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ABSTRACT 37 

Interconnected tissue compartmental models having two, three, or four compartments, one or 38 

more of which was risk-bearing, have been previously investigated for predicting the probability 39 

of decompression sickness (DCS) in compressed gas diving. We extend this prior work under 40 

general conditions to multiple risk-bearing compartments while providing exact risk function 41 

integrals. Four biophysical models based on different inter-compartmental connections ranging 42 

from uncoupled to fully coupled with bidirectional interaction were trained on a large data set to 43 

reject unjustified model parameters. We also explore how coupled models (and similar 44 

uncoupled models) perform for the prediction of DCS in humans when extrapolated to dives 45 

outside of the training set. The most successful model assumes slower tissues influence faster 46 

tissues with all compartments bearing risk and provide very good predictions for dives with 47 

surface decompression using oxygen. 48 

KEYWORDS 49 

Decompression sickness, optimization, diving, perfusion-diffusion models, multi-exponential 50 

exchange kinetics, probabilistic models, maximum likelihood. 51 
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INTRODUCTION 53 

Decompression Sickness (DCS) is a condition which can occur in humans when there is a 54 

decrease of ambient pressure and can involve a variety of symptoms ranging from minor to  55 

fatal [1, 2]. Although it is generally accepted that DCS is initiated by the formation and growth 56 

of inert gas bubbles in the body [3], the mechanisms of its various forms are not completely 57 

understood. DCS can be encountered during diving, hyperbaric medical treatments, high altitude 58 

flights, and manned spaceflight operations [4]. Despite advances in methods for limiting the risk 59 

of DCS occurrence, it remains a significant challenge to operating in and exploring extreme 60 

environments. 61 

 Haldane et al. [5] are commonly credited as the first to provide an effective algorithm to 62 

significantly reduce DCS occurrences through a deterministic quasi-physiological mathematical 63 

model. He described the body as a parallel network of independent perfusion-limited tissue 64 

compartments in which the occurrence of DCS depended on the state of supersaturation in each 65 

of the tissues. They computed decompression schedules with this model which were more 66 

successful in comparison to previous methods at limiting DCS in compressed gas workers. In 67 

fact, in an experiment involving goats, they found that the proportion of illnesses with previous 68 

methodologies, based on uniform decompression schedules, was greater than with stage 69 

decompression though the stage decompression exposures completed the decompression in a 70 

third of the time. Yet, this approach was still not totally effective. 71 

 Noting the probabilistic nature of DCS in a rat model study by Berghage et al. [6], 72 

Weathersby [7, 8] introduced a probabilistic approach that treated DCS as a probabilistic binary 73 

variable where DCS = 1 if DCS occurred and DCS = 0 if DCS did not occur; although recent 74 

methods have been developed to simultaneously predict the probability and severity of 75 



4 
 

decompression sickness in humans [9]. This probabilistic approach had three modules: (a) a 76 

deterministic compartmental model, described by uncoupled Ordinary Differential Equations 77 

(ODEs) that computed the partial pressure of nitrogen in parallel tissue compartments; (b) a 78 

nonlinear function that mapped the instantaneous supersaturated nitrogen onto a probability that 79 

a diver would experience DCS; and (c) a body of empirical diving data that included depth-time 80 

dive profiles for many dives along with their binary DCS outcome. Modules (a) and (b) have 81 

undetermined parameters whose optimal values were found from the data in module (c) using the 82 

maximum likelihood approach which resulted in the best possible simulation of the empirical 83 

data by that model [10]. The likelihood approach has produced a large number of statistically-84 

based decompression tables in which the DCS probability was controlled to target values over a 85 

wide range of dive exposures [11-26]. 86 

Notwithstanding the advances made during the last century in understanding fundamental 87 

DCS mechanisms and methods for computing decompression schedules, many uncertainties 88 

remain leading to a variety of alternative decompression procedures [27, 28] that still 89 

occasionally result in DCS [29]. Indeed, Doolette reported that Haldane’s tables remain desirable 90 

in some cases [30]. The probabilistic models of DCS described above used parallel, perfusion-91 

limited tissue compartments. The use of mono- or multi-exponential tissue kinetics was 92 

investigated in a dog model by Weathersby et al. [31, 32] using dilute 133Xe breathed for a 93 

specified time interval. In fitting the radio-gas uptake and washout curves, the researchers found 94 

that at least two, frequently three, and occasionally four exponentials were needed to accurately 95 

fit the data. Novotny et al. [33] noted that a model based on parallel tissues failed to adequately 96 

describe experimentally measured 133Xe washout from dog calf muscle.  Doolette et al. [34-38] 97 

found that models including gas transport between tissue compartments were superior at 98 
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simulating experimental measurements of inert gas exchange in sheep brain and muscle when 99 

compared to models with uncoupled tissue compartments. 100 

The first successful probabilistic decompression model for human divers was based upon 101 

a collection of uncoupled compartments [7, 11]. Later, models incorporating inter-tissue gas 102 

transport were derived from a deterministic model (the Kidd-Stubbs model) incorporating inter-103 

tissue gas transport [39]. The Kidd-Stubbs model combined a series of four hypothetical tissues 104 

in series; with a single shared input/output to one of the distal compartments.  Goldman [40] 105 

included inter-tissue gas transport in probabilistic decompression modeling in which he 106 

considered two or three inter-connected compartments with only the central compartment 107 

contributing to DCS risk and assumed linear dynamics in order to be able to integrate the 108 

equations analytically; yet, risk functions were estimated numerically. He suggested that this new 109 

class of models might potentially extrapolate better to dives not included in his truncated 110 

calibration data than the traditional parallel tissue models without inter-tissue perfusion. 111 

In our previous works [41, 42], we extensively explored inter-tissue gas transfer models 112 

and other model structures based upon experimental work in sheep for use in predicting the 113 

probability of DCS in humans.  Models containing coupled, perfusion-limited compartments – 114 

but with a single input and output – outperformed the traditional parallel, three-compartment, 115 

perfusion-limited models only for single air bounce dives. Models containing coupling with 116 

perfusion as well as diffusion – again with a single input and output – outperformed the same 117 

traditional parallel, three-compartment, perfusion-limited models for repetitive and multilevel air 118 

dives, dives with oxygen decompression, as well as single air dives.  These findings support our 119 

conclusion that a combination of different uncoupled multi-compartment and single-120 

compartment structures are likely needed to best describe diverse data sets. 121 



6 
 

The object of this paper is a detailed investigation of inter-tissue perfusion to determine if 122 

there is merit to Goldman’s claims.  We extend Goldman’s model beyond two or three 123 

compartments, reduce the computational cost by replacing numerical with analytical integration, 124 

evaluate several risk-bearing tissue compartments rather than only one, and calibrate our new 125 

models to a larger set of dive profile data.  Using linear algebra [49], we provide a general 126 

solution applicable to interactions between any number of compartmental tissues with linear 127 

combinations of exponential kinetics while guaranteeing a tissue matrix that remains 128 

characterized by distinct negative eigenvalues. We provide a general closed-form integral of the 129 

risk function that allows for fast estimation of DCS risk for numerous profiles without large 130 

computational cost. Further, we consider the case of multiple compartmental contributions to 131 

DCS risk; each having a different gain and a different risk threshold to account for differences 132 

between tissues. We explore the prediction capabilities, model failures, and model robustness 133 

when large data sets are used. We provide an efficient numerical algorithm to iterate through 134 

tissue matrices characterized by distinct real negative eigenvalues and propose a numeric 135 

methodology to restrict analysis to symmetric tissue matrices that may suggest physiological 136 

properties. Finally, we investigate the extrapolation of inter-tissue perfusion models in 137 

comparison to the well-known parallel tissue model EE1 [50, 51]. 138 

MATERIALS AND METHODS 139 

Derivation of Inter-Connected Tissue Kinetics  140 

Let the tissue partial tension vector, n∈p � , be described by the following system of linear 141 

ordinary differential equations 142 

 ( ),= + ⋅ a n

d
p t

dt

p
Ap f  (1) 143 
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where we define n n×∈A �  the tissue matrix that is assumed to have distinct negative real 144 

eigenvalues; n is the number of well-stirred tissues, n∈f � is a vector, constant with respect to 145 

time, and , ( )a np t  is the time varying arterial nitrogen partial pressure.  146 

 In agreement with Thalmann et al. [52] and Goldman [40], ,a np is assumed to be equal to 147 

the alveolar nitrogen partial pressure. Therefore, we can distinguish two cases, depending on the 148 

breathing gas conditions 149 

 ( ) ( ) ( )
2 2, 1  = − ⋅ − 

a
a n o H Op t FI p t p  (2) 150 

for constant inspired fraction and 151 

 ( ) ( ) ( )
2 2, = − −a

a n H O Op t p t p PI t  (3) 152 

for constant inspired partial pressure, as reported in equations (A13) and (A14) in appendix A of 153 

Goldman [40]; where ( )ap t  refers to the ambient hydrostatic pressure, 
2H Op  to the water vapor 154 

partial pressure at body temperature (i.e., 37C° ), and finally
2oFI  and 

2OPI  are the fraction of 155 

oxygen in the inspired gas and its partial pressure, respectively. 156 

 Throughout this derivation, we make the assumption of piecewise dive segments; thus, 157 

we can write ( )ap t as an explicit function of time, so that 158 

 ( ) 0
a a ap t p r t= +  (4) 159 

where 0
ap  is the ambient hydrostatic pressure at time zero, and ar  is its rate of change with 160 

respect to time t . Similarly, we have an expression for the alveolar nitrogen partial pressure. In 161 

particular, it follows that ( ),a np t  may be expressed as 162 

 ( ) ( ), , ,0= + ⋅a n a n a np t p r t  (5) 163 
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where the expression of the constants ( ), 0a np and ,a nr  may be easily obtained, using Eq. (2) or 164 

Eq. (3). For example, in the case of constant inspired partial pressure, we get 165 

( ) ( )( )
2 2, 00 1 a

a n O H Op FI p p= − − , and ( ) ( )
2, 1a

a n Or t r FI= − . We impose the associated initial 166 

conditions, expressed as0 (0) n= ∈p p �  as the initial tissue nitrogen tension. 167 

Let 1−=A SDS  be the spectral decomposition of the A  matrix, so that S  is the matrix of 168 

eigenvectors of A , D is the diagonal matrix formed with the eigenvalues of , and let pose 169 

.=p Sφ Substituting into Eq. (1) we have the following system of uncoupled differential 170 

equations for :φ  171 

 1 2= + + ⋅d
t

dt

φ
Dφ k k  (6) 172 

where ( )1 , 0a np-1k = S f , and 1
2 ,a nr−=k S f , with the associated initial conditions 1

0 0 .−=φ S p  173 

After some manipulations, we can write the general solution for ( )tp , as : 174 

 175 
 ( ) ( ) ,t t t= + + ⋅p Eμ ξ τ  (7) 176 

where E = SC , with 
1

n

i i i
i

c
=

= ⊗∑C e e , having addressed with ⊗  the tensor product applied to 177 

vectors, ( ) , 1,2, ,it
i t e i nλµ = = K , ξ = Sδ , τ = Sε  with 2 1

2
,i i

i
i i

k kδ
λ λ

= − −  2ε
λ

= − i
i

i

k
, and with iλ  the 178 

i-th eigenvalue of A , assumed to be distinct and strictly negative to ensure stability. 179 

Analytical Integration of the Risk Function 180 

As proposed in Goldman [40], adopting the formulation proposed by Thalmann et al. [52], we 181 

can write the i-th component of the risk function, ρ, as 182 
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( ) ( )

( )

a
i i

i a

p t p t b

p t
ρ

 − + =  (8) 183 

where ib  is constant with respect to time and represents the pressure threshold of the i-th tissue 184 

compartment and ( )ip t  is its tissue partial tension, provided by 185 

(7)Error! Reference source not found.. Eq. (8) simply states that in each kinetic compartment 186 

the risk is proportional to the relative supersaturation above a certain threshold ib . We are 187 

aiming to evaluate the hazard vector ζ , defined as 
f

i

t

t

dtζ = ∫ ρ , since the probability of developing 188 

DCS is related to this function through the following expression 189 

 1 − ⋅= −DCSP e α ζ  (9) 190 

where andi ft t  are the initial and the final times of the dive segment, respectively, with n∈α �  a 191 

vector of tissue compartment gains that is assumed to be constant with respect to time. While 192 

Goldman [40] assumes that only the first compartment contributes directly to DCS risk, we 193 

choose to keep a general notation in our derivation. Specifically, Goldman's models are found by 194 

imposing α  to be [ ]0 0
Tα  and [ ]0

Tα for his three (3CG and 3CM) and two compartment 195 

models (2CG and 2CM), respectively. 196 

 We integrate the function starting from a general initial time and break the integral into 197 

parts where the risk function becomes negative. To evaluate the integral, it is more convenient to 198 

rewrite the expression for ρ in terms of linear operators so that they may be removed from the 199 

integration. After substituting Eq. (7)Error! Reference source not found. into Eq. (8) and 200 

simplifying, we have the following expression for ρ  201 

 ( ) ( ) ( ) ( ) .t t y t tω= + + −ρ Eν ξ τ u  (10) 202 
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where the following definitions apply in Eq. (10) 203 

 
( ) ( ) ( )
1 2

( ) ,
n

T
tt t

a a a

e e e
t

p t p t p t

λλ λ 
=  
 

ν L  (11) 204 

 = −ξ ξ b  (12) 205 

( ) ( )
1

a
t

p t
=y , ( ) ( )a

t
t

p t
=ω , and finally 206 

 [ ]1 1 1 .

n

T=u
644474448

L  (13) 207 

With these assumptions, we can estimate ζ , as 208 

 ( ) ( ) ( ) ( ) .
f f f

i i i

t t t

f i

t t t

t dt y t dt t dt t tω= + + − −∫ ∫ ∫ζ E ν ξ τ u  (14) 209 

Every term on the right-hand-side of Eq. (14) must be evaluated. With the assumption of 210 

piecewise dive segments, we can impose Eq. (4), the definition of the ambient hydrostatic 211 

pressure. Then, we must distinguish two cases for each term: when 0ar ≠  and when 0ar = . 212 

After some manipulation, we get the following expressions: 213 

 ( ) ( ) ( )
0

1f f i

i

i i

t t t

i i i f i i ia a a
t t

e
t dt dt e EI t EI t

p r t r

λ
λν λ λ λ λ−  = = − + − + +∫ ∫ , for 0ar ≠  (15) 214 

and 215 

 ( ) ( )
0 0

1f f i
i f i i

i i

t t t
t t

i a a
it t

e
t dt dt e e

p p

λ
λ λν

λ
= = −∫ ∫ , for 0ar =   (16) 216 
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where we have introduced the modified eigenvalue iλ , defined as : 0
a

i i a

p

r
λ λ= , for 1,2, , .i n= K   217 

In Eq. (15), ( )EI t  refers to the exponential integral function, as defined in Abramowitz and 218 

Stegun [53], that is, ( )
t xe

EI t dx
x−∞

= ∫ . Similarly, for the other scalar terms, we have 219 

 ( ) 0

0 0

1
ln

f f

i i

t t a a
f

a a a a a
it t

p r tdt
y t dt

p r t r p r t

 +
= =   + + 

∫ ∫ , for 0ar ≠  (17) 220 

and 221 

 ( )
0 0

f f

i i

t t

f i
i a a

t t

t tdt
y t dt

p p

−
= =∫ ∫ , for 0.=ar  (18) 222 

Finally, for the integral of ( )tω  to be evaluated in Eq. (14), we have 223 

 ( )
( )

0 0
2

0 0

ln
f f

i i

t t a a a
f i i

i a a a a aa
ft t

t t p p r tt
t dt dt

p r t r p r tr
ω

 − += = +   + + 
∫ ∫ , for 0ar ≠  (19) 224 

and 225 

 ( )
2 2

0 0

1

2

f f

i i

t t

f i
i a a

t t

t t
t dt t dt

p p
ω

−
= =

⋅∫ ∫ , for 0.=ar  (20) 226 

Equations (15)-(20) are the relations needed to evaluate Eq. (14) and, therefore, the DCS 227 

probability by using Eq. (9).  228 

Integration of Positive Definite Portion of the Risk Function 229 

When estimating the probability of DCS, we have to neglect any interval where the risk function 230 

attains negative values. To achieve this, we must find the risk function roots and check for sign 231 

changes. Since the risk function is continuous on its interval of definition, Bolzano's theorem 232 

[54] applies. 233 
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Recalling Eq. (8), we have to study the sign of the following function 234 

 ( ) ( ) ( ){ }sign sign , for 1,2, , .ρ  = − + =     K
a

k k kt p t p t b k n  (21) 235 

Making use of the general solution for the compartment tissue pressure, the generic component 236 

of the risk function vanishes at time t , if and only if 237 

 ( )0
1

.λ ξ τ
=

+ + ⋅ = + ⋅ +∑ j

n
t a

ij i i a
j

t E e t p r t b  (22) 238 

The last expression is non-linear with respect to the scalar unknown t , but decoupled, so 239 

without loss of generality, the generic scalar equation can be solved. Rearranging similar time-240 

dependent terms, we can rewrite Eq. (22), as 241 

 
0

0 0

1

0λ χ η
=

− ⋅ − =∑ j

n
t

j
j

t E e t  (23) 242 

where we have defined the following quantities 243 

 ( )arχ τ= −  (24) 244 

and 245 

 ( )0 .η ξ= + −ap b  (25) 246 

To find the roots of Eq. (23), if any, we proceed as follows. First, each integration interval was 247 

subdivided into S sub-intervals of equal length. Then, with j
it  and j

ft  as the initial and final 248 

times of the j-th sub-interval, respectively, we evaluate ( ) ( ) , for 1, 2, ,j j
j i fh t t j Sρ ρ= ⋅ = K . For 249 

every sub-interval for which we found 0jh < , we applied the Dekker-Brent method [55], to find 250 

the internal root. We choose this algorithm for its robustness and fast convergence and check the 251 

sign of the risk between successive roots, including the two most external intervals starting from 252 
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it  and arriving to ft . We labeled intervals where the risk function attained negative values and 253 

excluded these from the integration. 254 

Selection of Model Parameters 255 

The analytical derivation presented so far is completely general and applicable to all 256 

models governed by linear coupled ordinary differential equations. However, to assess the 257 

goodness-of-fit for a specific model to calibration data, some assumptions have to be made on 258 

the form of the matrix A , the vector f , and their dimensions. How many tissue compartments to 259 

consider, for example, which parameters to vary, and which constraints to apply are not trivial 260 

choices. Choosing too few parameters might result in a sub-optimal fit of the calibration data 261 

whereas choosing too many might over-fit the data leading to poor extrapolation to dives not in 262 

the calibration data. In this section, we review previous research and in the next section, derive a 263 

new class of models. This will allow a contrast between previous and newer work.  264 

 Goldman [40] presents four new multi-exponential models: two couples of two (2CG and 265 

2CM) and three compartments (3CG and 3CM), respectively, in which only one compartment is 266 

assumed to directly contribute to DCS risk. This risk-bearing compartment is associated with the 267 

eigenvalue having the largest absolute value. The Goldman models define the maximum number 268 

of free parameters within the tissue matrix A  as the number of tissues, n, or the number of 269 

distinct eigenvalues. For 3CG, 3CM and 2CG, 2CM, this requires only three and two parameters, 270 

respectively. We argue, however, that all free parameters of the model (not just the number of 271 

tissues) must be evaluated, and a given parameter rejected only if it fails a likelihood ratio test. 272 

 Inspecting Goldman's three tissue compartment models, the A  matrix has the form 273 
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 ( )
( )

1 1 1 1

21 2 21 2 21

31 3 31 3 31

3

1 PR 0 ; PR

0 1 PR PR

x x x xf f f f

f f f

f f f

−   
   = − + =   

  − +   

A f  (26) 274 

where the following additional constraints were imposed to evaluate Eq. (26): 2 3PR PR 0.2= =  275 

and 2 3PR PR 0= =  for the 3CG and 3CM, respectively. They represent the "perfusion ratio", 276 

defined as "diffusion rate constants" out of the generic compartment "i". They were set arbitrarily 277 

to 0.2, to illustrate the properties of the models; whereas they vanish, in the case of a mammillary 278 

model, since the connections of compartments 2 and 3 with the circulatory system are severed by 279 

assumption. This construction guarantees negative and generally distinct eigenvalues if the free 280 

parameters are strictly positive, but these constraints are arbitrary and only used for testing. The 281 

connections between the second and the third compartments were also severed. The two 282 

compartment tissue models are obtained from the previous models by reducing the degrees of 283 

freedom to two and considering a two-by-two system similar to the three-tissue case. 284 

Algorithm for Iterating through Stable Matrices and Choice of Forcing Term 285 

In this section, we remove all or most of the assumptions of Goldman [40] and select 286 

models based on the form of the A  matrix as before while only considering cases associated 287 

with strictly negative distinct eigenvalues. We formulate our assumptions starting from the 288 

matrix spectral decomposition to clarify how the forcing term may be conveniently related to the 289 

tissue matrix. 290 

 Recall our matrix spectral decomposition 291 

 1.−=A SDS  (27) 292 

By selecting models based on the properties of S  and D , we can easily impose any spectral 293 

property of A  and use Eq. (27) to derive A a posteriori. To consider only negative and distinct 294 
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eigenvalues, we trivially impose ( )1 2diag , , , nλ λ λ=D K , choosing 1 10 ,n nλ λ λ−> > > >K  295 

without loss of generality and maintaining Goldman's convention of choosing the first 296 

compartment as that associated with the smallest eigenvalue.  In so doing, we start from the 297 

tissue times, as is done with independent tissue models in a more physiological manner. 298 

 Any invertible diagonalizable matrix, S , is appropriate but may have redundant 299 

parameters since the eigenvector matrix is not unique.  We restrict our choice of free parameters 300 

by considering independent tissue compartments that may be obtained as a limiting case from 301 

our general formulation by imposing, e.g., =S I , where n n×∈I � is the identity matrix. This 302 

observation suggests that we can relate the difference between the eigenvector matrix S  and the 303 

identity matrix to the degree of dependency among the different compartments. Without loss of 304 

generality, we impose equality among the elements of the main diagonal of S  since they are 305 

arbitrary multipliers of the eigenvalues in A  and assume they are equal to one. It is trivial to 306 

prove a matrix A  may be spectrally decomposed by Eq. (27), through an eigenvector matrix S , 307 

whose main diagonal elements are one under the assumption of distinct eigenvalues. With this 308 

choice for S , we have 2n  free parameters, ( )1n n −  for the generic choice of components of S  309 

outside the main diagonal plus n eigenvalues that we would have by considering A . 310 

 We constrain the forcing term multipliers addressed by the vector f  through the choice of 311 

the matrices S  and D  by inspecting a steady-state solution. Specifically, our model produces a 312 

constant tissue pressure if we assume a dive profile characterized by constant arterial nitrogen 313 

tension with the initial condition that all tissue tensions are approximately equal to this constant 314 

value. For this special case, all derivatives of the partial tissue tension with respect to time must 315 

vanish. Hence, 316 

 , .= + a np0 Ap f  (28) 317 
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With the hypothesis that ,a np=p u , where u is the constant unit vector defined in Eq. (13), we 318 

have the following required expression for the forcing term 319 

 .= −f Au  (29)  320 

Equation (29) is consistent with both independent and uncoupled tissues as in the Goldman 321 

models. 322 

Algorithm for Iterating through Symmetric Matrices 323 

 We begin by investigating a balanced nitrogen contribution between any two tissue 324 

compartments, i.e., symmetric tissue matrices in which the contribution to the j-th tissue 325 

provided by the i-th tissue is equal to that exerted by the j-th tissue to the i-th tissue. This 326 

requires iteration through symmetric matrices starting from their spectral decomposition for 327 

which we propose a simple algorithm. 328 

 Recalling Eq. (27), we constrain S  so that A  is a symmetric matrix where S  is 329 

orthogonal since a real matrix is symmetric if and only if it has an orthonormal basis of 330 

eigenvectors [52]. Thus, we have 331 

 1 .−= = TA SDS SDS  (30) 332 

Let , 1,2, ,i i n=u K , be the generic column vectors of S  which are eigenvectors of A . First, we 333 

arbitrarily choose 1n −  components, 1 2 1ˆ , 1, 2, ,n
i i i ir i nϖ ϖ ϖ − = = L K , for each column of S . 334 

Then, we rescale for a known scalar greater than their Euclidean norm, so that335 

2

ˆ
, 1,2, ,

ˆ
i

i i n
K

= =r
r

r
K , with 1K > . If, for example, we suppose that 1.1K = , we compute the 336 

last components 
2

1, 1,2, ,i i n= =u K . We apply the modified Gram-Schmidt process [49] and 337 

derive the n-th column of the orthogonal S  matrix making A  symmetric. 338 
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Model Calibration: Maximum Likelihood Estimation 339 

Maximum likelihood is a statistical method used for comparing the relative goodness of 340 

fit of models to given calibration data [7, 56, 57]. We review this method below to show how it 341 

relates to DCS probabilities estimated in the previous sections. 342 

 Equation (9) expresses the probability that a diver experiences DCS. The probability of 343 

not experiencing DCS plus the probability of experiencing DCS must equal one by the law of 344 

total probability implying that 345 

 0 .− ⋅=P e α ζ  (31) 346 

Suppose that our calibration data consist of D  dives with known outcomes. The likelihood 347 

function of the entire data set is the joint probability of observing the entire trial,  348 

 ( ) ( ) ( ) ( )L trial obs1 obs 2 obs ,P P P D= L  (32) 349 

as reported in [7]. The probability of observing the j-th event with 1, ,j D= K  is 350 

 ( ) ( ) ( )1
obs dive dive 1, 2, , ,j j

DCS oP j P j P j j D
δ δ−= = K  (33) 351 

where jδ  is the outcome variable and equal to one for full DCS and zero for no DCS. A 352 

marginal DCS event was weighted as 0.1 full DCS event for comparison with Goldman’s results 353 

[40] although Howle et al. [58] argued that marginal events should not be used for DCS 354 

parameter calibration; an assertion that was later investigated by Murphy et al. [59] for 355 

generating iso-risk air diving schedules, where several optimal ascent schedules have been 356 

obtained, for a given tolerated risk of developing DCS. 357 

 The natural logarithm of the likelihood is used to avoid extremely low values as this 358 

monotonic transformation preserves the order of the function [7]. Therefore, the natural log 359 

likelihood (LL) of the calibration data is estimated with the following expression: 360 
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 ( ) ( )
1

LL trial log obs .
D

j

P j
=

=   ∑  (34) 361 

Although not explicitly expressed in Eq. (34), the LL value depends on the model parameters 362 

through probability estimates and observed outcomes. To find the parameter values that 363 

maximize Eq.(34), we have to solve an optimization problem. We note that Eq. (34) generally 364 

constitutes a nonlinear non-convex optimization, making it difficult to solve with local 365 

optimization methods, based on the gradient descent, because they can be trapped in local 366 

minima [60, 61]; thus we adopted the Nelder-Mead algorithm [62] chosen for its robustness and 367 

ability to handle ill-conditioned problems. It is worth noting that, as an alternative to log 368 

likelihood maximization, Bayesian methods have recently been shown to be beneficial in 369 

optimizing probabilistic decompression sickness models [63]. 370 

RESULTS AND DISCUSSION 371 

 Having derived general solutions to the interconnected tissue model, we now apply these 372 

solutions with a large calibration data set known as "BIG292" [64]. Our objective is to evaluate 373 

how the sub-set of the general model derived by Goldman [40] will extrapolate to this larger 374 

dataset and to compare these results with the performance of the general model. First, we 375 

describe the data and then fit Goldman's most general model (3CG) to this data set.  Next, we 376 

describe four novel interconnected models and fit these to BIG292. Last, we compare all models 377 

with the equivalent independent tissue model (EE1 [50, 51]) to verify whether the extra 378 

parameters of the new models are justifiable by the likelihood ratio test. Finally, we examine 379 

how well all models extrapolate (predict the observed outcomes) of data not included in the 380 

BIG292 calibration data.  381 
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 The conditions through which the dives are conducted may greatly impact, among other 382 

factors, the rate of blood circulation, which -in turn- affect the amount of excess nitrogen given 383 

off through the lungs [5], thus ultimately influencing the likelihood of being affected by DCS. 384 

Therefore, it is pivotal to rely on high quality data, reporting the circumstances under which 385 

dives occurred, to have a proper calibration of DCS models.  Moreover, it is crucial to have a 386 

consistent definition of DCS events, throughout the study.  For collecting the data constituting 387 

the BIG292, Weathersby et al “developed a set of diagnostic criteria […] to serve as a 388 

retrospective tool in determining what symptoms and signs were to be regarded as DCS”.  389 

Furthermore, the conditions under which the dives occurred are clearly identified; for example: 390 

dry dives, where variation between subjects is minimal and the time-depth profile is finely 391 

controlled versus wet dive where a less controlled environment is present and exercise and 392 

thermal factors influence represent nuisance variables. 393 

 The U.S. Navy has used BIG292 extensively for calibrating probabilistic decompression 394 

models. It consists of 3,322 Air and Oxygen-Nitrogen exposures resulting in 190 full DCS and 395 

110 marginal DCS cases.  The BIG292 dive data, together with thousands of additional dive 396 

trials are publicly available in two U.S. Government reports [64, 65]. Because these data are 397 

randomized, de-identified, and publicly available, no IRB approval was required for this study. 398 

The data were collected by the U.S., U.K. and Canadian military facilities from 1944 to 1997 and 399 

include detailed time-depth histories, inspired gas(es), gas switches, and case reports for divers 400 

with full or marginal DCS. To be consistent with Goldman’s approach, we weighted marginal 401 

DCS as 0.1 but did not consider symptom onset times [8]. Conversely, the risk thresholds, vector 402 

b in Eq. (8), was not set a priori and was included in the models to be optimized, whereas 403 

Goldman fixed it to 0.021 [40]. 404 
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 When we evaluated the 3CG model on BIG292 using the published optimal parameter 405 

set, it predicted zero DCS probability on 73 dive profiles where DCS does occur.  This is 406 

described as model failure. We attempted to re-optimize this model using the aforementioned 407 

parameter set as the starting point for the optimization but were unsuccessful again. Finally, we 408 

sampled the likelihood function and adopted more than 110,000 random starting points chosen 409 

from a pseudo random uniform distribution around the optimal set with a range of 1/4 to 4 times 410 

the optimal parameter values. Again, this resulted in model failure leading us to conclude that the 411 

3CG model will not fit the BIG292 data set without model modification.  412 

Next, we evaluated four novel interconnected models based on the spectral 413 

decomposition described in the previous section.  The models differed depending on assumptions 414 

pertaining to the eigenvector matrix .S  We examined three tissue models that differed from 415 

Goldman in that all compartments were DCS-risk-active. 416 

 The following forms for the eigenvector matrix were considered: 1) Upper Triangular 417 

(UT); 2) SKew-symmetric (SK); 3) SYmmetric (SY); 4) GeNeral (GN).  UT also produces an 418 

upper triangular tissue matrix: since, if S  is upper triangular, then A  will necessarily also be so.  419 

This will make interpretation of the physical elements more direct, because the eigenvalues of an 420 

upper triangular matrix can be promptly read on the matrix main diagonal.  Also, since the 421 

tissues are ordered according to increasing eigenvalues, this model assumes that the contribution 422 

of faster tissues to slower tissues may be neglected in estimating the DCS risk: because, for 423 

definition of an upper triangular matrix, we have that 0ija =  if i j> .  SK and SY were adopted 424 

to investigate whether algebraic constraints on the eigenvector matrix may be compatible with 425 

the data or may have better extrapolation properties. The skew-symmetric matrix refers 426 

exclusively to the components off the main diagonal since the main diagonal of a complete 427 
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skew-symmetric matrix would be all zeros resulting in a singular matrix.  Finally, the GN model 428 

was the most general model and investigated whether all extra parameters were justifiable or 429 

were useful for extrapolation to data not in the calibration data set.  430 

 Figure 1 sketches the differences among the EE1, Goldman's 3CG and the most general 431 

model introduced in this paper (GN).  In the EE1 model and in the models proposed here all 432 

tissue compartments contribute directly to DCS risk, whereas in Goldman's models only the 433 

central compartment, characterized by the smallest eigenvalue, has a nonzero risk gain.  EE1 434 

does not include any inter-perfusion phenomenon, while Goldman's models assume only inter-435 

perfusion between an external compartment and the central compartment; our model generalizes 436 

it and includes connections between any two compartments. 437 

 For example, consider a simple derivation of the UT model with the optimal set reported 438 

in  439 

Table 1.  For the eigenvector matrix, we have posed, 1, 1,2, ,iis i n= = K  without loss of 440 

generality, and for the specific model we have 0,ijs =  if , 1,2, , .i j i n> = K   Once we have 441 

evaluated S, we can compute 1−S  and derive A, through Eq. (27).  Finally, we evaluate the vector 442 

f, through Eq. (29). Since 443 

1 0.066 0.572

0 1 -2.899 ,

0 0 1

− 
 =  
  

S  we get: 

-0.917 -0.060 0.348

0 -0.008 -0.018 ,

0 0 -0.002

 
 =  
  

A  and 

0.629

0.026

0.002

 
 =  
  

f .  444 

The remaining free parameters are the optimal gains, which may be found analytically [66], and 445 

the thresholds as reported in  446 

Table 1. 447 

 448 

 449 
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Figure 2 schematizes the connections among the three tissues of the UT model. The radii 451 

of the circles reflect the value of the corresponding tissue eigenvalues.  All relative terms were 452 

scaled for the absolute value of the corresponding eigenvalue for each tissue.  Arrow thickness 453 

represents the strength of the interaction although the figure is not to scale.  The direction of the 454 

arrows indicates the direction of the interaction for a positive increment of the relative variable.  455 

For example, the 23a  term indicates the effect a change in the third tissue tension has on the rate 456 

of change in the second compartment.  Since the arrow departs from the second tissue, we infer 457 

that a positive increment in 3p  contributes to a decrement on 2p . The double arrow (23a  ) 458 

indicates a value roughly double its corresponding eigenvalue.  The other models follow the 459 

same technique and are not discussed.  We emphasize that any other coupled model may be 460 

expressed through our formulation under the assumptions of unique, negative eigenvalues, and a 461 

diagonalizable tissue matrix.  We can compute S and D, for example, knowing A for Goldman's 462 

3CG optimal model.  The computed S will not always satisfy our assumption of the main 463 

diagonal occupied by ones, however, we can obtain an equivalent matrix from any representation 464 

of S by dividing each column by its diagonal term.  Should we have a zero on the main diagonal, 465 

it suffices to change the numeration of the column of our problem since we can exclude a whole 466 

row of zeros because S is always non-singular. 467 

 For all models, we tried at least 128 random restarts to search for the best parameter set 468 

using parallel processing and did not consider onset times, as already stated.  At first, we 469 

optimized the EE1 model, taken as a benchmark, comprised of three independent tissue 470 

compartments.  EE1 has nine adjustable parameters: three tissue time constants, three tissue 471 

gains, and three pressure thresholds.  Once we found the optimal parameter set for EE1, we used 472 

it as a starting point for all the interconnected models.  This is possible because all models, 473 
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including EE1, are part of a nested set within the general model so its solutions exist within the 474 

general solution space where the terms of the main diagonal of the eigenvector matrix are all 475 

ones.  476 

We adopted best optima from the UT, SK and SY models as starting optimization points 477 

for the GN model.  Optimal parameter sets with LL values are shown in  478 

  479 
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Table 1. Confidence intervals were computed by inverting the likelihood ratio test [67] 480 

using a Monte Carlo method and are reported as variations from the optimal value in superscript 481 

and subscript. 482 

Table 2 contrasts the various models using a likelihood ratio (LR) test and indicates that 483 

the extra parameters for the coupled models are justified with a confidence of at least 95%.  484 

Nevertheless, the SY has a decrement of only 0.12 LL units compared with the GN model 485 

despite GN having three additional parameters, so GN does not pass the LR test when compared 486 

with the SY and UT models. However, GN is better than the SK and UT models.  This suggests 487 

that SY is the preferred model when fit to BIG292.  Table 3 provides a detailed description of the 488 

predicted DCS probabilities for all four coupled models and compares them with the EE1 model.  489 

All models fit the data with reasonable accuracy, based on risk prediction.  The results suggest 490 

that the optimized SY outperforms EE1for all dive types except for saturation and multi-level 491 

dives.  492 

 To assess the extrapolation properties of the models, we considered 5,163 exposures 493 

comprised of Air and Oxygen-Nitrogen dives and surface O2 decompression dives that resulted 494 

in 214 full DCS and 329 marginal DCS events.  We extracted this data set, from the original data 495 

sets contained in [55-56] pulling all the data pertaining to the same dive profile, together.  Table 496 

4 compares the risk prediction of the four interconnected models with EE1.  The UT model 497 

clearly out-performs all the other models both for LL and the number of predicted DCS cases.  498 

Table 4 also reports partial LL values grouped according to dive type in an effort to establish 499 

when coupled models may be worse than EE1 or if a particular model would seem to better 500 

extrapolate for a specific type of dive.  The results indicate that SY (and GN, consequently) also 501 

outperforms EE1 and the abrupt decrement in the total LL is mainly due to poor performance for 502 
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submarine escape dives.  On the contrary, UT is confirmed as the best coupled model considered 503 

in this work, and even if it also greatly overestimates the DCS risk for this kind of dive, it is still 504 

considerably better than any other model.  Conversely, EE1 still remains the best model when 505 

evaluated on single air dives, both in terms of predicting risk and in terms of LL measure.  506 

Overall, the best coupled model, UT, presents a percentage error less than 5% when estimating 507 

the total number of DCS cases on the whole extrapolation set, as opposed to more than 24% 508 

when adopting the equivalent uncoupled model, EE1.  Finally, we observe the superior 509 

predictions for the UT model on surface O2 decompression and higher LL than other models of 510 

similar degrees-of-freedom.  511 

CONCLUSION 512 

We investigated the fitting quality and extrapolation capabilities of coupled 513 

compartmental models for predicting DCS probability in compressed gas diving.  The motivation 514 

for this work was to investigate certain tissue compartment couplings with an a-priori 515 

specification of the coupling structure.  Our coupled compartmental models allowed, in the most 516 

general case, for inert gas exchange with the circulatory system and between all individual 517 

compartments.  We proposed a new formulation of the coupled tissues model based on the 518 

spectral decomposition of the tissue interconnection matrix and further derived piecewise exact 519 

gas exchange solutions for the new models.  The exact solutions represent a projection of the 520 

original problem onto a space spanned by the eigenvectors of the tissue coupling matrix.  In the 521 

space of the projected problem, the "compartments" decouple from one another making the 522 

problem far simpler and faster to optimize.  Our interconnected models have, as a trivial subset, a 523 

well-tested parallel tissue model (EE1) allowing for rigorous comparison between our new 524 

models and this previous parallel model.  Four distinct types of tissue interconnections were 525 
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considered and arose naturally from the form of the off-diagonal structure of the eigenvector 526 

matrix.  These four classes of interconnected models were the (1) skew-symmetric, (2) general, 527 

(3) upper triangular, and (4) symmetric models.  The symmetric interconnected model had the 528 

best predictive quality for the training data set.  In comparison to all four new interconnected 529 

models, the nested parallel model (EE1) was rejected with at least 95% confidence.  Although 530 

the best of the inter-connected models to fit the calibration data was the symmetric model, the 531 

upper triangular model extrapolated better to dive profiles outside of the training data set.  The 532 

upper triangular model also outperformed all of the other models on O2 surface decompression 533 

dive profiles.  There are many extensions of our new models yet to be explored, for example, the 534 

use of DCS symptom onset times in optimizing the models and gas saturation/bubble phase 535 

change, as well as the introduction of some penalization to ensure a minimum good fit to each 536 

subset of DCS for each diving type but the preliminary results presented in this paper indicate 537 

that our new models are promising for use in predicting DCS probability and for dive planning. 538 
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Table 1  Fitted values of the model parameters, eigenvalues, eigenvector matrix components, 705 
tissue gains, thresholds, and log likelihood function and predicted DCS cases for the five models 706 
investigated: Exponential-Exponential (EE1), Upper Triangular (UT), SKew-symmetric (SK), 707 
SYmmetric (SY) and GeNeral (GN). 95% confidence intervals are reported in superscript and 708 
subscript as increments with respect to the optimal value. 709 

710 
Parameters EE1 UT SK SY GN 

λ −  
1

1
min  0.078

0.0840.424+
−−  0.306

0.4670.917+
−−  0.032

0.0420.320+
−−  0.056

0.0870.317+
−−  0.052

0.0840.317+
−−  

λ − ⋅  
1

2
10 min  0.032

0.0430.214+
−−  0.009

0.0060.084+
−−  0.008

0.0020.135+
−−  0.017

0.0110.167+
−−  0.013

0.0100.167+
−−  

λ − ⋅  
2 1

3
10 min  0.015

0.0130.217+
−−  0.011

0.0150.221+−−  0.004
0.0070.221+−−  0.013

0.0120.229+
−−  0.011

0.0110.229+
−−  

12S  0.010
0.0150.066+

−−  0.105
0.0341.266+

−−  0.001
0.0020.397+

−−  0.001
0.0010.397+

−−  

13S  0.021
0.0280.572+

−  0.007
0.0241.099+

−−  0.002
0.0020.953+

−  0.001
0.0020.953+

−  

21S  0.075
0.0670.397+

−−  

23S  0.245
0.311-2.899+

−  0.020
0.042-0.503+

−  0.001
0.001-0.413+

−  0.038
0.036-0.413+

−  

31S  0.003
0.0020.953+

−  

32S  0.001
0.001-0.413+

−  

1α  0.223
0.1320.219+

−  0.012
0.0100.024+

−  3.009
2.2703.540+

−  1.068
0.5240.960+

−  0.948
0.6251.070+

−  
2

2 10α ⋅  0.210
0.1800.670+

−  0.013
0.0110.0652+−  0.077

0.0720.182+
−  0.049

0.0440.186+
−  0.048

0.0420.192+
−  

2
3 10α ⋅  0.037

0.0350.186+
−  0.040

0.0350.046+
−  0.020

0.0190.102+
−  0.037

0.0030.145+
−  0.034

0.0300.145+
−  

[ ]1 atmb  0.162
0.1651.427+

−  0.014
0.0090.076+

−−  0.027
0.0080.879+

−  0.051
0.0220.662+

−  0.058
0.0180.662+

−  

[ ]2 atmb  0.049
0.0460.370+

−  0.099
0.0970.435+

−  0.099
0.0770.040+

−  0.084
0.0610.383+

−  0.079
0.0610.395+

−  

[ ]3 10 atmb ⋅  0.149
0.1510.519+

−−  
1.047
0.4730.367+

−−  
0.267
0.2710.355+

−  
0.192
0.1770.606+

−−  
0.200
0.1700.606+

−−  
LL 705.82−  697.33−  701.15−  692.11−  691.99−  
Predicted DCS 201.4 200.3 201.1 201.3 201.5 
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Table 2  Model comparison through the log-likelihood difference test. All four multi-exponential 711 
models pass the likelihood difference test, when compared with EE1. We can reject the EE1 712 
model, in favor of any of the models including inter-tissue perfusions for prediction of DCS on 713 
the training set (P<0.05). Conversely, the extra degrees of freedom introduced by the GN model 714 
are not justifiable at the 5% significance level, when the test is conducted against the SY model. 715 

2 LL difference Extra Degrees of Freedom 95% Limit Value 95% Test Passed 

UT/EE1 16.98 3 7.81 TRUE 

SK/EE1 9.33 3 7.81 TRUE 

SY/EE1 27.41 3 7.81 TRUE 

GN/EE1 27.65 6 12.59 TRUE 

GN/UT 10.67 3 7.81 TRUE 

GN/SK 18.32 3 7.81 TRUE 

GN/SY 0.24 3 7.81 FALSE 
  716 
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Table 3  Number of DCS cases predicted by the four multi-exponential and the null models for 717 
the calibration data set "BIG 292".  The predicted number of DCS cases are provided for the 718 
groups of dives and analytically for each file present in the calibration data.  All models seem to 719 
adequately fit the calibration data set. 720 

Dives Observed DCS  EE1 UT SK SY GN 

Single Air  

EDU885A 483 30 25.2 28.0 23.8 28.4 28.5 

DC4W 244 8.4 7.7 5.8 7.7 8.0 8.3 

SUBX87 58 2 1.9 1.8 2.5 1.7 1.9 

NMRNSW 91 5.5 7.1 4.4 5.6 5.4 5.4 

NSM6HR 57 3.2 4.6 2.4 4.0 3.4 3.4 

Total 933 49.1 46.5 42.4 43.5 47.0 47.5 

Single Air Decompression  

PASA 72 5.2 2.1 3.4 2.6 2.2 2.2 

Repetitive air  

EDU885AR 182 11 11.9 11.1 10.6 11.5 11.5 

DC4WR 12 3 0.6 0.8 0.8 0.7 0.7 

PARA 135 7.3 7.9 8.3 8.2 7.3 7.2 

Total 329 21.3 20.4 20.1 19.6 19.5 19.4 

Multi-Level Air  

PAMLA 236 14.2 17.7 14.1 17.0 16.5 16.4 

Single non-air  

NMR8697 477 12.8 18.7 15.9 15.4 15.3 15.2 

EDU885M 81 4 3.6 4.2 3.0 4.6 4.6 

EDU885S 94 4 3.2 4.0 3.7 3.9 3.9 

EDU1180S 120 10 6.2 7.9 6.9 9.0 9.1 

Total 772 308 31.7 32.1 29.0 32.8 32.8 

Repetitive non-air  

EDU184 239 11 10.4 10.4 13.4 10.9 10.8 

Air Saturation  

ASATEDU 120 15.7 13.4 12.3 10.6 12.0 12.0 

ASATNSM 132 20.1 21.0 32.2 28.9 24.2 24.3 

ASATNMR 50 1 5.0 2.2 3.7 4.1 4.1 

Total 302 36.8 39.4 46.7 43.3 40.3 40.3 

Non-air Saturation  

ASATARE 165 21.3 20.3 20.1 18.4 17.5 17.4 
 Multi-Level SDV; PO2=0.7 Decompressions 

PAMLAOD 134 6 8.0 7.1 8.6 10.3 10.2 

Multi-Level SDV; PO2=0.7 Transits  

PAMLAOS 140 5.3 4.9 3.8 5.8 4.4 4.3 
  721 
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Table 4  Evaluation of the extrapolation capabilities of the five models on a set of data not 722 
included in the calibration data set and comparison with the EE1 model.  The Pearson’s χ2 723 
results show that the UT model outperforms the other interconnected compartment models and 724 
the null model on the extrapolation data set.  The UT model performs especially well on O2 725 
surface decompression dives.  The other multi-exponential models (SK, SY, and GN) generalize 726 
more poorly than the null model (EE1) to the extrapolation data.  Additionally, the null model 727 
(EE1) is the best performer in the single air category. 728 

Dives Observed DCS EE1 UT SK SY GN 

Single Air  

DC4D 797 19.4 19.1 16.1 22.9 22.6 23.5 

EDU849LT2 141 29.8 16.7 8.1 8.5 10.8 11.0 

NMR97NOD 103 3.4 4.2 3.8 4.6 3.1 3.1 

EDU545 94 18.7 7.5 7.2 6.6 7.6 7.7 

EDU557 568 27 50.8 32.3 31.4 37.8 38.3 

EDU1157 46 15.6 14.9 28.2 11.7 14.4 14.5 

EDU1351NL 143 2.7 5.3 3.5 3.5 4.3 4.3 

NMRNSW2 91 5.5 7.1 4.4 5.6 5.4 5.4 

Total 1983 122.1 125.6 103.8 95.0 106.2 107.8 

Pearson’s χ2  0.0951 3.2401 7.7241 2.3957 1.9012 

Repetitive air  

DC4DR 142 1 4.1 6.5 5.6 4.7 4.7 

EDU657Corrected 142 4 11.3 9.2 8.9 9.5 9.5 

Total 284 5 15.4 15.6 14.4 14.2 14.2 

Pearson’s χ2  7.0109 7.2430 6.1722 5.9404 5.9590 

Repetitive/Multilevel Non-Air  

EDU1180R 128 2 13.4 12.5 13.6 17.5 17.5 

Pearson’s χ2  9.6936 8.7888 9.9010 13.7167 13.7276 

Air + O2 Decompression  

DC8AOW 46 3.1 0.1 0.7 0.7 0.5 0.5 

DC8AOD 256 3.2 1.2 3.8 3.3 3.7 3.7 

NMR94EOD 284 17.9 8.4 8.2 9.6 10.9 10.9 

Total 586 24.2 9.7 12.7 13.6 15.1 15.1 

Pearson’s χ2  21.602 10.403 8.3270 5.4575 5.4637 

O2 Surface Decompression  

DC8ASUR 358 10.1 14.7 7.3 7.7 11.4 11.6 

DCSUREP 69 1 1.8 1.0 1.7 1.2 1.2 

NMROSUR90 45 1 1.8 1.1 1.4 1.2 1.2 

EDU1351SD 1035 43.3 70.2 47.3 50.5 52.0 52.5 

Total 1507 55.4 88.5 56.7 61.3 65.9 66.6 

Pearson’s χ2  12.376 0.0293 0.5604 1.6639 1.8690 

Surface Decompression  

DC8ASURW 46 5 3.7 1.9 2.0 2.9 3.0 
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DCSUREPW 69 1 0.4 0.2 0.4 0.3 0.3 

EDU545SUR 197 28.2 15.1 15.8 14.4 15.4 15.5 

NMRASUR90 64 0 5.0 4.9 4.2 4.2 4.2 

Total 376 34.2 24.2 22.8 20.9 22.9 23.0 

Pearson’s χ2  4.0954 5.7615 8.4771 5.6192 5.4830 

 

Submarine Escape  

UPS290 299 4 29.5 11.3 65.8 38.3 41.8 

Partial LL  22.014 4.7387 58.038 30.730 34.192 
 
Total DCS  246.9 306.3 235.4 284.6 280.0 285.9 

Pearson’s χ2  76.890 40.204 99.209 65.523 68.595 
  729 
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Figure 1 Schematization of the EE1, Goldman's 3CG and GN models.  Circles indicate tissue 730 
compartments; if filled they directly contribute to risk, otherwise they are associated with no risk. 731 
For Goldman's 3CG model and our GN model, we have only sketched the external connection 732 
from and to the circulatory system, not to make the figure unnecessarily cumbersome; also 733 
Goldman's models have fixed thresholds, as opposed to all the other models, for which 734 
thresholds are optimized.   735 

 736 
 737 
 738 
 739 

  740 
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Figure 2 Schematization of the three-interconnected-compartment Upper Triangular (UT) 741 
model.  Tissues are depicted with circles: the smaller the radius, the smaller the corresponding 742 
eigenvalue. Radii of the tissue times are not in scale. Black lines are of the order of unity, green 743 
lines are of the order of a tenth, blue lines are of the order of a hundredth. Tissues are ordered 744 
from most negative to least negative eigenvalues. For example, for the UT model, slower tissues 745 
are not directly affected by faster tissues: in fact, the slowest tissue (3) influences the tissue 746 
tension of the other tissues (1 and 2). Arrows directions are dictated by the sign of the term; so 747 
that 0ija < implies an arrow going from tissue i  to tissue j  (since ija  is relative to the influence 748 

of tissue j on i  and the arrow shows that pressure of j  diminishes for a positive increase on the 749 
pressure in tissue i ). 750 

 751 


