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The opinions and assertions contained herein are the pr-,ate ones of the writer and are not to be
construed as official or reflecting the views of the naval ser~irs at large.

When U. S. Government drawings, specifications, or o&er data are used for any purpose other
than a definitely related Government procurement operion, the Government thereby incurs no
responsibility nor any obligation whatsoever, and the fact Ilhat the Government may have
formulated, furnished or in any way supplied the said drawings, specifications, or other data is not
to be regarded by Implication or otherwise, as in any manner licensing the ho;der or any other
person or corporation, or conveying any rights or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.

Please do not request copies of this report from the Naval Medical Research Institute. Additional
copies may be pur%.,Aased from:

National Technical Information Service
5285 Port Royal Road

Springfield, Virginia 22161

Federal Government agencies and their contractors registered with the Defense Technical
Information Center should direct requests for copies of this report to:

Defense Technical Information Center
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Alexandrea, Virginia 223044145
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The experiments reported herein were conducted according to the principles set'forth in the
current edition of the *Guide for the Care and Use of Laboratory'Animals,' Institute of Laboratory
Animal Resources, National Research Council.

This technical report has been reviewed by the NMRI scientific and public affairs staff and is
approved for publication.. I is releasable to the National Technical Information Service where it
will be available to the general pulblic, Including foreign nations.
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I. BACKGROUND

The work detailed in this report is part of an ongoing effort to develop models

predicting the incidence of decompression sickness (DCS) (1-5). Report I of the series

postulated DCS as being a random event subject to the laws of probability, in contrast to

the traditional view of DCS as a deterministic event. Semi-theoretical models

(describing the exchange of inert gas between blood and tissue) were introduced to

predict the probability of decompression sickness [P(DCS)] for any given dive profile,

with the histories of depth and breathing gas composition considered the sole

independent variables. A 'urther important inncvation of Report I was the use of

cumulative risk integrals as determinants of total P(DCS) in the models. In other words,

P(DCS) was considered to increase over the course of the dive as risk accumulated

according to the model's "rules". These models were fitted' to over 1700

well-documented air dives.

In Report II the most successful ofthe models from Report I was used as a

predictor of P(DCS) to generate recommended air diving tables. In Report W, this

same model was used to compare the P(DCS) of dives in the current U.S. Navy, British

Royal Navy, and Canadian Forces air tables. In Report IV, the data-fitting and analysis

were extended to "saturation" dives, and it was demonstrated that the modelling

approach outlined in Report I could satisfactorily predict the risks of dives ranging from

less than a minute to more than a day in duration. Accordingly, recommended tables for

saturation dives were included with this report. Report V is an examination of an
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I. BACKGROUND

The work detailed in this report is part of an ongoing effort to develop models

predicting the incidence of decompression sickness (DCS) (1-5). Report I of the series

postulated DCS as being a random event subject to the laws of probability, in contrast to

the traditional view of DCS as a deterministic event. Semi-theoretical models

(describing theexchange of inert gas between blood and tissue) were introduced to

predict the probability of decompression sickness [P(DCS)] for any given dive profile,

the histories of depth‘ and breathing gas composition considered the sole "

independent variables. A Further important innovation of Report I was the use of

cumulative risk integrals as determinants of total P(DCS) in the models. In other words,
1 .

, . .

P(DCS) was considered to increase over the course of the dive as risk amumulated

according to the model's "mics". These models were fitted'to over 1700

well-documented air dives. - ‘

In Report II most successful of the models from Report I was used as a

predictor of P(DCS), to generate recommended air tables. In Report III, this

same model was used to compare the P(DCS) of dives in the current U.S. Navy, British
1 » l

Royal Navy, and Canadian Forces air tables. In Report IV, the data-fitting and analysis

were extended to "saturation" dives, and it was demonstrated that the modelling

approach outlined in Report I could satisfactorily predict the risks of dives ranging from

less than a minute to more than a day in duration.. Accordingly, recommended tables for

saturation dives were included with this report. Report V is an examination of an .
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alternative set of risk models, in which risk is viewed as something that depends on a

single incident of excess dissolved gas at some instant durinZ the dive. These models

were found to be less adept than ours at fitting heterogeneous data sets such as those

assembled for Report IV.

In this report we compare repeat and multilevel dives with single dives, asking

whether a single model can adequately describe the various sorts of dives. A repeat dive

is defined here as a series of two or more descents separated by an interval of less than

12 h on the surface., We define a multilevel dive as a series of two or more descents

separ-ated by an inte,"val of less than 12 h at a shallow depth. All of the data assembled

for this report consi.s of wet dives on oxygen/nitrogen performed in U.S. Navy, Canadian

Forces, or British Royal Navy trials. Various nitrogen/oxygen breathing mixes were

used, although most were air dives and most of the'remainder were on 0.7 atm oxygen,

the balance nitrogen (henceforth to be called simply "0.7"). Only data reported since
1978 we!re used, in accordane with our perception that possible DCS symptoms are

judged by substantially different standards nowy than in the past. Therefore, we did not

use the data from reports I or IV of this series because they all predated 1970.

Since this study includes dives on several gas mixes, it became necessaryto test the

validity of our conception of how P(DCS) is affected by the composition of the breathing
gas mixture. This was done by comparing dives on different breathing gas mixes and

asking whether data collected using various gas mixes can be described by a single

predictive modeL
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alternative set of risk models, in which risk is viewed as something that depends on a

single incident of excess dissolved gas at some instant during the dive. 'lh:se models

were found to be less adept than ours at fitting heterogeneous data sets such as those _

assembled for Report IV. ~ ~ - V

In this report we compare repeat and multilevel dives with single dives, asking

whether a single model can adequately describe the various sorts of dives. A repeat dive
1

is defined here as a series of two or more descents separated by an interval of less than

12 h on the surface.‘ We define a multilevel dive as a series of two or more descents. I

separated by an interval of less than 12 at arshallow depth. All of the data assembled

for this report consist of wet dives on oxygen/nitrogen performed in U.S. Navy, Canadian

Forces, or British Royal Navy trials. Various nitrogen/oxygen breathing mixes were

used, although most were air dives and most ofptheremainder were on 0.7 atm oxygen,

the balance nitrogen (henceforth to be called simply "0.7"). Only data reported since

1978 were used, in accordance with our perception that possible DCS symptoms are

judged bysubstantially different standards now than in the past. Therefore, we did not

use the data from reports I or IV of this series because they all predated 1970.
. \ 1

Since this study includes dives on ‘several gas mixes, it became necessaryto test the

validity of our conception of "how P(DCS) is affected by the composition of the breathing

gas mixturel was doneby comparing diveson difierent breathing gas mixes and _

asking whether data collected using various gas mixes can be described by a single

predictive model. V I ' , I ' '
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The comparisons amentioned above were performed t. a& objective statistical tests

after each available data set, or combination of data sets, had been described by fitting

the probabilistic models to it. The indicated results are that the models do not

discriminate between single and repeat dives or between dives on different

rntragen/cc'gen breathing mixes, t'- is, it does not -:em necessary to use different

values of the fitted parameters.when moving from one category of dives to another.

However, none of the models- used in this report can adequately describe our only set, of

multilevel dives while simultaneously providing an adequate description of 2my of the

other data s•ts. Therefore, we cannot say with confidence that the present models are

suitable for predicting the outcomes of multilevel dives.
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uThe comparisons mentioned above were performed 1. ';1g objective statistical tests

. after each available data set, or combination of data sets, had been described by fitting

' the probabilistic models to it. The indicated results are that the models do not

discriminate between single and repeat dives or between dives on different

nitrogen/oxygen breathing mixes, t?" t is, it does not zsem necessary to use different

i values ot‘ the fitted parameters when moving from one category of dives to another.
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However. none of the models used in this report can adequately describe our only set of

i multilevel dives while simultaneously providing an adequate description of any of the

other data sets. Therefore, we carmot say with confidence that the present models are

suitable for predinting the outcomes of multilevel dives. I
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IL MATHFMATICAL MODELS

The models have been described in previous reports; only a short review will be

presented here. In the simplest conceivable model, every dive in a data set has the same

P(DCS), and the reasonable course is to set this value of P(DCS) equal to the observed

average P(DCS) for the data set. We call this one-p.wrameter model the "null model"

and use it as a minimum standard that any creditabie semi-theoretical model must

out-perform.

The ,,holels of real interest are those that include descriptions of gas exchange

kinetics. In such a model, evaluation of the safety of a dive is accomplished by relating

the entire dive prcfile to the probability of DCS by a "risk f.nction":

DCS = 1.0- exX -I 0* r dt) 11]

Here r is a measure of instantaneous risk t6at is integrated over the course of a dive and

post-dive period. When more than one hypothetical "tissue" is assumed to exist, v;-.

obtain the total instantaneous r by summing the cor zributions from the individual tissues:

r -4 ri 42]
i

r.here r1 = instantanc:.us risk due to tissue i. The form we give to i. ",)r tissue i it as

follows:

4
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II. MATHEIVZATICAL MODELS

The models have been described in previous reports; only a short review will be

presented here. In the simplest conceivable model, every dive in a data set has the same

P(DCS), and the reasonable course is to set this value of P(DCS) equal to the observed

average P(DCS) for the data set. We call this one-parameter model the "null model" i

and use it as a standard that any creditable semi-theoretical model must

out-perform. ' -
, -» -

The models of real interest are those that include descriptions of gas exchange
| .

- \

kinetics. In such a model, evaluation of the safety of a dive is accomplished by relating

the entire dive profile to the probability of DCS by a “risk function":

ncs = 1.0-exp(-f°°°rdt) (11  

Here r is a measure of instantaneous risk that is integrated over the course of a dive and .
. . , . ,

post-dive period. When more than one hypothetical "tissue" is assumed to exist, we -

obtain the total instantaneous r by summing the cor.tril:utions from the individual tissues:

.- fl’ " E1’: ' .12]
_ i

v.-herer, = instantaneous risk due to tissue i. The form we give to :5 for tissue i is as ‘

follows: ' - Y

.4‘,
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i ,i.[ P•"P b" Pth, + ko2(Po2) ]/Pamb, ri > 0 [3]

where P. = partial pressure of inert gases in tissue i (fsw);

P~b - ambiernt hydrostatic pressure (fsw);
P0 2 = partial pressure of oxygen in breathing gas (fsw);
Ai gain factnr for tissue i (.nin');
P - threshold pressure difference (fsw);
kn, a risk coefficient for P0 2 (dimernionless).

Thus, when two or more "tissues" are postulated, the models predict. that the probability

that DCS will occur is the joint probability of DCS in all of :he tissues. The metabolic

gases CO2 and H20 are ignored in this calculation. Whenever the humerator on the

right side of [3] is less than zero, ri is set equal to zero, so that the integrated risk cannot

diminish with time. In other words, risk can accumulate but it cannot be depleted. Pth,

is an at ;olutely safe excess partial pressure of inert gas that can be sustained indefinitely

with no risk -,f DCS. A non-zero value of k02 .odicates that the risk of DCS depends on

the partial pressure of 02 as well as the partial pressure of the inert gas:

k0 2 > 0 suggests that breathing a high P0 2 increases the risk of DCS independently of

the effect of the inert gas, and ko' < 0 suggests that a high P0 2 is beneficial from the

standpoint of DCS prevention, aside from tdhe decreased partial pressure of inert gas that

it implies. The risk model contains three adjustable parameters besides those used in

computing Ptis: A, k0 2 , and Pt. These last two parameters can easily have values of

zero and can be fixed at zero ;n order to simplify the fitting routine. The parameter A

would be zero only if there was no risk of DCS, regardless of the dive profile. P,, in

equation [3] is calculated by assuming that gas exchange kinetics in the hypothetical

tissue are either mono-expcnentirl or bi-exponential. The various models consist of

4' ‘~.' --» '1? g <’ ts -.. ""8""-" ' ‘  ...‘1~l-as-.--~..? l.»-‘!~=i!!_“'I»' » * ' (~ "" .:-. ~ ~ -> _ :‘-. » ~w . c.t .-,u=.s . :P" 1. - .. -, . .,_ . w. ,;+ -. .' ._ »_ , . . U l... .,,.._.. , .> .= a,n.- _/.‘.,.»i_.r,-',~r»-.-__~;.;~_. t,-1;‘.-¢.<.~ 1 .- » q, .1-_> =’...r:t =~ -e
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ri—'~'i[Pt2|.|'Parrrb'Pthr+kO2(POZ)]/PambI‘ri>0 -' [3] e

where PW == partial pressure of inert gases in tissue i (fsw);
Pm, = ambient hydrostatic pressure (fsw);
PO, = partial pressure of oxygen in breathing gas (fsw);
A, = gain factor for tissue i (:nin"); '
Pm, - threshold pressure difference (fsw);
km = a risk coefficient for PO, (dimensionless). .

Thus, when two or more "tissues" are postulated, the models predict that the probability

that DCS will occur is the joint probability of DCS in all of‘the ‘tissues. The metabolic

gases CO, and I-I20 are ignored in this calculation. Whenever -the numerator on the

right side of [3] is less than zero, r, is set equal to zero, so that the integrated risk cannot

diminish with time. In other words, risk can accumulatebut it cannot be depleted. Pm

is an at-fiolutely safe excess partial pressure of inert gas that can be sustained indefinitely
I

' \

with no risk of DCS. A non-zero value of km .ndicates that the risk of DCS depends on

the partial pressure of O, as well _as the partial pressure of theinert gas: .

km > 0 suggests that breathing a high PO, increases the risk of DCS independently of

the effect of the inert gas, and 1<.,,' < 0 ‘suggests that a high Po, is beneficial from the

standpoint of DCS prevention, aside‘ from the decreased partial pressure of inert gas that

it implies. The risk model contains three adjustable parameters besides those used in

computing Ptis: A, km , and Pm. These last two parameters can easily have values of
\ ‘ -

zero and can be fixed at zero in order to simplify thefitting routine. The parameter A

would be zero only if there was no risk of DCS, regardless of the dive profile. PM in

equation [3] is calculated by assuming that gas exchange kinetics in the hypothetical

tissue are either mono-exponential or bi-exponential. The various models consist of
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combinations ot various numbers of "tissues" governed by one or the other of these

kinetic models. The following is a summary of the models; they are presented in

increasing order of complexity.

The first and simplest model incorporating gas exchange is summarized as follows:

Gas change mod :

single mono-exponential tissue, having time constant -;

1 parameter in gas exchange model: -c;

1-3 other parameters: A, Pft (?), k0 2 (?)-

Thus, the risk model contains a total of 2 to 4 parameters, depending upon whether P.

and/or k02 are ised. A logical extension of the single mono-exponential tissue model is

a model including two such tissues in parallel:

Gas exchange model 2:

two mono-exponential tissues, having time constants x 1 and T 2;

2 parameters in gas exchange model: -cl and ' 2;

2-4 other parameters: A 1, A 2, P( ko2 (?).

In the double-exponential description of gas exchange in a single tissue, the single

exponential is replaced by the sum of two exponentials. The first exponential is

multiplied by the dimensionless normalized weigh'tng factor w, , and the second

exponential is multiplied by (1-w1). This kinetic model has 3 kinetic parameters rather

than the 1 of a single exponential. If only one such tissue is postulated, then the

following model results:
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combinations oi various numbers of "tissues" governed by one or the other of these

kinetic models. The following is a summary of the models; they are presented in

‘increasing order of complexity. "

The first and simplest model incorporating gas exchange is summarized as follows:

mmtc = a - - i
. single mono-exponential tissue, having time constant t;

1 parameter in gas exchange model: t;

1-3 other parameters: A, Pm, (?), km (?).
I

Thus, the risk model contains a_total of 2 to 4 parameters, depending upon whether Pm,

and/or km are used. A logical extension of the single mono-exponential tissue model is

a model including two such tissues in parallel:

 : »
two mono-exponential tissues, having time constants 11 and 1,;

I .

V 2 parameters in gas exchange model: :1 and -:2;

V 2-4 other parameters: A 1 , A 2 , Pm, (?). km (?).

In the double-exponential description of gas exchange in a single tissue, the single

exponential is replaced the sum of two exponentials. ‘The first exponential is

multiplied by the dimensionless normalized weighiing factor w, , and the second _ . -

exponential is multiplied by (1-wol). This kinetic model has 3 kinetic parameters rather

than the 1 of a single exponential. If only one such tissue is postulated, then the

following model results: ' '
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Gas exchange modl :

one do,,ble-exponential tissue, having time constants 'r and C 2;

w1 is the weighting given to the first exponential, and (I-w)

is the weighting on the second exponential;

3 parameters in gas exchange model: T1 , 2 2 1;

1-3 other parameters: A , Pw (?), k02 (7).

If we postulate three single-exponential tissues, then this model results:

Gas exchange model 4:

three mono-exponential tissues, having time constants ri T 2, and T 3;

3 parameters in gas exchange model: cII 2' and T3;

3-5 other parameters: A I, A 2 , A 3, Pf (?), k(2).

Two double-exponential tissues result in the following model:

Gas exchange model 5:

two double-exponential tissues A and B, having time constants A1, T A ,

and % B;

WAI and w., are the weighings given to the first exponentials in tissues A

and B; (1-wAj) and (1-wB,) are the weighings on the second exponentials in

tissues A and B.

6 parameters in gas exchange model: TAl t A2 w , T1 , ET, wBI;

2-4 other parameters: A A, A B, Pt (?), k0o2().

The means of computing Ptis are detailed in Report I of this series (1). Note that

although reference has been made to recognizable physical processes in formulating
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 Mj= '
one do"ble-exponential tissue, having time constants t, and :2;

w, is the weighting given to the first exponential, and (1-w,)

is the weighting on the second exponential;

3 parameters in gas exchange model: t, , :2 , w,;

1-3 other parameters: A , Pm (?), km (?).

‘ ' If we postulate three single-exponential tissues, then this model results:

 = ,
three mono-exponential tissues, having time constants ~:,- , :2 , and 13;

1

3 parameters in gas exchange model: 1:, , 22 , and :3;

' 3-5 other parameters: A 1 , A 2 , A 3 , Pm. (?), km (?).

- Two double-exponential tissues result in the following model:

 :' ' V
two double-exponential tissues A and B, having time constants rm , 1 A, , rm ,

and rm;
|

w,_, and wm are the weighings given to the first exponentials in tissues A
- »t

and B; (1-wm) and (1-wm) are the weighings.on the second exponentials in '

tissues A and B. - _ '

6 parameters in gas exchange model: cm , tn , wm , rm , em , wm;

2-4 other parameters: A A , A 3,, Pm (?), km (?).

< The means of computing Ptisare detailed in Report I of this series (1). Note that

although reference has been made to recognizable physical processes in formulating
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these models, the models are not to be taken as literal representations of the truth and

the parameter values obtained by fitting them to data are not to be regarded as having

significance outside of their use with these models.
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significance outside of their use with these models.
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III. DATA SOURCES AND HANDLK-IG

Summaries of the data used in this stud) are offered in Table 1. Somewhat more

detailed summaries will b,- offered in a future report. The dives in data sets whose

names begin with "DC" or DD" were performed at the Defense and Civil Institute oi

Experimental Medicine under the direction of R.Y. Nishi (6-11). All data sets whose

names begin with ."EDU" are based on dives at the Experimental Diving Unit in !anama

City, Florida, and were collected under the direction of E.D. Thalmann (12-14). Data

Eet NMR8697 was collected at the Naval Medical Research Institute under the direction

of P.K. Weathersby (15). All of the above data are from wet chamber, working dives.

Dry dives were excluded because of the possibility that immersion is one of the factors

that controls- the risk of DCS (16). In almost all cases, moderate physical work was done

at depth, not during decompression.

Automated recordings of the depth t' ime profiles were available for all of the

dives. These were converted to the format suitable for our analysis by use of a computer

algorithm that simplifies each depth/time plot to a sequence of up to 76 cornnected line

segments. This simplified profile was required to agree with the original depth/time

recording to within 1 ft in depth and 0.1 min in time; also, a portion of the original

recording was cons- "ered eligible f,:, representatic:, as a single line segment only if it

was linear to within '0-15%. Depth of water in a suspended wet pot was taken to be the

height of water above mid-chest level of a diver of average height. N.ivers used the

Mark 15 or Mark 16 breathing apparatus during the 0.7 dives, so tht the cu..-position of
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I Summaries ofthe data used in thislstudy are offered in Table IQ Somewhat more

» .- _ detailed summaries will be offered in a future report. The dives in data sets whose

* names begin with ’_'DC' or DD’.' were performed at the Defense and Civil Institute of

Experimental Medicine under the direction of R.Y. (6-11). All data sets whose

¥v\,'-.,,,._>
.'1~'0

names begin with ."EDU" are based on dives at the Experimental. Diving Unit in I‘anama

' City, Florida, and were collected under the direction of E.D. Thalmann (12-14). Data
“I . ‘ ' I .
-ctfaei.;,;!;_:,_j set NMR8697 was collected at the Naval Medical Research Institute under the direction

.1 ;._1; K '

of P.K. Weathersby (15). All of the above data are from wet chamber, working dives.
. -sag
»1_;r-’;“”‘->
' w,i . .qt,‘' Dry dives were excluded because of the possibility that immersion is one of the factors

that controls the risk of DCS (16). In almost all cases, moderate physical work was done
. ‘ '

at depth, not during decompression.
.'\

Automated recordings of the depth v: time profiles were available for all of the

. - dives. -These were converted to the format suitable-for our analysis by use of a computer
‘\».' . - ,

_ algorithm that simplifies each depth/time plot to ‘a sequence of up to 76 connected line
5

segments. This simplified profile was required to agree with the original depth/time "

V recording to 1 ft in depth and 0.1 min in time; also, a portion of the original

recordingwas considered eligible for representation. as a single line segment Only if it
t

was linear to within ;0415%. Depth of water in a suspended wet pot was taken to be the
v
‘K .

I height of water above mid-chest level of a diver of average height. Divers used the o - '
O

’~i~;;‘,- Mark 15, or -Mark 16 breathing apparatus during the 0.7 dives, so that the ctiiraposition of
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the diver's breathing gas was regulated via the continuous-feedback control afforded by

this system, which typically is assumed to maintain the partial pressure of 02 within

0.1 atm of the set point. The divers breathed 02 by mask (9-11) during decompression

in the DC8AOW data set (the gas composition was assumed to be 99.5% 02, 0.5% N2).

Gas changeovers were encoded by representing the gas composition as a linear function

of time. During the changeovers between 02 and air in the DC8AOW data, it was

assumed that the simultaneous washout of the breathing apparatus and the lungs

required a total of 1.3 min; all other gas changeovers in all other data sets were assumed

to require 1 min.

A post-dive surface time of either 12 or 24 h was included with each dive profile.

This number defines the upper integration limit for computing the risk integrals defined

in Part IL It represents the minimum length of time spent on the surface between dives,

based on the best information provided by the people who directed the dives. It is highly

probable that the tissue supersaturation (and hence the risk function) decreases to zero

for all of these dives before 12 h has elapsed post-dive, even when much longer-than-

usual time constants are used in the models. Questions about the data % ire resolved

through consultation with the men in charge of the dives. Each dive outcome was set to

zero for a definitely safe dive, 0.5 for marginal symptoms (skin itch or discoloration, mild

pain of brief duration, and moderate fatigue), and 1.0 for any more severe symptoms

ascribed to DCS. When a dive outcome was seriously in doubt, the dive was excluded

altogether from the analysis. Cases of recompression without symptoms were deemed

cases of unknown outcome and were excluded, becaus,. it was considered that symptoms
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the diver's breathing gas was regulated via the continuous-feedback control afforded by

this system, which typically“ is assumed to maintain um partial pressure of o, within
0.1 atm of the set point. The divers breathed O, by mask (9-11) during decompression

in the DC&AOW data set (the gas_composition was assumed to be 99.5% O2 , 0.5% N2). '

Gas changeovers were encoded by representing the gas composition as a linear function.

of time. the changeovers between O2 and air in the DCSAOW data, it was

assumed that the simultaneous washout of the breathing apparatus and the lungs
1 .

required a total of 1.3 min; all other gas changeovers in all other data sets were assumed

to require 1 min. " V

A post-dive surface time of either 12 or 24 h wm included with each dive profile.

This number defines the upper integration limit for computing the risk integrals defined

in Part II. It representsthe minimum lengthof time spent on the surface between dives,

based on the best information provided by the people who directed the dives. It is highly '

probable that the tissue supersaturation (and hence the risk function) decreases to zero

for all of these dives before 12 h has elapsed post-dive, even when“muchlonger-than- '

I ‘usual time constants are used in the models." Questions about the data w -.re resolved ,

through consultation with the men in charge of the ‘dives. Each dive outcome was set to

zero for a definitely safedive, 0.5 for marginal symptoms (skin itch or discoloration, mild

pain of brief duration, and moderate fatigue), and 1.0 for any more severe symptoms
, , . ‘ _ .

ascribed to DCS. When a dive outcome was seriously in doubt, the dive was excluded

altogether from the analysis. Cases of recompression witlroutosymptonrs were deemed V

cases of unknown outcome and were excluded, because it was considered that symptoms
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could have appeared if the dives had gone to completion. For those cases in which a

stricken diver was recompressed, his dive was encoded as though the intended schedule

had been completed. This convention was followed out of necessity: as a consequence of

the use of cumulative risk mteg'als, a dive that had been truncated for recompression

therapy woud always be computed by any of our models as being safer than a completed

dive on the same schedule. Thus, since the truncated dive is associated with a case of

DCS and the completed dive generally is not, the model would be forced to fit

dose-response data in which decreased dose apparently results in high, - response. We

have observed that the fit of our models 'to data is markedly degraded by the inclusion of

dives which have been encoded as truncated and have outcome equal to 1. Although the

procedure we have followed seems contrived, it is the most rational we have yet devised.

There are some instances of repeat dive trials in which a diver suffered DCS during

the surface interval or before completing the first dive,' and was therefore recompressed

for treatment without descending for the second dive in the series. These were encoded

as single dives and were put into data sets with the other single dives. This seems to us

the most logical way to treat these cases, but note that it biases the data by making the

single dive sets appear more hazardous while simultaneously making the repeat dive sets

appear safer. Our decision about how to organize the data into sets changes nothing

when we fit models to combined single and'repeat data; the data were not changed, only

their arrangement into subsets was.
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could have appeared if the dives had gone to completion. For those cases in which a

stricken diver was recompressed, his dive was encoded as though the intended schedule

had been completed. This convention was followed out of necessity: as a consequence of

the use of cumulative risk mtegrals, a dive that had been-truncated for recompression
A

therapy would always be computed by any of our models as being safer than a completed

dive on the same schedule. Thus, since the ‘truncated dive is associated with a case" of

DCS and the completed dive generally is not. the model would be forced to fit "

dose-response data in which decreased dose apparently results in hight "" response. We

have observed that the fit of our models to data is markedly degraded by the inclusion of

dives which have been encoded as-tnmcated and have outcome equal to 1. Although the

procedure we have followed seems contrived, it is the most rational we have yet devised.

There are some instances of repeat dive trials in which a diver suffered DCS during

the surface interval or before completing the first dive,' and was therefore recompressed

for treatment without descending for the second dive in the series. These were encoded

as single dives and were put into data sets with the other single dives. This seems to us

the most logical way to treat these cases, but note that it biases the data by making the‘

single dive sets appear more hazardous while simultaneously making the repeat dive sets

appear safer. Our decision about how to organize the data into sets changes nothing . l

when we fit models to combined single andrepeat data; the data were notlchanged, only

their arrangement into subsets was. ' ' ‘ V g ,
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IV. DATA ANALYSIS

The evaluation of the data in Table 1 begins with their being fitted individually by

the models described in Part II using likelihood maximization (17). Simply put, an

iterative numerical algorithm [more specifically, a modified Marquardt nonlinear

least-squares minimization algorithm (18)] is employed to determine the set of parameter

values that mxmzs the probability of the observed family of outcomes. Since, in

general, the global maximum will be surrounded by a host of lesser maxima on the

likelihood surface, it is always necessary to make multiple attempts at fitting, using a

variety of initial gue-sses of the parameter values, before one can be reasonably assured

of having achieved convergence at the global maximum. Following the fitting of

individual data sets, various relevant combinattions of those sets were also fitted by

likelihood maximization. The fits to these combinations were compared with the fits of

the original, smaller data sets, and this allowed us to apply one of the statistical tests for

comparing single dives with repeat dives or air dives with 0.7 dives. The test is as

follows (17).

Let a data set be fitted using likelihood maximization by two models such that the

first model is a subset of the second, that is, the second model consists of the first model

plus one or more additional adjustable parameters. Then, if the second, more elaborate,

model is not intrinsically superior to the first mo del for this data set, then the test

statistic 2(LL 2 . LL 1) is distributed approximately as
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IV. DATA ANALYSIS '

_A The evaluation of the data in Table 1 begins with their being fitted individually by

the models described in Part II using likelihood maximization (17). Simply put, an

iterative numerical algorithm [more specifically, a modified Marquardt nonlinear .

least-squares minimization algorithm (18)] is employed to determine the set of parameter

values that maximizes the probability of the observed family of outcomes. Since, in -

general, the global maximum will be surrounded by a host of lesser maxima on the

likelihood surface, it is always necessary to make multiple attempts at fitting, using a

variety of initial guesses of the parameter values, before one can be reasonably assured '

of having achieved convergence at the global maximum. Following the fitting of _-

individual data sets, various relevant combinations of those sets were also fitted by

likelihood maximization. ‘The fits to these combinations were compared with the fits of

the original, smaller data sets, and this allowed us to apply one of the statistical tests for

comparing single dives with repeat dives or air dives with 0.7 dives. The test is as

follows(17). . . ' T .~ he  p
_Let a data set be fitted using likelihood maximization by two models such that the '

first model is a subset of the second,‘ that is, the second model consists of the first model
| _

plus one or more additional adjustable parameters. Then, if the second, more elaborate,

model is not intrinsically superior to the first model for this data set, then the test

statistic 2(LL ,_ -‘ LL ,) is distributed approximately as
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X , v (n2 - n) [4]

where LL 1 - In(maximum likelihood) by the first model;
LL 2 = ln(maximum likelihood) by the second model;
z2 = the chi-square function having v degrees of freedom;
ni = number of parameters in the first model;
n = number of parameters in the second model

In words, if the two models are equivalent for this data set, then twice the difference.

in tne log likelihoods is a random variable approximately distributed as the chi square

probability density function having a number of degrees of freedom equal to the

difference in the number of parameters. Thus, to compare the models we reject the null

hypothesis that they are equivalent if 2(LL 2 - LL 1) iL an improbably large X2 variable

with v = (n2 - n1 ) degrees of freedom. For example, if (n2 • n1) = 3, then even if the

models are equivalent there is still a 0.05 probability that 2(LL 2 - LL 1) will be greater

than 5.99, because the area under the X2 curve to the right of 5.99 is equal to 0.05. The

above procedure is the "likelihood ratio" test.

Now, if the two data sets are each fitted by a 3-parameter model and then their

combination is also fitted by the same model, we can consider the results as basis for

comparing a 3-parameter model with a 6-parameter model for the superset. If the 6-

parameter model is not demonstrated to be significantly superior to the 3-parameter

model, then we accept that the two subsets are from the same population and call them

"combinable". The sense to this is that if two data sets can be 'combined", then one

model can describe all of the data about as well as it can describe the individual data

sets. This is a measure of the similarity of the two data sets, or at least of how similar

they seem to the model.
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1’. v = (I11-I11) [4]

where LL 1 = ln(maximum likelihood) by the first model;
LL 2 = ln(maximum likelihood) by the second model;
12 = the chi-square function having v degrees of freedom;
n'1 = number of parameters in the first model;
nz = number of parameters in the second modeL

In words, if the two models are equivalent for this data set, then twice the difference.

in tne log likelihoods is a random variable approximately distributed as the chi square

probability density function having a number of degrees of freedom equal to the
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hypothesis that they are equivalent if 2(LL 2 - LL 1) an improbably large 12. variable

with v = (n, - n1) degrees of freedom. For example, if (n,- nl) = 3, then even if the

models are equivalent there is still a 0.05 probability that 2(LL 2 - LL 1) will be greater

than 5.99, because the area under the 1’ curve to the right of 5.99 is equal to 0.05. The

above procedure is the "likelihood ratio‘ test. ‘

Now, if the two data sets are each fitted by a 3-parameter model and then their

combination is alsofitted by the same model, we can consider the results as basis for

comparing a 3-parameter model with a 6-parameter model for the superset. If the 6-
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parameter model is not demonstrated to be significantly superior to the 3-parameter .

model, then we -accept that the two subsets are from the same population and call them

"combinable". The sense to this is that if two data sets canbe "combined", then one

model can describe all of the data aboutas well as'it can describe the individual data

sets-. is a measure of the similarity of the two data sets, or at least of how similar

they seem to the model. ' - "
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A second statistical test for similarity between two data sets is accomplished by first

fitting a model to a data set to determine the optimal parameter values, and then using

the same model with these parameter values to predict the P(DCS) of the dives in the

other data set. The predicted average P(DCS) is then compared with tihe observed

average P(DCS), which is simply equal to the raw incidence of DCS.

The uncertainty on the predicted P(DCS) is estimated using a propagation of error

that follows reference #19. Let the predicted P(DCS) be represented by P; then P can

be written as a function of the adjustable parameters in the risk model used to calculate

P(DCS):

P = P(B,,i 1, 2,3 .... NPRM) [5]

where B, = an adjustable parameter;,

NpRN= total number of adjustable parameters in the risk model.

Then the variance on the estimate of P(DCS) for dive k is determined from the

covariance matrix as follows:

"var"A) M- - - covBA covB| [6]
i-i j-1 aB, aBj

The average predicted P(DCS) for an entire data set simply equals the sum of P for all

dives divided by the number of dives:
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' A second statistical test for similarity between two datasets is accomplished by first

fitting a model to a data set to determine the optimal parameter values, and then using

the same model with these parameter values to predict the P(DCS) of the dives in the

other data set. The predicted average P(DCS) is then compared with the observed

average P(DCS), which is simply equal to the raw incidence of DCS. .

The uncertainty on the predicted P(DCS) is estimated using a propagation of error

that follows reference #19. Let the predicted P(DCS) be represented by P; then P can

be written as afunction of the adjustable parameters in the risk model used to calculate

macs): .

P y P = P,(B,,i = 1,2,3....1~'1,,,_,,) A [51 T

I

' /

where B, = an adjustable parameter; , '

N,“ = total number of adjustable parameters in the risk model.

Then the variance on the estimate of P(DCS) for dive k is determined from the

covariancenmatrix as follows: I .

NM NM art’ er ' 1 ‘
arm, .. £1 £1 51 5'1 covB, cov‘B, [61 ‘

1" -J" 1 1 ~ < '0
' \

. ' \

The average predicted P(DCS) for an entire data set simply equals the sum of P for all ‘

dives divided by the number of dives: . _
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P., =P./NDw,

where . Pk [71
k= 1

where NDW = number of dives in the data set. To compute the variance on Psu. we

write an expression analogous to equation [6]:

var (P.) -~cov B1 cov B, [8]'
i-i j=1 8B1  aBj

into which we make the following substitutions:

NDIV
=p m E . p [9a]

cBB, k-1 c8B1

NDIV

* -L -[9b]

aBj k-1 4 8Bj

Then from equation [7 we have

var (P..) -var (P) / (NDW) 2  [10]

When converting var(P..) to a confidence interval on P,ý, we assume P.,, to be

normally distributed.
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Pug = Psum/NDlV*

Nmv A
where PM = E P, [711<=1 \ s

\

where ND“, = number of dives in the data set. To compute the variance on PM we -_ 0

write an expression analogous to equation [6]: ~ ' Z ,

NPR!‘ NPRM _ _

i var (P,,,',) = +4”: --'1'-‘ covB, covBj 1810"
i=1 _|=1 8B, GB, ' - '

into which we make the following substitutions:

NDIVarm ar, . , .
- = E , --- [9a]

_ V Nmv -arm, . p 2 r aP, ' I [gbl
an, k=1 as, P ,

Then from equation [7] we have V
- 1

y w <P..,> - W (P...) / <Ns~>' ' [101
When converting var(P") to a confidence interval on P,,“, we assume PM to be

normally distributed. ' g , P " 'n
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V. DISCUSSION OF RESULTS

A. Comparing and Combining Data

Likelihood maximization was used to fit models to the original data sets summarized

in Table 1 and to various supersets formed by combining some of the original data sets.

Tables 2-7 contain selected results; these tables list the ln(likelihoods) and optimal

parameter values obtained via the above procedure for certain key supersets.

Appendices 1-10 contain the same deta-fitting information for all of the sets and

supersets to which likelihood maximization was applied.

The aim of this study is to determine whether a single model can, with satisfactory

accuracy, predict the decompression risks of single, repeat, and multilevel dives on any

N/O•2 breathing mixture. An examination of the table entries allows one to draw

several conclusions central to this aim. However, the useful information can be extracted

only by comparing entries between tables as well as within each table.. The authors well

recognize how tedious this is and will try to select the most significant results for

mention ir. the main text.

One note on. the tabulated results: in Tables 2-10 and Appendices 1-10, the symbol

"w//// indicates that the parameter values converge such that the model becomes

equivalent to model 1, the single-tissue monoexponential model, which is our simplest

risk accumulation model. All of the more complicated risk accumulation models reduce

to model 1 when, certain of their parameters equal zero.
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V. DISCUSSION OF “RESULTS

A &n '
Likelihood maximization was used to fit models to the original data sets summarized

in Table 1 andto various supersets formed by combining some of the original data sets.

Tables 2-7 contain selected results; these tables list the 1n(1ikelihoods) and optimal
I1

parameter values obtained via the above procedure for certain key supersets.

Appendices 1-10 contain the same data-fitting information for all of the sets and

supersets to which likelihood maximization was applied.
\

- The aim of this study is to determine whether a single model can, with satisfactory

accuracy, predict the decompression of single, repeat, and multilevel dives on any

N2/O, breathing mixture. An examination of the table entries allows. one to draw '

several conclusions central to this aim. However, the useful information can be extracted

only by comparing entries between tables as well as within each table,‘ The authors well

recognize how tedious this is and will try“ to select the most significant results for .

mentioninthe maintext. . F - - ' _ _'

One note on.Athe tabulated results: in Tables 2-10 and Appendices 1-10, the symbol

"////" indicates that the parameter values converge such that the model becomes

equivalent to model 1, the single-tissue monoexponential model, which is our simplest

risk accumulation model. All-of the more complicated risk accumulation models reduce

to model 1 when certain of their parameters equal zero. " i
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Table 2 lists the highest hi(likelihood) values obtained for the largest data sets'that

can be formed without mixing data from different "categories". In other words, single

dive data are not mixed with repeat dive data, div.s on different breathing mixes are not

mixed, etc. Data set EDU1180R, which contains our ronly multilevel dive data, has been

omitted from Table 2 and from all subsequent tables oecause it is not "combinable" with

other data sets according to the likelihood ratio test (see "Data Analysis" se,.tion). We

will elaborate on this point in Part B of this section. Table 3 lists the LL values

obtained for the largest possible groupings of single dive data, repeat dive data, air dives,

and 0.7 dives, where data from different categories have been mixed. Table 3 also

contains LL values obtained for still larger groupings of dives from all categories.

Appendix 1 contains the ln(likelihood) values obtained for all data groupings in

which data from different categories has not been mixed; Appendix 2 lsts the LL values

for combinations of data from different categories and Appendix 3 is for groupings of

data from all categories. The results in Apl'en3ix 1-3 were obtained specifically to assess

the combinability of various groý.pings of cata using the likelihood ratio test. Only the

relatively simple models, having' no more than 4 adjustable parameters, were applied

because many of the data sets are so small that there is no advantage to 'using more

complex models. Note (in Appendix 1) that the original data sts EDU1180R,

EDU885M, DDREPWET, and DC8AOW were not dealt with individually because they

had too few cases of DCS (no more than 4) to be fitted meaningfully by any of the

models. Strictly speaking, this makes it impossible to assess their combinability with

other data sets using the likelihood ratio test.
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Table 2 lists the highest ln(likelihood) values obtained for the largest data sets'that

can be formed without mixing data from different "categories". In other words, single

dive data are not mixed with repeat dive data, dives on different breathing mixes are not

mixed, etc. Data set EDU1l80R, which contains our only multilevel dive data, has been

omitted from Table 2 and from all subsequent tables because it is not "combinable" with

other data sets according to the likelihood ratio test (see ‘Data Analysis” section). We

will elaborate on this point in Part B of this section. Table 3 lists the LL values n

obtained for the largest possible groupings of single dive data, repeat dive data, air dives,

and 0.7 dives, where data from different categories have been mixed. Table 3 also

contains LL values obtained for still larger groupings of dives from all categories.

Appendix 1 contains the ln(likelihood) values obtained for all data groupings in

which data from different categories has not been mixed; Appendix 2 lists the LL values

for combinations of data from different categories and Appendix 3 is for groupings of

data from all categories. The results in Appendix 1-3 were obtained specifically to assess

the combinability of various groupings of data using the likelihood ratio test. Only the

relatively simple models, havingho more than 4 adjustable parameters, were applied

because many of the data sets are sosmall that there is no advantage to ‘using more

complex models. Note (in Appendix 1) that the original data sets EDU1180R,

-EDU885M, DDREPWET, and DC8AOW were not dealt with individually because they

had too few cases of DCS (no more than 4) to be fitted meaningfully by any of the

models. Strictly speaking, this makes it impossible to assess their combinability with

other data sets using the likelihood ratiotest. ‘
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One conclusion is possible immnediatelf: given a data set !arge enough to support the

use of models having multiple parameters, it is always true that at least one of the

mo..Is based on integrated risk fits the data substantially better than the null model. As

an illustration, note the entries in Table 2 for single air dives. For the null model, which

has 1 adjustable parameter, the ln(!ikeliho-- ) is -154.9. Model I (the 1

mono-exponential model) without a threshold overpressure is a 2-parameter model; the

maximum LL obtained with this model is -153.9. To evaluate tne improvement in fit

afforded by model 1, we make use of the likeiihood ratio test (equation [4]), which uses

the chi-square function with 1 degree of freedom. We find that we can be only 80%

confident in considering model 1 to be intrinsically supericr to the null model for these

data. Adding the threshold overpressure to mo'.el 1, for a total of 3 adjustable

parameters, fails to improve the fit at all. However, the 4-parameter models are

considerably more effective: model 2 (the 2 mono-exponential model) improvcs on the

,iul model by 9.6 LL units, and model 3 (with I bi-exponential) is 7.2 LL units "better"

than the null model. Both results are significant at the p <0.005 level.

Note that a difference in LL's means that two models differ in their predictions of

the likelihood of the observed family of dive outcomes. For a difference of 9.6 LL units

this difference in predicted likelihoods is a factor of exp(9.6) = 15,300. Since the null

model assumes a uniform risk of DCS regardless of dive profile, the superior fit of our

more sophisticated models reflects their ability to discriminate among dives with regard

to their riskiness.
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One conclusion is possible immediately: given a data set large enough to support the

use of models having multiple parameters, it is always true that at least one of the

models based on integrated risk fits the data substantially better than the null model. As

an illustration, note the entries in Table 2 for single air dives. For the null model, which

'. has 1 adjustable parameter, the ln(!ikeliho' :1) is -154.9. Model l (the 1 _

mono-exponential model) without a threshold overpressure is a 2-parameter model; the lO

maximum LL obtained with this model is -153.9. To evaluate tne improvement in fit .

afforded by model 1, we make use of the likelihood ratio test (equation [4]), which uses 1

the chi-square function with 1 degree of freedom. We find that we can be only 80% ' 1

confident in considering model 1 to be intrinsically superior to the null -model for these

data. Adding the threshold overpressure to mocel 1, for a total of 3 adjustable '

parameters, fails to improve the fit at all. However, the 4-parameter models are I *

" considerably more effective: model 2 (the 2 mono-exponential model) improves on the '
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1 ' '

null model by 9.6 LL units, and model 3 (with 1 bi-exponential) is 7.2 LL units "better" Y

than the null model. Both results are significant at the p<0.005 level.

Note that a difference ‘in LL's means that two models differin their predictions of "

the likelihood of ‘the observed family of dive outcomes. For a difference of 9.6 LL units . v
>

this difference in predicted likelihoods is a factor of exp(9.6) = 15,000. Since the null _
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_ model assumes a uniform risk of DCS regardless of dive profile, the superior fit of our ’

-7 more sophisticated models reflects their ability to discriminate among dives with regard
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For the data listed in Table Z with the exception of the single air dives, noted

above, neither of the 4-parameter models provides an improvement of more than 1.6 LL

units (p<025) over the fit cf model 1. For the generally larger and more diverse data

sets in Table 3, we see that model 2 usually provides the best fit. For example, for the

most complex dzaa s't, containing 1878 single and repeat dives on various gas mixtures,

the fit of model 2 is 11.7 LL units better than any other model's. In fact. for the data

;ets in Tables 2 and 3 we find that model 2 always provides the best fit for data sets

having more than 500 dives, but never improves significantly on model 1 when n<500.

This illustrates that the amount of information one gets from a model depends on how

much information is contained in the data set to which it has been fit; a simple data set

cannot support an elaborate model.

Tables 4-7 list the optimal parameter values, with their standard errors, obtained for

the selected data groupings that appear in Tables 2 and 3. Tables 4 and 5 list the

optimal parameter values obtained by fitting the I mono-exponential tissue models,

either with the threshold pressure difference Ptt treated as an adjustable parameter (3

adjustable parameters) or with P,,, fixed at 'zero (2 adjustable parameters). Tables 6 and

7 contain the optimal parameter values obtained by fitting the 2 mono-exponential

tissues model and the 1 bi-exponential tissue model, both with Pt, fixed equal to. co (4

adjustable parameters).

Appendices 4-6 give the complete listing of the optimal parameter values obtaiv.-ed

for the 2- and 3-parameter models. Appendices 7-9 have the parameter values for ^he

4-parameter models.
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A For the data listed in Table 2, with the exception of the single air dives, noted

above, neither of the 4-parameter models provides an improvement of more than 1.6 LL
|

units (p<0.25) over the fit ‘cf model 1. For the generally larger and more diverse data

sets in Table 3, we see that model 2 usually provides the best fit. For example, for the

most complex data set, containing 1878 single and repeat dives on various gas mixtures,

the fit of model 2 is 11.7 LL units better than any other model's. In fact. for the data

sets in Tables 2 and 3 we find that model 2 always provides the best fit for data sets -

having more than 500 dives, but never improves significantly on model 1 when n<500.

This illustrates that the amount of information one gets from a model depends on how

much information is contained in the data set to which it has been fit; a simple data set

cannot support an elaborate model. ' ~ ‘ _

Tables 4-7 list the optimal parameter values, with their standard errors, obtained for

the selected data groupings that appear in Tables 2 and 3. Tables 4 and 5 list the .

optimal parameter values obtained by fitting the 1 mono-exponential tissue models,

either with thethreshold pressure difference Pm, treated as an adjustable parameter (3

adjustable parameters) or with Pm, fixed at ‘zero (2 adjustable parameters). Tables 6 and
r 1

7 contain the optimal parameter values obtained by fitting the 2 mono-exponential

tissues model and the 1 bi-‘exponential tissue model, both with Pm-, fixed equal to " to (4

adjustable parameters). ' - -

Appendices 4-6 give the complete listing of the optimal parameter values obtained

for the 2- and 3-parameter models. Appendices 7-9 have the parameter values for the

4-parameter models. ' _ -
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An important observation is that the optimal time constant(s) for a given data set

depend on the time scale of the dives in that set. The air dives (EDU885A,

EDU885AR, DC4W, and DRREPWET) are good examples. In DC4W the dives are as

short as 0.5 h and never run as long as 2 h, from initial descent to surfacing. In

EDU885AR the shortest dives last almost 2 h, most run over 3 h and more than

one-sixth of them last about 8 h. EDU885A contains a very diverse collection of dives

lasting anywhere from 0.3 to almost 7 h, with an average duration intermediate between

those of the other two data sets. The significance is that the fitting algorithm cannot use

large time constants to much advantage when describing short dives, and likewise, small

time constants will not be used in fitting long dives. (This is equivalent to saying that

very "slow" tissues are unimportant in short dives and that "fast" tissues tend not to affect

the outcome of long dives, if one assumes each time constant to be truly associated with

a distinct tissue). Again, the parameter value., must reflect the sort of information

contained in the data for which tl'ey were optimized. Not surprisingly, then, Appendices

4 and 7 show that DC4W wants the shortest time corstants and EDU885AR wants the

longest ones. Fcr example, for the single tissue mono-exponential model (model 1) , c

46 min for DC4W, v 281 rin for EDU885AR, and -. 173 min for EDU885A. In

view of the disparity in fitted parameter values among the air data sets, it is not

surprising also that they generally cannot be combined with one another under models

having just one or two adjustable time constants, regardless of whether we are comparing

single dive data sets with other single dive sets or singles with repeats. For example, by

applying the likelihood ratio test to data in Appendices 1 and 2, we find that DC4W and
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An important observationis that the optimal time constant(s) for a given data set

depend on the time scale of the dives in that set. The air dives (EDU885A,

EDU885AR, DC4W, and DRREPWET) are good examples. In DC4W the dives are as

short as 0.5 -h and never run as long as 2 h, from initial descent to surfacing. In

EDU885AR the shortest dives last almost 2 h, most run over 3 h and more than

one-sixth of them last about 8 h. EDU8_85A contains a very diverse collection of dives

lasting anywhere from 0.3 to almost 7 'h,r with an average duration intermediate between

those of the other two data-sets. The significance is that the fitting algorithm cannot use
\

large time constants to much advantage when describing short dives, and likewise, small .

time constants-will not be used in fitting long dives. (This is equivalent to saying that

very "slow" tissues are unimportant in short dives and that "fast" tissues tend not to affect

the outcome of long dives, if one assumes each time constant to be truly associated with

a distinct tissue). Again, the parameter values must reflect the sort of information
|

contained in the data for which they were optimized. Not surprisingly, then, Appendices

4 and 7 show that DC4W wants the shortest time constants and EDU885AR wants the

longest ones. Fcrexample, for the single tissue mono-exponential model (model 1) 2 =
. >

46 min for DC4W, 1 =1 281 min for EDU88SAR, and r = .173 min for EDU885A. In
. I \ ~

view of the in fitted parameter values among the airvdata sets, it is not I I I» .

surprising also that they generally cannot be combined with one another under models

having just one or. two adjustable time constants,'regardless of whether we are comparing

single dive data sets with other single dive sets or singles with repeats. For example, by

applying the likelihood ratio test to datain Appendices 1 and 2, we find that DC4W and

4 '
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EDU885A (both single air sets) are not combinable under any of the models, that data

sets EDU885A (single air) and EDU885AR (repeat air) are not combinable under either

model 2 or model 3, and that DC4W does not combine with EDU885A+EDU885AR

according to any of the models. More elaborate models, havirg 3 or more adjustable

time constants, probably could accommodate all of the air data simultaneously, but no

such models were applied to the air data exclusively.

There is no reason to conclude that there is any fundamental difference in the dives

from one air dive data set to the next, other than their duration. The optimal parameter

values are mathematical devices, not precise descriptors of definite underlying physical or

biological processes.

The most important observation, found by comparing the entries in Tables 2 and 3,

is that the models do not discriminate between single and repeat dives or between dives

on different N2/0 2 breathing mixtures. According to the liktihood ratio test, data sets

from different categories generally can be easily combined. For example, using model 2

(the 2 mono-exponential tissue model, 4 adjustable parameters), which appears to have

the widest applicability for the data in this study, we see that combining data sets from

two categories never results in a decrease of more than 4.0-log likelihood (LL) units over

the sum of the LIs for the subsets. Mathematically, this statement can be written (LL 2

- LL 1)'< 4.0, using the same notation as in equation [4]. When combining single air

dives with repeat air dives we find that (LL 2 LL 1) = 4.0 I.L units, but the air dive

data do not appear to combine as well in general as do the other data, as was discussed

previously. For combining single 0.7 dives with repeat 0.7 dives, (LL 2" LL 1) = 0.5
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EDU885A (both single air sets) are not combinable under any of the models, that data

sets EDU885A (singlevair) and EDU885AR (repeat air) are not combinable imder either

model 2 or model 3, and that DC4W does not combine with EDU885A+EDU885AR

according to any of the models. More elaborate models, having 3 or more adjustable

time constants, probably could accommodate all of the air data simultaneously, but no

such models were applied to the air data exclusively. V

- There is no reason to conclude that there is any fundamental difierence inthe dives

from one air dive data set to the next, other than their duration. The optimal parameter

values are mathematical devices, not precise descriptors of definite underlying physical or

biological processes. ,

The most important observation, found by comparing the entries in Tables 2 and 3,

is that the models do not discriminate between single and repeat dives or between dives

on different N,]O, breathing mixtures. According to the likelihood ratio test, data sets

from different categories generally can be easily combined. For example, using model 2

(the 2 mono-exponential tissue model, 4 adjustable parameters), which appears to have
I .

' \

the widest applicability for the data in this study, we see that -combining data sets from
. I

1

two categories never results in a decrease of more than 4.0~log likelihood (LL) units over

the sum of the LL’s for the subsets. Mathematically, this statement can be written (LL 2’

- LL 1) '<. 4.0, using the same notation as in equation [4]. When‘ combining single air

dives with repeat air dives we find that (LL 2 - IL ,) = 4.0 LL units, but the air dive

data do not appear to combine as well in general as do the other data. as was discussed
, .

previously. For ‘combining single 0.1 dives with repeat 0.1 dives, (u. , - LL ,) = 0.5
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(keep in mind that the data set EDUI18OR has been excluded from this combination).

For the combination of single dives on both air and 0.7 (LL 2 - IL 1) = 1.1, and for the

combination of all repeat dives (again excluding EDU1180R), (LL 2 - LL 1) = 1.8. By

contrast, the likelihood ratio test (equation [4]) tells us that if two data sets from the

same population are described using a 4-parameter model, there is still a 0.05 probability

that the highest LL that will be obtained for their combination will be less than the sum

of the LL's for the individual sets'by an amount of at least 4.74, Le., (LI 2 - LL 1) >

4.74. Therefore, the LL difference must be at least 4.74 before we would reject at the

0.05 level the null hypothesis that single and repeat dives, or air and 0.7 dives, are from

the same population. Accordingly, we accept that the likelihcod ratio test does nothing

to dissuade us from the null hypothesis that single and repeat dives on either air or 0.7

atm N2 are described equally well by the same models.

Table 9 summarizes our comparison of dives from different categories by using the

models as predictors 'ather than descriptors, as outlined in the Data Analysis section. In

principle, a model that correctly relates P ) to dive profiles, having been fitted to

some data set "A', should be able to accuratly predict the outcomes of the dives in

some other data set "W. The realization of is partly confounded by the apparent

randomness of dive outcomes (in both data ets), by the dependence of optimal model

parameter values on the specific dive profile contained in data set *A., and by the

imperfections of the models themselves. Ne ertheless, we might often gain insight into

how similar are the two data sets by compar ng th.e predicted average P(DCS) for data

set "W with the observed ave.age P(DCS) (v hich simply equals the number of recorded
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(keep in mind that the data set EDU1180R has been excluded from this combination). .

For the combination of single dives on both air and 0.7 (LL 2 - LL 1) = 1.1, and for the

combination of all repeat dives (again excluding EDU1180R), (LL 2 - LL ,) = 1.8. By

contrast, the likelihood ratio test (equation [4]) tells us that if two data sets from the

same population are described using a 4-parameter model, there is still a 0.05 probability

that the highest LL that will be obtained for their combination will be less than the sum

of the LL's for the individual sets‘by an amount ‘of at least 4.74, i.e., (LL 2 - LL ,) >

4.74. Therefore, the LL difference must be at least 4.74 before we would reject at the

0.05 level the null hypothesis that single and repeat dives, or air and 0.7 dives, are from

the same population. Accordingly, we accept that the likelihood ratio test does nothing

to dissuade us from the nullhypothesis that single and repeat dives on either or 0.7

atm N, are described well by the same models. . A

Table 9 summarizes our comparison of dives from difierent categories by using the

models as predictors ather than descriptors, as outlined in the Data Analysis section. In
, .

| I

principle, a model that correctly relates P(DCS) -topdive profiles, having been fitted to
V .

. I .

some data set ‘A’, should be able to accurately predict the outcomes of the dives in

some other data set ‘B’. ‘Hie realization of this is partly confounded by the apparent

es

randomness of dive outcomes (in both data sets), by the dependence of optimal model 1

contained in data set ‘A-", and by the _ 'parameter values on the specific dive profil

imperfections of the models themselves. N rtheless, we might often gain insight intoeve

how similar are the two data sets by comparing the predicted average P(DCS) for data

set "8" with the observed average P(DCS) (which simply equals the number of ‘recorded

/

I



DCS cases divided by the number of dives). We would hope to find substantial overlap

in the confidence intervals. The confidence intervals on the PREDICTED values of

average P(DCS) are given in Table 9; these are calculated by the error propagation

method shown in the "Data Anaysis* section.

Unfortunately, there seems to be no satisfactory way to calculate a confidence

interval on the estimate of average P(DCS) g-en by the OBSERVED average P(DCS).

'Many of the dive profiles have only 2 replicates and some are unreplicated, and binomial

theo.ry cannot supply useful estimates of the uncertainty on an observed proportion when

the sample size is only 1 or 2. We can, however, set a very conservative lower bound on

this uncertainty by assuming that all of the dives carry the same underlying P(DCS), as

though the data set is composed entirely of replicates of the same dive. This assumption

leads one to calculate the least possible uncertainty in the estimate of P(DCS). The

confidence interval on the estimate of the underlying P(DCS) by the observed incidence

is easily computed usi;-g the approximation that the obsered P(DGL) is a

aormally-distributed random variable.

.Note that in Table 9a, models fitted to single div data are used to predict the

outcomes of repeat dives and models fitted to air dive data are used to predict the

outcomes of 0.7 dives. whereas in Table 9b the situation is reversed. Occasionally the

95% confidence interval on the predicted average P(DCS) does miss the observed

incidence, as for example when models fitted to the repeat 0.7 dives are used to predict

the outcomes of repeat air dives (see Table 9b). There is a raw incidence of 7.2% DCS

in the repeat air data, whereas the predicted incidences ranges from 2.7 to 3.8%
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DCS cases divided by the number of dives). We would hope to find substantial overlap

in the confidence intervals. The confidence intervals on the PREDICTED values of

average P(DCS) are given in Table 9; these are calculated by the error propagation -

method shown in the ‘Data Analysis‘ section. V ' _

Unfortunately, there seems to be no satisfactory way to calculate a confidence

interval on the estimate of average P(DCS) given by the OBSERVED average P(DCS).

Many of the dive profiles have only 2 replicates and some are unreplicated, and binomial

theory cannot supply useful estimates of the uncertainty on an observed proportion when

the sample size is only 1 or 2. We can, however, set a very conservative lower bound on

this uncertainty assuming that all of the dives early the same underlying P(DCS), as

though the data set is composed entirely of replicates of the same dive. This assumption

leads one to calallate the least possible uncertainty in the estimate of P(DCS). The

confidence interval on the estimate of the underlying P(D6) by the observed incidence

is easily computed using the approximation that the observed P(D(..3) is a

zlormally-distributed random variable. . . .
Note that in Table 9a, models fitted to single dive data are used to predict the ~

outcomes of repeat dives and modelsfitted to air dive data are used to predict the - h

outcomes of 0.7 dives, whereas in Table 9b the situationk reversed. Occasionally the

95% confidence interval on the predicted average l’(DCS) does miss the observed
' l

incidence, as for example when models fitted to the repeat 0.7 dives are used to predict

the outcomes of repeat air dives (see Table 9b). There is a raw incidence of 7.2% DCS

in the repeat_ air data, whereas the predicted incidences ranges from 2.7 to 3.8% '

I .



depending on the modck;, with the confldcnce intervals extending no higher than 72%.

However, based on the observed incidence of DCS we estimate the confidence interval

on the underlying P(DCS) to span from 3.6% to 10.9%, and remember that this is a

gross underestimate of the true width of this interval. In summary, we recognize no

convincing evidence that single dives are incompatible with repeat dives or that air dives

and 0.7 dives are incompatible.

B. Multilevel Dive

Another important observation is that the addition of EDUllSOR to a data set

consistently degrades any model's ability to describe the data in that set. EDU1l8OR

consists of a set of multilevel profiles in which the diver ascends to 10-30 fsw between

descents. Strictly speakin& one cannot assess the combinability of EDUlI1OR with

othe' data sets without fitting the models to EDUI18OR alone, which has not been done

because of the sparseness of this data set (2 DCS cases recorded out of 128 man-dives).

However, if one applies the likelihood ratio test on the assumption that the

risk-accumulation models would fit EDUl18OR just as well as the null model, then

EDU18OR is found to be not combinable with any other data. Also, the addition of

EDU18OR to a data set consistently results in drastic shortening of the fitted time

constants for the set.

Let us use some of the repeat dive data as an illustration. The null fit to

EDU118OR yields a ln(likelibood) of 10.30. In Appendix 2 we see that the combination

of data sets EDU184 and EDU885AR can be fitted with model 2 so that LL - 77.84

(this makes them very easily combinable according to the likelihood ratio test). When
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depending on the model, with the confidence intervals extending no higher than 7.2%.

However, based on the observed incidence of DCS we estimate the confidence interval

on the underlying P(DCS) to span from 3.6% to 10.9%, and remember that this is a

gross underestimate of the true width'of this interval. In summary, we recognize no

convincing evidence that single dives are incompatible with repeat dives or that air dives

and 0.7,dives are incompatible. " ’

B- Mll1Il1§1£1.I2i!§5
I .

Another important observation is that the addition of EDU1180R to a data set

consistently degrades any model's ability to describe the data in that set. EDU1180R
I I

consists of a set of multilevel profiles in which the diver ascends to 10-30 fsw between

descents. Strictly speaking, one cannot assess the combinability of EDU1180R with

other data sets without fitting the models to EDU1180R alone, which has not been done
I . '

I

beause of the sparseness of this data set (2 DCS cases recorded out of 128 man-dives).

However, if one applies the likelihood ratio test on the assumption that the V

risk-accumulation models would st EDU1180R just as well as the null model, then .
EDU1180R is found to be not combinable with any other data. Also, the addition of _

I-3DU1'180RV to a data setconsistently results in drastic shortening of the fitted time

constantsfortheset. - ~ ~ '

Let us use some of the repeat dive data as an illustration. The null fit to _ <

EDUl180R yields a ln(lilrelihood) of 10.30. ,ln,Appendix 2 we see that the combination

of data sets EDU184 and EDUSSSAR can be fitted with model 2 so that LL II 77.84

(this makes them very easily combinable according to the likelihood ratio test). ‘When
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EDU1180R is added, the best fit of model 2 has LL = 9335. This much degradation of

the fit is significant at the p < 0.04 level. In Appendix 8 we see that the optimized time

constants for [EDU184+EDU885ARJ are v = 198 min and T2 = 741 min, but after

EDUI18OR is added to the set the optimal fit is obtained with v, = 0.43 mrin and r 2

105 min. We get similar results when EDU118OR is mixed with other data sets.

Table 8 summarizes efforts to predict P(DCS) for the EDUI18OR dives using

parameter -,lues optimized for other data sets. Parameters are used that have been

optimized for rll Af the single 0.7 dives (i.e., EDU118OS and EDU885M), all of the

repeat 0.7 dives (mcludes only EDU184), and the combination of all dives except

EDU118OR. In no instance is the prediction a good one, with between 11 and 32 DCS

cases predicted as compared with 2 cases observed. The poor fit is also indicated by the

low LL values compared with the null model's L1, indicating that, for the parameter

values obtained by fitting other data, the observed dive outcomes are far from probable.

The explanation is that EDU1180R needs considerably shorter time constants than

do the other data sets (with the exception of DC4W) and that the application of

longer-than-optimal time constants is unusually deleterious to the fit. Generally,

lengthening the time constants in one of the models has the partially offsetting effects of

reducing the gas uptake (thereby reducing the total rsk of the dive) and retarding the

offgassing (thereby increasing the total risk). This dichotomy icts to moderate the effect

on the predicted P(DCS) of changes in the fitted time constants. For these dives,

however, it seems that the former effect is overwhelmed by the latter, so that there is a

strong intolerance for longer time constants. Why is this? The dives in EDU1ISOR
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EDU1180R is added, the best fit of model 2 has LL = 93.35. This much degradation of

the fit is significant at the p<0.04 level. In Appendix 8 we see that the optimized time

constants for [EDU184+EDU885AR] are 11 = 198 min and 22 = 741 min, but after

EDU1180R is added to the set the optimal fit is obtained with 2, = 0.43 min and :5 =

105 min. We get similar results when EDU1180R is mixed with other data sets._ 8
Table 8 summarizes efforts to predict P(DCS) for the EDU1l80R dives using

parameter values optimized for other data sets. Parameters are used that have been
\

optimized for nll of the single 0.7 dives (i.e., EDU1180S and EDU885M), all of the

repeat 0.7 dives (mcludes only EDU184), and the combination of all dives except

EDU1180R. In no instance is the prediction agood one, with between 11 and 32 DCS

eases predicted as compared with 2 cases observed The poor -fit is also indicated by the

low LL values compared with the null model's LL, indicating that, for the parameter

values obtained by fitting other data, the observed» dive outcomes are far from probable.

The explanation is that EDU1180R needs considerably shorter time constants than

do the other data sets (withrthe exception of DC4W) and that the application of

longer-than-optimal time constants is unusually deleterious to the fit. Generally, _

lengthening the time constants in one of the models has the partially offsetting effects of

reducing the gas uptake (thereby reducing the total risk of the dive) and retarding the

ofigassing (thereby increasing the total risk). This dichotomy ‘acts to moderate the effect

on the predicted P(DCS) of changes in the fitted time constants. For these dives,

however, it seems that the former effect is overwhelmed by the latter, so that there is a

strong intolerance for longer. time constants. Why is this? The dives in EDU1l80R
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contrast with our other data in that the divers remain underwater for 4-5 h before

beginning decompression but then undergo a decompression of okly 1-2 h duration.

"Thus, the time spent underwater is unusually long compared with the'decompression

time, so that even "slow" tissues have plent , of time to accumulate inert gas but only

"fast" tissues can offgas effectively before surfacing. In our models, a time constant much

longer than about 60 min results in the prediction of a substantial tissue supersaturation

remaining at the end of tbe dive, with especially severe risk accumulation commencing at

the 20- or 10-foot stop or upon surfacing (depending on the time constant,). Figure 1

illustrates this. It is a plot of one of the multilevel dives in which 06e dr. ers descended

to 150 fsw and stayed there for 29 miin, ascended to 30fsw and stayed for 120 min, and

descended again to 150 fsw for 30 min. The depth, the partial pressure of N2 in each of

the "tissues' postulated by model 2, and the accumulated P(DCS) are plotted as functions

of time. The partial pressures are predicted by model 2 using the parameter values

optimized for all of the single- and repeat- dive data. It is seen that the tissue having the

33-min time constant (the "fast" tissue) really does expel most of its dissolved N2 during

the stay at 30 ft, ap-i consequently this tissue makes a relatively small contribution to the

P(DCS). By contrast, the tissue with the 715-min time constant actually experiences a

small net gain of dissolved N2 during the 30-fsw stop, and the final decompression is far

too rapid to allow a thorough washout of dissolved gas before surfacing. The resulting

overpressure persists for 6 h versus about 1 h of overpressure in the fast tissue. In

addition, the gain coefficient coupled with the longer time constant is five times greater

than the gain coefficient for the short time constant (see equation [3] for the definition
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contrast with our other data in that the divers remain underwater for 4-5 h before .

beginning decompression but then undergo a decompression of only 1-2 h duration.

Thus, the time spent underwater is unusually long compared with thedecompression

time, so that even ‘slow’ tissues have plentx of time to accumulate inert gas but only

‘fast’ tissues can ofigas efiectively before surfacing. In our models, a time constant much

longer than about 60 min results in the prediction of a substantial tissue supersaturation
I |_ ..

remaining at the end of the dive, with especially severe risk accumulation commencing at

the 20- or 10-foot stop or upon surfacing (depending on the time constant-). Figure 1

illustrates this. It is a plot of one of the multilevel dives in which the diters descended

to 150 fsw and stayed there for 29 min, ascended to 30xfsw and stayed for 120 min, and

descended again to iso fsw for so min. The depth, the partial pressure of N, in each of
the ‘tissues’ postulated by ‘model 2, and the accumulated P(DCS) are plotted as functions

of time. The pressures are predicted by model 2 using the parameter values

optimized for all of the single- and repeat- dive data. It is seen that the tissue having the

33-min time constant (the ‘fast’ tissue) really does expel most of its dissolved N, during

the stay at 30ft, and consequently this tissue makes a relatively contribution to the

P(DCS). By contrast, the tissue‘ with the 715-min time constant actually experiences a

small net gain of dissolved N, during the 30-fsw stop, and the final decompression is far

too rapid to allow a thorough washout of dissolved gas before surfacing. The resulting

overpressure persists for 6 h versus about 1 h of overpressure in the fast tissue. In

addition, the gain coefficient coupl'ed_with the longer time constant is five times greater

than the gain coefficient for the short time constant (see equation [3] for the definition
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of the gain coefficient). The end result is that this dive profile is predicted to carry a

-.4.591o probability of DCS with the 715-min tissue accounting for the bulk of the risk.

Similar plots could be shown for the rest of the multilevel dives. Therefore, when

EDU1180R is mixed with other data sets and the combination is fitted by one of our

models, the use of long time constants results in a gross overestimation of P(DCS) for

the EDUI18OR dives, and the use of short time constants results in a poor fit to the

remainjing data. Of course, the optimized parameter values for a combination of data

sets never quite equal the optimal values for any one of the subsets. However, the

subsets usually appear combinable nonetheless, using "compromise" parameter values

that usually are within uncertainty bounds of the parameter estimates for the individual

subsets. The difference with EDU1180R'is the unusual sensitivity of the fit to time

constant values, and this sensitivity is a consequence of the special characteristics of

these dives.

Whereas the fitted parameter values are not taken to have any definite physical

significance, the only justifiable conclusion is that a fundamental difference exists

between data set EDUI18OR and the others in this study with respect to their

description by these particular models. If we consider the models to be suitable for

modelling non-multilevel dives, then it is necessary to doubt whether they are adequate

for modelling multilevel dives, on the evidence available to us from this one dive series.

C. Repetitive Dive Features

An evaluation that we made of repeat dives may be of interest to the reader. In this

exercise, we used the models as predictcrs of P(DCS) for various repeat dive profiles and
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of the gain coefificient). The end result is that this dive profile is predicted to carry a

19.5% probability of DCS with the 715-min tissue accounting for the bulk of the risk.

Similar plots could be shown for the rest of the multilevel dives. Therefore, when

EDU1180R ismixed with other data sets and the combination is fitted by one of our

models, the use of long time constants results in a gross overestimation of P(DCS) for

the EDUI180R dives, and the use of short time wnstants results in a poor fit to the

remaining data. Of course, the optimized parameter values for a combination of data

sets never quite equal the optimal values for any one of the subsets. I-Iowever, the

subsets usually appear combinable nonetheless, using "compromise" parameter values

that usually are within uncertainty bounds of the parameter estimates for the individual

subsets. The difference with EDU1180R' is the unusual sensitivity of the fit to time

constant values, and this sensitivity is a consequence of the special characteristics of

these dives. ‘ - ‘

Whereas the fitted parameter values are not taken to have any definite physical

significance, the only justifiable conclusion is that a flmdamental difference exists

between data set EDU1180R and the others in this study with respect totheir

description by these‘ particular models. If we consider the models to be suitable for
. - . I V ‘

modelling non‘-multilevel then it is necessary to doubt whether they are adequate

for modelling multilevel dives, on the ‘evidence available to us from this one dive series.

- An evaluation that we made of repeat dives may be of interest to the reader. In this

exercise,we used the models as predictors of P(DCS) for various repeat dive profiles and
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varied the duration of the surface interval as an independent parameter, without

changing any of the other aspects of the dive profiles. We found that P(DCS) is partly

determined by two effects peculiar to repeat dive combinations. First, the descent for

the second dive eliminates the tissue supersaturation persisting from the first dive,

thereby halting the accumulation of risk from the first dive and reducing P(DCS) for the

dive combination as a whole. This is effectively a truncation of the first dive. Note that

this reduction in P(DCS) arises from our assumption of an accumulating risk, rather than

a risk resulting from some single instant of supersaturation occurring during the dive.

The second effect peculiar to repeat dives is the. addition of risk to the second dive

because of the residual inert gas supersaturation from the first dive. This effect

increases the risk of the aive combination.

According to our models, for the repeat dives in this study, the lowest P(DCS) is

achieved with a surface interval of infinite duration, i.e. two single dives. This is
another way of saying that the second effect described above dominates the first.

Consequently, according to our models repeat dives are inherently more dangerous than

single dives and one should adjust the decompression time of the second dive to

compensate. As an example, Figure 2 shows the predicted P(DCS) of one of the

double-dives in data set EDU885AR as a function of surface interval time, according to

model 2 with its parameter values optimized for all of the repeat dive data. The

monotonic decrease with surface interval time of P(DCS) is typical, although maxima

and minima are possible. Incidentally, the actual dive was carried out with an 86-minute
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varied the duration of the surface interval as an independent parameter, without

changing any of the other aspects of the dive profiles. We found that P(DCS) is partly

determined by two effects peculiar to repeat dive combinations. First, the descent for
. I
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the second dive eliminates the tissue supersaturation persisting from the first dive,

thereby halting the acmmulation of risk from the first dive and reducing P(DCS) for the

dive combination as a whole. This is effectively a truncation of the first dive. Note that

this reduction in P(DCS) arises from ourassumption of an accumulating risk, rather than

a risk resulting from some single instant of supersaturation occurring during the dive. "
\

The second effect peculiar to repeat dives is the addition of risk to the second dive

because of the residual inert gas supersaturation from the first dive. This erfect

increases the risk of the dive combination. '

According to our models, for the repeat dives in this study, the lowest P(DCS) is 1

achieved_with a surface interval of infinite duration, »i.e. two single dives. This is

another way of saying that the second effect described above dominates the first. '

Consequently, according to our models repeat dives are inherently more dangerous than

single dives and one should adjust the decompression time of the second dive to ‘

compensate. As an example, Figure showsthe predicted P(DCS) of one of the

double-dives in data set BDU885AR as a function of surface, interval time, according to

model 2 with its parameter values optimized for all of the repeat dive data. The

monotonic decrease with surface interval time of P(DCS) is typical, although maxima

and minima are possible. Incidentally, the actual dive was carried outwith an 86-minute
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surface interval; there was a 98-minute decompression following the first descent and a

208-minute decompression after the second descent.

It certainly is possible to devise dive sequences that are exceptions to the rule, that

is, which are made safer by a reduction in the times allowed between descents. One

example consists of a hazardous dive followed by an extremely safe dive having an

extremely long decompression time - this is equivalent to recompression therapy.

Another example occurs when the second dive is a saturation dive, in which case the

residual dissolved inert gas from the first dive is irrelevant.

D. Sgecific Oxygen Effecs

One more test of our models consists of attempting to improve the fit by allowing

the dimensionless parameter k102 (see equation [3]) to be an adjustable variable in the

curve-fitting routine. In all modelling discussed to this poeit, k02 has been fixed at zero.

If the fit can be improved significantly by allowing k2 to be non-zero, it would suggest

that risk accumulation depends on the partial pressure of 02 in the breathing mix as well

as on the artial pressures of any inert gases. Accordingly, the 3-mono-exponential tissue

model (model 4) was fitted to all of the available data (except EDU1180R) with k0 2

allowed to float. Table 10 and Appendix 10 show the highest in(likelihood) and optimal

parameter values obtained, and these can be compared with the results found for model

4 with k2 fixed at zero. The optimal value of ko2 is scarcely different from zero (0.34

with a sta dard error of 0.31) but the improvement in fit afforded by the extra parameter

is only 03.5 L units, which is not significant. We conclude that we, have no strong

evidence to support the inclusion of F0 2 in our risk formulations. Model 4 was chosen
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surface interval; there was a 98-minute decompression following the ‘first descent and a

208-minute decompression after the second descent. ' Y

It certainly is possible to devise dive sequences that are exceptions to the rule, that

is, which are made safer by a reduction in the times allowed between descents. One

example consists of a hazardous dive followed by an extremely safe dive having an

extremely long decompression time '- this is equivalent to recompression therapy.

Another example occurs when the second dive is a saturation dive, in which case the

residual dissolved inert gas from the first dive is irrelevant. 4 '

D- . . h
One more test of our models consists of attempting to improve the fit by allowing

the dimensionless parameter kc, (see equation [3]) to bean adjustable variable in the

curve-fitting routine. Inall modelling discussed to point, km has been fixed at zero.

If the fit can be improved significantly by allowing kg, to be non-zero, it would suggest

that risk accumulation depends on the partial pressure of O, in the breathing mix as well

as on the partial pressures of any inert gases. Accordingly. the 3-mono-exponential tissue

model ( odel 4) was fitted to all of the available data (except EDUl180R) with km 'm

allowed to float. Table 10 and Appendix 10 show. the highest ln(likelihood) and optimal
> . r

parameter values obtained, and these can be compared with the results found for model

4 with km fixed at zero. The optimal value of kog is scarcely different from zero (0.34

with a standard error of 0.31) but the improvement in fit afforded by the extra parameter

is only 0.5 LL.units, which is not significant. We conclude that W¢'ll3.V¢ no strong

evidence to support the inclusion of PO, in our risk formulations. Model 4 was chosen
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for this test because it is superior to out other models at fitting all of the data

simultaneously.
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VI. MORE COMPLEX MODELS; CONCLUSIONS j
The summary of the discussion is that 1) our models have some substantial face

,alue as quantitative descriptors and predictors of DCS incidents, 2) we see no

vompelling reason not to combine data regardless of whether it consists of single dives or

repeat dives and regardless of the composition of the N2/O 2 breathing mix, and 3) we

see no compelling evidence that any of the data sets other than EDU118OR comes from

a different population than the bulk of the data. All of these conclusions are based on

our use of models 1, Z and 3. It remains for us to explore whether more complicated

functions can be used to advantage. Table 10 and Appendix 10 each show the highest

In(likelihood), and the optimized parameter values, obtained by fitting model 4 (the

3-mono-exponential tissue model) and model 5 (the 2 bi-exponential tissue model), each

with P.=0 and ko2=0, to all of the available data (except EDU1180R). Model 4, with

6 adjustable parameters altogether, actdually provides a somewhat better overall fit than

does the 8-parameter model 5. The excessively high standard errors on the model 5

parameters result from strong cross-correlations t'etween parameters, suggesting that the

data set may not be sufficiently large and diverse to support a model as elaborate as this.

The fit of model 4 is seen to be a statistically significant improvement over that of model

2 (the 2-mono-exponential model, having 4 parameters), according to the likelihood ratio

test.

It would seem that the 3-mono-exponential model with the parameter values listed

in Table 10 represents our best mathematical description of the. available data. Its fit
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- VI. MORE COMPLEX MODELS; CONCLUSIONS h

' The summary of the discussion is that 1) our models have some substantial face

value as quantitative descriptors and predictors of DCS incidents, 2) we see no '

compelling reason not to combine data regardless of whether it consists of single dives or

repeat dives and regardless of the composition of the N,/O, breathing mix, and 3) we

see no compelling evidence that any of the data sets other than EDU1180R comes from

a difierent population than the bulk of the data. All ofthese conclusions are based on

our use of models 1, 2, and 3; It _remains for us to explore whether more complicated

functions can be used to advantage. Table 10 and Appendix 10 each show the highest -

ln(likelihood), and the optimized parameter values, obtained by fitting model 4 (the '
. l

3-mono-exponential tissue model) and model 5 (the 2 bi-exponential tissue model), each

with P,,,,=0|and k°,=0, to all of the available data (except EDU1180R). Model 4, with

6 adjustable parameters altogether, actually provides a somewhat better overall fit than
t I V

does the 8-parameter model 5. The excessively high standard errors on the model 5 ~

parameters result from strong cross-correlations between parameters, suggesting that the

data set may not be sufficiently large and diverse to support a model as elaborate as

The fit of model 4 is seen to be a statistically significant improvement over that of model

2 (the 2-mono-exponential model, having 4 parameters),'aceording to the likelihood ratio
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It would seem that the 3-mono-exponential model with the parameter values listed

in Table 10 represents our best mathematical description of the available data. Its fit
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improves upon the null model's fit by 20 LL units, meaning that it predicts the observed

family of dive outcomes to be cxp(20) - 4.7.10? times more probable tain the null

model does. The optimized time constants of 0O4 nin, 129 main, and 767 mnir reflect the

diversity of the available data. It should not bc extrapolated recklessly to dives that are

appreciably different from the ones in our database. That is, it should not be expected

to be a rei-i~.abe predictor of the risks of dives having time scales different from those in

our database; as we have seen, the optimal time constants obtained for long dives do a

poor job of describing short dives, and vice-versa. Our database contains dives ranging

from 0.3 to 8 h, so saturation dives are not encompassed. Obviously, it should not be

extrapolated to multi-level dives, which were excluded from the data set for which the

parameter values in Table 10 were optimized.
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improves upon the null model's fit by 20 LL units, meaning that it predicts the observed

family of dive outcomes to be e,-xp(20) = 4.7- 10' times more probable than the null

model does. The optimized time constants of 0.44 min, 129 min, and 767 min reflect the

diversity of the available data. It should not be extrapolated recklessly to dives that are

appreciably different from the ones in our database. That is, it should not be expected l

to be a reliable predictor of the risks of dives having time scales different from those in

. our database; as we have seen, the optimal time constants obtained for long dives do a -

poor job of describing short dives, and vice-versa. Our database contains dives ranging

from 0.3 to 8 h, so saturation dives are not encompassed. Obviously, itshould not be '

extrapolated to multi-level dives, which were excluded from the data set for which the

parameter values in Table 10 were optimized.
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APPENDIX 1

Log Likelihoods for the 2-, 3-, and 4-Parameter Models:
Data Sets Not Combined Across Categories; k02 - 0

In the following tables, U////* indicatos that the model converges to a
solution equivalent to a two-parameter DLE6 solution.

-ln (likelihood)

DCS
cases/dives null model 1 model 2 model 3

no Ptb v/Ptb
single air dives:

EDU885A 30/483 112.41 109.92 1/// 101.88 105.37

DC4W [8+4(0.5)]/244 41.738 40.595 1//f 35.514 37,054

EDU885A
+ DC4W [38+4(0.5)1/727 154.88 153.86 /// 145.25 147.70

single 0.7 dives:

EDUl180S 10/120 34.420 30.495 30.474 /// 30.456

EDU885M 4/81 15.932 .... .... .... ....

EDU1180S + EDU885M 14/201 50.800 44.851 /// 44.821 ///

single dives, other gas mixes:

NMR8697 [11+18(0.5)1/477 83.010 81.970 81.939 81.844 81.931

DC8AOW [2+1(0.5)]/45 9.655 ....-....

repeat/multilevel asr dives:

EDU885AR 11/182 41.528 38.027 36.447 // 36.390

DRREPWET 3/12 6.748 ....

EDU885AR + DRREPWET 14/194 50.285 45.719 44.240 //// 44.115

repeat/multilevel 0.7 dives:

EDUlSOR 2/118 10.302 ....

EDU184 11/234 44.369 38.455 37.420 37.930 37.329

EDUll80R + EDU184 13/362 56.011 52.989 52.914' //// 52.511
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.

In the following tables, '////' indicates that the model converges to a
solution equiva ent to a two-parameter DLE6 solution.

-In (likelihood)
Q Q Q ¢ -QDCS

cases/dives null model 1 model 2

single air dives: H

rnusssa 1 30/ass
ncav [a+a(o.s)1/244
EDU885A I

+ D640 [38+4(0.5)]/727

single 0.7 dives: A

ED011805 1 A 10/120

EDUBSSH 4/81

ED011808 + EDU885H 14/201

lingle dives, other gas nixed:

NMR8697 [11+18(0.5)]/477

DC8AOV I [2+1(0.S)]/45

repeat/multilevel air dives:
EDU885AR _ ‘ 11/182

DRREPVET ’ 3/l2

M EDU885AR + DRREPUET l4/194

repeat/multilevel 0.7 dives:
znurraoa . 2/12s
zou1a4 11/23¢‘
anuriaoa + routes 13/:62

112.41

41.738

154.88

34.420
15.932
so.aoo

I .

83.010

9.655

41.s2a
6.74s

so.2as

10.302

44.369

56.011

-, 37

H0 Pt‘:

109.92

40.595

153.86

30.495

44.851

81.970

38.027

45.719

38.455

52.989

-an

V/Pun

////
////

////

30.474

////

81.939
on-4

36.447

44.240

37.420

52.914

101.88

35.514

145.25

////

44.821

81.844

////-

///.1‘ 9

37.930
////

model 3

105.37

37.054

147.70

30.456
~-¢-

////

a1.9a1

36.390‘

44.115

37.3291

52.511



APPMEDIX 2

Log Likelihoods for the 2-, 3-, and 4-Parameter Models:
Cmbinations of Data Sets From Different Categories

-In (likelihood)

DCS - - - - - - - - - - - - - - - - - - - - - -cases/dives null model 1 model 2 model

no Pt., w/PtlZ

single, air + 0.7:

EDU1180S + EDU885A
+ EDU835M + DC4W

[52+4(0.5)1/928 205.98 204.17 /// 191.21 195.46

single, any gas mix:

EDU1180S + EDU885A
"+ EDU885M + DC4W
"+ DC8AOW + NMR8697

[65+23(0.5)1/1450 299.51 297.23 /// 285.39 ///

repeat/multilevel, air + 0.7:

EDU184 + EDU885AR 22/416 86.080 78.298 75.109 77.837 75.923

EDU184 + EDU885AR
+ DRPEPWET 25/428 95.261 86.869 83.544 86.442 83.523

EDUl18OR + EDU184
+ EDU885AR 24/5" 98.364 93.459 92.988 93.346 ///

air, single + repeat/multilevel:

EDU885A + EDU885AR 41/665 153.94 148.63 /// 144.19 146.30

EDU885A + EDU885AR
+ DC4W + DRREET'

...... [52+4(0.5)]/921 205.55 202.28 //// 19.4.95 197.98

EDU885A + EDU885AR
+ DC4W [494+4(0.5))/909 196.45 194.23 //// 185.98 189.43

0.7, single + repeat/multilevel:

9DU1180S + EDU118OR 12/248 48.047 47.500 41.267 46.656 ////

EDU1I80S + EDU184 21/354 79.685 69.096 68.571 68.619 68.287
EDU1180S
+ EDUlI8OR + EDU184 23/482 92.419 87.992 86.962 ////

EDU1I80S +
EDU184 + EDU885M 25/435 101.01 83.583 //// 83.216 83.395

EDU1180S + EDU1180R
+ EDU184 + EDU885M 27/563 108.35 104.89 //// ////

38

-.'-
. .

- (6

Q‘

#6

‘<

0

Q

YI

a»

_‘\

.- ._ -~11. 6»

APPENDIX 2 '

Lo Likelihoods for the 2-, 3-, and 4-Parameter Models:
56-016001600 of Date Sets From Different Categories

-ln (likelihood)

 i

1 ' , »

. -> »— :14 .. , _, \.., ’». ._' _ .-_ - __ -,_ -_ _;.. v , ._. . ., ., .' . .. ~?> _ , __.e' , .-_ _ . '-

DCS
cases/dives null model 1 _ model 2 model ‘

single, air + 0.7:

EDU1180S + EDU885A 1
+ EDU835M + D049 -_

[s2+6(0.$)I/920
single, any gas nix:

ED011808 + EDU885A .
+ EDU885H + DC4U
+ DCBAOU + NMR8697

[65+23(0.5)]/1450

repeat/multilevel, air + 0.7:
HIUl84 + EDU885AR 22/416

000106 + 00000510+ nansrwxr , 25/620
0001100: + 000106' + 00000560 -26/566

air, single + repeat/multilevel
EDU885A + EDUBBSAR 41/665

2000056 + 00000510
+ D649 + DRREPHET‘ '0 ._1§2+1~<9-§>1/w

0000006 + 00000560 .+ ncaw [69+6(0.s)1/909

0.7, single + repeat/uultilevol

ED011808 + EDU1180R 12/248
ED011805 + EDU184 . 21/354
EDU1l80S _
_+ ED011808 + EDU184 23/482

ED011808 + 4
800184 + EDU885H 25/435

ED011808 + ED011808 '
'+ EDU184 + ZDU885H 27/563
\ .

/

205.98

299.51

86.080

95.261

98.364

153.94

205.55

196.45

40.061
79.685

92.419

101.01

108.35

' 30

204.17

297.23

78.298

86.869

93.459

148.63

202.28

194.23

47.500

69.096
01.992

83.583

104.89

u Q Q Q Q QC

//// 191.21

////' _ 285.39
I

77.837

86.442

75.109

83.544

92.988 93.346

'//// 144.19

//// v196.9s

//// 105.90

41.267

68.571 68.619

86.962 ////

\ .

46.656

//// 83.216

//// ////

195.46

////

75.923

83.523

////

166.30

197.98

189.43

////
60.201
////

03.395

////

_



APPEDIX 3

Log Likelihoods for the 2-, 3-, and 4-Parameter Models:
Any Category of Dive

- in (likelihood)

DCS-- - - - - - - - - - - - - - - - - - - - - -
cases/dives null model I model 2 model 3

no P• v/P•
any type of dive:

EDU885A +
EDU885AR + EDU885M 45/746 169.98 165.00 //// 159.53 162.04

EDU1180S
+ EDU184 + EDU885A
+ EDU885AR + EDU885M
+ DC4W + NMR8697
+ DRREPWET
+ DC8AOW [90+23(0.5)]/1878- 394.87 383.79 /11/ 377.09 //I
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~ -16 (likelihood)
? ncs ------------------------------------------ --,
5‘ cases/dives null model l model 2 model 3

_ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 ' no P w/P
~ any type of dive: m m

EDU885A + '
EDU885AR + ED088511 45/746 169.98 165.00 //// 159.53 162.04

ED011805
+ EDU184 + EDU885A
+ BDU885AR + EDU88524
+ D04? + NMR8697+ nnazrwm+DC8AOV [90+23(0.$)1/1870 394.01. 300.79 //// 317.09 ////
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APPENDIX 4

Optimized Parameter Values for the 2- and 3-Parameter Models:
Data Sets Not Combined Across Categorier

model 1 model 1
(1 Tissue (1 Tissue

Mono-exponential); Mono-exponential)
Ptb." 0  Ptb * 0

single air dives:

EDU885A - 173 (38) ///
A - 0.00221 (0.00044)

EDU885A + DC4W - 89.6 (16.8)
A - 0.00220 (0.000353)

DC4W - 46.1 (28.2) ///
A - 0.00209 (0.00072)

EDU885A + DC4W - 92.4 (16.8) ///
A - 0.00222 (0.00035)

single 0.7 dives,:

EDU1180S * 490 (140) - 374 (516)
A - 0.00489 (0.00274) A - 0.00680 (0.0129)

Pt- 2.08 (11.6)

EDU885M .....

EDU1180S + EDU885M - 483 (88.6) ///
A - 0.00586 (0.00260)

single dives, other gas mixes:

NMR8697 t -77.9 (34.2) - 72.9 (2867)
A - 0.00180 (0.000461) A - 0.00269 (0.00414)

Pt - 3.03 (11.2)

DC8AOW -- ....

repeat/multtlevel air dives:

EDU885AR • -281 (88.5) - 134 (47.9)
A - 0.00406 (0.00249) A - 0.0816 (0.0978)

P -b - 9.96 (3.98)

DRREPWET

EDU885AR + DRREPWET • -297 (83.1) - 177 (68.7)
A - 0.00510 (0.00280) A- 0.0491,(0.0703)

Pu= - 6.92 (4.35)

40
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APPENDIX 4

1»

Optimized Parameter Values for the 2- and 3-Parameter Models:
' Data Sets Not Combined Across Categorier

model 1
(1 Tissue

Mono-exponential);
Pu“-0

single air dives:

0000050 ‘ 1 - 113 (30)A - 0.00221 (0.0006a)
EDU885A + D640 t - 89.6 (16.8)

A - 0.00220 (0.000353)

DC4W 0 - 46.1 (28.2)
A — 0.00209 (0.00072)

EDU885A + D049 1 — 92.4 (16.8)
A ~ 0.00222 (0.00035)

1

single 0.7 dives; '

EDU1180S 1 I 490 (140)
A — 0.00489 (0.00274)

EDU885M -----

ED011805 + EDU885H t~- 483 (88.6)
A - 0.00586 (0.00260)

single dives, other gas mixes: '

N8697 0 - 11.9 (36.2)- ' A - 0.00100 (0.000661)
1

DC8AOU _ ' "~-

repeat/multilevel air dives: ,

EDU885AR 81 (88.5)
.00406 (0.00249)>00 I0ON

DRREPUET - -----

EDU885AR + DRREPWET '
>00 IInON) 'O O~JO \l|I\ I-IQ Oh-I I\U-5Qxl O0280)

40

model 1
(1 Tissue

Mono-exponential)
Pu“ 0 0

////

////

////‘

////

0 - 314 (s16) "A - 0.00600 (0.0129)Pu“ - 2.00 (11.6)
cacao

////

1 - 12.9 (20.1) .A 0 0.00269 (0.00616)9", - 3.03 (11.2)
n

0 - 136 (61.9)A - 0.0016 (0.0910)-2,“ - 9.96 (3.90)

1 - 111 (60 1) 'A - 0,0691 (0.0103)0, - 6.92 (6.35)



repeat/multilevel 0.7 dives:

EDU1180R ... ....

EDU184 -413 (90.0) -187 (66.5)
A - 0.00364 (0.00194) A - 0.0102 (0.0118)

Puth - 5.34 (3.37)

EDUll8OR'+ EDU184 - 101 (87.0) t- 104 (69.3)
A - 0.000875 (0.000256) A - 0.00118 (0.00163)

Pt,- 1.92 (6.96)

41
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repeat/multilevel 0.7 dives

EDU1180R

EDUl84

EDU1180R 4 EDU184

0
A

>6

4
0

Q0-'

13 (90.0)
.00364 (0.00194)

01 (87.0)
.000875 (0.000256)
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APPENDIX 5

Optimized Ptcameter Values for the 2- and 3-Parameter Models:
Combinations of Dives From Different Categories

model 1 model 1
(1 Tissi.e (1 Tissue

Mono-exponential); Mono-exponential)Ptbý - 0 Ptb= * 0

single, air + 0.7:

EDUl180S + EDU885A
+ EDU885M + DC4W - 101 (15.1)

A - 0.00223 (0.000307)

single, any gas mix:

EDU1180S + EDU885A
+ EDU885M + DC4W - 99.6 (13,9) ///I
+ DC8AOW + NMR8697 A - 0.00214 (0.000255)

repeat/multilevel, air + 0.7:

EDU184 + EDU885AR - 282 (67.0) - 162 (29.0)
A - 0.00272 (0.00105) A - 0.0184 (0.0149)

Ptb - 6.64 (2.03)

EDU184 + EDU885AR
+ DRREPWET - 288 (66.2) - 160 (27.9)

A - 0.00307 (0.00115) A- 0.0218.(0.0165)
Pua - 6.85 (1.90)

EDU1i80R + EDUI184 - 93.9 (58.4) - 92.6 (31.8)
+ EDU885AR A - 0.00105 (0.000216) A 0.00279 (0.00321)

Pth - 5.14 (4.62)

air, single * repeat/multilevel:

EDU885A
+ F.DU885AR - 186 (34.5)

A- 0.00228 (0.000436)

EDU885A + DC4W - 103 (15.9)
+ EDU885.'R A - 0.00202 (0.000293)

EDU885A + EDU885AR - 103 (15.8)
+ DC4W + DRREPWET A - 0.00210 (0.000297)
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1 - APPENDIX 5 " -

Optimized Parameter Values for the 2- and 3-Parameter Models:
Combinations of Dives From Different Categories '

model 1 model 1
(1 Tissue (1 Tissue

Mono-exponential); ' Mono-exponential)
Pzh:-'0 P,_h,00 I

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q c Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1single, air + 0.7: .

ED011808 + EDU885A)
+ ED0885H + DC40 ////II or- -eac>

1 (15.1) ,
- 0223 (0.000307)>00

1single, any gas mix:

00011000 + 0000056 < -M+ 0000050 + 0060 1 - 99.6 (13.9)+ 000100 + 0000691 0 A 0.00216 (0.0002ss) ////

repeat/multilevel, air

ED0184 + ED0885AR '
' _ 0105) 3149)

+ 0.7: -
Id Q I0 /\ O0 \l O \1I

'u>'lE11 |<>r4
-lm

06070 -0}f\

(>00
k90 I\'\' ~00

0\I>00 I O OO NJ \l NI f\ O O

9)
HD0184 + ED0885AR

‘ + DRREPUET
, 00115) 0.0165)

. ' 1.90)

ED01180R + ED0184 . ‘ 93.9 (58.4) 9' 0 - 92.6 (31.8) p‘
» + ED0885AR 0.00105 (0.000216) 7 A - 0.00279 (0.00321)

1 Pu“ - 5.14 (4.62)

00 an on I\ a\ o\ ea \I

~ep>aE11|cw-
E>S

a\ -N mr- unmna
_N

I\/'\°

>00 I O OO 00O \l /\ O

fa
A-1

sir, single + repeat/multilevel; ‘ _

EDUg0000s6a 4 ////+ _ ,
‘ 00636)‘

103 15.9 ’ -
0.00202 (0.000293) _/Z// I

A //// "

5-» IIO0-I 9O0 O00O NI/\ NH»! O§ hisQO O

. 0000006 + 0060 1 0+ 00000sA0- A
0000056 + 00000560+ 0060 + 00002001 >00 IIOH 'OOwO NA 0-*0-I OUI AOQxl O00297)"

1

1

. 1
1 _ . 6



0.7, single + repeat/multilevel:

EDU1180S + EDUlISOR v - 126 (169) - 73.7 (25.3)
A - 0.00112 (C.000658) A - 0.0575 (0,0799)

P -b - 15.6 (1.60)

EDU1I80S + EDU184 T -437 (65.2) T - 232 (100)
A - 0.00413 (0.00145) A - 0.00700 (0.00488)

Ab, - 3.91 (3.22)

EDU1I80S + - 201-(100) - 172 (36.6)
EDU1I80R + EDU184 A - 0.00119 (0.000283) A - 0.00740 '0.00497)

Ptx- 5.09 t4.34)

EDUI180S +
EDU184 + EDU885M - 454 (52.9) //f

A- 0.00486 (0.00153)

EDU1180S + EDU118OR i - 231 (96.7) ///
+ EDU184 + EDU885M A - 0.00135 (0.000431)

43
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0.7, single + repeat/multilevel:

ED011805 + ED01180R

ED011805 + ED0184

ED011808 +
ED01l80R + ED0184

ED011805 +_
ED0184 + ED0885H

ED011805 + EDU1180R
+ EDU184 + EDU88SM

I
./ .

-4 .I

0 - 126 (169)
A I 0.00112 (C.000658)

1 - 437 (65.2)
A I 0.00413 (0.00145)

0 - 201.(100)
A - 0.00119 (0.000283)

0 — 454 (52.9)
Ar 0.00486 (0.00153)

0 - 231 (96.7) '
A - 0.00135 (0.000431)

43 "

1

6 - 13.1 (25.3)A - 0.0515 (0 0199)0,“ - 15.6 (1.60)
0 - 232 (100)A - 0.00100 (0.00600)rd, - 3.91 (3.22)
1 - 112 (36.6)A - 0.00160 /0.00691)Pu, - 5.09 (1.36)

//// ~

////

W<..;.;_, W“ _v _ ,_i__-I-___)_._ 7l=r,,I.~.:- _ , 0, ,_ 0006000000000000;90000000000000000!0ii§0000!00
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APPENDIX 6

Optimized Pavameter Values for the 2- and 3-Parameter Models:
Any Category of Dive

model 1 model 1
(1 Tissue (1 Tissue

Mono-exponential); Mono-exponential)Pth 0 Pth, 0 0.

EDU885A +
EDU885AR + EDU885M - 202 (31.7) ///

A - 0.00239 (0.000446)

EDU1180S
+ EDU184 + EDU885A
+.EDU885AR + EDU885M v - 112 (12.7) ///
"+ DC4W + NMR8697 A - 0.00194 (0.000202)
"+ DRREPWET + DC8AOW

44

 1 ___

.-.1.

K

1

3

A

‘ 15

I
I.

If

0
I

’.

0

APPENDIX 6

.' ‘ Y ‘ ~ 1 . 0 ~ . .
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Optimized Parameter Values for the 2- and 3-Parameter Models:

\

\

EDU885A +
ED0885AR + ED088SH

ED011808
+ EDU184 + EDU885A
+.EDU885AR + EDU885H
+ 0060 + NM8697

. + DRREPWET + 000600

1

he

Any Category of Dive

model 1 " model 1
(1 Tissue (1 Tissue

1

Mono-exponential); A Mono-exponential)
Pu‘:-0 Pm00

>00 IION -O OMO NA USU! 90!-l /\\|Q»! O

>00 II O0-4 '0-‘ O00 O I-‘r\ \OI-'J-‘N /\\l¢\J

44.

00446)

.000202)

Q Q Q Q Q Q Q QQ

///

////

/

F
1

X

F

1

I

1
1

I 5‘ \
Y

\

J

' 



APPENDIX 7

Optimized Parameter Values for the 4-Parameter Models:
Data Sets not Combined Aross Categories

model 2 model 3
(2 Tissue (1 Tissue

Mono-exponential); Bi-exponential);
Ptb -0 Pm0 -0

single air dives:

EDU885A 11 - 22.5 (30) - 12.6 (41.1)
-2 730 (199) TZ - 292 (44.6)

A1 - 0.00173 (0.0016) wj- 0.822 (0.569)
A2 - 0.00940 (0.0075) A 0.0296 (0.0237)

DC4W i - 0.389 (0.149) mT - 1.56 (4.2)
T2 - 358 (182) T2 - 160 (158)
A, - 0.553 (0.85) v,- 0.991 (0.031)
A2 - 0.00970 (0.00014) A - 0.0576 (0.023)

EDU885A + DC4W i - 27.3 (14.6) :T- 14.5 (7.6)
1 - 749 (195) T2 - 290 (58)
AI - 0.00183 (0.00060) - 0.894 ( )
At - 0.00970 (0.00083) A- 0.00921 (0.00026)

single 0.7 dives:

EDU1180S /// - 12.7 (221)
T2 - 375 (516)-t 0.886 (1.66)
A- 0.00826 (0.0287)

EDU885M
EDUli80S + EDU885M =•- 2.51 (310) f////

-Z " 493 (250)
A, - 0.00555 (1.07)
A2 - 0.00587 (0.00321)

single dives, other gas mixes:

NMR8697 -' " 0.263 (0.955) T, - 1.36 (31.2)
12 - 86.7 (54.1) 2 - 74.7 (60.7)
A, - 0.205 (2.57) vt - 0.963 (0.718)
A2 - 0.00166 (0.00120) A - 0.00390 (0.0119)

DC8AOW

repeat/multilevel air dives:
EDU885AR ,/// - 120 (68.3)

it - 2140 (3520)
v - 0.892 (0.203)
A 0.209 (0.339)

DRREPWET

"45
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APPENDIX 7’

Optimized Parameter Values for the 4-Parameter Models:
Data Sets not Combined Aross Categories

single sir dives:

EDU885A

\ 004w

‘ EDU885A + 004w

f single 0.7 dives:
j z0u11'a0s '

EDUBBSH

1 EDU1180S + EDU885M

u‘/6v

.4.~¢€-'_—:'§4r4_'—

. \. (

. NMR8697

'4' " 008 0ill A w .

A?6.

model 2 model 3
(2 Tissue (1 Tissue '

*11

'1
'2
51
A2
'1
‘IA1A.

:1
61
52

*1
'2AAZ

Mono-exponential); Bi-exponential)‘

9%
1°

1

I

Pu“-0 Pu“-0 . ‘

- 22.5 (30) »
- 730 (199)~
- 0.00173 (0.0016)
- 0.00960 (0.0075)

- 0.389 (0.149)
- 358 (182) '
- 0 55. 3 (0.85)
- 0.00970 (0.00014)

- 27.3 (14.6) _
- 749 (195)
- 0.00183 (0.00060)
- 0.00970 (0.00083)

////

- 2.51 (310)
- h93 (250)
- 0.00555 (1.
- 0.00587 (0. Q$ow Lfl\/ IO pa \J

single dives,,other gas mixes:
- 0.263 (0.955)
- 86.7 (54.1) -
- 0.205 (2.57)
- 0.00166 (0.00120)

quic-

' repeat/multilevel sit dives;
' EDUBBSAR ////

nmuzwzr
L

}; .

/ .

. - ,,

04s

1, - 12.6 (41.1)=, - -292 (44.6)w - 0.322 (0.569)
_A‘- 0.0296 (0.0237)
1, - 1.56 (4.2)3, - 160 (150)9, - 0.991 (0.031)A - 0.0576 (0.023)
-;,'- 14.5 (7.6)1, - 290 (sa)w, - 0.394 ( )A - 0.00921 (o.00026)

1, - 12.7 (221)6, - 37s (s16)w, - 0.036 (1.66)A - 0.00026 (0.02a7)

////

1, - 1.36 (31.2)1, - 74.7 (60.7) .6, - 0.963 (0.713)A - 0.00390 (0.0119)

=1 - 120 (60.3)=, - 2140 (3520)w, - 0.092 (0.203)A - 0.209 (0.339)
0:000 >

r

\

3

s:

. Ff

\

\.

¢

n

g3
' -*1.. . _.



EDUS85AR+ DRREPWET /// 11 - 141 (92.5)
- 2900 (7910)

,- 0.925 (0.233)
A -0.160 (0.264)

repeat/multilevel 0.7 dives:

EDUl1SOR

EDU184 - 110 (634) - 69.3 (54.3)
vi 609 (282) T2 - 854 (334)
A, 0.000440 (0.00146) w, 0.733 (0.112)
A2 - 0.00642 (0.00515) A - 0.0237 (0.0374)

EDUl180R + EDU184 //// - 121 (117)
T2 8820 (2.65E5)
w- 0.991 (0.2S2)
A 0.00429 (0.00655)

46
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EDU885AR + DRREPWET ' ' ~///_/ _

repeat:/multilevel 0 . 7 dives:
EDU1180R "-----

300104 ~=, - 110 (634) '6, - 609 (232)A, - 0.000440 (0.o0146)A, - 0.00642 (0.00s1s)
20011302 + 300164 ////

'F4-

.46

6, - 141 (92.5)6, - 2900 (7910)0, - 0.923 (0.233)A - 0.160 (0.264)

1, - 69.3 (34.3)1, - 364 (334)9, - 0.733 (0.112)A - 0.0237 (0.0374)
6, - 121 (117)1, - aa20 (2.6sss)w, - 0.991 (0.232)A - 0.00429 (0.006ss)

§
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U

0

6

\
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APPENDIX 8

Optimized Parameter Values for the 4-Parameter Mc-!s:
Combinations of Data from Different Categories

model 2 model 3
(2 Tissue (1 Tissue

Mgno-exponential); Bi-exponential);
Ptb - 0  

Pthr * 0

single, air + 0.7:

EDU1180S + EDU885A
+ EDU885M + DC4W -t - 27.1 (12.6) - 13.0 (5.35)

T, - 711 (147) T2 312 (39.5)
A, - 0.00183 (0.000583) vl:-0.900 (0.0461)
A2 - 0.00872 (0.00539) A - 0.0102 (0.00249)

single, any gas mix:

EDU1180S + EDU885A
+ EDU885M + DC4W tj - 25.6 (10.3) //1
+ DC8AOW + NMR8697 u - 729 (115)

A, - 0.00204 (0.000534)
A, - 0.00846 (0.00462)

repeat/multilevel, air + 0.7:

EDU184 + EDU885AR - 198 (270) 11 " 148 (146)
T, - 741 (782) ,- 2690 (11600)
A, - 0.00143 (0.00248) wI- 0.932 (0.0224)
A, - 0.00525 (0.0107) A- 0.0347.(0.0346)

EDU184 + EDU885AR T, - 0.304 (0.109) T, - 0.755 (0.813)
+ DRREFWET t2 - 322 (90.4) T2 - 183 (40.1)'A, - 2.58 (10.8) wv -,0.995 (0.00570)

A2 - 0.00331 (0.00140) A - 0.0351 (0.0332)

EDUl180R + EDU184 - 0.429 (1.01) ///
+ EDU885AR ia 105 (84.7)

A, - 0.108 (1.23)
Ai - 0.000992 (9.000274)

air, single + repeat/multilevel:

EDU885A 1t " 55.3 (51.4) T, 2 f1.1 (49.2)
+ EDU885AR Ta - 740 (217) Z" 351 (89.5)

A, - 0.00105 (0.000271) W- 0.793 (0.410)
Ai - 0.00827 (0.00693) A - 0.00620 (0.00274)

EDU885A + EDU885AR T, - 39.6 (20.2) 11- 13.2 (7.28)
+ DC4W + DRREPWET 12 - 732 (212) 12 - 249 (63.6)

A1 - 0.00148 (0.00314) v- 0.864 (0.0749)
A2 - 0.00807 (0.00677)' A - 0.00624 (0.00191)

EDU885A + EDU885AR - 38.3 (19.8), - 12.5 (6.27)
+ DC4W a "734 (200) 12i-258 (61.0)

A, - 0.00138 (0.000309) wt - 0.878 (0.0662)
A2 - 0.00838 (0.00675) A -0.00647 (0.00195)

47

Optimized Parameter Values for the 4-Parameter Mc-els: 1
APYENDIX 8
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Combinations of Data from Different Categories

single, sir + 0.7:
EDU1180S + EDU885A

+ EDU885H + D649
7

single, any gas mix:
EDU1180S + EDU885A
+ EDUBBSM + 004w
+ DC8A0w + NH8697

repeat/multilevel, sir
EDU184 + EDU885AR

EDUI84 + EDUBBSAR
+ DRREPWET

EDUl180R + EDU184
+ EDU885AR

model 2
(2 Tissue

Mono-exponential);
P,_,,,~'-0

' if
7

model 3
(1 Tissue

Bi-exponential);
Bum ‘ 0

Q Q Q Q Q Q n Q Q n n - a u ~ Q n Q - Q ¢ Q u Q - Q Q Q Q Q - Q - ~ ¢ o a Q Q Q _ n Q Q o o no

1, - 27.1 (12.6)1, - 711 (147)A, - 0.00103 (0.00os03)A, - 0.00072 (0.0o539)

1, - 25.6 (10.3)1, - 729 (115)A, - 0.00204 (0.000534)A, - 0.00046 (0.00/.62)
+ 0.7: .
1, - 190 (270)1," - 741 (702)A, - 0.00143 (0.00240)A, - 0.00525 (0.0107)
1, - 0.304 (0.109)1, - 322 (90.4)A, - 2.50 (10.0)A, - 0.00331 (0.00140)
1, - 0.429 (1.01) . 41, - 105 (04.7) .A, - 0.100 (1.23)A, - 0.000992 (_0.000274)

sir, single + repeat/multilevel:

EDU885A
+ EDU885AR

\ .

EDU885A + EDU885AR
+ DC4W + DRREPWET

1

EDU885A + EDU885AR‘
+ DC4W .

1, - 55.3 (51.4)1, - 740 (217) _A, - 0.00105 (0.000271)A, - 0.00027 (0.00693)
1, - 39.6 (20.2)1, - 732 (212)A, - 0.00140 _ (0..00314)A, - 0.00007 (0.0067~7)'

1, - 734 (200) ..A,. - 0.00130 (0.000309)A,.- 0.00030 (0.00675)
.47

1, - 30.3 (19.0), -

1, - 13.0 (5.35).1, -- 312 (39.5)1, -'0.900 (0.0461) .A - 0.0102 (0.00249)

////

1, - 140 (146)1, - 2690 (11600)11, - 0.932 (0.0224)A - 0.0347 .(0.0346)
1, - 0.755 (0.013)1, - 103 (40.1) ,w, -0.995 (0.o0570)A - 0.0351 (0..0332)

1A //In

1, -. 21.1 (49.2)1, - 351 (09.5)1, - 0.793. (0.410)A - 0.00620 (0.00274)
1, - 13.2 (7.20)1, - 249 (63.6)w, - 0.064 (0.0749)A - 0.00624 (0.00191)
1, - 12.5 (6.27)1, - 250 (61.0)w, - 0.070 (0.0662)A -0.00647 (000195)

qqmuvgnnmwv
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0.7, single + repeat/multilevel:

EDUll80S + EDUlSOR II/I

EDUII80S + EDUl84 - 102 (569) - 73.8 (43.4)
-z - 584 (255) 12 - 743 (321)

A, - 0.000366 (0.00112) wI_- 0.665 (0.172)
- 0.00579 (0.00292) A 0.0160 (0.0229)

EDU1180S +
EDUll8OR + EDUl84H I !111

EDUI180S +
EDUI84 + EDUU885M - 24.8 (498) - 11.9 (94.6)

-2 - 505 (225) 2 - 462 (170)
A, - 0.000200 (0.000425) v - 0.684 (2.79)
A2 - 0.00568 (0.00261) A - 0.00616 (0.00479)

EDUI180S + EDUl18OR
+ EDU184 EDU885M IIII I1/I

48.

i
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., 4?

2.,
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{§§Q

53$

1
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3 :,'s_->7‘

1-61,6;-»
=1

. -"'0._ L m

.05?
1-Q'<"= 4

" 1126‘).,,;, .._r,~,,. _. .,

A . . -176-1;
‘v

10%

60%;
' b‘iwgg
%00»_¢w6<>iE‘*1 #41., .._,

».,..~'1'.
‘TB1; t1‘I~1- ‘

»
~.

'1 ;=-.$;.&-.
1.5, -. .‘;1;

..».~3i¢;'1‘-Er.-4.41,41‘ .
’ ‘ Ix"

A 1v'Aj~,.

752.0.- ‘W51.1

4+

"1L-.

s

Sz

1-0'

.1 4»-

?lh»
91,: ,

i

L K

9.

'fi%:

.. .._..v_‘ ’ '1-6.;-,1,,,». 11...

0.7, single + repeat/multilevel:
00011003 + 00011002
00u1100s +.000104

EDU1180S +
EDU1l80R + EDU184H

EDUll80S +|
EDUIB4 + EDUU885H

EDU118OS + EDUl180R
+ EDU184 i EDU885H

*1141
A2

*1
TAZ
A2

,l
].

////
102 (569)
584 (255)
0.000366 (0.00112)
0.00579 (0.00292)

////

24.8 (498)
505 (225)
0.000200 (0.00042S)
0.00568 (0.0026l)

////

48.

\ ,, . -- . 0 11.... -,, . .

1

////
1, - 73.0 (43 4)1, - 743 (321)1, - 0.665 (0.172)A - 0.0160 (0.0229)

4 ///?
1, - 11.9 (94.6)1, - 462 (170)1, - 0.604 (2.79)A - 0.00616 (0.00479)

////

' 1 , .. 1 _
1



APPENDIX 9

Optimized Parameter Values for the 4-Parameter Models:
Any Category of Dive

model 2 model 3
(2 Tissue (1 Tissue

Mono-exponential); Bi-exponential);
Pthr " 0  Pt.h * 0

--------------------------------------------------
EDU885A +

EDU885AR + EDU885M - 29.0 (45.2) 1," 14.7 (39.8)
T2 - 623 (179) 2- 355 (83.1)A, - 0.00116 (0.000636) V.- 0.839 (0.480)
A2 - 0.00642 (0.00337) A - 0.00709 (0.00504)

EDUI180S
+ EDU184 + EDU885A T, - 33.4 (11.4) ///
+ EDU885AR + EDU885M T2 - 715 (108)
+ DC4W + NMR8697 A, - 0.00145 (0.000252)
+ DRREPWET + DC8AOW A2 - 0.00781 (0.00375)

49
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Optimized Parameter Values for the 4-Parameter Models:
. Any Category of Dive '

model 2 model 3
7 (2 Tissue . (1 Tissue '

.2 Hone-exponential) ; Bi-exponential) ;

~ EDU885A + _ '
£DU885AR + £DU885M_ 3, - 29.0 (45.2) 2,,- 14.7 (39.8)

' t, - 623 (179) 1, - 355 (83.1) é
’ A, - 0.00116 (0.000636) .v, - 0.839 (0.480)

A, - 0.00642 (0.00337) A - 0.00709 (0.00504)
. 00011000 . _+ 000104 + EDU885A 1, - 33.4 (11.4) ////~ + EDU885AR + 0000050 1, - 715 (100)

+ 0c4w + 0020697 A, - 0.00145 (0.000252)+ 00002001 + 0c0Aov A, - 0.00701 (0.00375)

. >1
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1
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.‘ .l V _ 1 I I 1
. . 7, , ~ _ , . _ . 1

X. ‘ .- _ I . , . _ . > , 1_
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APPENDIX 10

Log Likelihoods and Optimized Parameter Values for the Models
vith 6 or More Parameters: Any Category of Dive

-ln(likelihood)

model 4 model 4 model 5
data set pull ko2 - 0 k= 0 k02 - 0

EDU1180S 394.87 373.91 373.41 376.93
+ EDU184 + EDU885A
+ EDU885AR + 'EDU885M
+ DC4W + NMR8697
DRREPWET + DC8AOW

parameter values:

model 4 (3-mono-e.ponential), k0 0

- 0.442 (0.174)
-2 " 129 (68.9)

'T3 - 767 (162)
A, - 0.176 (0.206)
A2 - 0.00117 (0.000306)

- 0.00735 (0.00522)

model 4 (3-mono-exponential), kc - 0

, - 0.284 (0.189)
v2 - 106 (91.7)'
T3 - 1180 (599)
A, - 0.241 (0.342)
A2 - 0.000756 (0.000353)
A3 - 0.00473 (0.00421)
k02 - 0.340 (0.308)

model 5 (2 bi-exponential), k2 - 0

- 0.125 (6710)
1- 33.2 (14.0)VAv - 0.256 (10100)
AA,- 0.00146 (0.00120)

- 517 (1960)
T-2 - 2570 (65200)
vs, - 0.913 (3.54)
As - 0.0110 (0.0113)

50
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data set

. EDU1180S
+ EDU180 + EDU885A '
+ EDU885AR + £DU88SM
+ DCAV + NMR8697
1 DRREPHET + DCBAOU

parameter values: l

model 6 (3-mono-exponential),

=, - 0.002 (0.170)1, - 129 (66.9)'6, - 767 (162)A, - 0.176 (0.206) 1.0, - 0.00117 (0.000306)A; - 0.00735 (0.00s22)
model A (3-mono-exponential),

. 1, - 0.260 (0.109)'=, - 106 (91.7) ‘ V1, - 1160 (599)A, - 0.201 (0.302)A, - 0.000756 (0.000353A, - 0.00073 (0.00021)2,, - 0.300 (0.306)
model 5 (2 B1-exponential),

1,, - 0.125 (6710)1,, - 33.2 (10.0) 30,, - 0.256 (10100) '11,- 0.00106 (0.00120)

6,, - 2570 (65200)
"1 _ 00.9131 A, - 0.0110 (0.o113)

' ‘ ~ "

APPEIDIX 10

Log Likelihoods and Optimized Parameter Values for the Models
with 6 or More Parameters: Any Category of Dive

10,,--A0

500-0

)

2,,-0

-1n(1ike11hood)

model h model A model 5
pull kn, — 0 kb, u O kbz - 0

394.87 373.91 373.k1 376.93

50 \
_ \

.' ,.



TABLE 1,

Data Su-Ary

0.7 -0.7 atm oxygen, the balance nitrogen

Mean values of quallntities, averaged over a data set, are indicated by parentheses

total
DCS cases bottom decompression

data set ------ gas depth time time
dives (fsv) (min) (min)

DC4W [8+4(0.5)1/244 air 50 - 265 2.9 -100 3.3 -99
(154) (24) (28)

EDU1180R 2/128 0.7 75 - 151 162 - 270 31 - 176
(123) (233) (102)

IEDU1180S 10/120 0.7 75 - 150 38 - 126 ý46 - 176
(125) (73) (93)

EDU184 11/234 0.7 40.-150 20 -212 2 -187
(89) (42) (14)

EDU885A 30/483 air 50 - 190 14 - 244 1.7 - 290
(112) (78) (102)

EDU885AR 11/182 air 80 - 150 17 -.66 2 -246
(102) (N/A) (N/A)

EDU885H 4/81 0.7 100 - 150 33 - 66 35 - 222
(133) (51) (76)

NMR8697 [11+18(0.5)1/477 variable 25 - 130 30 - 240 0.6 - 2.5
10-400 02 , (69) (112) (1.5)
the rest N2

DRREPWET 3/12 air 59 -177 20 -40 4.6 -90
(128) (28) (501)

DC8AOW (2+0.5)/45 air + 02 decomilpression

90.-180 2.3 -60 27 -106
(132)- (42) (46)

total (92+23(0.5)1/2006
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0.7 - 0.7 atm oxygen, the balance nitrogen

14010 1, '
Data Sumary

1

Mean values of quahtities, averaged over a data set. are indicated by parentheses

data set

DC4W

EDU1180R

EDU1180S

EDU184

EDU885A

EDUSBSAR

EDU885H

NMR8697

DRREPUET

DC8AOU

DCS cases

dives

[0+0(0.5)1/200

2/120

10/120

11/230 _

30/003

11/102

4/81

$88

air

0.7

0.7

0.7

air

air

0.7

[11+10(0.5)]/077 variable
10-400 O, ,
the rest N,

depth
(fsw)

50 - 265
(154)

75 - 151
(123)

75 - 150
(125)

40 ~ 150
(39)

50 ~ 190
(112)

80 - 150
(102)

100 - 150
(133)"

25 - 130
' (69)

3/12’ 61: 59 - 177
(128)

(2+0.5)/45 (air + 03 decompression T
90 - 180

(132)'

bottom
time
(min)

Q Q Q ~ q a o o Q o Q - n Q0

2.9 - 100
(24)

162 - 270(233)
38 - 126

(73)
20 - 212

(42)
10 - 200

(78)
17 -'66

(N/A)
33 -166

(51)
30 - 240

(112)

20 - 40
(23)

2.3 - 60
(42)

total
decompression

time
' (min)

3.3 - 99
(23)

31 - 176
(102)

'46 - 176
‘ (93)

2 - 187
(14)

1.7 - 290
(102)

2 - 246(N/6) V
35 - 222

(76)
0.6 - 2.5'(1.5)

0.6 - 90(50) .

27 - 106
(46)

total [92+23(0.5)1/2006

¢ ~ " 31

~: - ‘- 7 ' .:3~'



TABLE 2

Log Likelihoods for the 2-, 3-, and 4-Parameter Models;
Data Sets Not Combined Across Categories; k2 - 0

-in (likelihood)

DCS-- - - - - - - - - - - - - - - - - - - -
cases/dives null model 1 model 2 model 3

no Pti, w/Pt,

single air dives:

EDU885A
+ DC4W [38+4(0.5)]/727 154.88 7.53.86 /// 145.25 147.70

single 0'.7 dives:

EDU1180S + EDU885M 14/201 50.800 44.851 /// 44.821 //I

single dives, other gas mixes:

NMR8697 [11+18(0-5))/477 83.010 81.970 81.939 81.844 81.931

DC8AOW [2+1(0.5)]/45 9.655 ......... --....

repeat air dives:

EDU885AR + DRREPWET 14/194 50.285 45.719 44.240 //// 44.115

repeat 0.7 dives:

EDU184 11/234 44.369 38.455 37.420 37.933 37.329

52

>‘ .
4.”0.
M

single air dives:

2000050 - 1+ 000w .[30+0(0.5)1/727

single 0.7 dives:
' z0u1100s +|a0u005n 10/201

‘ v
4

single dives, other gas mixes:
- NH8697 ' [1l+l8(0;5)]/477

000000 [2+1(0.s)1/05

~$ repeat air dives:
EDU885AR + DRREPVET I 14/194

repeat 0.7 dives:

000100 - .11/230

 /3'
1

4

I

»

1001: 2
log Likelihoods for the 2-, 3-, and 4-Parameter Models;

Data Sets Not Combined Across Categories; kc: - 0

- B0 3 V/Pm:

154.88

50.800

83.010

9.655

50.285

44.369

1

‘ -

153.86

44.851

81.970

45.719

38.455

-1n (likelihood) '

DCS
cases/dives null model 1 model 2

////

////

01.939

44.240

37.420

0

_-

;;&;i'5

105,25

44.821

81.844

,////

37.933

//

I-_ . 7

» \' '
0

0" ~ - :3

147.70

////

81.931

44.115

37.329

-
7



TABLE 3

Log Likelihoods for the 2-, 3-, and 4-Parameter Models;
Combinations of Data Sets From Different Categories

-in (likelihood)

DCS ----------------------------- 7-----------
cases/dives null model 1 model 2 model 3

no Pth v/Pt=

single, air + 0.7:

EDU1I80S + EDU885A
+ EDU885M + DC4W

[52+4(0.5)]/928 205.98 204.17 /// 191.21 195.46

single, any gas mix:

EDUl180S + EDU885A
+ EDU885M + DC4V
+ DC8AOW +,NMR8697

(65+23(0.5)1/1450 299.51 297.23 /// 285.39 ///

repeat, air + 0.7:

EDU184 + EDU885AR
+ DRREPWET 25/428 95.261 86.869 83.544 85.442 83.523

air, single + repeat:

EDU885A + EDU885AR
+ DC4W + DRREPWET

[52+4(0.5)]/921 105.55 202.28 /// 194.95 197.98

0.7, single + repeat:

EDU1180S +
EDU184 + EDU885M 25/435 101.01 83.583 /// 83.216 83.395

any type of dive:

EDU180
+ EDU184 + EDU885A
+ EDU885AR + EDU885M
+ DC4W + NMR8697'
*+ DRREPWET
+ DC8AOW [90+23(0.5)1/1878 394.87 388.79 /// 377.09 ///

53

1
\
\\

1

TABLE 3

- Log Likelihoods for the 2 , 3 , and 4 Pa ameter Models;
- Combinations of Data Sets From Different Categories

_ DCS
cases/dives

single, air + 0.7:
EDU118OS + EDU885A ‘
+ £DU885M + D049

" [52+4(0.S)]/928
single, any gas mix:

s0u1100s + 0000050 V
+ EDU885M + DC4U . '
+ DC8AOW +,NR8697

[65+23(0.5)1/1050

repeat, air + 0.7: -

EDUI84 + EDU885AR ~ '
+ DRREPUET ‘ 25/428

air, single + repeat:

EDU885A + EDU885AR
+ DC4U + DRREPWET

' [52+4(0.5)]/921
, 1

0.7, single + repeat:
EDUl180S +
EDU184 + EDU885H Z5/435

any type of dive:

EDU118OS
.+ EDUI84 + EDU885A
+ EDUBBSAR + EDU885H
+ D640 + NMR8697‘ ‘ -
.+ DRREPWET
+ DC8AOU (90+23(0.5)]/1878

' Q O - \'. .

-In (likelihood)

null model 1 model 2 model 3

no Pu“ w/Pu“

205.98 204.17

299.51_ 297.23

95.261 86.869

205.55 202.28

101.01 83.583

394.87 388.79

.' 1 53

//// 191.21

//// ‘ 205.

83.544 85.442

//// 194.95 1

//// 03.216

//// ~ 377.09

I . . . ~ .. - '." - ,. _ .1 .._ .-..- "'».-;\._~... 1..§ '1 - ___ ,-_'}5,,;..-: ,. .- 0 ; . -<-r..,...~. ~»
" "‘7""‘?’*76'=.?*"*‘=l*»r?'§Z*<»0'- * ‘ 1: '7 “<'*»‘.‘i'?-"L@’7::3fI7§"'f“’:F§T>’3’3'»};iP¥"“ ‘*7 '=1m.¢L“., 2'-'*L1'“:""";:1'<-"

1

1

195.46

////

03.523

197.98

83.395 I

1 .1

////



TABLE 4

Optimized Parameter Values for the 2- and 3-Parameter Models:
Data Sets Not Combined Across Categories

model 1 model 1
(1 Tissue (1 Tissue
Mono-exponential); Mono-exponentinll)

PtbI - 0 Ptb, 0 0

single air dives:

EDU885A + DC4W - 92.4 (16.8) ///
A - 0.00222 (0.00035)

single 0.7 dives:
EDUlI80S + EDU885M - 483' (88.6) I

A - 0.00586 (0.00260)

single dives, other gas mixes:

NMR8697 - 77.9 (34.2) - 72.9 (28.7)
A - 0.00180 (0.000461) A - 0.00269 (0.00414)

P -, - 3.03 (11.2)

DC8AOW

repeat air dives:

EDU885AR + DRREPWET - 297 (83.1) • - 177 (68.7)
A- 0.00510 (0.00280) A - 0.0491 (0.0703)

Pta,- 6.92 (4.35)

repeat 0.7 dives:

EDU184 413 (90.0) 1- 14 (24.9)
A - 0.00364 (0.0U194) A - 0.0102 (0.0118)

Ptt - 5.34 (3.37)

54

1

.- 6 “:57 .7 “ / 0 11"5 - s r ks Y <0 ' 0 . - “~

T5818 4

Cptimized Parameter Values for the 2- and 3-Parameter Models:
Data Sets Not Combined Across Categories

model l
(1 Tissue

' 1 Mono-exponential);
Pgh:-0

- Q Q Q Q . Q Q - Q Q . achcqncbmcucouccnaon

single air dives: 1

EDU885A + DC4W 1 - 92.4 (16.8)
A — 0.00222 (0.00035)

single 0.7 dives:

‘ED011808 + EDU885M 1 - 483'(88.6) .
A - 0.00586 (0.00260)

single dives, other gas mixes: - 5’

NMR8697 6 - 77.9 (34.2)
A ~ 0.00180 (0.00046l)

. DCSAOU . ~----

repeat air dives:

EDU885AR + DRREPUET
< 0280)>00 IIOM ~\D ONO Ulr-\ O-IQ ow /\-D-'Qv O

.{ repeat 0.7 dives: A 1
000100 , 1 4 013 (90.0)I A - 0.00360 (0.00190)

' |1

~

54.

a

|

model 1
(l Tissue
Mono-exponential)

P“ 9 0

////

///7

1 - 72.9 (20.7)A - 0.00269 (0.00010)2, - 3.03 (11.2)

1 - 177 (68.7)
A ~ 0.0491 (0.0703)
Pu“ — 6.92 (4.35)

1 - 110 (20.9)-0 - 0.0102 (0 0110)an - 5.30 (3.37)



TABLE 5

Optimized Parameter Values for the 2- and 3-Parameter Models:
Combinations of Dives From Different Categories

model 1 model 1
(1 Tissue (1 Tissue
Mono-exponential); Mono-exponential)

Ptbx " 0 Pth= 0 0

single, air + 0.7:

EDU1180S + EDU885A
+ EDU885M + DC4W - 101 (15.1) //1

A - 0.00223 (0.000307)

single, any gas mix:

EDU1180S + EDU885A
"+ EDU885M + DC4W - 99.6 (13.9) ///
"+ DC8AOW + NMR8697 A - 0.00214 (0.000255)

repeat, air + 0.7:

EDU184 + EDU885AR
+ DRREPWET - 288 (66,2) - 160 (27.9)

A - 0.00307 (0.00115) A - 0.0218 (0.0165)
PU - 6.85 (1.90)

air, single + repeat:

EDU885A + EDU885AR - 103 (15.8) ///
+ DC4W + DRREPWET A - 0.00210 (0.000297)

0.7, s.ngle + repeat:

EDUl18OS +
EDUlW4 + EDU885M -454 (52.9) ///

A - 0.00486 (0.00153)

any type of dive:

EDU118S
+ EDU184 + EDU885A
+ EDU8+85AR + EDU835M v - 112 (12.7)
+ DG4W + NMR8697 A - 0.00194 (0.000202)
+ DRRJPW•T + DC8AOW

S~55
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TABLE 5 1

Optimized Parameter Values for the 2- and 3-Parameter Models:
Combinations of Dives From Different Categories '

single, air + 0.7:
EDUll80S + EDU885A
+ EDU885M + DC4W ~

single, any gas mix:

EDUll80S + EDU885A
+ EDU885M + D049
+ DC8AOW + NMR8697

repeat, air + 0.7:

EDU184 + EDUBBSAR
+ DRREPUET .

air, single + repeat:

EDU885A + EDU885AR
+ DC4U + DRREPUET

0.7, sfingle + repeat:

EDU118 S +
EDU18 + EDU885M

e of dive:

++++§O§§»'3'E3009
+ EDU885A

5AR + EDU885M
+ NMR8697

PWET + DCBAOU

model 1
(1 Tissue

* Mono-exponential);
Pu“-O

Q Q c c I Q 0 0 Q 0 0 J Io"-nu'I¢qcn

t - 101 (15.1)
A - 0.00223 (0.000307)

t.— 99.6 (13.9) .
A — 0.00214 (0.000255)

1 - 288 (66.2) "
A - 0.00307 (0.00l15)

7 .

>4 ll OH
03 (15.8)
.0021O (0.000297)

f - 454 (52.9)
A I 0.00486 (0.00l53)

t — 112 (12.7) 5
A — 0.00194 (0.000202)

55,

model 1
(1 Tissue -
Mono-exponential) _

Pu“ u 0

////

6////

1 - 160 (27.9)A - 0.0210 (0.016s)rm - 6.05 (1.90)

//// 0

////

////'
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TABLE 6

Optimized Parameter Values for the 4-Parameter Models:
Data Sets not Combined Across Categories

model 2 model 3
(1 Tissue (1 Tissue
Mono-exponential); Mono-exponential)

Ptb " 0  Ptj 0 0

single air dives:

EDU885A + DC4W - 27.3 (14.6) tj - 14.5 (7.6)
t2 - 749 (195) 2Z - 290 (58)
A, - 0.00183 (0.00060) w, - 0.894 ( )
A2 - 0.00970 (0.00083) A - 0.00921 (0.00026)

single 0.7 dives:

EDUI180S +EDU885M " 2.51 (310) l///
T2 493 (250)
Al - 0.00555 (1.07)

- 0.00587 (0.00321)

single dives, other gas mixes:

NMR8697 -I " 0.263 (0.955) 11 " 1.36 (31.2)
12 - 86.7 (54.1) 12 - 74.7 (60.7)
A, - 0.205 (2.57) ,- 0.963 (0.718)

- 0.00166 (0.00120) A 0.00390 (0.0119)

DC8AOW

repeat air dives:

EDU885AR + DRREPWET // - 141 (92.5)
12 - 2900 (7910)
w1 - 0.925 (0.233)
A 0.160 (0.264)

repeat 0.7 dives:

EDU1S84 - 110 (634) 69.3 (54.3)
2 " 609.(282) Ta - 854 (334)
A, 0.000440 (0.00146) w, - 0.733 (0.112)A - 0.00642 (0.00515) A - 0.0237 (0.0374)

56
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Optimized Parameter Values for the 4-Parameter Models:
Data Sets not Combined Across Categories

. model 2
(1 Tissue
Mono-exponential);

P'_h:—Q ‘
I Q Q Q c o Q Q Q Q u - - Q Q - ¢ Q Q n u - - - ¢ Q Q ¢ Q Q Q on

single air dives:

EDU885A + DCAU :1 - 27.3 (10.6)
6, - 749 (195)
A1 - 0.00183 (0.00060)~
A, - 0.00970 (0.00083)

1

1

single 0.7 dives:

30011303 +,znuaa5u 6, - 2.51 (310)6, - 093 (250).1, - 0.00555 (1.07)A, - 0.00537 (0.00321)

single dives, other gas mixes:

.na697 6, - 0.263 (0.955) "6, - a6.7 (50.1)A, - 0.205 (2.57) 'A, - 0.00166 (0.00120)
DCBAOW -----

repeat air dives:
EDU885AR + DRREPUET ////

repeat 0.7 dives: .

200100., j 6, - 110 (630) - .6, - 609 (232) '. A, - 0.000000 (0.00106)A, - 0.00602 (0.00515)'

56

model 3
~(1 Tissue
Mono-exponential)

Pu“ e 0
Q n o - Q - . ¢ - - - - Q - Q _ Q - Q CC

6, - 10.5 (7.6)6, - 290 (53)0, - 0.090 ( )A - 0.00921 (o.00026)

////

6, -_1.36 (31.2)6, - 70.7 (60.7)0, - 0.963 (0.713)A - 0.00390 (0.0119)

6, - 101 (92.5)6, - 2900 (7910)0, - 0.925 (0.233)_5A - 0,160 (0.260)

6, - 69.3 (50.3)6, - 050 (330) '6, - 0.733 (0.112)A - 0.0237 (0.0370)
6
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TABLE 7

Optimized Parameter Values for the 4-Parameter Models:
Combinations of Data from Different Categories

model 2 model 3
(1 Tissue (1 Tissue
Mono-exponential); Mcno-exponential)

Pti - 0  Pt* O 0

single, air + 0.7:

EDUll80S + EDUB85A
+ EDU885M + DC4W - 27.1 (12.6) - 13.0 (5.35)

v2 " 711 (147) T2 - 312 (39.5)
A, 0.00183 (0.000583) -w- 0.900 (0.0461)

- 0.00872 (0.00539) A - 0.0102 (0.0024r)

single, any gas mix:

EDU1i80S + EDU885A
"+ EDU885M + DC4W vi 25.6 (10.3)
"+ DC8AOW + NMR8697 12 - 729 (115)

A, - 0.00204 (0.000534)
A2 - 0.00846 (0.00462)

repeat, air + 0.7:

EDU184 + EDU885AR v, - 0.304 (0.109) T, - 0.755 (0.813)
+ DRREPWET 12 - 322 (90.4) v2 - 183 (40.1)A1 - 2.58 (10.8) wi - 0.995 (0.00570)

A2 - 0.00331 (0.00140) A 0.0351 (0.0332)

air, single + repeat:

EDU885A + EDU885AR v, - 39.6 (20.2) 13.2 (7.28)
+ DC4W + DRREPWET 12 - 732 (212) -1 249 (63.6)

A, 0.00148 (0.00314) w, - 0.864 (0.0749)
A 0.00807 (0.00677) A -0.00624 (0.00191)

0.7, cingle + repeat:

EDUI180S +
EDU184 + EDU885M v,- .4.8 (498) - 11.9 (94.6)

505 (225) 12 - 462 (170)
A° - 0.000200 (0.000425) W1 0.684 (2.79)
A2 - 0.00568 (0.00261) A - 0.00616 (0.00479)

any type of dive:

EDUli80S
"+ EDU184 + EDU885A 3. - 4 (11.4) ///
+ EDU885AR + EDU885M T2 - 715 (108)
"+ DC4W + NMR8697 A, - 0.00145 (0.000252)
"+ DRREPWET + DC8AOW A - 0.00781 (0.00375)

57
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TABLE 7

Optimized Yarameter Values for the 4-Parameter Models:
Combinations of Data from Different Categories

single, air + 0.7: 1
EDU1180S + EDU885A
+ EDU885M + DCAW

J

single, any gas mix:
EDU1180S + EDU885A
+ EDU885H + DC4W
+ DC8AOW + NMR8697

- ~repeat, air + 0.7:

EDU184 + EDU885AR .
+ DRREPWET

1

air, single + repeat:

EDU885A + EDU885AR
+ DCbW + DRREPWET

0.7, single + repeat:

20011805 +
EDU180 + BDU885M '

any type of dive:

EDUll80S '
+ EDU18é + EDU885A

' + EDU885AR + EDU885H
+ DCAV + NMR8697
+ DRREPWET + DCBAOV

*1
‘IAZ
A:

*11A1
A:

*1
*2
A1
52

*1
*2
A1
A2

'1120.,
5:

*1
*2
A1
52

model 2
(1 Tissue
Mono-exponential);

Pd“-0

- 27.1 (12.6)- 711 (107) . 1- 0.00183 (0.0005s3)- 0.00072 (0.00539)

- 25.6 (10.3)
- 729 (115)
— 0.00204 (0.00053A)
I 0.00846 (0.00462)

- 0.304 (0.109)
- 322 (90.4) '_
- 2.58 (10.8)
- 0.00331 (0.00140)
. 1

Y- 39.6 (20.2) A- 732 (212) 10 0.00100 (0.00310)~ 0.00907 (0.00677)

- 24.8 (498)
w 505 (225)
- 0.000200 (0.000h2S)
- 0.00568 (0.00261)

- 33.0 (11.0)- 715 (106)- 0.00105 (0.000252)- 0.00731 (0.00375)
57 "

' model 3
(1 Tissue
Mono-exponential)

Pu“ ¢ 0
n Q - o Q Q Q Q Q —@--@Q@D@§QQ@_—_—Q_Q

6, - 13.0 (5.35)6, - 312 (39.5)0, - 0.900 (0.0061)A - 0.0102 (o.0020r)

////

6, - 0.755 (0.a13)6, - 193 (00.1) -0, - 0.995 (0 00570)A - 0.0351 (c.0332)

6, - 13.2 (7.2a)6, - 209 (63.6)0, - 0.960 (0.0709)
A - 0.00620 (0.00191)

6, - 11.9 (90.6)6, - 062 (170) _11, - 0.600 (2.79)
A — 0.00616 (0.00479)

////

I

 -



TABLE 8

Predictions of P(DCS) in Data Set EDU1180R Using Parameter
Values Fitted to Other Data Sets; k0- 0

data set to average P(DCS)
which parameters model -LL ......................

are fitted predicted actual

null 10.302 1.56%

all single 0.7 1 39.068 24.8%
lW/Pt IIII
2 39.146 24.8
3 IIII III

all repeat 0.7 1 28.409 17.9
lw/Pthz 32.125 20.4
2 37.087 23.5
3 32.029 20.3

all but EDUl180E, 1 16.199 8.89
lw/P• IIII IIII
2 37.948 24.0
3 IIII IIII
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TABLE 8

.' k_ _ 0 -

1 , / 1' 3 '
V I .

. 0 _ ' _ 5 \
3 I

.1.-6' -0! 1 r--~

Predictions of P(DCS) in Data Set EDUl180R Using Parameter
Values Fitted to Other Data Sets; k0, - 0

data set to
which parameters

are fitted

all single 0.7

all repeat 0.7

all but EDU1180R

model

null

w1,62 flu

3 1

Win2 thr

3

W1/9'2 th:

3

-1.1.

10.302

39.068

34%
////

28.409
32.125
37.087
32.029

16.199

345416
////

average P(DCS)

predicted actual
Q Q Q Q u Q Q p Q - - - - Q Q Q Q Q Q _ --

1.56%

2777'20. a /
////

~ 17.9
20.4
23.5
20.3.

A 375°
24.0/
////

4

I

\
9

._ \ _
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TABLE 9a

Predictions of P(DCS) Ucing Parameter Values Fitted to 1ther
Data Sets; k02 - 0

data set to data set for averare P(DCS)
which parameters modol which predictions -LL ...................

are fitted are made predicted actual

null all repeat air 50.285 7.22%

all single air 1 48.788 9.27 (6.37-12.2)%

2 50.6 9.34A / (5.7412.9)
3 52.318 11.3 (6.89-15.8)

null all repeat 0.7 44.369 4.70%* except EDUII80R
all single 0.7 1 38.936 5.28 (2.43-8.14)%

2 3A.47 6.49 (0-100)3 IIII IIII

null all single 0.7 50.800 6.97%

all single air 1 50.496 6.82 (4.59-9.06)
2 4'13 // (4.05-8.32)
3 48.703 5.58 (3.27-7.88)

null all repeat 0.7 44.369 4.70%
except EDU1180R

all repeat air 1 44.299 10.6 (4.96-16.3)%
lw/p, 43.124 10.3 (0.79-19.9)2 /III IIII
3 45.254 10.8 (2.23-19.5)

null all repeats 86.080 5.84%
except EDUll8OR

all singles 1 92.634 8.64 (6.66-10.,6)%
lW/Pus,. 3/.70 (6.76-12.0)

3 IIII I/II

null all 0.7 dives 101.01 5.75%
except EDU1l80R

all air dives 1 93.075 7.01 (5.58-9.58)%
q 1v~l/Pth// I/

2 91.26 5.2(5.14-8.74)
3 94.971 8.35 (6.16-10.5)
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TABLE 9a

Predictions of P(DCS) Using Parameter Values Fitted to ither
Data Sets; koz - 0

data set to
which parameter

are fitted

all single air

I

9 all single 0.7

O

-s
I .

all single air'

all repeat air

. all singles

- all air dives
Q

modal

null

w4 /62 u
3

null

w1 ,62 nu
3

null

w2 ,62 flu
3

null

w1 /62 thr

3

null‘

wl /P2 flu
3

null’

W1 /62 0"3

data set for
which predictions

are made

all repeat air

all repeat 0.7
except EDUIIBOR

all single 0.7

all repeat 0.7
except EDUll80R

all'repeats
except EDUll80R

611 0.7 dives '
except EDU1l80R
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50.285
08.788
.6?4Z.52.318

00.369
387936
44.4.1
////

50.800
50.096
044444
48.703

44.369

44.299
43.124

.4444.
86.080

92.634
644444//// p

101.01

93.075

644446
94.971

I

average P(DCS)

predicted actual

' 7.22\

9.27 (6.37-12.2)!

4444 (5.70@12.9)11.3 (6.89~15.8)

4.708

5.28 (2.03-8.10):
4444 (6.1...
////

6.976
6.82 (4.59-9.06)

4444 <0
5.58 (3 IO NFC \lUl II \l@ $00 $57 \z\/

'4.70\

I-lI-lo\'5osins\
/\/\93> \'|\O\gO\ |I Q-H—' \QO\ \ghl \;\I

IQ

(2.23-19.5)

iiin. 5.84%

8.64 (6.66-10:6)!

;?4K (6.76-12.0) .
.////

' 5.756

7.01 (5.58-9.58)!

4464 (5.14-8.74)4
8.35 (6.16-10.5)
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TABLE 9b

Predictions of P(DCS) Using Parameter Values Fitted to Other
Data Sets; km - 0 -- continued

Note: Theln(likelihood) is undefined when the model predicts zero.
risk for a dive in which a case of DCS was recorded, because in this
situation the likelihood of the observed family of dive outcomes,
given that P(DCS) is governed by the model in question, is zero.

data set to data set for average P(DCS)
which parameters model which predictions -LL ................

are fitted are made predicted actual

null all single air 154.88 5.50%

all repeat air 1 undefined 7.23 (2.81-11.7)%
lw/Pthz undefined 11.1 (2.65-19.3)
2 IIII II
3 undefined 9.90 (7.50-17.2)

null all single 0.7 50.800 6.97%

all repeat 0.7 1 45.504 5.77 (2.40-9.13)%
except EDUI1S0R lw/Ptr 50.046 8.18 (0.32-16.1)

2 45.949 5.94 (1.73-10.2)
3 undefined 4.31 (0-10.4)

null all single air 154.88 5.50%

all single 0.7 1 undefined 4.48 (2.29-6.69)%
lw/Pt !111 I/I
2 151.42 5.27 (0-38.8)
3 IIII II

null all repeat air 50.285 7.22%

all repeat 0.7 1 52.829 2.73 (1.15-4.29)%
except EDU1180R lw/Ptb 48.061 3.37 (0.66-6.13)

2 52.532 3.82 (0.46-7.18)
3 51.207 3.32 (1.18-5.47)

null all singles 299.51 5.28%

all repeats I undefined 4.61 (2.72-6.50)%
except EDUll80R lw/Pu= undefined 7.74 (3.15-12.3)

2 319,88 7.49 (0-22.7)
3 undefined 7.36 (2.96-11.8)

null all air dives 205.55 5.86%

all 0.7 dives 1 undefined .3.89 (2.42-5.38)%
except EDUI18OR 1W/Ptbl q//{'14 ~(. 6 -. 4229 4. 6 (0.61-7.74)

3 undefined 3.92 (2.38,-.48)
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TAIL! 9b

' Predictions of P(DCS) Using Parameter Values Fitted to Other
Data Sets; k0, - 0 -- continued

Note: The1ln(likelihood) is undefined when the model predicts zero.
'risk for a dive in which a case of DCS was recorded, because in this
situation the likelihood of the observed family of dive outcomes,

‘ given that P(DCS) is governed by the model in question, is zero.

data set to
which parameters

are fitted

all repeat air

all repeat 0.7
except EDUll80R

all single 0.7

all repeat 0.7
except EDUll8OR

all repeats
except EDUll80R

all 0.7 dives
except EDUll80R

model

null

W4 /62 u
3

null
l
%"/P6116
3

null

wl /P2 flu
3

null

wl /P2 uu
3

null'

lw/Pun
23 .

null '

3.wl /P2 u

data set for average P(DCS)
which predictions -LL

are made 1

all single air

all single 0.7

all single air

all repeat air

all singles

all air dives

. 60

154.88

_ undefined
undefined
////

undefined

50.800
45.504

p 50.046
45.949

undefined

154.88

undefined
144446
////

' 50.285

52.829
48.061
52.532

. 51.207

u - 299.51

undefined
undefined
319.88 .

undefined
205.55

undefined

244441
undefined

_ _ predicted actual
"""""""5361
7.23 (2.81-1l.7)§

11.1 (2.55-19.3)
////9.90 (2.50-17.2)

' 1 6.97%

I-*UI@Ul unoLv4HI-\m\l r\r\,\/'\ 9|-‘QM r»~uL»>OWNO ¥~#-'~b
0-I

@03-

6,|-A Nu-MD \I\/%

an

5.50%

4.48 (2.29-6.69)\

5{27/(0-38.8)
////

7.22%

2.73 (1.15-4.29)!
3.37 (0.66-6.13)

3.82 (0.46-7.18)
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TABLE 10

Log Likelihoods and Optimized Parameter Values for the Models
with 6 or More Parameters: Any Category of Dive

-ln(likelihood)

model 4 model 4 model 5
data set null ko2 - 0 ko2 k02 - 0

EDUIlSOS 394.87 373.91 373.41 376.93
+ EDU184 + EDU885A
+ EDU885AR + EDU885M
+ DC4W + NMR8697
+ DRREPWET + DC8AOW

parameter values:

model 4 (3-mono-exponential), ko2 - 0

- 0.442 (0.174)
-2 " 129 (68.9)
- 767 (162)

A, - 0.176 (0.206)
A M 0.00117 (0.000306)
A3 - 0.00735 (0.00522)

model 4 (3-mono-exponential), k02 0

i- 0,284 (0.189)
vi - 106 (91.7)

3 - 1180 (599)
A. - 0.241 (0.342)
A2 - 0.000756 (0.000353)
A3 - 0.00473 (0.00421)
S- 0.339 (0.308)

model 5 (2 bi-exponential), ko2 - 0

TA, - 0.125 (6710)
•A2- 33.2 (14.0)
wA1 - 0.256 (10100)
AA -0.00146 (0.00120)

-31 " 517 (1960)
132 - 2570 (65200)
w31 - 0.213 (3.54)
AD- 0.0110 (0.0113)
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Log Likelihoods and Optimized Parameter Values for the Models $3 -
with 6 or More Parameters: Any Category of Dive .§§

K . . . . . . . . . ..-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5

.v

0

-1n(1ike11hood)

model 4 model 4 model 5 ..
data set null kg, - 0 Eb; ¢ 0 koz - 0 3*

p Q Q u Q p o o Q Q Q o o q Q c u Q Q Q Q Q u Q Q c n c Q - Q I - - - ¢ o o Q D 0

ED011805 394.87 373.91- 373.41 376.93 ‘£2
+ EDU184 + EDU885A
+ EDU885AR + EDU88SM
+ DCAW + NMR8697 ,
+ DRREPWET + DGBAOW

parameter values:
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T202
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“ model 4 (3-mono-exponential), kb; - 0' 7'!

model

model

\

ti —

Y: _
f _:3 -
A3 I

Q -
*1 _
Q _

A: -
A2 -
A3 -

0.4b2 (0.174)
129 (68.9)
767'(162)
0.176 (0.206)
0.00117 (0.000306)
0.00735 (0.00522)

0.284 (0.189)
106 (91.7)
1180 (599)
0.2A1 (0.342)
0.000756 (0.000353)
0.00473 (0.00421)

kn, - 0.339 (0.308)

5 (2 bi-exponential); Km - 0
1.6, -_ 0.125 (6710)=6, - 33.2 (14.0)wk, - 0.256 (10100)6,, ---0.00146 (0.00120) _
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4 (3-mono-exponential), Km ¢ 0 ”
" \

1
-3

5»-' 1

£1
K30A:.._-

\»;., _

1%?
wit? F9;‘ 2. _;_~

‘.215 air? \

-.
;;~@»

:‘¢"
‘vii
r W
'1 .

6 "
.%Y:.;;-it
fiiii.f\mL@061; .
3):‘
‘_ 15-14. >~

.4 E"
" 0;
1, €

‘ - ‘ ‘vs
1 453%

Eggfiiz

§§E
I61 .

, , 003 ;
 __



pi-V--ii

FI 'ED

" ct

View publication statsView publication stats

~.

.

'2...1iQ

'0

~ 6 , ' .‘.-1 . ..~.~-=~ .2. . 5' .

1.

=~ "v - ‘F;

~

0,,
. ii -

<2.

_;:_>

\-Jr
1.>.._
‘_¥

is

if;-.

153'..

I ,../. . -_ A '1»:
"2" -.>; .

_-7'5“ -.5’ l 351'

Fe
‘vl

‘1-.~~I
.4..q _

-. 6 ."6; . . 1;.
2 -’> -.- 3 .:.; _.- _ 1%

~.

' ~' ‘.-

\ .

~.... a

DATE:

1

1 1

‘>.

. I ‘

». \ .’. » ..-

v 2/

/.¢'~_§
~.-F‘-.

I '\'.'§;1:§"'>
'3:

\

£4-J.

\‘.-§.

»,;» , <.

(2.-1

.-4 If0
-. 1»:2. . .v'

u. ,-1.4.
‘$3-it~.'.u;;
‘<50.

‘.~

.’j- --,

)0.

7; -1;
'- .0.

. .\_(_ 7,-3

.1?

'-> 4;
{'31... .=,,,.

:15?
I. '.1 ,-g.~~<_3¢ .0.

1:?" ._‘ A 6. __ 2 \
.+;~':~" ._ ».‘ ‘ - 6 . » >., _ . _
rag. ;;-;_~,.

9)?’ ‘\ ._'>-.

‘:~,§f:.

¢, .

Q.

* -6..»

-iii .

, .

@053.6,
5785:

6'1“ .

_;./
F598.

iw
»$.6W
-2Q

. .

|>

. _/1..
:= ,5’

I I

~

2~.
. - . I

-.' ’

.‘ ‘
1| . _ _

1r
V -

;., I

r

" ‘ ' I '. " “ “U. ' . V '1

y. -4,

. , . I 1 v

~ an . .
"' _ -*"'_- 2 -. ~ 1 6- ' _~,. ., ."_,,-»_j%.1!%'53.=;.t'=;% .:.'!-M‘-_» ‘L; :'\¢.,r‘ .6 ~ _ I ' - - . _ . _ 7 r V ,5’ it iuh‘ _

' V ° Ia ‘ l . ' -, ' ‘. , ' ' I
1 .

i

' ‘ \
\

1 6"_ . _ ,-

https://www.researchgate.net/publication/235191006

