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Rccendy a new cavitation model has hecn proposed in which bubble formation in aqueous media is initiated 
by spherical gas nuclei stabilized by surface-active membranes of varying gas permeability. By tracking the 
changes in nuclear radius that are caused by increases or dccre•-s in ambient pressure, the vaxying- 
permeability model has provided precise quantitative descriptions of seve•d bubble counting experiments 
carried out with supersaturated •elatin. The model has also been esot to c•!culate diving •ables and to predict 
levels of incidence for decompression sickness in a variety of animul species, including salmon, rats, and 
humans. AJthough the phenomena involved are in some sense dynetalc, the model equations, in their present 
form, are essentially static and can be derived by requiring methanford or chemical equilibrium at each setting 
in a rudimentary pressure schedule. In this paper, we examine the time dependence of the evolution of an 
individual nucleus from one equilibrium state to another, and we then investigate a statistical process by 
which the equilibrium size distribution of an entire population of nuclei may be generated or regenerated. 

PACS numbers: 43.35.Ei, 43.25.Yw, 43.30.Nb 

INTRODUCTION 

Ordinary samples of sea water, tap water, or even 
distilled water form visible bubbles when subjected to 
tensile, ultrasonic, or supersaturation pressures as 
small as I arm. This is several orders of magnitude 
below the theoretical tensile strength of pure water, 
and it implies that cavitalion must be initiated by pro- 
cesses other than modest changes in pressure and the 
random motion of water and gas molecules. 

Numerous experiments have demonstrated that cavi- 
tation thresholds can be significantly raised by degas- 
sing or by a preliminary application of static pres- 
sure. i'2 These are specific tests for stable gas nuclei. 
Furthermore, solid particles or container walls with 
smooth surfaces 3 are not expected to be effective in 
initiating bubble formation at tensile, ultrasonic, or 
supersaturation pressures less than about 1000 atto. i's 

The existence of stable gas nuclei is at first rather 
surprising. Gas phases larger than I txm in radius 
should float to the surface of a standing liquid, whereas 
smaller ones should dissolve rapidly due to the sur- 
face tension. In Refs. 6 and 7, the earlier proposals 
for coping with this dilemma are critically reviewed, 
and a new model, called the varying-permeability or 
VP model is introduced. The essence of the new model 

is that cavitation nuclei consist of spherical gas phases 
small enough to remain in solution and strong enough 
to resist collapse, the mechanical compression 
strength being provided by an elastic skin or membrane 
composed of surface-active molecules. VP skins are 
ordinarily gas permeable, but they can become imper- 
meable if the ambient pressure is increased rapidly by 
a sufficiently large amount, typically exceeding 8 arm. 

Section I is an outline of the varying-permeability 
model which serves as the starting point for the theo- 
retical developments which follow. In Sec. H, we in- 
troduce accretion and deletion functions to describe the 

transport of surfactant molecules to and from the skin, 
and we then use these functions to investigate the time 
dependence of the changes in the radius of an individual 

nucleus that occur as a result of increases or decreas- 

es in ambient pressure. The same accretion and dele- 
tion functions are used again in Sec. III to explore a 
stochastic mechanism by which a population with an 
arbitrary initial size distribution might eventually 
achieve equilibrium at a constant external pressure. 
As discussed in Sec. IV, the equilibrium size distribu- 
tion obtained from this analysis is of the same form as 
the primordial distributions extracted from bubble 
counting experiments in supersaturated gelatin. 

I. THE VARYING-PERMEABILITY MODEL 

Because of the surface tension ¾, mechanical eq'uiti- 
brium of a spherical gas bubble of radius r can be 
achieved only when the internal pressure p •n is higher 
than the ambient hydrostatic pressure p,•,. This situ- 
ation is described by the Laplace equation, 

Pia----Pamb + 2y/r (ga• bubbles). (1) 

If the liquid surrounding the cavity is in diffusion equi- 
librium with an external gas mixture at P,mu, a pres- 
sure increment of Pt,-Palau = 27/r will exist across 
the boundary of the cavity, and gas will tend to flow 
outward until the radius diminishes to zero. 

In the varying-permeability model, 6'? collapse of a 
spherical gas nucleus is prevented by the compression 
strength of an elastic skin or membrane composed of 
surface-active molecules. The skin pressure 2Fir can 
be added to the left-hand side of Eq. (1) to yield a new 
expression for mechanical equilibrium, 

Pin -{- 2I'/r =Pa.U + •r/r (gas nuclei). (2) 

Alternatively, one can think of the skin compression F 
as the amount by which the surface tension is reduced 
by the surfactant molecules. The new surface tension, 
¾' =¾ - F, can be substituted for ¾ in Eq. (1). 

The skin compression F is analogous to the "surface 
pressure" II that is measured when an "insoluble mono- 
layer" of surface-active molecules is spread across 
'.he liquid-gas interface in a Langmuir trough? In a 
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typical I1-A (surface pressure versus surface area) 
curve, the magnitude of II increases as the monolayer 
area and hence the spacing between surfactant mole- 
cules are reduced. Eventually II reaches a limiting 
value, and further reductions in surface area can be 
accommodated only by expelling surfactant molecules 
from the interface. 

The I1-A curve assumed for I' in the varying-per- 
meability model is essentially a step function. "Small- 
scale r' changes in nuclear radius--those associated 
with variations in the spacing of a fixed number of skin 
molecules--are neglected, and only "large-scale" 
changes--those associated with the accretion or dele- 
tion of skin molecules--are actually calculated. The 
small-scale changes are important conceptually be- 
cause they permit a stable mechanical equilibrium near 
the calculated large-scale radius with the fixed num- 
ber of skin molecules appropriate to that radius. ^ll 
large-scale processes take place at the maximum skin 
compression ¾c, which is referred to as the" crumb- 
ling compression." Whereas the values of I1 measured 
on flat interfaces rarely exceed the surface tension of 
the underlying substrate, ¾c must be larger than ¾ for 
a surfactant nucleus to survive. The greater compres- 
sion strength required for the nuclear membrane is 
made plausible by the spherical geometry and small 
surface area. 

Application of the varying-permeability model to 
predict bubble counts in supersaturated gelatin is bas- 
ed on the "ordering hypothesis." 6,• Each gelatin sam- 
pie is assumed to have the same initial distribution of 
nuclear radii, and the number of bubbles formed is 
equal to the number of nuclei larger than some mini- 
mum initial radius r 0 . The ordering hypothesis then 
states that nuclei are neither created nor extinguished 
when samples are subjected to a pressure schedule and 
that the initial ordering according to size is preserved. 
It follows that each bubble count is determined by the 
properties and behavior of a single critical nucleus and 
that a family of pressure schedules yielding the same 
bubble count N is characterized by the same critical 
radius r• 'a and by the same crumbling compression Yc- 

Two independent derivations of the VP model have 
been proposed. ? The first, following the gas-imper- 
meable organic skin model of Fox and Herzfeld, 9 be- 
gins with the differential equation given by Love tø for 
an elastic shell. It is assumed that the shell is bound- 

ed by spherical concentric surfaces and that it is held 

strained by a difference between the internal pressure 
p• and the external pressure P•t- For a hydrophobic 
shell, Po,t is just the right-hand side of Eqs. (1) and 
(2): 

The skin compression in Eq. (2) is identified as 

r = s/(1 - v), (4) 

where E is Young's modulus, v is Poisson's constant, 
and • is the "active skin thickness," i.e., the thickness 
of that portion of the skin which is capable of support- 
ing a pressure gradient. n The assumption that I' has 

a constant value Yc for all large-scale changes in ra- 
dius is equivalent to the assumption that the right- 
hand side of Eq. (4) is fixed. Integration of the Love 
equation tø then yields the VP expressions for the 
ch,•nges in nuclear radius that occur during each step of 
a rudimentary pressure schedule. 

The second derivation of the VP model ? is thermo- 
dynamic or chemical, rather than mechanical. An 
auxiliary assumption requires that surfactant mole- 
cules be present not only in the skin, but also in a con- 
tiguous "reservoir." In effect, the reservoir is a ma- 
terialization of the right-hand side of Eq. (2) with res- 
ervoir pressure 

P• =Po.t, (õa) 

=p.=• + 2y/r, (Sb) 

while the skin may be regarded as a materialization of 
the left-hand side with small-scale skin pressure 

ps=p,, + 2r/r. (5c) 

The condition for small-scale mechanical equilibrium, 
PR =Ps, is illustrated in Fig. l(a). This condition 
could be satisfied by any reservoir which transmits the 
pressure pR =P•t to the skin-reservoir interface. 
Examples would be an attached surfactant droplet, a 
bulge in the skin, or a reservoir coasistihg of surfact- 
ant molecules dissolved in the surrounding liquid. For 
the sake of discussion, the skin and reservoir are 
visualized in the VP model as concentric shells of 

negligible thickness and hence of the same radius r. 
As shown schematically in Fig. l(b), the reservoir is 
assumed to be outside the skin in contact with the li- 
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quid, and the skin is inside the reservoir in contact 
with the gas. The surfactant molecules composing the 
skin and the reservoir are hydrophobic, but those in 
the reservoir are not aligned and hence cannot support 
a pressure gradient. Fig. 1(c) is a plot of pressure 
versus radius in the vicinity of the skin and shows at 
what points the pressures Pin, Ps, Pu, and •m• apply. 

For the large-scale changes in radius actually calcu- 
lated in the VP model, the magnitude of Ps is ? 

Ps =pl.+ 2yc/r. (Sd) 

However, the transport of surfactant molecules be- 
tween the skin and the reservoir is described--not by 

setting Ps equal to pu--but instead by requiring that 
the electrochemical potentials be equal in the two re- 
gions. 

The electrochemical potential is taken to be 7 

where /z is the purely chemical potential, k is the 
Boltzmann constant, T is the absolute temperature, p 
is the molecular concentration or number density, p 
is the static pressure, v is the active volume occupied 
by one surfactant molecule, Ze is the effective charge 
of one surfactant molecule, and •b is the electrostatic 
potential. In the reservoir'we have 7 

fu =g• + kT In (p•) + p•v + (Ze •b)• , (7a) 

and in the skin we have ? 

•s =gs + kT In (Ps) +Ps v + (Ze •)s , (Tb) 

where v is assumed to have the same value in the two 

regions. Inserting Eqs. (Sb) and (Sd) into Eqs. (7a) and 
(7b) and setting fa equal to •s, we obtain • 

p,. + 2yc/r =P.=b + /r , (Sa) 

where • is defined by ? 

• - [l•T [n(ou/Ps ) + (I.t• - • s) + (Ze •b)u - (Ze •b)s ]. (Sb) 

To illustrate how changes in radius can be calculated 
from Eqs. (Sa) and (Sb), we shall briefly investigate 
what happens when a liquid sample containing VP nu- 
clei is subjected to the rudimentary pressure schedule 
shown in Fig. l(d). The schedule consists of a rapid 
compression from P0 to Pro, saturation of the sample at 
Pro---P,, and a rapid decompression from p• to p•. The 
term "rapid" means operationally that the process in- 
volyes no change in the dissolved gas tension ?. Satu- 
ration at pm=p• means that ? assumes the value p• 
prior to decompression. The maximum over pressure 
or crushing pressure is then 

-= - 

=(P,.-Po) , 

and the maximum supersaturation is 

=- (r - 

= (p. 

(9a) 

(10a) 

(XOb) 

If we further assume that p•,• is not too large, e.g., 
it is less than 8 arm, then the nuclear skin will remain 
"permeable," andp!a will remain •lUal to ? and hence 

to P0 during the initial compression. At the beginning 
of the compression, Eq. {Sa) takes the form 

Po + 2yc/r• TM -•o =Po + •/r• '•" , (lXa) 
and at the end of the compression, it can be written 

Setting 3 • equal to 30, we obtain the VP expression for 
the cha•e in tabus induced by a rapid, permeable 
compression from P0 to p• (Ref.7): 

2{yc -y)[(1/r• '") - (1/r•'")] =P===• ß 
A trial calculation • using either the Love equation • 

or Eq. {Sa} with •==• suggests that the nucleus wo•d 
be fully restored durlng the saturation ph•e as p•= •n- 
creases from P0 to p==p•. That is, r• TM would be 
equal to r• •, and any effect of crushing would be lost. 
This is d•rectly contradicted by experiment, •= hence 
the empirical assumption is made that* 

•s •Ym ß 

Mechanical equilibrium can now be achieved by allow- 
ing F to" re[•' to its initial small-scale value 
=y, but thermodynamic equilibrium requires that 
differ [rom •-=•0.; The equation for a rapid, perme- 
able decompression [tom ?s to pt is obtained from Eq. 
(Sa) by setting 

I r •!• I r • - (14) / )-( / ß )I--P-- 

The criterion for bubble formation at pt is the La- 
prace condition; - 

Pss = 

When Eq. (15) is combined with Eqs. (12)-(14), one 
iinds a linear relation between •s and • (Reis. 6 
and 7): 

x/•mln Pss = [•(rc-V)/ 0 YcJ + [P .... •(Y3c)]. 
Each bubble number N is now characterized by a single 
nucleus with parameters r• •= and Yc, and •or permeable 
compressions, each isopleth of constant N • simply 
straight line in a plot of p,= vs p•,,•. 

The definition of • in Eq. (Bb) sagtests that •0 
(11a) should have the s•e value for all nuclei in a 
•iven s•ple. This lea• to the prediction • that Yc, 
which is f•ed iora particular nuc[e• throughout an 
arbitrary pressure schedule, will increde Linearly 
with the initial nuclear radius r• •. The correspon•n• 
equalion, • 

Yc =Y + •o/2• TM , 

Should also be satisfied by the combinations of 
ec determined ior various isopieths oi constant N. 
This prediction has been confirmed by three separate 
gelatin experiments, TM '!z one of which • used filtered 
s•ples to obtain a model-independent determination 
of r 0 . 

The case in which • excee• the threshold for ira- 
permeability, •m•=P*-P0, is treated in Ref. 
which should also be consulted ior a fuller discosion 

of the VP •s•ptions. In Rei. 11, the model is ap- 
plied to "slo•' compressions, and a finite skin thick- 
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heSS 0 is incorporated into the model and evaluated 
experimentally. 

In the first applications of the varying-permeability 
model to decompression sickness, la'16 one additional 
assumption has been made, namely, that isopleths of 
constant bubble number N are also lines of constant 

effective dose. The critical supersaturation p,• need- 
ed to produce signs or symptoms in a given percent- 
age of the subjects ha• then been calculated as a func- 
tion of the exposure pressure Der• +P0 for various 
combinations of r• l•, 7c, and p*. The optimum values 
of these parameters determined in vivo •a'•6 are simi- 
lar to those obtained in gelatin. TM 

II. EVOLUTION OF NUCLEAR RADII IN THE VP 
REGIME 

The main task of the varying-permeability model 
has been to describe the changes in nuclear radius that 
occur with increases or decreases in ambient pres- 
sure. In this section, we go one step beyond the ori- 
ginal equilibrium formulation 7 and attempt to extract 
the time dependence of the nuclear radius as it pro- 
gresses from one stationary value to another. As usu- 
al in the VP regime, we track a single critical nucleus 
characterized by an initial radius r• TM, a constant 
crumbling compression 7c, and a fixed irapermeability 
threshold p*. We also focus our attention on the ac- 
cretion and deletion of surfactant molecules by the 
skin--those processes which produce large-scale 
changes in radius, and we simplify the concomitant 
problem of the d/ffusing gas by assuming that the skin 
at any given moment is either completely permeable or 
impermeable. 

The rates or probabilities per unit time for a nucleus 
of radius r to add or slouch off skin molecules are 
given by the accretion and deletion functions X and 
The specific functions assumed for this analysis are 

X =A exp [(¾c -¾)S/kT •Y[(p• - pøa)/p • ] (accretion), 
(1ia) 

• =A exp [(7c -7 }S/kT]X[(Ps - Pøs)/P•s] (deletion), 
(iSb) 

where the constant • wit[ be reœerred to as the "pre- 
exponential factor," • where $ is the average surface 
area occupied by one skin motecute • s•t•, ? and where 

X = 4•r•/$ (19) 
is the total number of surfactant molecules in the skin. 

Both transport rates are proportional to the exposed 
surface area 4•rr z and hence to the number of skin 
molecules X. The concentrations pa in the reservoir 
and Ps in the skin have appeared already in Eqs. 
and (7b), and p0• and pø s are simply the equilibrium 
values, i.e., the values for which X and qb are assum- 
ed to be equal, not only to one another, but also to 
zero. At a later stage, we will make the approxima- 
tion p•-•pøs•pø in the denominators of Eqs. (182) and 
(18b), which is analogous to the VP approximation 
v• -•Vs ---u in Eqs. (72) and (7b). 

The quantity 

ati; •,• y'S , (202) 

=-(7c -¾)S, (20b) 

Which appears with a negative sign in the exponential 
factors of the transport functions, is the activation 
energy required to add one skin molecule. In the ab- 
sence of a skin, 7c is equal to zero, and the activation 
energy becomes 

AE •¾S , (21) 

which is just the surface energy needed to expand the 
liquid-gas interface by the area S. Since (¾c -•) is 
constant for a given nucleus in the VP regime, it is 
convenient at this point to define the exponential acti- 
vation amplitude as 

A' =n exp [(yc -r}S/kT] (22) 

and rewrite Eqs. (182) and (18b) more simply as 

X =A'X(pa -p•)/pOa (accretion), (23a) 

q•=A'X(p s -p•s)/Pøs (deletion). (23b) 

Solving for the molecular concentrations in Eqs. (?a) 
and (?b), we obtain: 

Pa = exp {[•u - ixu - ( Ze •b)• -puv]/kT}, (242) 

pO• = exp {[• - •u - ( Ze 0)• -Pø•v]/kT}, (24b) 
Ps = exp {[•s - • s - ( Ze •)s -PsV ]/leT}, (24c) 

pø s = exp {if s - ix • - ( Ze •),• -Pøsv ]/kT}, (24d) 
where the quantities f•, is, •, •ts, (Ze•)a, and 
(Ze$)s are assumed to be independent of the pressures 
ps and Ps. The respective normalized density incre- 
ments are then 

(Ou _pO•)/pO• =exp [ - (p• -p•)v/kT] - 1, (252) 
(Ps -P•s)/Pos=exp[-(Ps -p•s)v/kT]- 1. (25b) 

We will now show that the arguments of the exponents in 
Eqs. (252) and (25b) are much less than one for pres- 
sure excursions below, for example, 100 arm. The 
active volume is defined by 

v = aS. (26) 

The measured value of the active skin thickness is u 

2.5 b,, 

and the area per skin molecule averaged over three 
experiments is ?'u 'li 

S- (65 .•J + 45 ,[2 + 48 ,/,z)/3, (282) 
- 53 J,:. (28b) 

The magnitude of the active volume is then 

v= 132 •a, (29) 

and the numerators inside the exponents of Eqs. (252) 
and (25b} are tess than 

(100 arm) (132 J,'•)•-1.33 x 10 -la ergs. (30) 

This is small compared to the denominators, 

kT - 4.14 x 10 '14 ergs (31) 
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at 300 øK, and hence we may expand the exponents and 
make the approximations: 

_ pO)/po ' (32a) 
(Ps - Pøs)/Pøs -•-(ps -p•)v/kT , (32b) 
X -•-A'X(p• -pø•)v/leT (accretion), (33a) 
•P ---A'X(Ps -pøs)v/kT (deletion). (33b) 

To illustrate the use of X and qb in the VP regime, 
we shall consider one transition in detail and give only 
the results for the others. The relevant pressures for 
a permeable compression from P0 to p* can be obtained 
from Eqs. (5b) and (Sd): 

p• =p* + 2y/r, (34a) 

p0• =P0 + 2Y/r• t" , (34b) 
Ps =P0 + 2Yc/r, (34C) 

Pøs =P0 + 2yc/r•'", (34d) 
where r=r(t) is the magnitude at time t of the nuclear 
radius a• it decreases from 9'•,n to 

The rate of change of the number of skin molecules 
dX/dt is just the difference between the accretion and 
deletion functions X and 

d"•- =X - 9. (35) 

A second expression for dX/dt can be found by differ- 
entiating Eq. (19): 

dX 8;rr dr 

dt- S dt ' (36) 

To obtain a differentJut equation for r(t), we first re- 
ptace X in Eqs. (33a) and (33b) with 4•r2/S from Eq. 
(19). We then substitute forpR, pO•, Ps, andPøs using 
Eqs. (34a)-(34d) and equate the expressions for dX/dt 
in Eqs. (35) and (36). This gives 

dt - 2-•L -(p*-pø)+ 2(rc-r T- . (37) 

Finally, with the help of Eq. (12), we express the ap- 
plied pressure increment p,rush=p * -P0 in terms of the 
equilibrium radii, r• l' at the beginning and 9'•*t. at the 
end of the transition. The result is 

dr A'vr(yc-7)(• 1__) d-•' = ' kT r•*,, ' (38) 
Integration of Eq. (38) yields the familiar expression 

for an exponential decay, 

r(t) =r•*,. + (r• •s -r•*,.) exp (-t/c*), (39a) 

where the constant of integration has been chosen so 
that r(0) is equal to r• t' and 9'(.0) is equal to r•*t.. The 
time constant, 

• * = (2kT/A'v)[r•*,,/2(y c -Y )], (39b) 
can be rewritten as 

v* = ( 2kT /A ' v )(1/t3 o)(r m*i•/9'•") (39c) 

by substituting from Eq. (17). The ratio rm•./r o is 
independent of the nuclear radius and can be replaced 

by using Eqs. (12) and (17). The final result for the 
permeable region P•.h =P • -P0 •< Pa*ru,h =P * - P0 is 

(•* = (2kT/A'v)/(p. -P0 + rio), (39d) 

= (2kT/A'v)/(p,,•.• +/t0). (39e) 

For a rapid compression in the impermeable region 
P•.• >•p•*,•.•, the radius decreases from r•*•. to r. 
according to the equations 

r( t ) = r= t' + (r*•t. - r= t•) exp (- t /c •) , (40a) 

• . = 2kTr•i•/ [A ' v2(¾ c -¾)], (40b) 
= (2kT/A'v)(1/•o)(rZt"/r•""), (40c) 

= (2kT/A'v)/[p • -Po(r•*t,/r•tS) a +/•o]. (40d) 
It can be shown by solving •8 the cubic Eq. (19b) in Ref. 
7 and by making the usual substitution for (•c -y) via 
Eq. (17) that * • '"" r•t•/r• in Eq. (40d) is independent of the 
radius and is a function only of the pressures Po, P*, 
and p •. 

For a rapid, permeable decompression from Ps to p•, 
the radius increases from r s =r• to r• according to the 
equations 

r(t ) - •' .... '" - r• 'l") exp (- t /o •) , (41a) 
oi = 2k Trtt"/ [A ' v2(• c -v ) ] , (4lb) 

= (2kT/A'v)(1/l•o)(r•'t'/r•"'). (tic) 

For the case in which the original compression Peru-• 
lies entirely within the permeable region, Eq. (12) may 
be used to rewrite Eq. (41c) as 

• = (2kT/A'v)/(p,r,s• -P,s + •o) . (41d) 

We shall now interpret the pre-exponential factor A 
and the exponential activation amplitude A' by compar- 
ing our "diffusion equation," dX/dt = X - •b, with Fick's 
law/7 

d_En =- DAAp (42a) dt Ar ' 

where D is the self-diffusion coefficient and dn/dt is 
the net rate at which the molecules of interest diffuse 

across an area A as a result of a density gradient 
at. Identifying dn/dt as -dX/dt ard setting. A = 4•r 2, 
we can express Eq. (42a) as 

dX D4•r2Ap 
-- -- (42b) dt Ar 

Meanwhile, substituting Eqs. (18a), (18b), and (19)into 
Eq. (35), we obtain 

d• =A exp ((YCk•Y)S)X[ (pg• ø ) - (P p-•s øs)] ß (43a) 

We next let (p• _pO•) equal &p• and (Ps -P[) equal Aps, 
and we then make the approximation p•0 _• po s _• •o. Equa- 
tion (•3a) becomes 

dX ((y•S• 47rr 2 Ap (43b) •- =A exp • p--•-, 
where Ap =(/,pR- APs) is the net density increment. 
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Comparing Eqs. (42b) and (43b), we find 

A =DpoS/Ar, (44a) 

A' = 0Dp0S/Ar ) exp [(¾½ -¾)S/kT]. (44b) 

Setting pov equal to one and taking the self-diffusion 
coefficient to be •7 

D = kT/4•ruR, (45) 

where • is the viscosity and R is the radius of the dif- 
fusing molecule, assumed to be spherical, we have 
finally 

(2kT/A'v) = (8•qRAr/S) exp [ - (¾c -¾)S/kT]. (46) 
This section can be summarized by saying that the 

transition from one equilibrium state to another in the 
VP regime is via an exponential decay law. For a giv- 
en transition, the time constants for different nuclei 
vary inversely with the exponential activation ampli- 
tude A', and they depend explicitly upon the radius 
and the temperature solely through the exponential ac- 
tivatiod energy factor exp[(yc -¾}S//•T]. [We use the 
word "explicitly" because the viscosity •7 in Eq. (46) is 
also a function of temperature.] Different transitions 
are characterized by different time constants and tend 
to decrease as the magnitudes of the pressure changes 
increase. 

Ill. STOCHASTIC GENERATION AND 
REGENERATION OF THE PRIMORDIAL SIZE 
DISTRIBUTION 

In the previous section, we investigated the time de- 
pendence of the radius of an individual nucleus subject- 
ed to an increase or a decrease in ambient pressure. 
We now consider, at constant ambient pressure, a 
statistical process by which the equilibrium size dis- 
tribution of an entire population of nuclei may be gen- 
erated or regenerated. 

To be definite, we assume that Pamb is equal to P0- 
(The final results are independent of this choice.) We 
further assume that each nucleus and its surrounding 
medium are in diffusion equilibrium. It follows that 
Pin is equal to the dissolved gas tension ?, which is 
equal to P0- Mechanical equilibrium of a nucleus of 
radius r is then expressed by the relations 

Ps =P• , (47a) 

Po + 2r/r =P0 + 2),/r , (47b) 

where the skin compression F has a small-scale value 
of 7 and is thus independent of the radius r. 

As a first approximation, Ps and pa remain fixed and 
equal to one another in the statistical regime. There 
are, however, small fluctuations in Ps and p• associa- 
ted with the random accretion or deletion of individual 

skin molecules. We estimate these pressure changes 
by dividing the accretion energy •Ey, =-(¾c-7)S in Eqs. 
(20a) and (20b) by the total active skin volume Xo 
=64•rr z to obtain 

-(Ps -Pøs) -• -(Pa _po•) , (48a) 
--•(Tc -7 )S/õ4/rr2 , (48b) 
---(¾c -¾)/6X. (48c) 

The random fluctuations in the radius •' and in the 

total number of skin molecules X are accompanied by 
variations in the crumbling compression 7c- This is a 
significant departure from the VP regime, in which 
each gas nucleus is characterized by a fixed initial 
radius •0 and hence by a constant 7c. From Eqs. (17) 
and (19) we have 

¾c =¾ + (•0•'/2), (49a) 

=¾ + •3o(XS/n) I/2/4, (49b) 

where, as usual, •0 is a property of the population as a 
whole and has the same value for all VP nuclei in the 

sample. 

Substitution of Eqs. (49a) and (49b) into Eqs. (48b) 
and (48c) gives 

-(•,• -•øs )-•-(• -p•), (50a) 
•- •S/54•r, (50b) 
---•o(S /•X)' /2 / 4o . (50c) 

The accretion and deletion functions in Eqs. (33a) and 
(33b) are now both positive and equal, and they can be 
written 

X = •, (51a) 

_• A •0X I/z exp(•t 0X t/•), (5lb) 
where the exponent is obtained from the activation 
amplitude A' in Eq. (22), where oto is defined by 

•o =•o(S/•r) '/zv/45kT, (51e) 
= t• o(s/•)'/•s/4t• 3', (51 d) 

and where •0X i/2 is equal to (7c -7)S/kT. 

Guided by a derivation given in Ref. 19, we now let 
F(X,t) represent the number of gas nuclei of "size"' X 
at time t. By definition, the probability for accreting 
a skin molecule in the time element dt is x(X)dt, and 
the probability for deleting a skin molecule in the time 
element dt is •(X)dt. Treating F as a discrete function 
of the discrete variable X, we find (for X + 1) 

dF(X , 1) 
dt = [F(X + 1,t)•(X + 1) -F(X,t)c•(X)] 

-[F(X,t)x(X) -F(X - 1,t)x(X - 1)]. (52) 
Approximating the discrete quantities F andX by a con- 
tinuous function F of the continuous variable X, we 
have 

•F(x,t) _ •[½(•)F(•,t)l I •t • •=x.l/2 

_ a[X(•)F(• ,t)]{ (53) 
Since 

*[½(e)F(e,t)] I _• •[½(X)F(X,t)] 
! 32[cp(X)F(X't)] (54a) + • •X • , 

3[X(•)F(•'t)] I • 3[x(X)F(X't)] 
_ 

2 aX z , (54b) 
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we obtain 'ø 

0F 0(•F) •(•F) t 02(•,F) •' •(•) (55) - 

We now seek a stationa• distribution F(X) such that 
OF/St in Eq. (55) will be equal to zero •or the accre- 
tion and deletion functions • and • given in Eqs. 
(51d). It is e•ity shown by direct s•stitution that •e 
expression 

, ., 
meets these r•uirements. The number of nuclei larg- 
er t• X• a • given by the •tegr• distr•ution 

N(X•")= •,. F(X• , (57a) 

and the number larger th• e•l. is given by the integral 
d•tribution 

=No ex0 [ 
=No [ - (9s) 

We end this section by •ining the t•e dependence 
oi • arbitrary d•tr•ution G•,t) as it app•aches 
the stable solution F(X) •ven by Eq. (56). Letting 
A(X, t) be the d•erence between G(X, t) •d •X), we 
e• write 

+ (59) 

To separate the variables X •d t, we exp•ss A as 
product of two i•ctions, 

a•, t) = T(t)Y •) , (60) 

and replace F • Eq. (55) by G•,t) • Eqs. (59) •d 
(50). The result is 

I •T I •Y 
• •t-Y •' ' (•l) 

whe• • =X is given by Eqs. (51a)-(51d). 

The two sides of Eq. (61) are •depen•nt functions 
of t •d of X, respectively. It follows that both sides 
m•t be •ual so •me consist, which we take to be 
-•. •tegration oi the t•e-dependent equation 

•T T =-x 
yields 

T=C exp(-kt), (63) 

where C is also a const•t. The X equation, me•- 
while, can be written 

where 

Z•) = •Y. (64b) 

Ra•er than attempt to solve Eq. (64a) explicitly, 
s•11 m•e some general obse•ations •out the nature 
of lhe solution. First, we note that •q. (64a) is of the 
Sturm-Lio•ille form •ø 

dlq(X )(•]]/dX + u(X )Z =-Xp(X )Z . (65) 
The coefficients in our case are q(X)=l, u(X)=0, and 
p(X)= l/q), where q(X) andp(X) are positive over the 
entire range 0 <X < oo. It follows for suitable boundary 
conditions and normalization N O [the actual choices will 
depend on the initial distribution G(X,0)] that Eq. (64a) 
has an infinite set of eigenvalues X, that are real and 
positive and that the eigenfunctions Z, associated with 
X,are orthogonal and form a complete set. 

The time-dependent difference function A(X,t) can 
now be expressed formally as a linear combination of 
the normal modes, 

A(X, t) =•.. C.Z..Of) exp ( - lj), (66a) 
and the constant coefficients C. can, in principle, be 
evaluated from the initial condition 

A0f, 0) =G(X, O) - FOr), (66b) 

= ,• C,Z,(X). (66c) 
The implication of this analysis is that an arbitrary 
initial distribution G(X, 0) approaches the appropriate- 
ly normalized stable distribution F(X) via the exponen- 
tial decay of the normal modes of the difference func- 
tion A(X,t)=G(X,t) :-F(X). 

IV. DISCUSSION 

In this paper, we have attempted to gain a deeper 
understanding of gas cavitation nuclei by investigating 
two time-dependent extensions of the varying-permea- 
bility model. The main piece of evidence in favor of 
these extensions is the primordial integral size dis- 
tribution, ? 

N(r•") =-N O exp (-•'•'i'/b), (67) 

which is equivalent [o Eqs. (57b), (58a), and (58h). 
Whereas Eq. (67) was first deduced • and later veri- 
fiedi•,•z by treating •,,n as an adjustable parameter in 
a VP analysis of bubble counts made in supersaturated 
gelatin, one of the subsequent experiments t2 used fil- 
tered gelatin samples to measure •L• directly. Eata 
from this experiment confirm Eq. (67), which we 
therefore regard, not only as empirical, but also as 
model independent. 

In deriving Eq. (67) a poste•,io•i, we have chosen 
accretion and deletion functions, X and • in Eqs. (õ1a)- 
(51d), which satisfy the equilibrium condition 3F/ 
at=0 in Eq. (55). Our choices are "trivial" in the 
sense that both of the products xF and •F are con- 
stant, and all of the derivatives on the right-hand side 
of Eq. (55) are zero. Trivial though they may be, our 
transport functions are neither simple nor manifestly 
wrong. For one thing, given the complexity of F(X) in 
Eq. (56), it is difficult to find other expressions for X 
and for • which will yield •F/•t=O. Our functions do 
this to all orders. Equally important, we have shown 
that our candidates for X and • follow naturally from 
the varying-permeability model and can also describe 
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the accretion and deletion of skin molecules in the VP 

regime. 

One consequence of using the same transport func- 
tions in both of these model extensions is that the ex- 

ponential activation energy factor, exp(- 
--exp[+ (yc -y)S/kT] in Eqs. (18a) and (18b), appears 
in the denominator of the VP time constants. That is, 

all of the time constants are multiplied by exp[-(yc 
-¾)S/kT]. An analogous factor appears in the Arrheni- 
us expression for the rate constant of an" elementary" 
chemical reaction. i? The rate constant is the recipro- 
cal of our time constant v, hence the argument in our 
exponent has the opposite sign. In other words, where- 
as the exponential factor is required in the transport 
functions to generate the primordial size distribution 
a posteriori, it is expected a priori to appear in the VP 
time constants if we view these transitions as being 
elementary chemical reactions with the usual tempera- 
ture dependence. 

To obtain some idea of the magnitude of the VP time 
constants, we evaluate the quantity 8•qRAr/S•] o for 
•/= 10 dyn-s/cm 2 (similar to castor oil at 20•C), Ar 
=30 • (the length of a surfactant molecule), 8--65 
from Ref. 7, /•-• (35Ar/4•) 1/3-• 9 •, and •0= 1.43x 10 '6 
dyn/cm 2 from Ref. 7. The result is 0.8x10 'a s. The 
factor exp [-(Yc -¾)S/kT] in Eq. (46)varies by three 
orders of magnitude in the gelatin experiments, 2'u .12 
i.e., from the order of 1 to the order of 10 'a. Our 
analysis suggests, therefore, that the VP time con- 
stants range from 10 '3 to 10 'ø s. 

The VP time constants depend on the nuclear radius 
via the exponential factor and the relation (•½ -¾) 
=-•0r•in/2 from Eq. (17). This is surprising because 
it means that large nuclei would evolve and equilibrate 
more rapidly than small ones. The opposite would be 
true if the rates were controlled by gaseous diffusion. 
Since the VP time constants (10 '3 to 10 '6 s) are very 
short in comparison with the times required for an 
ordinary gas bubble to collapse [about 4 s at an initial 
radius of 0.5 gm (Ref. 21)], we expect that diffusion 
would indeed be the dominant process for the size 
range (e.g., 0.01 to 0.7 •m) explored in the gelatin 
experiments.2'u d2 The presence of a skin on a gas 
bubble would reduce the rates for diffusion even fur- 

ther. 

It seems, therefore, that the end point of a VP tran- 
sition is determined by surface chemistry, while the 
actual rate is determined by gaseous diffusion. An 
important corollary is that the surfactant molecules 
react quickly enough so that the skin of an intact VP 

nucleus will track any changes in nuclear radius that 
result from gaseous diffusion. On the other hand, the 
VP time constants would be expected to play a role in 
acoustic cavitation where oscilIatory changes in the 
ambient pressure and hence in the equilibrium nuclear 
radius can easily occur in times shorter than 10 's s. 

The stochastic and VP time constants are related 

via the transport functions X and qb and vary inverse- 
ly as the driving pressures, typified, respectively, by 
•S/$4•r in Eq. (50b) and by •0 in Eqs. (39c), (40c), 

and (41c). Scaling the VP time constants (10 'ø to 10 's s) 
by the ratio flo/•oS/$4fr)= ii4•r/S (which varies from 
48 to 3381 for 5=2.5 A, S=65 ,•2, and 100 .•<r < 7000 
.•), we obtain a range of from 3.4x 10 '3 to 4.8• 10 '2 s 
for the accretion or deletion of one skin molecule. For 

a nucleus to migrate from a small to a large radius, 
or vice versa, a net exchange of about X = 4•r•/S mole- 
cules would be required. For r = 7000 .• and S = 65 ]k •, 
this gives a factor of 9.4x 10 s and a range of 3.1x10 a 
to 4.5 x 10 s s. The time required for a stochastic tran- 
sition may then be of the order of 10-100 h. 

The general picture of gas cavitation nuclei that 
emerges from this investigation is rather similar to 
that outlined in Ref. 7. Nuclei may originate from 
collapsing bubbles which accumulate on their surfaces 
a store of surface-active molecules. ,•t some point, 
probably within a few minutes or even seconds, the 
density of these molecules becomes sufficient to re- 
sist the collapse and stabilize the spherical gas volume 
at some initial radius r 0. Subsequent stochastic fluc- 
tuations in the number of skin molecules result even- 

tually in the equilibrium size distribution N(r• TM) given 
in Eq. (67). 

The equilibrium distribution, once established, can 
be distorted in various ways. Most of these fall under 
the rubric "denucleation." For example, a test sample 
can be partially denucleated by filtration, i.e., by cut- 
ting off the primordial distribution at the filter-pore 

radius r•. 12 Another standard method is to add deter- 
gent 1'2 or other substances li which presumably operate 
by changing (• -•s) and hence •0 in Eq. (58a). Pres- 
sure increments Ean be used to increase or decrease 

the radii of all nuclei in the sample, preserving the 
exponential, but changing its slope. A dependence on 
temperature is also predicted. 

Given sufficient time and suitable conditions, it 
should be possible to regenerate the equilibrium dis- 
tribution stochastically. If one waits long enough after 
filtration, nuclei larger than r• should reappear. Simi- 
lar[y, since the theoretical equilibrium distribution is 
independent of ambient pressure the effects of pressure 
changes, such as those treated in the varying-permea- 
bility model, should eventually be erased. This pro- 
vides a means by which the distribution N(r• •) at 
pa•=p,•=p, could eventually return to the initial dis- 
tribution N(r• TM) which existed at Pa•,• =Do. 

Direct evidence for the stochastic generation and re- 
generation mechanisms proposed here and in Ref. 7 
has recently been obtained by Johnson and Cooke? 
These authors injected air bubbles into seawater and 
observed that although some bubbles dissolved com- 
pletely, others stopped decreasing in size abruptly and 
remained as microbubbles apparently stabilized by 
films. Originally, the radial distribution ranged up to 
7 gm and peaked at around 2 •m. During the first 4 h, 
there was little change in this distribution. After 22 h, 
although there was little reduction in the number, the 
microbubbles were generally smaller, and the radial 
distribution resembled a decaying exponential, cut off 
at the microscope resolution, about 0.3 gin. There is 
also some evidence for the regeneration of gas cavita- 
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lion nuclei in rico, e.g., for a loss of decompression 
tolerance in striking or vacationing caison workers,2s 
but other mechanisms, such as ingestion of nuclei or 
nucleation by cosmic rays, a• may be involved. 
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