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Homer LD, Weathersby PK. Statistical aspects of the design and testing of decompression
tables. Undersea Biomed Res 1985; 12(3):239-249.—Before a decompression procedure is
recommended for general use it is subjected to a limited number of human trial dives. Based
on the trial, one attempts to reject unsafe procedures but accept those with a low incidence
of decompression sickness (DCS). Binomial confidence regions are often so broad that even
after 40 dives it may be impossible to distinguish between the possibility that the table being
tested has a 0.6% risk of DCS and the possibility that it has a 17% risk. Our proposed alternative
is to select some rule (e.g., one or more cases of DCS in 10 dives) for rejecting tables and to
caiculate the probabilities of accepting tables as a function of the probability of DCS. With
such calculations we conclude that (a) generally one cannot reduce the risk of adopting unsafe
tables without increasing the risk of rejecting safe ones unless one chooses to increase the
number of test dives; (b) truncated sequential designs could reduce the number of dives
required for testing by 15 to 20%; and (c) rules similar to the ones tested will always have a
zone of indifference. Tables with a probability of DCS in this zone will be accepted or rejected
with nearly equal frequency even if tested with hundreds of dives. The use of models describing
the probability of DCS as a function of dive parameters should allow us to combine information

from dives previously analyzed separately and perhaps to improve our selection of new tables
to be tested.

binomial distribution mathematical model
sequential design power curves

A safe decompression schedule is one in which decompression sickness (DCS)
rarely occurs, whereas an unsafe decompression schedule is one in which it occurs
more often than is deemed reasonabie. When testing new decompression procedures
one tries to retain procedures with a low incidence of DCS, discard procedures leading
to a high incidence of DCS, and to do so with as few trial decompressions as possible.
Historically, decompression trials seem to have been conducted with little guidance
from statistical theory.

Suppose we observe 2 cases of DCS in 40 trials of a new decompression procedure.
Is this procedure safe? Unfortunately. experience has taught us that if we were to
repeat our 40 trials we might encounter no cases of DCS or one, two, or more cases.
Before we can judge the meaning of 2 out of 40 we must be able to assess the variabihity
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we may encounter. Presumably, each time a decompression is undertaken there is a
fixed but unknown ‘‘true’’ probability that DCS will occur. This probability will be
different for different decompression schedules but we will assume it is the same for
all individuals and the same from day to day for a given decompression schedule.
[We use the terms ‘‘decompression table”” and ‘‘decompression schedule’ nearly
interchangeably to describe the decompression procedure to be tested. To be precise,
our remarks apply to a single specified dive and decompression (a ‘‘schedule’’) and
require the additional restrictive assumption of equal unknown incidence to apply to
a related set of procedures (a ‘‘table’)]. These assumptions, which are consistent
with a large population study of human altitude decompression (1), allow the vari-
ability to be predicted using the binomial distribution (2). Tables predict that if we
observe 2 cases of DCS out of 40 trials, the 95% confidence region for the true
incidence of DCS ranges from 0.6 to 17%. An incidence of 0.6% would be as safe as
‘some procedures already in use, but a 17% incidence is altogether unsatisfactory.
We conclude that this procedure might be safe, but then again it might not. We do
not believe calculation and inspection of such confidence regions is the best way to
address our problem. One deficiency is that the region depicted is a two-tail region,
implying that we are just as fearful of approving a schedule with a DCS incidence
less than 0.6% as we are of approving one with a 17% incidence. Another deficiency
is that we still don’t know whether to call this procedure safe or unsafe. Instead we
will suggest approaches that recognize the two kinds of mistakes we may make when
declaring a table to be safe. One mistake is to reject a safe schedule, the other is to
retain a poor one. If we recognize that we may err by accepting unsafe tables or err
by rejecting safe ones, we may develop alternative ways of looking at our problem
that recognize the two kinds of mistakes to be made and permit us to calculate the

probability of making such mistakes. Thus armed, we may hope to improve our rules
for accepting new tables.

Selection rules for a fixed number of dives

If we adopt a rule for rejecting a schedule, we may calculate, using the binomial
distribution, the probability of rejecting decompression schedules with that rule under
different assumptions about the true incidence of DCS. For example, let us suppose
we adopt the policy of running 10 trials and rejecting as unsafe any decompression
procedure leading to one or more cases of DCS. If the true frequency of decompres-
sion sickness using the table in question is P, then the probability of observing k
cases in N trials is, according to the binomial distribution,

B(k | N) = {NV(kY(N-k)\)} P* (1-Py+ ()

The factorial notation, N!, means (1)(2) . . . (N-2)(N-1)(N), and 0! is defined as
one. For example, 3!is 6, 4! is 24, and so on. Thus,

B(1]10) = 10¥Y(9!'11) P' (1-P)®* = 10 P(1-P)y

Now our rule asserts we will only accept the table if we. have no cases of DCS in
10 trials. The probability of this outcome is B(0:10), which is equal to (1-P)'"°, The
upper curve of Fig. 1 shows the probability that no cases of DCS will occur in 10
trials when the true probability is between 0 and 0.2. Such plots are termed power
curves in statistics. Since the table will be accepted if there are no cases of DCS in
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Fig. 1. Probability of accepting a decompression schedule against the underlying *‘true’’ incidence of

DCS under several fixed trial rules. The 3 cases plotted correspond to strategies of accepting the schedule
if no cases of DCS occur in trials of 10, 20, or 40 successive dives.

10 trials, the curve is equivalent to the probability of accepting the table. If the true
incidence is low, the procedure works quite well. If the incidence of DCS were 0.6%,
our rule would accept the table over 94% of the time. For bad tables it does not
perform well. A decompression table with a DCS frequency of 13% would not always
lead to one or more cases of bends in 10 trial dives. About 25% of the time such a
table would lead to no bends at all in 10 dives and thus would have a probability of
0.25 of being accepted. As Fig. 1 shows, we could improve our rejection of bad tables
by adopting a 1-out-of-20 rule and improve it still further with a 1-out-of-40 rule. A
l-out-of-40 rule would reject a table with 13% DCS incidence over 99% of the time.
Unfortunately, it would also reject a table with a 0.6% incidence over 20% of the
time. By adopting a 1-out-of-40 rule instead of a 2-out-of-40 rule, we can improve our
rejection of poor tables only by increasing the risk of rejecting a good table.

Can we improve the balance between accepting good tables and rejecting poor
ones by adopting a 2-out-of-40 rule? If we observe two or more cases of DCS in 40
trials we will reject the proposed table, otherwise we will accept it. Qur acceptance
probability, A, will then be the sum of B(0 | 40) and B(1 | 40), since zero or one case
of DCS is the only acceptable outcome. Using our binomial formula we would get

A = B(0|40) + B(1]40) = (1-p)* + 40 P' (1-P)*

Then if the true incidence of DCS is 0.6%, our rejection rule would retain the
schedule 97.5% of the time and reject it 2.5%. On the other hand, if the true incidence
were 13%, our 2-out-of-40 rule will reject the schedule 97.5% of the time and retain
it 2.5% of the time. As shown in Fig. 2, if the true incidence lies between these values,
rejection and retention are more evenly balanced. For example, if the incidence of
DCS is 5%, then our rule will reject the schedule 60% of the time and retain it 40%
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REJECT IF 1, 2, OR 3 DCS IN 40 DIVES
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Fig. 2. Probability of accepting a decompression schedule against the underlying *‘true’’ incidence of

DCS under several different fixed trial rules. The cases of rejecting tables for 1, 2, or 3 cases of DCS out
of 40 repeated dives are shown.

of the time. The 1-out-of-40 rule gives better rejection of poor tables but only by
increasing the chance of rejecting good tables. Figure 2 also shows the expected
acceptance frequencies for a 3-out-of-40 rule. This does a fine job of accepting good
tables, but the possibility of accepting poor tables is clearly greater than for the (-
out-of-40 or 2-out-of-40 rules. It is a general characteristic of any selection rule for

_diving schedules that for a given, fixed number of test dives improved rejection of
poor schedules can only be purchased at the price of increasing the possibility of
rejecting good schedules.

To improve our selectivity it is necessary to increase the number of test dives.
Figure 3 shows the expected acceptance frequencies for rejection rules 2/40, 5/100,
and 15/300. For these three rules the proportion of cases of DCS leading to rejection
of the table is the same. The slope of the 2/40 curve is gradual, whereas that of the
15/300 is flatter and higher in the range of good tables, drops more precipitously in
some intermediate range, and is lower and flatter for poor tables. The 15/300 curve
is thus more selective in discriminating more sharply between good tables and poor
tables. In intermediate ranges near a DCS frequency of 5%, each of these rules will
accept the table about 50% of the time. It is important to understand that any
reasonable selection rule will have such a zone of indifference; that is, there will be
a range of DCS frequencies for which the rule will accept the tables about as often

as it rejects them. As we increase the number of trials this zone of indifference
becomes narrower.

Sequential trials

An altered strategy can improve the selectivity without altering the average number
of trial dives. If there are 2 cases of DCS in our first 2 dives it is not necessary to
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Fig. 3. Probability of accepting a decompression schedule against the underiving ““true’ incidence of
DCS for different length tralis all limited by a raw incidence of 5%. Rules displaved are for 2 cases out of
40, § out of 100, and 15 out of 200.

complete the remaining 38 test dives to reject the decompression schedule with a 2-
out-of-40 rule. If we are willing to extend our trial series when we do not find 2 cases
of DCS in the first 40 dives. we can improve our selectivity while maintaining an
average near 40 dives per trial. Precisely how to devise such strategies is described
:n books on sequential analysis or sequential trials (3).

Figure 4 shows an example of such arule. The starting point is the lower left corner
where no dives have been performed and no case of DCS encountered. After each
dive, one plots the number of cases of DCS against the total number of dives. If the
plot reaches or crosses the upper sloping line we reject the table and stop testing. If
the plot crosses or reaches the lower line we accept the tabie. Notice that we can
accept a table after only 28 uneventtul dives (where the acceptance line leaves the
cases axis), and that we must have more than 2 cases of DCS to reject if the second
case occurs after dive 20 (where the rejection line rises above 2 cases of DCS).
Nothing is specified about stopping after a certain number of dives. Formulas are
also available to calculate an average number required (3). The scheme shown would
stop after an average of about 30 to 35 dives for good tables and after an average of
{7 or fewer dives for poor tables. In between, however, we wiil often exceed 40
dives. For a DCS frequency of 3% we may expect an average of 44 dives, with most.
but not all. sequences ending before 100 dives. The formulas ziven by Wald (3) for
the lines of the selection ruie require the tester to select a bends incidence p0 that is
low enough so that we would not wish to reject a tabie with a DCS incidence as low
as p0 more than « proportion of the time. Also, the tester must select an incidence
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A SEQUENTIAL SELECTION RULE
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Fig. 4. An open sequential design of a decompression trial. After each trial dive, one moves a step to

the right and upward one unit only if a case of DCS occurs. The trial ends when either the upper or lower
bound is crossed.

p1 so high that we wish to accept such an incidence no more than § proportion of the
time. Then the intercept of the lower line is,

h0 =log[R/(1-a)}/[log(p1/p0) — log((1-p1)/(1-pO))]. (2)
The slope is given by,
s =log[(1-p0)/(1-p1)}/(log(p 1/p0) — log((1-p 1)/(1-p0))]. 3)
The intercept of the top line is,
h1=1log((1-B)/al/(log(p1/p0) —log((1-p1)/(1-p0))]. (4)

The slope of the upper line is the same as that for the lower line. For the rule of
Fig. 4 we selected p0 = 0.006, a = 0.025, pl = 0.13, 8 = 0.025. These values lead
to 0 = 1.14, hl = 1.14, s = 0.042. The performance of this sequential rule is
compared with that of the 2/40 and 5/100 rules in Fig. 5. As may be seen, it runs about
the same risk of accepting poor tables as the 2/40 rule, but is almost as good as the
5/100 rule in accepting tables with DCS frequencies below 1%. Unfortunately, the
price to be paid is that one would have to accept occasional, very long test runs when
tables with intermediate DCS frequencies are encountered. This is likely to be unac-
ceptable to most groups with the responsibility of testing tables.

Closed sequential trials

An alternative is to take a rule like the one of Fig. 4 and modify it by stipulating
that the trials will terminate after some maximum number of dives even if the bound-
aries have not been crossed, and in that case the decision to accept or reject the table
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COMPARISON OF SEQENTIAL TEST WITH 2/40 AND 5/100 RULES
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Fig. 5. Comparison of the probability of accepting a decompression schedule against the underiying
“true'’ incidence of DCS for several possible acceptance rules. The lines of a fixed 2/40 or 5/100 trial are
the same as Fig. 3, while the dots correspond to the open sequential trial of Fig. 4.

will be made on the basis of some accessory rule. For example, we might limit the
total number of dives to 40 and, if the boundaries have not been crossed after 40
dives, accept the table if the last plotted point is closer to the acceptance boundary
and reject the table if the last plotted point is closer to the rejection boundary. The
boundaries for this new truncated rule are shown in Fig. 6. Notice that 2 cases of
DCS lead to rejection, 0 cases in 28 trials to acceptance, and ! out of 40 to acceptance.
The upper boundary now stops at 2 because even if 3 is not reached 2/40 is closer to
the upper boundary than to the lower boundary. We have evaluated the performance
of this truncated sequential design by using a random number generator to simulate
the outcome of thousands of dives at each of many DCS frequencies between 0 and
0.2. Figure 7 compares the performance of this truncated sequential rule to that of a
simple 2/40 rule and to the untruncated design. As may be seen, the performance of
this rule is about the same as that of the 2/40 rule in separating good and bad diving
tables.

The truncated design, however, represents a definite improvement over the 2/40
rule when viewed from the standpoint of the number of trials to be run. Figure 8
shows a plot of the average expected number of dives needed to reach a decision for
DCS frequencies from 0 to 0.2. The open sequential design requires longer trials in
the midrange and occasional, very long trials to attain the performance displayed in
Fig. 7. The 2/40 rule is similar to the other 2 rules in the expected length of trials for
poorer tables, but because it lacks the lower boundary shown in Fig. 6, it i3 relatively
inefficient in deciding if we are dealing with a good table. Accordingly, the truncated
sequential design appears in several respects to be an attractive compromise between
an open sequential design and a threshold rejection rule.
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A TRUNCATED SEQUENTIAL SELECTION RULE
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Fig. 6. A closed sequential design of a decompression trial. Rules follow those of Fig. 4, except the
trial is stopped after the 40th dive even if upper and lower lines have not been crossed.
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Fig. 7. Comparison of the probability of accepting a decompression schedule according to the truncated
sequential rule of Fig. 6 (dots) with the fixed 2/40 rule and with the open sequential design of Fig. 4.

Models of decompression

Another approach is to assess decompression schedules within the framework of
a mathematical model. The incidence of DCS is represented as a function of the time-
depth history of the dive and some reasonably small set of unknown parameters.
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OPEN, TRUNCATED AND 2/40 DECISION RULES
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Fig. 8. Expected average number of repeated trials against the underlying ‘‘true’’ probability of DCS
of a decompression schedule. The dots follow from the truncated design of Fig. 6. The other lines
correspond to the closed sequential trial of Fig. 4 and the 2/40 rule.

Then the experience of many dives can be pooled to give estimates of fewer param-
eters than if we treat each schedule as a separate problem. If a sufficiently general
model were developed, it could be used to generate tables or to monitor decompres-
sion procedures with complicated diving profiles. Testing would then consist largely
in refinement of the parameter estimates and evaluation of the need for improving
the model. No doubt the same data sets couid, and would, be used to compare
different models based on competing theories of decompression sickness.

One exceedingly simple empirical model that appears promising describes the
probability, P, that DCS has occurred before time, ¢, as

P=1- exp(~c,,J [PrP.)/ P, dX) (5)

Prand P, represent tissue inert gas pressure and ambient pressure, respectively, and
¢ is a proportionality constant. The model is a simple way to assert that both depth
and time increase the probability of DCS, but it invokes no other mechanisms. Both
are estimated from data using the principle of maximum likelihood (4, 5). We have
calculated P using a single exponential model with a time constant that must also be
estimated. For example, in comparing the model to the 568 trial dives used to achieve
the current United States Navy standard air tables (6), our best estimates of C range
from0.5to 5 x (073 min~'(95% confidence region). The uncertainty in the half time
places it between 20 and 460 min with a mean of 240 min. Despite large confidence
regions for the parameters, the model does better in predicting bends than using a
single DCS incidence (P < 0.001). The ability to separate a number of different dives
according to their DCS incidence is shown in Fig. 9. The model was used to group
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USN AIR DECOMPRESSION TRIALS, 1956
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Fig. 9. Observed vs. mode! prediction of DCS in a large series of decompression trials with different

schedules. The model was fit by maximum likelihood to a trial of 565 dives with 88 schedules that resuited
in 26 cases of DCS.

the divers into 5 categories from low risk to high risk dives and the actual frequencies
were then calcualted for each of these groupings.

DISCUSSION

Decompression tables, regardless of their basis of calculation, have always been
tested to some extent before being accepted or rejected. The rejection rules have
ranged from 1 case in 4 trials (6) to 2 or 3 cases in 30 trials (7), but the consequences
of such rules have not been carefully examined. Trials are expensive in financial and
human terms, so an efficient design of the trial is advantageous. To our knowledge,
sequential designs have never been actually used, although mention of them appears
in a recent British report (8).

Untruncated sequential designs are probably impractical to consider in assessing
diving schedules. On the other hand, no one wishes to continue testing tables that
result in a high proportion of bends in early trials, even though one may have planned
a large number of dives. A sensible alternative is to select a strategy for rejecting
tables based on any combination of past practices and intuitive insights agreeable to
the participants. If a statistician is consulted, formulas for sequential designs might
also be used. The performance of such strategies may then be assessed, as we have
done, by using a random number generator to simulate the risk of decompression.
Such assessments should take into account the fact that a dive is usually made with
several divers rather than one at a time, as has been assumed in our calculations.
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