., 2020), while systematic review is often used to 
understand the substantive findings of a series of studies or epistemo-
logical trends in the literature (Hallinger and Kovačević, 2019). Given 
its emphasis on leveraging the strengths of both strategies, the mixed- 
review method has been widely used for not only reviewing and syn-
thesizing literature but also in research on construction and engineering 
management (Pan and Zhang, 2021; Shaban et al., 2023). To retrieve 
relevant literature on CWF, the Scopus and Web of Science (WoS) da-
tabases were selected; these are the largest online academic databases 
and are extensively utilized by researchers for conducting literature 
reviews and feature the most influential academic contributions (Li 
et al., 2018; Liao et al., 2023). To ensure comprehensiveness, the 
timeframe of the articles was selected from 2014 to 2023. This was 
because of the simplistic and intuitive nature of articles published before 
2014. With the evolution of information technology, scholars began to 
integrate CWF research with emerging technologies, resulting in a sig-
nificant increase in the quantity and depth of articles after 2014. Sub-
sequently, the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) technique was used to screen and evaluate 
the included papers from the selected databases (Moher et al., 2009), 
which helped to improve the reporting quality of the review through a 
transparent literature selection process (Page et al., 2021). According to 
the PRISMA protocol, the paper extraction process was divided into four 
steps: identification, screening, eligibility, and included, as shown in 
Fig. 1. 

Following the PRISMA protocol, in step 1, a comprehensive desktop 
search was conducted in the Scopus and WoS databases from 2014 to 
2023. The selected keywords adhered to the following rule: (“fatigue” 
OR “exertion” OR “tiredness” OR “physical effort” OR “muscle fatigue” 
OR “physical fatigue” OR “mental fatigue” OR “physical stress” OR 
“mental stress” OR “work limit”) AND (“construction”) AND (“worker”). 
The initial search yielded 428 papers in Scopus and 325 papers in WoS. 
In step 2, peer-reviewed English-language academic articles in journals 
were used as screening criteria to refine the scope. After removing 
duplicate articles in the two databases, 364 papers were identified. In 
step 3, a quick view and thorough examination were performed to 
ensure the relevance of CWF-related publications. Specifically, the titles 
and abstracts of all retrieved papers were first screened to align with the 
research objectives, and full-text reading was then performed to ensure 
the relevance of the paper content to the research topic. After filtering, 
229 papers that were irrelevant to the research topic were excluded. In 
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addition, a manual search step was performed to identify papers that 
might have been missed during the search process. By identifying re-
cords from reference and citation searches, four papers related to the 
studied topic but not previously targeted by the above keywords were 
added. To ensure the quality assessment of the included papers, step 3 
was conducted by two independent reviewers (HZ and WY). Any dis-
agreements were resolved by the third reviewer (MA). Eventually, 139 
published papers related to CWF were identified in step 4. The biblio-
metric analysis and systematic review are discussed in sections 4 and 5, 
respectively. 

4. Overview of construction worker fatigue (CWF) publications 

The year-by-year trend of published journal papers related to CWF is 
shown in Fig. 2. The number of papers on CWF exhibited an overall 
upward trend from 2014 to 2023, with minor peaks observed in 2017 
and 2018, followed by a slight decline. However, recent statistical data 
indicate a revival of research activity, resulting in a new peak with a 
remarkable growth rate of over 50 % in the number of papers in 2023. 
This trend underscores the escalating importance of fatigue among 
construction workers as a research hotspot. 

Fig. 1. The mixed-review method following the PRISMA protocol.  
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In terms of journal sources, statistical data reveal that the 139 
selected papers were published across 63 distinct journals, demon-
strating the attractiveness of CWF to researchers from diverse academic 
disciplines, which has led to a comprehensive exploration and discus-
sion of this topic from various perspectives. Table 1 indicates the top 10 
journals with the largest number of related papers. Among these jour-
nals, Automation in Construction (19 papers), Journal of Construction En-
gineering and Management (13 papers), Safety Science (10 papers), and 
Applied Ergonomics (10 papers) lead in publication volume. This infor-
mation can serve as a reference for future CWF studies, indicating 
suitable journals for researchers to submit their scholarly work. 

In terms of geographical distribution, statistical data show that the 
affiliations of the first authors from the 139 selected papers span 29 
different countries/regions. This global distribution indicates the sig-
nificance and influence of CWF in the international academic commu-
nity, with scholars from various countries/regions dedicated to 
advancing knowledge in this domain. Fig. 3 indicates the top 12 coun-
tries/regions contributing the most papers on CWF, with the United 
States leading with 36 papers. This reflects a high level of concern within 
the academic community and construction industry in the United States 
toward safeguarding the occupational health and safety of construction 
workers. Additionally, Hong Kong and China rank second (27 papers) 
and third (13 papers), respectively, indicating the importance of CWF in 
these countries/regions. The total number of papers published by the 
first author in the top 12 countries/regions accounts for 82.7 % of the 
total number of papers in the target journals (115 out of 139 articles). 
This substantial percentage underscores that the contribution of these 
authors to research on CWF is significantly higher than that of authors 
from other countries/regions, reflecting the top countries/regions’ 
emphasis on construction workers’ health and safety, as well as tech-
nological innovation and reform. 

To gain a comprehensive understanding of the research topics 

related to CWF, this review utilized CiteSpace, a commonly used sci-
entific visualization tool, to analyze large-scale literature data (Jiang 
et al., 2023; Pan and Zhang, 2021). Cluster analysis in CiteSpace can 
identify and group related items within a bibliographic network (Azam 
et al., 2021). Fig. 4 visualizes 11 identified clusters on CWF. To provide a 
clearer understanding of the evolution trend, Table 2 displays the 
average publication year and scale of each cluster. Table 2 indicates that 
early research on CWF primarily emphasized physical fatigue, as 
exemplified by the clusters “hazardous posture,” “muscle fatigue,” 
“work-related musculoskeletal disorders (WMSDs) symptom,” “lifting 
posture,” “physical fatigue,” and “physical work demand.” This is 
because physical fatigue is the most tangible and easily discernible form 
of fatigue. As scholars have delved deeper, the importance of mental 
fatigue has become increasingly recognized. This shift in focus is evident 
in the emergence of clusters of “mental stress” and “mental fatigue.” 
Additionally, there has been a growing emphasis on the implementation 
of protective equipment to safeguard construction workers, as exem-
plified by the cluster “cooling vests.” Recent years have witnessed a shift 
toward using wearable sensing devices as an effective tool for moni-
toring fatigue. Thus, research themes have shifted toward clusters such 
as “fatigue detection” and “wearable sensor,” highlighting the industry’s 
commitment to improving the health and safety of construction workers 
through digitization and intelligence. 

The variation of keywords related to research methods over time is 
shown in Fig. 5. Early research mainly performed controlled studies or 
cross-sectional studies to explore the causal or correlational relation-
ships between variables. Over time, there has been a gradual shift to-
ward conducting clinical studies or behavioral studies, which are 
effective in assessing the efficacy of fatigue intervention measures. With 
the development of wearable sensing technologies, the amount of data 
available has increased. In response, data processing methods have 
gradually evolved from descriptive, correlation, and variance analyses 
to more complex techniques using machine learning and deep learning 
algorithms. This indicates that researchers in the field of CWF are 
actively using emerging technologies for deeper data analyses, 
providing more comprehensive insights regarding CWF. 

To provide a more comprehensive understanding of CWF, Fig. 6 
demonstrates the evolving landscape of research themes and methods/ 
technologies in this field over time, drawing insights from both biblio-
metric and content analyses. Early studies on CWF largely delved into 
the factors influencing CWF and fatigue symptoms (Ekpenyong and 
Inyang, 2014; Oksa et al., 2014) employing traditional research methods 
such as questionnaires, interviews, and field studies (Ekpenyong and 
Inyang, 2014; Visser et al., 2014). Subsequently, researchers shifted 
their focus toward the measurement and real-time monitoring of CWF 
(Maciukiewicz et al., 2016; Tsai, 2017), with wearable sensing devices 
making notable contributions to this area (Hwang et al., 2016; Hwang 

Fig. 2. Annual publication trends on construction worker fatigue (CWF).  

Table 1 
Top 10 journals by number of papers on construction worker fatigue (CWF).  

Journal name Number of 
papers 

Automation in Construction 19 
Journal of Construction Engineering and Management 13 
Safety Science 10 
Applied Ergonomics 10 
Engineering, Construction and Architectural Management 5 
Sensors 5 
International Journal of Environmental Research and Public 

Health 
4 

International Journal of Industrial Ergonomics 4 
Journal of Computing in Civil Engineering 4 
Ergonomics 4  

H. Zong et al.                                                                                                                                                                                                                                    



Safety Science 176 (2024) 106529

5

and Lee, 2017). Simultaneously, certain studies emerged on in-
terventions for CWF, with experimental research gaining prominence as 
the preferred research method. (Chan et al., 2017; Umer et al., 2017). As 
the demand for CWF management escalated, researchers gradually 

focused on CWF modeling and prediction (Antwi-Afari et al., 2020; 
Umer et al., 2020), with data processing methods evolving to incorpo-
rate more advanced machine learning and deep learning algorithms 
(Ghafoori et al.,2023; Ke et al., 2021). Recently, scholars have shown 

Fig. 3. Top 12 countries/regions by number of papers on construction worker fatigue (CWF).  

Fig. 4. Main research themes on construction worker fatigue (CWF).  
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interest in investigating the downstream effects of CWF and examining 
the relationships between CWF and work performance, as well as safety 
behavior (Bendak et al., 2022; Zhang et al., 2023). 

5. Critical review of construction worker fatigue (CWF) 

Following a bibliometric analysis of selected papers, a systematic 
review was conducted to further explore the research achievements in 
the field of CWF, encompassing the root causes, evaluation methods, and 
potential interventions. In addition, the challenges encountered within 
the area of study were addressed, and recommendations for future 
research directions were made. Fig. 7 shows the framework for the 
systematic review. Specifically, the review focused on three distinct 
aspects of CWF-related research: causes of CWF, CWF evaluation 
methods, and interventions for CWF. The research findings are pre-
sented below. 

5.1. Causes of CWF 

5.1.1. State-of-the-art studies on risk factors affecting CWF 
Fatigue is widely acknowledged as the major cause of construction 

accidents (Swaen et al., 2003; Umer et al., 2023). It is caused by the 
continuous or excessive use of body systems, leading to energy deple-
tion, metabolic acidosis, dehydration, hyperthermia, and ion imbalance 
(Phillips, 2015). Its occurrence is closely related to body system func-
tions, such as cardiovascular and thermoregulatory functions (Ament 
and Verkerke, 2009), as shown in Fig. 8. To effectively mitigate CWF, it 
is crucial to identify risk factors that contribute to its occurrence. 
Numerous studies have identified risk factors affecting CWF across 
various construction activities, such as rebar bending (Yi et al., 2016), 
steel tying (Lim and Yang, 2023), heavy lifting (Antwi-Afari et al., 
2017), pipe installation (Yung et al., 2014), concrete pouring (Arias 
et al., 2023), and equipment operation (Li et al., 2020). Common ap-
proaches adopted by researchers to identify risk factors affecting CWF 
can be classified as (1) experimentation and (2) focus group and inter-
view. Experimentation is a powerful quantitative research method for 
understanding cause-and-effect relationships, allowing researchers to 
manipulate variables and observe effects (Mohajan, 2020). Laboratory 
experiments and quasi-experiments are typical methods used to explore 
risk factors affecting CWF. Laboratory experiments are often conducted 
to investigate the impact of work-related risk factors on CWF, such as the 
effects of long-time operation (Li et al., 2020), repetitive lifting (Antwi- 
Afari et al., 2017), overhead work configurations (Maciukiewicz et al., 
2016), and various load-carrying techniques on worker fatigue (Anwer 
et al., 2022). In contrast, quasi-experiments are typically conducted on 
construction sites to identify the impact of specific environmental fac-
tors, such as high ambient temperature (Chong et al., 2020) and eleva-
tion (Hsu et al., 2016). Focus groups and interviews are prevalent 
qualitative research methods in the construction industry, aimed at 
collecting information through open-ended queries (Hancock et al., 
2001). They are often used in conjunction, with focus groups aimed at 
reaching consensus opinions through worker-group interactions fol-
lowed by individual interviews with industry experts or project man-
agers to validate research findings. Compared with experimentation, the 
results of a focus group and interview method are more subjective and 
are often used to obtain a macro understanding of the fatigue situation of 
certain types of construction workers at the industry level. For instance, 

Table 2 
Summary of the identified clusters.  

Average publication year Cluster ID Cluster topic Size 

2015 9 Hazardous posture 11 
2016 2 Muscle fatigue 32 
2017 0 WMSDs symptom 37 
2017 3 Lifting posture 29 
2017 5 Physical fatigue 25 
2017 8 Cognitive test 20 
2017 10 Physical work demand 11 
2018 6 Cooling vest 25 
2018 7 Mental stress 24 
2019 1 Mental fatigue 36 
2020 4 Fatigue detection 29 
2021 11 Wearable sensor 9  

Fig. 5. Timeline map of keywords (related to research method) concurrence network.  

H. Zong et al.                                                                                                                                                                                                                                    



Safety Science 176 (2024) 106529

7

Techera et al. (2019) interviewed 143 transmission and distribution 
workers and found that extreme weather and long shifts were the main 
factors affecting CWF in the transmission and distribution industry. 
Maynard et al. (2021) conducted focus group surveys and interviews 
with frontline workers and managers on a large-scale tunnel construc-
tion project and found that the physical environment, repetitive 
monotonous tasks, variable shift patterns, and manual work were the 
main causes of CWF in the tunnel industry. 

According to these research methods, three major categories of risk 
factors affecting CWF can be identified: work-related factors, environ-
mental factors, and personal factors, as shown in Fig. 8. Work-related 
factors are the most direct causes of CWF, as they directly lead to 
excessive strain on body systems, resulting in energy consumption and 
metabolic accumulation (Phillips, 2015). These factors include job na-
ture, work duration, and workload (Chan et al., 2012; Yi et al., 2016). 
Long-term and high-intensity work are common causes of fatigue in all 
industries, but the job nature that triggers fatigue is particularly unique 
to construction workers. Unlike other sectors such as driving or piloting, 
the construction industry encompasses a wide variety of job types, and 
the fatigue formation mechanisms of different job types are different. 
For instance, excavator operators performing repetitive operations are 
more prone to mental fatigue due to overwork of the brain nervous 

system (Li et al., 2019), while rebar workers, who exert physical energy 
and maintain awkward postures for a prolonged time, are more sus-
ceptible to physical exhaustion due to perspiration, dehydration, and 
lactic acid accumulation (Anwer et al., 2022). 

Environmental and personal factors also considerably influence 
CWF, as they can potentially influence the mechanism of fatigue 
occurrence (Davis and Walsh, 2010). Environmental factors including 
heat/cold stress, air pollution, noise pollution, and elevation, can 
exacerbate the difficulties faced by construction workers in performing 
their tasks, thereby strengthening the operation of related fatigue 
mechanisms (Szer et al., 2017). For instance, working in a hot and 
humid environment places more emphasis on fatigue mechanisms 
related to dehydration and hyperthermia than working in a cool envi-
ronment (Nybo et al., 2014). It is worth noting that the role of the 
strengthening effects of these environmental factors is closely related to 
the job nature of construction workers. Specifically, outdoor construc-
tion workers are particularly susceptible to heat and cold stress during 
the onset of fatigue (Karthick et al., 2022; Yi et al., 2016), pavement 
construction workers or drillers are more prone to air pollution (Chong 
et al., 2014; Shalaby et al., 2019), equipment operators face a high risk 
of noise pollution (Ke et al., 2021b), and high-rise building construction 
workers may encounter the unique challenge of working at great heights 

Fig. 6. Evolution landscape in research themes and methods/technologies for construction worker fatigue (CWF).  

Fig. 7. Framework for analyzing construction worker fatigue (CWF).  
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(Hsu et al., 2008; Hsu et al., 2016). Personal factors include age, 
physique, sleep time, alcohol drinking/smoking habits, work experi-
ence, and clothing (Karthick et al., 2022; Salas et al., 2016; Yi et al., 
2016). Some studies have demonstrated that different construction 
workers may experience different levels of fatigue while performing the 
same work tasks (Jebelli et al., 2019; Umer et al., 2022). This variation is 
attributable to differences in the functioning of body systems among 
construction workers, which can result in variations in the operation of 
their fatigue mechanisms. For instance, age differences may lead to 
variations in muscle groups (Lynch et al., 1999), and disparities in 
physique may result in variances in cardiovascular function, thermo-
regulatory function, and nerve control (Wallin and Charkoudian, 2007), 
influencing fatigue onset speed and duration (Green, 1997). In addition 
to the aforementioned risk factors, physical and mental fatigue experi-
enced by construction workers have also been proven to interact and 
mutually influence one another (Umer et al., 2022; Xing et al., 2020). 
When workers experience physical fatigue, their brains may exert 
additional effort to maintain bodily functions, potentially inducing 
mental exhaustion (Meeusen et al., 2021). Conversely, mental fatigue 
can disrupt their brains’ ability to regulate and control the body, thus 
affecting physical functions (Van Cutsem et al., 2017). 

Numerous researchers have attempted to measure the risk factors 
associated with CWF (Chan et al., 2012; Chong et al., 2018; Yi et al., 
2016), using approaches involving (1) questionnaire surveys and (2) 
instruments. Data related to work characteristics and basic personal 
information (e.g., age, sleep time, alcohol drinking/smoking habits, and 
clothing) are typically collected through questionnaire surveys. Typi-
cally, participants are required to fill out personal data collection forms 
before starting interviews or experiments. Data regarding environ-
mental conditions and the personal physiological conditions of con-
struction workers are usually measured using instruments. Researchers 

have used heat stress monitors to collect on-site dry bulb temperature, 
wet bulb temperature, globe temperature, relative humidity, and 
airspeed data (Chong et al., 2020; Yi et al., 2016), and employed envi-
ronmental quality sensors to monitor on-site air and noise quality 
(Calixto et al., 2023). Personal physiological data, such as weight, fat 
rate, and body mass index, can be collected through electronic health-
care scales (Chong et al., 2018). 

5.1.2. Challenges faced by risk factors affecting CWF 
Although the abovementioned studies have systematically examined 

the root causes of CWF, most risk factors have been studied individually 
in laboratory settings or identified through qualitative focus group and 
interview approaches, and the prioritization of the importance of these 
risk factors remains to be examined. In addition, some studies have 
identified implicit risk factors, such as the workplace atmosphere, 
colleague relationships, and family pressure, that can trigger employees’ 
mental fatigue (Bültmann et al., 2002; Kreitzer et al., 2020). However, 
the exploration of these implicit risk factors within the realm of CWF 
remains inadequately investigated. Several crucial research questions 
require further investigation:  

• What is the order of importance of the risk factors affecting CWF?  
• How do implicit risk factors, such as social environment and social 

relationships, potentially affect CWF? 

5.2. CWF evaluation methods 

Accurate and reliable evaluation methods for CWF are crucial for 
implementing appropriate countermeasures to mitigate or prevent the 
adverse effects of CWF. Numerous studies have been devoted to CWF 
measurement and monitoring and its subsequent prediction. This review 

Fig. 8. The mechanisms and risk factors of construction worker fatigue (CWF).  
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focuses on both aspects to perform a systematic analysis. 

5.2.1. State-of-the-art studies on measuring and monitoring CWF 
CWF can usually be reflected by the measurement of various indices, 

which are categorized as subjective and objective. Subjective fatigue 
indices typically correspond to individuals’ self-rating of their current 
fatigue state based on subjective fatigue assessment scales, while 
objective fatigue indices generally describe people’s fatigue level based 
on objective measurement methods, such as physiological measure-
ments or biomechanical analyses. CWF measurement has been pre-
dominantly based on objective indices (47 papers) or a combination of 
subjective and objective indices (41 papers). Only a limited number of 
studies have relied solely on subjective indices for evaluation (4 papers). 

In the construction industry, subjective fatigue assessment scales are 
commonly used to subjectively measure CWF. Owing to the variety of 
scale types, the subjective fatigue assessment indices used across 
different studies may differ. Fig. 9 shows the number of citations for 
subjective fatigue indices in the reviewed literature. The Rating of 
Perceived Exertion (RPE), which focuses on measuring the intensity of 
physical activity, is the most commonly used subjective fatigue index in 
evaluating the physical fatigue level of construction workers. The RPE 
index has only one score, ranging from 6 to 20 (Borg-20 scale) or 0–10 
(Borg CR-10 scale), making it simpler and easier to apply in practice 
than other indices (Borg, 1998). Fig. 9 also illustrates that the NASA 
Task Load Index (NASA-TLX) is the most frequently used subjective fa-
tigue index in measuring the mental workload or mental fatigue of 
construction workers. This index is considered to be more sensitive 
compared to the Subjective Workload Assessment Technique (SWAT), 
particularly for low mental workloads, because its measured dimensions 
are more detailed (Nygren, 1991). In addition, the Assessment Scale for 
Construction Workers (FASCW) is the index usually adopted to measure 
both the physical and mental symptoms of CWF, as it includes mea-
surement dimensions of physical inactivity and mental fatigue (Fang 
et al., 2015). However, the fatigue index score of construction workers 
obtained using the traditional subjective fatigue assessment scale may 
not fully represent their actual fatigue level. Therefore, some studies 
have proposed relevant indices to objectively measure CWF. 

Objective fatigue indices include a range of physiological and kine-
matic indices that provide valuable insights into the measurement of 
CWF. The number of citations for these objective fatigue indices is 
shown in Fig. 10, and their corresponding sensing measurement tech-
nologies and application wearable devices are summarized in Table 3. 
Cardiovascular indices are the most widely utilized physiological indices 

reflecting CWF, among which heart rate (HR) is the most commonly 
used. Numerous studies have proven the positive correlation between 
HR and physical or mental workload (Anwer et al., 2022; Shu et al., 
2018), and some have directly linked HR to fatigue, revealing a strong 
relationship between HR and RPE (Anwer et al., 2020; Chang et al., 
2009) or classifying HR values to distinguish different fatigue levels (Adi 
and Ratnawinanda, 2017). Heart rate variability (HRV) is another index 
gaining popularity for CWF measurement (Anwer et al., 2023; Umer 
et al., 2020). However, studies in other industries have found inconsis-
tent results regarding the correlation between HRV and fatigue (Lu et al., 
2022), while suggesting that HRV monitoring at rest is more suitable 
(Aubert et al., 2003; Djaoui et al., 2017). Electrocardiography (ECG) and 
photoplethysmography (PPG) are the two most prevalent sensing tech-
nologies for the measurement of cardiovascular indices in construction 
workers. ECG captures cardiac activity by directly measuring the elec-
trical signals produced by heart contraction and relaxation through 
electrodes placed on chest straps (Prineas et al., 2009). In contrast, PPG 
measures cardiac activity indirectly by monitoring blood flow changes 
caused by heart contractions, which may result in a time lag in the re-
sults (Lu et al., 2009). However, PPG uses only a single optical sensor 
that is typically placed on the wrist, giving it an advantage over ECG 
(Allen, 2007). 

Thermoregulatory indices rank as the second most popular physio-
logical indices for CWF measurement. Numerous studies have revealed a 
significant relationship between skin temperature (ST) and CWF, as well 
as an association between ST and fatigue-induced unsafe behavior 
(Anwer et al., 2020; Zhang et al., 2023). Some studies have further 
explored the efficacy of using ST to assess CWF and highlighted that the 
ST outperforms HR in accuracy. Moreover, combining the information 
from both indices results in the most accurate measurement of CWF 
(Umer et al., 2020). Additionally, some studies have directly used the CT 
index to reflect CWF (Chong et al., 2018; Yi et al., 2017), as the mea-
surement of ST is more easily affected by the surrounding environment 
than the measurement of CT. ST is typically measured by infrared 
temperature sensors that can be embedded in a chest strap or wristband 
or attached to a helmet to measure facial skin temperature (Aryal et al., 
2017; Umer et al., 2022), with monitoring sites that are less susceptible 
to external airflow being more accurate (Psikuta et al., 2014). In 
contrast, the measurement of CT is more complicated. Some studies have 
used ingestible sensors for tracking CT (Yi et al., 2017), which may be 
invasive for construction workers. 

Surface electromyography (sEMG) is a widely used and reliable 
method for detecting muscle fatigue, and its indices represent the level 

Fig. 9. Number of citations for subjective fatigue indices.  
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of muscle engagement (Li et al., 2017). It is typically measured using two 
classes of parameters: those in the time domain (e.g., mean absolute 
value (MAV) and root mean square (RMS)) and those in the frequency 
domain (e.g., median frequency (MDF) and mean frequency (MEF)). 
Relevant studies have suggested that muscle fatigue in construction 
workers can be continuously monitored by measuring the sEMG activity 
of the target muscle during various tasks (Li et al., 2017; Lu et al., 2015). 
Sensors for sEMG are typically affixed to the forearms, shoulders, necks, 
waists, and backs of construction workers, as these areas are more prone 
than others to MSDs. Although sEMG measurements are noninvasive, 
the attachment of the sensors can interfere with workers’ tasks, and 
sEMG signals can be easily affected by the skin preparation quality, 
sweating, ambient temperature, and movement artifacts (Anwer et al., 
2021). 

Electrodermal activity (EDA), brain activity, and eye movement are 
three indices used for mental fatigue measurement in construction 
workers. EDA reflects changes in the electronic properties of the skin due 
to sweat secretion (Benedek and Kaernbach, 2010) and has been proven 
to be a reliable method for worker mental fatigue measurement (Kazar 
and Comu, 2022; Lee and Lee, 2022), and some studies have further used 
EDA indices to reflect workers’ physical fatigue (Jebelli et al., 2019; 
Umer et al., 2023). EDA sensing technology measures changes in elec-
trical current caused by sweat secretion by applying a constant low 
voltage between skin contact points (Braithwaite et al., 2013), typically 
through two wired electrodes attached to the palmar or plantar surfaces. 
However, recent advancements in wearable sensors have enabled EDA 
signals to be measured through wristbands without interrupting par-
ticipants’ activities (Jebelli et al., 2019). Brain activity indices are 
mainly reflected by brainwave amplitude and frequency (Teplan, 2002), 
and brainwaves in different frequency bands are related to different 
brain activities. Numerous studies have demonstrated correlations be-
tween these brainwave bands (individual brainwave bands and com-
bined forms) and mental fatigue in construction workers (Kazar and 
Comu, 2022; Tehrani et al., 2022). Electroencephalography (EEG) 
sensing technology is used to measure brain electrical activity by placing 
electrodes on corresponding areas of the scalp (Szafir and Signorile, 
2011). Wireless helmets or headsets with multiple electrodes are used to 
collect EEG signals and record signal data for CWF (Li et al., 2019; Wang 
et al., 2023). Compared with other fatigue indices, the exploration of eye 
movement indices in the construction industry is limited. This approach 
mainly measures the mental fatigue of construction workers through 
blinking (e.g., frequency and time) and pupil behaviors (e.g., diameter 
and visual attention range) (Li et al., 2019, 2020). Eye-tracking sensing 
technology is often utilized to measure eye movement indices. This 
sensing technology can be implemented through lightweight wearable 
eye trackers, which typically consist of a world camera to detect the 

scene ahead and eye cameras to record the user’s gaze point, blinking, 
and pupil behavior (Li et al., 2019, 2020). 

Kinematic indices, typically calculated from the kinematic data of a 
set of movements having different directions in the workplace (Haji-
hosseinali et al., 2022), are widely used to assess CWF (Seo et al., 2015; 
Yu et al., 2019). Jerk is a novel kinematics index that can assess physical 
exertion and fatigue by measuring the jerk across various body segments 
(Zhang et al., 2019). Several studies have used indices of body posture or 
joint angles between body parts to construct human biomechanical 
models for assessing CWF (Yu et al., 2019; Dias Barkokebas and Li, 
2023). Furthermore, Umer et al. (2018) proposed the use of the postural 
instability (sway) index to directly assess the fatigue status of the entire 
body of workers. To measure the above kinematic indices, wearable 
inertial measurement units (IMUs) are commonly used (Ahn et al., 
2019). In capturing whole-body motion information, researchers typi-
cally position a single wearable IMU on the back or waist (Umer et al., 
2018). When gathering gait motion data, sensors are commonly placed 
on the ankle (Bamberg et al., 2008). To assess ergonomic risk during 
activities, multiple IMUs are applied to different body parts to examine 
body posture and joint angles (Dias Barkokebas and Li, 2023). In addi-
tion, wearable IMUs can be combined with other technologies, such as 
computer vision-based 3D models, to improve the accuracy of their 
predictions in the construction industry (Yu et al., 2019). These mea-
surement methods, whether used alone or in combination (Wang et al., 
2023; Umer et al., 2020), provide a solid foundation for objectively 
assessing CWF. 

Moreover, some studies have also investigated other novel methods 
to objectively assess CWF, such as plantar pressure detection (Antwi- 
Afari et al., 2018), worker sweat monitoring (Ma et al., 2023), facial 
expression recognition (Liu et al., 2021), or blood sugar level assessment 
(Kazar and Comu, 2022). Furthermore, some studies have utilized 
fitness-for-duty technologies to measure CWF, particularly mental fa-
tigue (Aryal et al., 2017; Techera et al., 2018). These fitness-for-duty 
technologies typically measure operators’ task performance abilities, 
such as hand–eye coordination, reaction time, and sustained attention, 
through computer-based tests to assess their vigilance or alertness and 
thus determine whether the workers are in a safe state for work (Balkin 
et al., 2011; Dawson et al., 2014). Since these technologies can only 
measure workers’ current state of fatigue, they are often used for pre-job 
testing, and there is no evidence to show whether they can predict the 
fatigue that workers accumulate on subsequent jobs (Dawson et al., 
2014). Among many of these fitness-for-duty technologies, the psycho-
motor vigilant test (PVT), which is used to measure sustained attention 
and reaction time, is considered to be the gold standard for fatigue 
detection (Dinges and Powell, 1985; Loh et al., 2004). 

Fig. 10. Number of citations for objective fatigue indices.  
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5.2.2. State-of-the-art studies on predicting CWF 
The prediction of CWF is crucial for anticipating the occurrence of 

occupation fatigue and potential injuries among construction workers 
and adopting early intervention measures to reduce their risks. Earlier 
studies primarily have used correlation analysis or established multiple 
linear regression (MLR) models to predict CWF (Techera et al., 2018; 
Umer et al., 2020). However, it has been challenged that worker fatigue 
and fatigue indices (i.e., physiological and kinematic indices) may not 
exhibit a linear correlation (Malchaire, 1991). Additionally, the wide 
range of risk factors affecting fatigue (work-related, environmental, and 
personal factors) and their interactive effects may be far beyond the 
predictive power of an MLR model (Rowlinson et al., 2014). Therefore, 
some studies have turned to more advanced machine learning algo-
rithms to address these complex issues. Table 4 summarizes the relevant 

literature on CWF prediction using machine learning algorithms. Several 
supervised machine learning classification algorithms, such as K-nearest 
neighbor (KNN), decision tree (DT), random forest (RF), support vector 
machine (SVM), boosted tree (BT), and linear discriminant analysis, 
have proven to be fast, accurate, and effective in predicting CWF and 
have been widely used in clinical assessments (Anwer et al., 2023; Li 
et al., 2020; Ma et al., 2023). The input variables for fatigue prediction 
models that rely on these machine learning algorithms typically consist 
of multiple fatigue indices, along with work-related, environmental, and 
personal risk factors that influence CWF (Aryal et al., 2017). Some 
research has also demonstrated that the CWF can be accurately pre-
dicted by using merely a single fatigue index (such as EEG or HRV) 
(Anwer et al., 2023). The output variable of the prediction model is 
generally a predicted fatigue score or multi-level classification of 

Table 3 
Fatigue indices, sensing technologies, and wearable devices in the construction industry.  

Fatigue indices Indices characteristics Sensing technologies Wearable devices 

Practicality Measurability* Effectiveness* 

Cardiovascular 
indices 

HR Widely used 
(31 papers) 

Easy to measure Adequately 
validated 

Cardiovascular 
Sensing 

PPG 
sensing 

Equivital EQ02 LifeMonitor 
Polar HR monitorZephyr 
BioHarness 3   

ECG 
sensing 

Empatica E4 wristband  
HRV Moderately 

used 
(8 papers) 

Easy to measure Moderately 
widely validated 

Basis Peak™ 
Fitbit Charge HR™ 
Galaxy Watch Active 2 
Cosmed K4b^2 

Thermoregulatory 
indices 

ST Widely used 
(16 papers) 

Easy to measure, 
but unstable 

Adequately 
validated 

Infrared temperature sensing Equivital EQ02 LifeMonitor 
Empatica E4 wristband 
Infrared temperature sensors 
MLX90614Infrared pyrometer 
Omron MC-872 

CT Moderately 
used 
(5 papers) 

Difficult to 
measure, but stable 

Moderately 
widely validated 

Cor-Temp™ pill 

sEMG indices MAV; RMS; MDF; 
MEF 

Widely used 
(31 papers) 

Moderately 
difficult to measure 

Adequately 
validated 

sEMG sensing Noraxon TeleMyo sEMG System 
Nexus 10 portable EMG system 
Porti 7 TeleMyo systemParomed 
Telemetric EMG recorder 

EDA indices EDL; EDR Moderately 
used 
(8 papers) 

Moderately 
difficult to measure 

Moderately 
widely validated 

EDA sensing Equivital EQ02 
LifeMonitorEmpatica E4 
wristband 
Shimmer Research 

Brain activity 
indices 

Individual and 
combined brainwave 
bands 

Moderately 
used 
(10 papers) 

Moderately 
difficult to measure 

Moderately 
widely validated 

EEG sensing Neurosky Mindwave 
Emotiv Epoc + mBrainTrain 

Eye movement 
indices 

Saccade behaviors; 
pupil behaviors; 
blinking behaviors 

Narrowly 
used 
(2 papers) 

Difficult to 
measure, but stable 

Inadequately 
validated 

Eye-tracking sensing EyeLink 1000 
Tobii Pro Glasses 2 

Other physiological 
indices 

Sweat Narrowly 
used 
(2 papers) 

Difficult to 
measure, but stable 

Inadequately 
validated 

Colorimetric technologies 
Electrochemical technologies 

Gx Sweat Patch 

Blood sugar level Narrowly 
used 
(2 papers) 

Moderately 
difficult to measure 

Inadequately 
validated 

Enzyme electrode technology Dexcom G4 Platinum 

Facial expression Narrowly 
used 
(1 papers) 

Difficult to 
measure, but stable 

Inadequately 
validated 

Video/image shooting Video/ image sensor 

Kinematic indices Jerk Narrowly 
used 
(1 papers) 

Easy to measure Inadequately 
validated 

IMUs sensing Noitom Perception Neuron 
MyoMotion system 
MOCAP system 
MetaMotionRXsens Mti 
Moticon SCIENCE Sensor 
Insole GmbH 

Body posture or joint 
angles 

Widely used 
(16 papers) 

Difficult to measure Adequately 
validated 

Entire body 
instability 

Narrowly 
used 
(3 papers) 

Moderately 
difficult to measure 

Inadequately 
validated 

Plantar pressure Foot plantar pressure Narrowly 
used 
(2 papers) 

Easy to measure Inadequately 
validated 

Wearable insole pressure 
sensors 

Moticon SCIENCE Sensor 
Insole GmbH 

Notes: HR = Heart rate; HRV = Heart rate variability; ST = Skin temperature; CT = Core temperature; MAV = Mean absolute value; RMS = Root mean square; MDF =
Median frequency; MEF = Mean frequency; EDL = Electrodermal level; EDR = Electrodermal response; PPG = photoplethysmography; ECG = Electrocardiography; 
sEMG = Surface electromyography; EDA = Electrodermal activity; EEG = Electroencephalography; IMUs = Inertial measurement units. Measurability: judged by the 
type and number of wearable devices; Effectiveness: judged by the widespread use of the indices. 
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fatigue. Typically, multiple machine learning algorithms are compared 
in such studies to select the one that best predicts CWF, and the accuracy 
of these algorithms can usually reach 83–97 %, according to Table 4. 
Although machine learning algorithms have achieved acceptable accu-
racy, their inputs are limited to manually developed features, which may 
affect the model performance on real complex construction sites (Meh-
mood et al., 2023). Moreover, their processing capabilities for high- 
dimensional data such as images, videos, and audio are limited (Bad-
uge et al., 2022; Xu et al., 2021). Therefore, certain studies have 
explored the application of deep learning algorithms for CWF predic-
tion, mainly in processing EEG signals (Mehmood et al., 2023; Wang 
et al., 2023), analyzing images or videos (Liu et al., 2021), and recog-
nizing actions (Roberts et al., 2020). These algorithms have demon-
strated high accuracy levels (i.e., 81 % and 88 %, as indicated in 
Table 4). 

5.2.3. Challenges faced by CWF measurement, monitoring and prediction 
Despite the advantages of CWF measurement, monitoring, and pre-

diction techniques based on sensing technologies, only a few studies 
have applied them at real-time construction sites. The noise and dy-
namic changes at actual construction sites can lead to more signal 

artifacts (i.e., unnecessary signals or signals that interfere with the target 
signal), which may affect the accuracy of data collected. Some studies 
have explored methods to minimize signal artifacts (Anwer et al., 2024; 
Kang et al., 2017; Jebelli et al., 2018). However, these techniques may 
not be effective due to high levels of signal artifacts at construction sites. 
Integrating multiple sensing technologies or combining emerging tech-
nologies may help improve the accuracy of construction site measure-
ment. In addition, measuring CWF at actual construction sites can 
impede the progress of normal construction. The integration of sensing 
technology and construction processes has not been adequately 
explored. Furthermore, current research has primarily focused on short- 
term observations of CWF, with few studies exploring how CWF de-
velops under the long-term impact of risk factors and how the conse-
quential effects of CWF evolve over an extended period. Although 
Boschman et al. (2012) investigated the development of MSDs in con-
struction workers over one year, and Boschman et al. (2015) examined 
the effects of MSD interventions on construction workers over two years, 
additional long-term studies on the formation, development, and impact 
of CWF are required to better understand CWF and propose effective 
interventions. Several crucial research questions require further 
investigation: 

Table 4 
Summary of related studies on CWF prediction using machine learning algorithm.  

Study Participants Environment Algorithm Input Output Data Size Accuracy 
(%) 

Anwer et al. 
(2023) 

Construction 
workers 

Construction 
site 

KNN; DT; RF; SVM; 
ANN 

HRV RPE (no fatigue; mild fatigue; 
moderate fatigue; severe 
fatigue) 

15 
participants 
(1425 sets) 

93.5 (RF) 

Ma et al. 
(2023) 

Non- 
construction 
workers 

Simulated 
indoor 

DT; RF; SVM; KNN; 
MLP 

Sweat rate; 
Sodium concentration; 
Glucose concentration; 
Lactate concentration; 
FAS 

RPE (low fatigue; medium 
fatigue; high fatigue; very high 
fatigue) 

28 
participants 
(140 sets) 

96.4 (KNN) 

Antwi-Afari 
et al. 
(2023) 

Non- 
construction 
workers 

Simulated 
indoor 

SVM; ANN; RF; DT; 
KNN 

Plantar pressure patterns; 
acceleration signals (38 
dependent variables) 

RPE (no-level fatigue; low-level 
fatigue; medium-level fatigue; 
high-level fatigue) 

10 
participants 

86.0 (RF) 

Wang et al. 
(2023) 

Construction 
workers 

Simulated 
indoor 

CNN EEG Fatigue levels (no fatigue; mild 
fatigue; severe fatigue) 

16 
participants 
(151 × 375 ×
8) 

88.0 

Umer et al. 
(2022) 

Non- 
construction 
workers 

Simulated 
indoor 

ANN HRV RPE (no exertion; light 
exertion; heavy exertion; 
maximal exertion) 

10 
participants 
(1286 sets) 

81.2 

Ke et al. 
(2021) 

Non- 
construction 
workers 

Simulated 
indoor 

SVM EEG Task performance (focused; 
distracted) 

27 
participants 
(671 sets) 

99.67 

Liu et al. 
(2021) 

Use public 
dataset  

CNN + LSTM Facial video Fatigue levels (alert, low 
vigilant, and fatigue) 

(300 × 300 ×
3) 

80.3 

Umer et al. 
(2020) 

Non- 
construction 
workers 

Simulated 
indoor 

KNN; SVM; DT; 
Discriminant 
analyses; Ensemble 
classifiers 

Age; BMI; HR; HRV; ST; 
breathing frequency; 
activity duration 

RPE 10 
participants 
(1286) 

96.9 

Li et al. 
(2020) 

Construction 
workers 

Simulated 
indoor 

SVM; DT; KNN; BT; 
LDA 

Eye movement Features 
(70 features) 

Fatigue levels (fatigue level 1; 
fatigue level 2; fatigue level 3) 

6 participants 
(216000 data 
points) 

79.5–85.0 
(SVM) 

Jebelli et al. 
(2019) 

Construction 
workers 

Construction 
site 

KNN; DT; linear 
SVM; 
nonlinear SVM; 
multilayer 
perceptron, 

PPG; EDA; ST Fatigue levels (low fatigue; 
moderate fatigue; high fatigue) 

10 
participants 
(9216000 data 
points) 

87.0–90 
(SVM) 

Aryal et al. 
(2017) 

Construction 
workers 

Simulated 
indoor 

DT; BT; SVM Personal features; 
temperature signals; 
HR; work duration 

RPE (low fatigue; medium 
fatigue; high fatigue; very high 
fatigue) 

12 
participants 
(253 sets) 

82.6 (BT) 

Yi et al. 
(2016) 

Construction 
workers 

Construction 
site 

ANN WBGT; age; BMI; 
alcohol drinking habit; 
smoking habit; 
work duration; job nature 

RPE 39 
participants 
(550 sets) 

90.0 

Notes: KNN = K-nearest neighbor; DT = Decision tree; RF = Random forest; SVM = Support vector machine; ANN = Artificial neural network; MLP = Multilayer 
perceptron; CNN = Convolutional neural network; LSTM = Long short-term memory; BT = Boosted tree; LDA = Linear discriminant analysis; HR = Heart rate; HRV =
Heart rate variability; ST = Skin temperature; BMI = Body mass index; EEG = Electroencephalography; PPG = Photoplethysmography; EDA = Electrodermal activity; 
FAS = Fatigue assessment scale; RPE = Rating of perceived exertion; WBGT = Wet bulb globe temperature. 
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• How can signal artifacts be minimized when using sensing technol-
ogy to measure CWF at actual construction sites?  

• How can various sensing technologies be integrated into applications 
or utilized in conjunction with cutting-edge technologies to improve 
the accuracy of CWF measurement? 

• How can CWF measurement based on sensing technology be incor-
porated into current construction workflows?  

• How does CWF develop under the long-term influence of risk factors, 
and how do the consequential effects of CWF evolve over an 
extended period? 

5.3. Interventions for CWF 

5.3.1. State-of-the-art studies on interventions for CWF 
To safeguard the occupational health and safety of construction 

workers and minimize the incidence of accidents during construction, 
interventions to alleviate CWF have been proposed from the perspec-
tives of technology and management. Fig. 11 provides an overview of 
interventions for CWF at five levels: individual, team, site, project, and 
industry. The application of wearable sensing devices and personal 
protective equipment (PPE) are two typical technical interventions for 
individual construction workers. The development of various sensor- 
based wearable devices has provided significant opportunities for the 
real-time monitoring and prediction of the physical and mental fatigue 
of construction workers. For instance, wearable sensing devices can 
assess physical fatigue and monitor mental status to prevent fatigue- 
induced accidents (Li et al., 2019; Yu et al., 2019), detect awkward 
postures to prevent MSDs (Antwi-Afari et al., 2017; Li et al., 2017), and 
conduct fall risk assessments to prevent falls at construction sites 
(Tehrani et al., 2022; Umer et al., 2018). Advancing PPEs for individual 
construction workers is another technical intervention. Many studies 
have been devoted to exploring the development of PPE, particularly 
smart PPE, in which advanced technologies are incorporated to revo-
lutionize safety practices in the industry (Rasouli et al., 2024). For 
instance, smart vests can be used to monitor workers’ biological state 
(Yan et al., 2017), sense potential fall hazards (Abainza et al., 2020), 
provide alerts for extreme thermal conditions (Edirisinghe and Blismas, 
2015), or assist in alleviating body heat strain (Yi et al., 2017), thereby 
reducing the risk of CWF. 

Ergonomic interventions are commonly used as management stra-
tegies to alleviate fatigue among individual construction workers, 
worker teams, and construction sites, with the aim of preventing and 
alleviating work-related MSDs. Studies have proposed a large number of 
ergonomic interventions. For individual construction workers and 

worker teams, interventions include optimizing work task configura-
tions (Anwer et al., 2022; Maciukiewicz et al., 2016), building models 
and frameworks to optimize workflow or operations (Dias Barkokebas 
and Li, 2023; Li et al., 2017), using exoskeletons to assist with work 
(Alabdulkarim et al., 2019; Antwi-Afari et al., 2021; De Vries et al., 
2021,2022), and providing safety training on ergonomic risks (Nykänen 
et al., 2020; Hess et al., 2020). At the construction site level, ergonomic 
risks during construction work can be alleviated by introducing ergo-
nomic tools and equipment (Antwi-Afari et al., 2017; Umer et al., 2017) 
and improving the workplace layout (Eaves et al., 2016; Golabchi et al., 
2015). 

Human–robot collaboration (HRC) is another technical intervention 
that can be applied at the level of individual construction workers and 
worker teams to reduce the stress of manual labor in dangerous or re-
petitive tasks by matching robot intelligence with human skills. 
Numerous studies have explored the application of construction robots 
in different construction tasks, such as transportation (Yang et al., 
2021), excavation (Lee et al., 2019), installation (Lee et al., 2007), and 
assembly (Gil et al., 2013), in which workers collaborate with robots by 
assuming different roles. Specifically, workers can act as supervisors to 
monitor robots’ behavior (Kunic et al., 2021), operators to change ro-
bots’ behavior (Zhou et al., 2020), or teammates to complete tasks with 
robots (Xiang et al., 2021), thereby improving labor productivity while 
protecting worker safety. In addition to interactions with individual 
construction workers, certain studies have proposed collective robotic 
construction, which is considered to be more time-efficient and less 
prone to long-term failures. For instance, Leder et al. (2019) designed a 
decentralized multi-robot system to reduce the fatigue of an entire 
worker team by having a large number of robots collaborate as a team to 
perform different construction tasks. Usually, collective robotic con-
struction is more extensively explored mainly in the construction of 
large-scale buildings or complex structures (Leder and Menges, 2023; 
Petersen et al., 2019). 

Optimal work–rest schedules and appropriate shiftwork patterns are 
effective management interventions to help construction workers 
recover from fatigue and are mainly applicable at the project and in-
dustry levels. Considering construction workers’ physical and physio-
logical conditions, working environment, job nature, and the minimum 
rest time stipulated by the government (Yi and Wang, 2017), the 
appropriate work–rest frequency and duration, and timing of rest breaks 
can be set to reduce CWF while ensuring labor productivity (Hsie et al., 
2009). Work–rest schedule and shiftwork pattern designs for construc-
tion projects usually need to be constrained by project-specific condi-
tions: for instance, to meet project deadlines, Cheng et al. (2018) 

Fig. 11. Overview of typical interventions.  

H. Zong et al.                                                                                                                                                                                                                                    



Safety Science 176 (2024) 106529

14

designed a work–rest schedule model based on a shift system to ratio-
nalize workers’ work and rest. In contrast, work–rest schedules and 
shiftwork patterns at the industry level are typically more universal. For 
instance, Yi and Chan (2013, 2015) developed work–rest schedules for 
the construction industry in hot and humid environments, considering 
the traditional working hours of construction workers and combining 
meteorological data and workers’ physiological data from different 
construction sites. 

In addition to the construction industry, key fatigue intervention 
practices in other safety–critical industries can help provide insights into 
alleviating CWF. Biomathematical models of fatigue (BMMF) are 
considered key countermeasures to aid in fatigue management in other 
industries. This approach utilizes sleep data or work schedule data to 
predict worker fatigue and performance (Mallis et al., 2004). At present, 
BMMF has been widely adopted in the aviation industry to assist in 
planning the work hours of flight crew members (CASA (Civil Aviation 
Safety Authority), 2014), and in the military to optimize duty planning 
arrangements (Hursh et al., 2004). However, research on BMMF in the 
construction industry is limited (Pilkington-Cheney et al., 2020), mainly 
due to CWF being primarily caused by physical exertion in addition to 
the impact of sleep. Nevertheless, BMMF technology can be integrated 
into existing CWF prediction methods to optimize workers’ work–rest 
schedules or shiftwork patterns. 

Automation is also an important intervention for addressing fatigue 
in other safety–critical industries. In the transportation sector, autono-
mous driving technology has been widely studied and applied in prac-
tice (Milakis et al., 2017; Yin et al., 2017), and autopilot in aviation has 
also long been mature and applied (Chialastri, 2012). However, owing 
to the high complexity, inadequate management, technological lag, and 
low-cost labor in the construction industry, there remains a gap between 
the concept and practice of automated construction (Cai et al., 2020). 
Similarly, Fatigue Risk Management Systems (FRSM), which are data- 
driven management systems that can consistently monitor fatigue 
risks to ensure personnel remain vigilant in fulfilling their duties, have 
been widely used in some industries such as the transportation and 
healthcare sectors (Gander et al., 2011; Querstret et al., 2020). However, 
such a refined management method for CWF is lacking. Overall, the 
intelligence and refinement of CWF management in the construction 
industry still need to be improved, and this task should be advocated at 
the industry level. While tackling key technical issues, it is also neces-
sary to establish and improve standard systems, reshape and redefine 
construction business processes, and reform the project construction 
organizational model in the construction industry. 

5.3.2. Challenges faced by interventions for CWF 
Despite extensive research on counteracting CWF, the use of wear-

able sensor devices and PPE is lacking in industry practice. Studies have 
found that factors such as comfort, privacy risks, and social impact have 
influenced the adoption of these advanced technologies by construction 
workers (Choi et al., 2017; Nnaji et al., 2020). Further research can 
explore strategies for overcoming the obstacles to implementing new 
technologies in the field of CWF prevention and optimizing the use of 
various exoskeletons to reduce workers’ physical burden. HRC in-
terventions have promoted the development of collective robot con-
struction, but the optimal deployment of different types of robots, 
according to task and workspace type, to reduce technical redundancy 
and resource waste has not been fully explored. In addition, the infor-
mation exchange among various devices, machines, and robots needs 
further research to ensure the smooth construction of collective robots 
and explore the application of digital twin technologies. Moreover, the 
best practices of fatigue interventions in other safety–critical industries 
can be studied to promote the management of CWF. Several crucial 
research questions require further investigation:  

• How can barriers to the use of wearable sensing devices and PPE to 
mitigate CWF be overcome to promote the adoption of these new 
technologies?  

• How can the deployment of different types of robots or exoskeletons 
according to the task and workspace type be optimized to reduce 
technical redundancy and resource waste?  

• How can interactions between various devices, machines, and robot 
information systems based on digital twin technology be promoted? 

• How can the best practices of fatigue intervention from other in-
dustries be leveraged to enhance the management of CWF? 

6. Conclusion 

CWF has received considerable attention and discussion within the 
past decades. Based on a mixed-review approach involving systematic 
review and bibliometric analysis, this study has provided a state-of-the- 
art review of CWF-related studies, from the root causes of fatigue to 
potential interventions. The findings of this review provide a foundation 
upon which scholars can gain more useful insights into CWF and may 
also help the construction industry to improve workers’ occupational 
health and safety. Specifically, this review evaluates the evolution of 
research themes and methods related to CWF; identifies the work- 
related, environmental, and personal risk factors that affect CWF; in-
vestigates the measurement, monitoring, and prediction methods of 
CWF; and summarizes the application of interventions to alleviate CWF 
across five levels. However, future research faces challenges, which 
include fully exploring the importance sequence and interaction of risk 
factors affecting CWF, improving the accuracy of CWF measurement and 
its adaptation to construction workflow, obtaining long-term CWF ob-
servations, and overcoming barriers to the application of new technol-
ogies in alleviating CWF. 

Although significant effort has been dedicated to reviewing the 
major developments in research related to CWF, this review is not 
exhaustive and is limited to the construction industry. Future research 
could explore occupational fatigue among workers in other industries. 
Due to differences in job characteristics, fatigue among personnel in 
other domains will be different from that among construction workers. 
Additionally, the correlations between different types of fatigue, the 
association between fatigue and unsafe behaviors, and the impact of 
fatigue on worker performance, are not fully discussed in this review. 
Further review efforts can be directed toward exploring these aspects. 
Overall, the study of occupational fatigue can play a significant role in 
fostering a safer, healthier, and more productive workforce. 
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