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Circulatory functions during immersion
and breath-hold dives in humans

Y. C.LIN

Department of Physiology, University of Hawaii, John A. Burns School of Medicine, Honolulu, HI 96822

Lin YC. Circulatory functions during immersion and breath-hold dives in humans. Undersea Biomed
Res 1984; 11(2):123-138.—An unusual circulatory state exists in humans immersed in water at or
near 35°C. This circulatory state is characterized by a persistent and elevated stroke index (SI) but
heart rate (HR) changes little; hence an increased cardiac index (CI) results. In comparison of
measurements in air and immersion in water up to the neck level that are based on the weighted
averages of 45 subjects from 8 studies, Sl increased by 29%, Cl increased by 24%, and HR decreased
by 6%. Evidence is presented to support the finding that the increase in stroke volume is a result
of enhanced preload of the heart, and that alterations in afterload and contractility play an unim-
portant role in affecting cardiac performance during immersion in thermoneutral water up to the
!evel of the neck. The circulatory state represents hyperperfusion, since there is no concurrent rise
In m;labolic demand or heat stress. To what extent this preexisting circulatory state affects the
cardiovascular responses to breath-hold (BH) diving is in most part unknown. However, the BH
bradycardiac responses are more potent in a natural setting than in the laboratory where the breath
hold is performed with only face immersion in water. In contrast, in the natural setting, the divers
perform BH dives while they are immersed up to the neck in cold water (much lower than 35°C)
and are exercising. It is desirable in future studies to compare systematically other aspects of

circulatory responses to BH dives while immersed in water and while exercising.

water immersion heart rate

human preload
circulatory state afterload

cardiac output contractility
stroke volume breath-hold diving

frefi?:l.: ;]otrl;:mer?io“.iﬂ therm(?neutral water is a convenient m(?del in simulating the gravi.ty-
Methangrec t""’s“gallons Of.ﬂllld volume reg%llations (1-3), respiratory cl.langes (4-8), carc!lac
waterimmersﬁgors' an.d Ca"d'?"é}scular functions (6, 9-14). Togcthef' wntp bed rest studl‘es,
an immEdime]n p;owdes a significant data base to account for physiological chan.ges dur}ng
Uplicates gy cy ﬂdt'e.r Space travel (15, 16). Although neither bed- rest nor wa_ter 1mmersnog

- rvesaq llseﬁ?ln ‘“9“ ll}al exa.ctly matches the condition of welghtlesgam.:ss in space, eac
- Marigy e Pal’tu‘ll stmtflauon of the condition of weightlessness. Smu_lnnty ;md dissim-
N these simulations and weightlessness in space have been discussed (17, 18).

€re are gjon: .
Bnificant differences that warrant proposal of an alternate model (19, 20). Never-

123




124

. - inent and Persistent thyy
; responses to water xmmem(_)n are so grl;les during the ln
Eless, Clrch:[or:ot faded, though experience in Space lgi?unhe:rm(:re lessons learneq from
in this model has i f the circulatory system. .
JOr surprises o ‘ed valuable, not only i the
turned up no .majogd d;\lr)ing research have been proved valug
water immersion a

'ariety inent changes i,
lon in thermoneutral water produce_s 2 variety of pt;(::[sl;es are ine\:ilable
Head-out ‘mmerSl?ntl and renal functions. In addition, therma sh
: ular, respiratory, . /, from neutral ¢
cardlovaStC I temperature deviates, even mmute‘ls, f

n wate . tissu .
::;;e simplistic views have it that S‘fbr?sr‘glzci\'er extremities as well as displaces abdomina|

’ § capacitance in the ; . g includipg blood,
that reduces the VZ‘.‘Oz‘; an imbient with density resembling hanan nsst:}e‘s mcic re; g
s CheStwaF ’l enders them weightless; and 3) 5 fegative trans ora P f these
hich thus effectively r motes cephalad redistribution of blood. Combination o

Nteresy
tWo decades hag

art, increases as g consequence
i ardiac
Ty organs in the thoracic chamber are known 1) to activate card
L4
mechanoreceptors that, via the vagal affereptg Inform the hy
though total blogg volume remains con

Mman mammals (24) should

hyperfusion. A circulatory condntlg:
ion, i.e.. hyperemia without concurrenltwl;ng
3), is a unique physiological state deserving
sideration of eXisting literature op circulatio
Prompted thege revie

1 i €I Sion

9
reviewed separately (24, 26-

STROKE VOLUME AND CARDIAC OUTPUT

It is known ty cardiac outpyt (Q) rises in hy
Neutra] water, Though the n

jon in therm¢-
mans during head-out immerSI"n\ -:2€nce has
,. . e \
otion was concejveq early on (30-33), convincing
become available only Tecently. Arboreliug et
28°C) and heaq

-out immersion i
than that i air

. Other Teports |j
162% (6) of their Iespective valu
changeq either insigniﬁcantly (1
Immersjgy, effects op ¢

o il

4 itting 1 &

al. (9) compared male sbects Sa“stfl{qreatcr
* N . ‘s PA\ LGS

n 35°C water. They reported that Qinw Z‘:_;om 880 (34 10

sted in Table | indicate Q in water range

tnte
1 34°C, hear
€S in air, Whenp, water temperature fal}s bFlO;:c;si on. Althout?
1,31,35, 36) or decreased (10, 34) during im

S 01 Q are pot entirely agreeq
on the TeSponses

T diSI“‘ch
UPon among investigators, ::nrf E;‘b“v to 7 !n‘

of stroke volume, Stroke volume (SV) increases e ec(iic of increase 1
Waler over thyy in ajr (Table 1y, Heart rate (HR) modifies the magnitu
though gy Was increageq in a Studies (Tap)e 1). ), and
Correlation betWeen Stroke index (SI) and card < odl i Al (25“(.‘.‘??“‘1‘3:::5
Changeg shown ip Fig. 2. Pen symbgg signify mean values obtmf‘e 2, Q of Rennie s Heatt
the closeq SYmbols depic Mean values in wager (32°C-35.5°C). In Fig. « elevationin SV*

Ues as g Tesult of reduction of about 25% despite ¢

-
sth pelatt
+ Fig. 1, with
iac index (CI) is shown in Fig. .

TSRS
staiitbia
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Fig. 1. Effects of head-out immersion in thermoneutral water on stroke index, cardiac index, and heart
rate in human. Data for paired observ

ations in air (25°C-28°C) and in water (33°C-35"C) are shown ml
Table 1. Heart rate, represented in figure as isopleths, changed little during water immersion from contro
value in air.

rate in water either is not chan

ged or is lower than that observed in air (Table 1, Fig. 2; se¢
also Table 5). However, HR p

lays an important role in deciding the magnitude of Q during
immersion when water temperature falls below 34°C.
Itis clear from this survey that water immersion elevates SV, while HR moderates increase
in Q or negates it, depending

v : - increases
On water temperature. The mechanism by which SV incres
during immersion s discussed next.

MECHANISMS RESPONSIBLE FOR INCREASED STROKE VOLUME IN WATER

Stroke volume is influenced by the ventricular condition just prior to the onset of conlm‘?“"l“‘
the force against which the cardiac muscle must contract during the ejection phase of systo c\:
and the inotropic state of the myocardium. This discussion addresses the changes that 0ccu
to these three major determi

. er
Inants of SV during immersion in water—namely, prelead. aft
load, and contracrility.
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257% in HR. and + 177 i SV,

ume (SV), and heart rate (HR}

- (."")- whch are ook

expressed
e Sl Tz.;_; 1p«:lrc:‘:magc: of change from their respactive
e 1. are represented here as — 12¢¢in ClL. -

Preload

Within physiological limi - i
byide exfe :( oflif:;illl”::; ;l::ril(:;ég(;h- :lmld \'t:?IOCIl)’ of m,\'m‘“nrdfulcommctionam regulated
B e b ; '_] b. prior (o the on.scl_ui contraction. The length of
e ma elIs ‘m uenced by factors 'uﬂr.‘i:lm-g ventricular filling. Among
e are , venous tone, intrapleural pressure. intrapericardial pressure. atrial con-
total blood volume and central blood volume (CBV), and central venous pressure

(CVP i i i i
) sc)(_) Comple.te discussion of all influencing factors on the preload of the heart (37) is beyond
pe of this review. Two of these, however, warrant attention: both CBY and CVP nis¢

during water immersion.
: During immersion up {
11??—'500 ml by Hong et al. (7

s is allotted to the cardiac €

d 1o be about
al. (9% v of
diastolic

ere conscrvmivel_v estimate
{ 700 ml bY Arborelius €t
tly, left ventricular end
(LVEDP). rises. Diredt
3 rdial fiber length and thus preload)
u? humans during water immersion are still 1 imation of heart size by using
biplane roentgenometric technique: Lange et al. 40 reported an INCre { 180 ml over the
value obtained in air in 10 youné m . 70.6 kg during immers C waer up o
the neck in an upright posture- Risch et al. 4D estimated. also by mt‘msﬂm‘smphlc mtj“‘f‘*‘-
that the heart enlarged by 247 ml in H averaging 73 kg. These values are similar
- iy of the increased CBV 0

k1 6 male su
borelius’s result by an entirely

vV increases W
(38), and abou

39). Consequen
ar end-diastolic

o the neck. CB
) and Rahn

hambers (1.
pl‘ESSllrE

.o But in €st
crease @
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75 ml (700/4) in 10 subjects (9). In addition. there are §C\'cml st_ud:ce%u;q;m-mg

the heart, the 175 m » capillary blood volume and the consequent increase 1r'1 liffusing

e s d ];s ex-chanee (6. 36, 42. 43). There is reason 1o believe that in these

ity i ve g i ; :

e ]mp'molhefinlrapulmonan' vasculatures and the heart are also m‘creasc‘g du:;n-g
5 . _ -

— VOIU!}T{I?S; et al. (44) disclosed that chestward translocation of blood is rapid and is

i rsion. Risc : ; ; aon ¢

e Ily complete within 6 heart beats of immersion to thfa neck Id S

wr\[/u? . f intrathoracic vascular compliance change little under a y .
alues o ompll '

according to Gauer and Henry (1). This is important, since

AP =(AV)C

where A V is the volume change associated will: the cI}angc lzc:;g1ln:l;:(ljcpr3:sdurcc I(;A”f:
across the wall of a hollow structure on which nc-mc(. h.l;lgr(.cm']im.consmn,l o st
compliance. Pressure changes reflect volume changes Oll‘|‘):’ |‘] r g .n '.“ RS b
Evidence indicates that veins, large or small, behave passive y db- 0 .{,'.[.' e e
do not exceed 10% of normal (45). Thus, as blood is displace |.n 4
((:Zu\l;g ::zcl:l;fn;\:dore importantly. it remains elevated unlil‘ lhc' mock ‘hyp.crvolcmla ;s:’::r(;ri(‘::li(::
Table 2 summarizes the magnitude of CVP changes dlll"lng immersion m‘thcrm((]).r::5 et
The average (weighted by number of subjects uscq in each study) ‘01 S, SEl.l :m o
indicates that CVP increases from — 1.4 mmHg in air to 15.2 mmHg in w ‘.l[(l.l._' nerse o
16.6 mmHg. Echt et al. (46) reported also the csophaghca! prc':s‘surc'. Wh'l(‘."l mdc ———
—0.4 mmHg before immersion to 3.4 mmHg during immersion. ihus_m [.hl? s(ljuI lyg mn.ng .
pressure of the heart during diastole was estimated to be 38 mmH[:: In :u'r (mI. - R
water (Table 2). Therefore it can be concluded that the \./cmrlculur diastolic fil I{lg ]f’m‘mcrgion,
and the preload of the heart is increased during immersion. Dccrcan:d HR dl.ll’l'ng lmcr ﬁ;cwr
which though small is the case in most studies (Table I; see also Table 5), I‘S d:;'(i'on e
enhancing preload by lengthening the filling time. The fzworubl-c preload (.'c‘m “|) Citlers
immersion should result in increased SV, which was indeed found in all cases (Table 1).

TABLE 2 S
EFFECT OF IMMERSION IN THERMONEUTRAL WATER ON CENTRAL VENOUS PRES!
T Wwe | *
ESOPHAGEAL PRESSURE, AND RANSMYOCARDIAL PRESSUR?

—

NO. CVP, mmHg pﬂr mm]-lg —mﬂn%{f;
of Air Water Air Water ~ Air  Wa
Reference subjects _
Arborelius et al 10 -2 16.0
1972 1.8
Echt et al 5 3.4 15.2 ~0.4 3.4 3.8
1974a
Koubenec et a] 8 -1.7 16.3
1978
Risch et al 6 -2 16.3
1978a
Risch et al 8 ~2.7 15.0
1978b TNy
Al
CVP, central venous pressure: P,

: ssure.
. es» €sophageal pressure: TMP, transmyocardial pre
Jects are males; values are means of number of subjects in each study.
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- bradycafdia intervenes, augmentation of Q should be observed during head-out immer-
sion. nt total blood volume, changes in central blood volume can be initiated by

“+h a consta
e of the following factors:

altering one OF more _ . |
|. Capacitanc€ of the peripheral vasculature by vasomotions, which requires the partici-
; utonomic nervous system. Vasomotion in veins produces greater capacitance changes

the arterial side. Vasoconstriction reduces the capacitance and vasodi-

pation of a mic
than that occurrng 1n
Jation increases it.

y-dependent vasculatures, affected by altering body posture, gravita-

7. Capacity of gravit
rtial compression of the body.

tional orientation, o pa
3. Transthoracic pressure, the difference between alveolar pressure and the pressure sur-
ounding the thorax. A negative-pressure difference, such as the case during immersion,

enhances central blood pooling, and a positive pressure difference opposes it.

In Table 3 only the primary initiative factors are considered. Obviously if peripheral vaso-
constriction (especially venoconstriction) occurs, it follows that the capacity of gravity-depen-
dent vasculature also is reduced. But the initiation factor in this instance is the vasomotion.
Exposure to hyperbaric environment is a special condition that warrants comment. In a helium-
oxygen environment the thermoneutral zone is narrow and is higher than breathing air. Unless
the ambient temperature is raised to 30°C-31°C, the subject feels cold and is vasoconstricted.
Some degree of negative-pressure breathing exists in hyperbaric environments due to the high
density of breathing gas. The subject encounters elevated airway resistance. It is, therefore,
not surprising to observe diuresis in hyperbaric environment similar to that of water immersion
(47). Breath holding is another condition that also induces increase in CBV, about 230 ml in 2
min of breath holding, attributable to the diminishing lung volume with glottis closed (48). In
SOmC.respiratory problems where inspiratory efforts are elevated, the patients encounter
| neganYe transthoracic pressure; central blood volume rises for this reason.

f By 1nsgecting Table 3, it is easily seen that water immersion involves all thr
) oic;(gs' Flrit’ peripheral blood flow reduces to near minimum when water tempe
) dimi(:l;: ;:;;(49), a re'sult of .active vasoc‘onstrictio‘n. Second, hy'drlostatic c0fnpression plus
; OFthe lownr 1izerence in density betv'veen tissue and_lts surround eliminate gravity dependency

blood pooliq D yilAnd ﬁna‘lly, negative tra.nsthor.amc pressure of about 14.7 mmHg promotes
A ogf irll the thoTa.m.c \'Jasculatures including th_e heart. Other procedu'r?s involve only
Procedures pro ntltottl'lree initiation factors (.Tablf: 3). It is, tperefore, not §urpn51ng that‘ among
during immersjon e;ng central blood po9lmg, immersion 1's‘most effective. Increase in CBV

In support of e ceeds that of assuming the supine position alo.ne (41). L Al

enhanced preload of the heart during immersion, the existing literatures

? prOVide suffici .
. fficient data indicating increased CBV, CVP, transmural pressure of the heart, and

an Unaltered
increase i or lengthened filling time. As the following two sections will show that by the
! . te to explain the

I
Increase Slroeizad alone through the Frank-Starling mechanism, it is adequa
volume (SV) during immersion in 33°C-35°C water.

T

ee of these
rature is at

’ : Afterlogg

ardiac fibers must
the product of the
r, both pressure
afterload in
used. In

o For cargiy
bic “Ontracy duti!(:gr:,?lsc‘-e' the afterload is the force against which the myoc
b Dressiccuon' Th? total force opposing ventricular contraction is
thi Area change cre a.nd the ln.tcmal surface area of the ventricle (50). Howeve
ok r. oromlnuous|y throughout systole. It is therefore difficult to assess

: reasons of accessibility and practicality, alternative criteria are
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CIRCULATORY FUNCTIONS DURING IMMERSION 131
: s, if one has to depend on determination of art
practlf:al ter]f:g\;y (50) systolic rather than diastolic pressure
Tarazl an‘i] ation of the load imposed on the heart. Other
correct €V l:he afterload must fall. During immersion, syst
to increasered to increase (9, 51, 52), to decrease (17, 53
been report mall in comparison to that of cardiac output.
changes are Shted average, the systolic pressure increased
that, by \;elrgn 70.9 to 72.4, and the mean pressure from §
pl-.essurelf?se in blood pressure in relation to cardiac out
thl!f e rflaus (9, 17, 31). It is therefore reasonable to a
;Zi;sr::?;fmersim and plays no significant role in influenci

erial pressure alone, according to
offers a value that is closest to a
ctors being equal, in order for SV
olic or mean arterial pressure has
), or have ng change (31), These
Estimation from Table 4 showed
from 116.4 to 120.5, the diastoljc
9.1t092.9 mmHg. Consequent to
put, the calculated total peripheral
ssume that afterload changes little
ng cardiac performance.

Contractility

Contractile state of the myocardium is another detern?inant of SV. V.Vhenfpreloadt‘all;:d
afterload are held constant, SV is a function of the cc?ntractlle.state. Elevation o colfntrac1 l:j mZ
causes more forceful contraction; hence the left ventricle ends in a smaller el?d-;ysto 1c; vc:: o
than it otherwise would, and, as a consequence, a larger S.V results. But-, is the <:§sns l;aem 03;-
of the myocardium increased during immersion? Thex."e is as yet. no direct atshseﬁc ey
myocardiac contractility in humans during water if;lmermon.fzﬁ;:lt:rﬁggrr: og si)r(;rcl:]taz et ity
is an effective means of modifying the contractile state o : SSm!
sympathetic activity in humans is difficult, to say the least. Howe;/er,lc;r;eu:i?]l:llg Lnxttl:eefigz
infer the state of sympathetic activity from measurements of plasma leve

TABLE 4
= ERSION
ARTERIAL BLOOD PRESSURE RESPONSE DURING HEAD-OUT IMM
IN THERMONEUTRAL WATER

Arterial Blood Pressure, mmHg

Total Peripheral
Resistance,
in air in water ABP/C‘; :
Air ater
Reference n SP DP ABP SP DP ABP L
Aboreys 275 :
Arborelius 10 114 71 86 128 79 98
etal, 1972 2 ) 36.8 33.8
o, 1937 ST T B U R
1969 : E
Crlgang 0 126 8§ 9 118 72 kS
Dvorak, 1966 : i n
Ood et 5, 5 o5 5
Ko 0 90
.'K(:Islvgenecl etal, 8 116 6 8 124 7

Cl, cardiac index..from
, ans of n subjects,

i ressure;
re; DP, diastolic pressure; ABP, arterial bl'(:zl(:e f e are 1
Petipheral resistance in mmHg per unit of cardiac inde?
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of entecholnmines, Reviews of plasma e¢pinephrine (1) and norepinephrine (NE) lo.jw:ls, and
urinary exeretion of 15 nnd NIE Indlento thisl ¢hanges are inslgnificant V{}ICI'I comparing cf’"di'
tlons of bedng seated bnale and fmmersion to- the neck fevel (:'54. 55). I anything, urinary
excretion of NI appenrs depressed during immersion (55<57), 'l'o the cxtcn'l that the level of
NI In plusima or I urine reflects sympathetic netivity, snd that sympathetic activity causes
alterntion In myocnrdinl contrmetility, these results suggest thut myocardial contractility is most
likely unaltered or even depressed during immersion in warm water, From the foregoing
diseunsion 10 Is suggested that contrnetility plays no role in the augmentation of SV during
immersion,

In summary, considering the major fuctors that influence cardine performance, the enhanced
prelond reanlting from cephalnd redistribution of circulating blood appears solely responsible
for the Increased stroke output during limmersion, ‘The afterload and inotropic state of the heart
chunge minimally, If anything, they change in the dircction of opposing the increase of SV

during Immersion, Therefore they are not responsible for altered cardiac performance during
immersion in thermoneutral water,

HEART RATE

Heurt rute (HR) is cither unchanged or decreused during immersion in thermoneutral water
as compared to rate while resting in alr (Table 5). The immersion bradycardia moderates the
increase (Fig, 2) or even nullifies the Increase in Q in the face of elevated SV (34). The data

TABLE 5

MiAN Hiawr Ragy ResivoNss Duning HEAD-OUT IMMERSION IN THERMONEUTRAL WATER

Mean Heart Rate, beats/min

Reference "

Temp. of Water, °C In Air In Water
Atborelius et al, 10 -
1972 . ?
Bazett, 1937 4
. 19; 3 N
Ecnln et ul, 1976 5 33 2; &
“ampbel] et ul, I8 :
1969 » < 7
Cralg and Dvorak,
g 10 35 63 &
Farhi und Linn:
o Innarsson O 35 76 “
Hood et p) 1964
) 5 =
Kentinge and J . 4 b
1966 v a s = ®
Koubeneg e g
o ; - " .
Maitsisdn et pl 1941
: 60
McArdle e al, 197, : A & &
Risch et i1, (97K, i . B 5
Risch et wl, 1u7my, 5 :z :2 i
m--v‘--a-“-'vu;*-, \-ma-’---..h'-—u—---\.-a,am-vn e aimscam i o S —— " . - _-—--_—'.‘-—
S RIC Mty of n silsjeq s fla

In each study . ANl subjects nre males,
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- tinge and Evans ($8) showed that after 19 min of immersion
caunigs « - .

haturc (alls below 38°C. and HR nees drastically when water te

: :’ The present survey includes studies of water lemperatures

= R to be cither not changed or sh

HR is lower when water
mperature exceeds 15°C
between 33°C and 33°C
i B espert H e e ;hll‘y lower than 38°C conditions. Pyt

ss¢ (Table 53, The explanation for this result. however, is anything but

Gmply- this 1s the <2

Hﬂf‘i rate responses are complen and are highly buffered. It is interesting to note tha several

o factors act together to determine the HR during immersion. Other factors being

1, the nising ztnal pressure should tngger a tachycardial response through the Bain-

pridge refiex (59-61). But cpncym:m clevation of artenal pressure, by the increasing SV and

. opposes the tachycardia wa’thc baroreceptor mechanism. Cutancous vasodilation, b

iznsferring the subjects at 25°C air to 35°C water. is opposed by the hypertension-baroreceptor

mechanism also. When the thermal condition is such that penipheral vasoconsinction is intense

(water lemperature below 35°C, for example) the baroreflex-induced bradycardia should be

moderated by tachycardia induced by the Bainbridge reflex. It 1s reasonable to predict that if

any change at all occurs in the HR during immersion, it will be minor due to these antagonistic

actions, Clear-cut bradycardia results only when intense penipheral vasoconstriction occurs
during the stimulus of severe cold (34).

HEMODYNAMIC STATES AND BREATH-HOLD DIVES

A breath-hold (BH) dive in open walter is necessanly preceded by immension up Lo the neck.
And, most likely, the divers spend most of their time in this condition. As has been summanzed,

1O Keatinge & Evan's 1960
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an unusual circulatory condition exists during head-out immersion. Furthermore, the djver
requires a metabolic rate above resting condition, either staying afloat in place, replacing
thermal loss to the water, or recovering from diving activity. On the other hand much of the
cardiopulmonary changes during BH dives are generalized from studies conducted ip the
laboratory where, in most cases, the face is the only part that makes contact with water, or
not even that. In general, breath hold induces various degrees of bradycardia, peripheral
vasoconstriction, hypertension, and variable cardiac output (23). Whether the two distinct pre-
BH circulatory, respiratory, and metabolic states influence the responses during breath hold
has not been systematically examined.

As alluded to previously, pre-BH physiological state in open water involves changes in the
circulatory, respiratory, and metabolic systems. Each of these could potentially affect cardio-
vascular responses to breath hold. Various aspects of physiological stresses that confront
humans as working BH divers are summarized by Rahn and Yokoyama (62) for the earlier
studies. In the natural settings it is necessary to measure simpler quantities or measurements
under severe limitations (63, 64). It is not surprising that in most cases, for cardiovascular
responses, only ECG and/or HR are available. In the laboratory a friendlier environment and
the availability of instrumentation encourage more sophisticated quantification of physiological
variables. But investigators see fit to simulate the natural condition only in part: for example,
breath hold only, either in air or with face immersed (for review see Ref. 33), exercise and
breath hold (65-69), immersion and breath hold (51, 70-72) and, only rarely, the combination
of swimming and breath hold (73). For this reason we still do not have a clear-cut picture of
what influences the pre-BH cardiopulmonary and metabolic states (comparing resting in air
and in water) have on the circulatory responses to breath hold. What we do have points to the
direction that bradycardial response in natural settings (immersion in water below thermoneu-
tral temperature, and exercising) is exaggerated (63, 64). Previous review reveals that exercising
subjects, in laboratory conditions, exhibit greater BH bradycardial response than at rest by a
greater fractional reduction from the pre-BH heart rate (23). Stromme et al. (73) had their
subjects swim in pool water at 25°C and recorded in one subject a cardiac interval of 6.8.8
(equivalent to 8.8 beats/min), a reduction of 90% from the pre-BH heart rate. Obviously this
marine mammallike response did not persist for long. In other studies where subjects performed
exercise and breath hold, greater bradycardial responses were also observed than breath hold
at resting condition (65-67, 69). d

Breath-hold bradycardial responses differ insignificantly between breath hold on land an0
in immersion without elevating metabolic rate (51, 70, 72). In Harding's study there was (;‘ia
BH bradycardia in air and in stepwise immersion up to the xiphisternal level, but bradycare
was observed in immersion up to the neck. During breath hold their subjects may have e:gf—"i).
in Valsalva maneuver, which can negate or even reverse the bradycardial resp(?nses (L{;elo“’

Since in a natural setting subjects engage in muscular activity and immersion In wat(:condi-
35°C, it is not difficult to imagine that sympathoadrenal activity is elevated under SU” further
tions (75, 76). Whether sensitivity of the baroreceptors is thus enhanced deservels hol
inquiry. It is also desirable that other variables of cardiovascular responses to breat i‘qll)'
systematically studied, either in a natural setting or in a simulated condition, espect
comparing BH responses under various pre-BH physiological states.
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