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ABSTRACT

An understanding of the physics of bubble formation is of impor tance in
such diversified endeavors as propeZler d sign, fZuia f Lou, undersea medicine,
and She brewing of beer. fAiZe the properties of preformed bubbLes are ueLL
understood, re2ative2u little is known about the pnysica2 mechanisms respon-
sible .for their creation. This pub7ication repor ts on the principaL results
of a program designea to elucidate the natur e of She bubbLe nucleation process,
and i t briefly explo~es the appZicabiZity of the findings to decompr e""ion sick-
ness

The first chapter contains an introduction to the physics of bubble, fo2-
Zoeed by an outline of the theory of homogeneous nucleation. SampLe caLcula-
Lions using thi theory lead to the conclusion that bubbles within common
Liquids orainarily do not form de novo, but instead arise at certain "ueak
points" in the fluid that are a" sociated with physica'2 structures known as
cavitation nuclei. The prob2em of understanding bubbLe formation is thereby
trans,"ormea into the task. of determining the physical nature of cavitation
nuclek.

1n Chapter 2 the results of an experimentaZ proqram in which transparent
gelatin vas used to stabiLize bubbles against floatation are reported. This
technique for trappinq bubbles at their point of origin has aLLoved detailed
studies of the nucLeation proce s to be made. The res~Lts indicate Shat the
cavitation nuc2ei in gelatin are stable, gas-filled structures which are nor-
mally permeable to gas. The initial. distribution of nuc'Lear' sizes is shoen to
be exponential-, vith the Largest nuclei having aiameters of less than 8 I m.

Zn Chapter 8 the existing models of cavitation nucLei are cLassi fied into
four' major groups, and each group is brief'Zy discussed. Most of the mode'Ls are
in conflict vith observations and thus can be aismissed. The most viable rrrodel,
and the main subject of this repor t, is She sur factant-stabilized model. The
history of this model is examined, and the di fferences between the tao mathe-
matical forrrrulations that have been introducea so far ar'e discussed,

2n Chapter 4 the principa2 thesis of this cwork is advanced: that the cavi-
tation nuclei present in common fluids consist of spherical gas phases encasea
in monomolecular skins of sur face-active molecules. A set of second-order, non-
linear, coupled, partiaZ dif'ferentiaZ equations describina uch a nucZeus is
developed in the first section of this chapter. The second section outLines a
computationaZ a7gorithm which allovs these equations to be soZvea numerical Zy.
Finally, the results of the geZatin experiments are anaZyzed in terms of *he com-
purationa7. mode2. The model is found to be in good agreement vith these data and
to be capable of giving meaningful, explanations of the observea behavior.

1n Chapter 6 the sur face � active material forming the skin of the nuclei
observed in geLatin is sham to be similar to several commonly occ~rri~g sur-
factants, namely the saturated lecithins and phosphatidylethanolamines. The
ga eous permeabi Zity of the nucZear skin is investigated through a thermodynamic
argument. Thi chapter also examines mechanisms which couLd resul.t in the
observed exponential size aistribution and investigates the rate at which a
nucleus viLL isobaricaZZy change size in response to its chemicaZ environment,



The f'inaZ chapter e~pZores the appZication of the re-uLts of this r'esearch
to the study of decompression sickness. Zn the first section the connection
among the number, the size, and the pZacement of bubbZes within the body and
the probability of the occurrence of signs or symptoms of decompression sicknessis examined. The next 'ection summar'izes the ezperimentaL data concerning pres-
sure reduction Zimits in rats and humans and shoes the simiZarity between animaZsand the geLatin mode7. The natur'e of the cavitation nucZei in animaZs is fur'ther
c'onsidered in the thir'd section, ether e it is arguea that the stabiZization mecha-
nism is the same as that found in geLatin. The finaZ section deaZs vith the caZ-
cuLation of decompression scheduZes based on this hypothesis. Quantitative
decompression profiZes ar'e aZcuZafed for saturation exposures, and the ~mtension
oC this vork to non-saturation diving is discussed.
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CHAPTER l. INTRODUCTION

Nucleation in supersaturated fluids is the process which permits some or
all of the excess gas present to evolve into bubbles. It is usually illustrated
by the familiar example of bubble formation in carbonated beverages such as
champagne or tonic water. When such a beverage is uncorked, bubbles form both
on the walls of the container and within the liquid itself. They quickly grow
in size as gas diffuses into them from the surrounding fluid, and as they grow,
they float rapidly to the surface where they dissipate. Eventually, all of the
excess gas is released, either into bubbles or by diffusion through the surface,
at which time bubble formation and growth cease and the beverage becomes "flat."

This example illustrates two fundamental characteristics of the nucleation
process: that critical supersaturation is required to form bubbles and that
this critical pressure is surprisingly small. The second point is of particular
significance because, as will be discussed later in this chapter, the supersat-
uration pressure required for bubble nucleation in a pure fluid is expected to
be greater than 1,000 bar. Evidently, the bubbles observed to form in common
fluids at modest supersaturation pressures do not form de novo, but instead
arise at "weak points" in the fluid that serve as cavitation nuclei.

In this chapter the relationship between bubble formation and cavitation
nuclei will be systematically explored. The first section introduces definitions
and physical concepts concerning the physics of gas bubbles that will be used
throughout the remainder of the text, The second section outlines the theory
of homogeneous nucleation, which describes the process by which bubbles are
formed within pure fluids by thermodynamic fluctuations. The final section
establishes the existence of cavitation nuclei by showing that real fluids do
not behave as ideal pure fluids should and must therefore contain impurities
responsible for the precocious bubble formation.

1.1. Bubble definitions and conce ts

The analysis of experimental and theoretical work concerning gas phase
nucleation in fluids often requires precise knowledge of the nature of bubbles.
In this section an introduction to the physics of gas bubbles is presented and
definitions, concepts, and equations that will be used for future work are
developed.

A "bubble" in a fluid is defined to be a spherical gas cavity characterized
by the mechanical equilibrium of the internal gas pressure and 'the sum of the
ambient pressure and the fluid surface pressure,

 l.l!

where p is the internal gas pressure, p~p is the ambient pressure, y is the
liquid-gas surface tension, and r is the bubble radius. This equation by itself
does not provide sufficient information to calculate the size of the bubble. An
equation of state for the internal gas is needed to establish a relationship
betwee~ the internal pressure, the bubble radius, and the amount of gas. A par-
ticularly simple equation of state is the ideal gas law



where V is the volume of the bubble, N is the amount of gas contained in the
bubble, R is the universal gas constant, and T is the absolute temperature.
Combining equations  I,l! and  I.2! yields the cubic equation

4v P~br3 + Zyx'~! = 3lllBT

which may be solved for r if the values of N, p~b, and y are known.
The amount of gas contained in a bubble is not necessarily constant; it

can vary due to gas diffusion. Thus, mechanical equilibrium does not imply
diffusion equilibrium. The rate of gas transport is determined by the differ-
ence equation

�. 4!

where U z'! is the concentration of gas in the fluid just beyond the liquid-gas
dividing surface, U~ is the concentration necessary to establish equilibrium
with the gas in the bubble, and a is a constant of proportionality. The func-
tion U p! is defined to be the gas concentration in the fluid at a radial dis-
tance p from the center of the bubble, which is assumed to be spherically
symmetric. The value of U p! is related to the solubility of the gas, S,
through Henry's law

U p! = S~  p!
�, Sa!

where T is "gas tension." In a "diffusion-equilibrated" fluid the gas tension
is equal to the gas pressure, z = p, while in a "saturated" fluid the gas ten-
sion is equal to the ambient pressure, T = p~b. The value of Uo is therefore
determined by the equation

�.5b!
U � Sp

Equation �.3! may be differentiated to yield the relationship between
differential changes in r, p~b, and N, namely

3PTc& � ~ dN � z'aP~�b SPY + 4y/r

where it is assumed that the temperature is constant. Dividing by d0 and sub-
stituting from equations �.4! and  I.Sb! yields

�. 6!

d dpamb3RTa[U r,t! � Sp] � x 3p~b + 4y/z  I 7!

This equation allows the bubble radius to be calculated at any time, given an
initial size and the values of U r,t! and p~b�!.

The value of U r,t! must be known before equation �.7! can be solved. The
concentration U p,t! is determined by the Fickian diffusion equation



where D is the diffusion constant and v is the velocity of the fluid. Solutions
of equation �.8a! must also satisfy the boundary conditions

p ~ ~ V p,t! = Sr t!
Z~

�,8b!

where ~ t! is the ambient gas tension, where U p,t! satisfies the equation

�.8c!

and where the initial concentration is

U p,0! = y p! �. 8d}

One set of simplifying assumptions, first applied to bubbles by Epstein
and Plesset �950!, is that the transport term v 7U in equation �.8a! may be
neglected, and that the exchange of gas across the liquid-gas dividing surface
is sufficiently fast that the fluid just outside the dividing surface is nearly
in equilibrium with the internal gas,

U r,t! = Sp t! �. 9!

Epstei~ and Plesset �950! found that the initial concentration gradient at the
interface is then given by the equation

~U p,t! z - p!/~
3p

�.10}

Comparison of this equation with equation �.8c! shows that this result will be
correct only if the inequality

S ~ < � [U v! � Sp�! j2p cL
D

�.11!

is satisfied. Because the left-hand side of equation �,11! diverges as r goes
to zero, the assumption in equation �.9! must fail for small bubbles. By
assuming that equation �,9! is valid to 10 percent, the radius of the smallest
bubble to which this approximation may be accurately applied can be computed.
The result is

Ttl%71
D

CL
 l. 12a!

Because the variables p t! and r  t! occur in equation �.8!, while U p,t! occurs
in equation �.7!, these equations are mathematically coupled and must be solved
simultaneously. Exact solutions to this system, if they exist at all, are
probably too formidable for practical use. Hence, numerical methods must be
employed or simplifying assumptions made,



where p~p is taken to be zero. Substituting the values for D and a fromTable 4.2 for nitrogen in water, the following numerical value is obtained:
r~z~ = h. 8 x 20 2 am

�. 12b!

For bubbles larger than this radius, the gas fl.ux is limited by the rate atwhich gas diffuses through the liquid and is said to be "diffusion-limited."For bubbles smaller than this size, the flux is limited by the rate of gastransport across the liquid-gas interface, and the flux is said to be "perfusion-limited," Evidently, the approximation in equation �.9! is correct in thediffusion-limited case.

A useful approximation for perfusion-limited bubbles is that the diffusionof gas in the liquid is much Easter than the transport across the interface.In this case V r,t! is nearly equal to the gas concentration at a large distancefrom the bubble,

V r t! = ~~ V p,t! = Sz t!
p {1.13!

This approximation is also valid for a bubble in a stirred fluid or for arapidly moving bubble. Substitution of equation �.13! into equation �.7!
yields

dpamb3''aS ~ p b ~ ~ ~p b + 4y~~ !Q77l GATI  l. 14!

This equation approximates the dynamic evolution of a perfusion-limited bubble.It should be noted from equation �.8a! that the rate of gas transport in aspherical coordinate system depends on the term � U/3p ! + �/p!�U/Bp!, andthat the ratio oE the perfusion rate to the diffusion rate for a fixed concen-tration gradient is thus proportional to r. This indicates that the approxima-tion in equation �.13! is better for smaller bubbles, and that equation �.14!becomes increasingly more accurate as the bubble size decreases.
1.1.1. Bubbles in saturated fluids

For perfusion-limited bubbles, equation �.14! may be employed in the form
dr
�� = � [6RTaSY/r]/[3p~p + 4Y/rJ

�.15!

A particularly instructive application of equation �.7! is to a bubble in
a saturated fIuid held at a constant ambient pressure. In this case the deriva-tive dp~g/A is zero, ~ t! is equal to p~g, and g p! is taken to be equal toSp p. The diffusion-limited case of *his problem has been considered by EpsteinanFPIesset �950!, Fox and Herzfeld �954!, Bernd �963!, and Yang and Liang�972!. The calculations of Epstein and Plesset indicate that a bubble havingan initial radius of 100 pm will completely dissolve in water at STP in 5.88 x103 sec, or about 100 minutes, while a 10 pm bubble will dissipate in just 6.63

seconds.



This equation can be immediately integrated to yield

 ~SRZ!t =  r, � r ! + �  r, - r! ,a b q 2 2
4y

�.16!

where ro is the initial radius of the bubble. As can be seen from equation
�.15!, if y is not equal to zero, then the hubble is unstable and wi11 contract
until it is extinguished, The physical cause of this contraction is the diffu-
sion of the internal gas into the surrounding fluid, a process driven by the
inequa1ity between the internal gas pressure p and the ambient gas tension T.
A necessary requirement for the stability of a bubble in a saturated fluid is
that the surface pressure vanishes. This can occur only if the surface tension
is zero or the radius is infinite. Since both of these possibilities must be
ruled out for real bubbles, it is concluded that all bubbles that exist in
saturated fLuids are unstable and vill eventually collapse. The lifetime of a
small bubble can be calculated from equation �.16! by setting r to zero and
solving for t:

Pamb 2
ro2 + � ro aSRT .

4y
�.17!

1.1.2. Growth of bubbles in su ersaturated fluids

1&en the concentration of gas dissolved in a fluid is larger than the
equilibrium value, the fluid is said to be "supersaturated." Mathematically,
this means that T is greater than p~p, The difference between the gas tension
and the ambient pressure is defined as the supersaturation pressure

�.18!Pss = T � Pamb .

The growth rate of a small bubble in a supersaturated fluid held at constant
ambient pressure may be found by substituting equation �.18! into equation
�.14! to yield

� = otSRT Pss � 2y/r!/ P~l + 4y/8r! t'1. 19!

�, 20!2y/pss

A bubble larger than this critical radius will grow, while one smaller than this
size will contract until it vanishes. If the gas tension is assumed to be con-
stant, then equation �.19! can be integrated to yield

pamb Pamb
� + an 2 � � + r =  aSRT!t+X; r < rc

Pss "c Pss
�. 21a!

This equation demonstrates the existence of a "critical radius for bubble growth"
defined by



or

hami. Pamb
� + Rn � � 2 + r=  a$82'!t+X; r >r

Pss ~c Pss  I . 2lb!

where the constant of integration must be chosen to satisfy the initial condi-
tion that r�! is equal to r"~.

1.2. The nucleation of bubbles in ure fluids

The cornerstone of the theory of homogeneous nucleation is the use of the
Boltzmann equation to determine the relative probability of the spontaneous
creation of a bubble due to random molecular motion. If the formation energy
of a bubble is 8, then the relative probability of its de rrouo occurrence at any
particular point in the liquid is given by the equation

-z/k2'
p-e

{1.22!

The formation energy is the difference in energy between a spherical volume of
fluid and a bubble of equal size. Two terms contribute to this energy differen-
tial. The first is the free surface energy oF the newly formed liquid-gas
interface, given by Landau and Lifshitz �938! as

EI �� 4rrr y
 l. 23!

The second is the difference in internal energy between the gas in the bubble
and tha* dissolved in an equal volume of fluid. Assuming an ideal gas, this
energy is

 I. 24!

where Npgrrzg is the number of moles of gas dissolved in the fluid. Using equa-
tions �.2! and �.5!, equation �,24! becomes

rr~  p~�rg + 2' /r � rSA2 !
4

�. 25!

For the case oF nitrogen in water at room temperature, the product,':RT is
1,64 x 10 . As can be seen from the fi.nal results of this calculation, the
2y/x' term normally dominates irr this expression. Therefore, the total formation

The minimum supersaturation pressure required to induce bubble formation
within a pure fluid can be calculated using the theory of homogeneous nucleation.
This theory estimates the probability of creating a bubble of a particular
radius via random molecular motion; the corresponding supersaturation pressure
is determined from equation �.20!. The problem of computing the minimum super-
saturation pressure is therefore converted into the task of estimating the size
of the largest bubble that can be formed by thermodynamic fluctuations. This
theory was first proposed by Becker and Doring �935! and is described in detail
in standard texts such as Frenkel �946! and Landau and Lifshitz �938!.



energy is given approximately by

4Z = � ~r2y .
3

�.26!

It should be noted that this energy is not equal to the work done in the expan-
sion of a pre-existing bubble through a continuum of equilibrium states.

C=!/ e 8 ~/ dv =4~y/NT
0

�.27!

The absolute probability of creating a bubble larger than radius r can now be
found by integrating equation t'1.22! over all radial values larger than z',

4 4p ~! � Q/ /3~ � > F v/k! <! ! � > ~  />/
B~v~y/BkF

r

 l. 28!

This last equation gives the absolute probability of finding a bubble larger
than a certain radius at a particular location in the fluid. The number of
independent points in a unit volume of fluid in which a bubble of radius r may
form is given roughly by

4n = 2// � ~r'~ �.29!

The formation time of a bubble is determined approximately by the time interval
required for a molecule moving at the velocity of sound to cross the bubble,

~cross = ~+~"sonic �. 30!

The total rate of formation of bubbles larger than radius r is therefore given
by

� � vrx' y/kT
sonic

 ~! = n~r~c~oss e

! '~ ~yak' v'  I. 31!

The critical radius corresponding to a formation rate of one bubble per ml
per second in water  y = 78 dyne/cm, vsonic = 20~ cm/sec! is about 1,0 nm, This
radius corresponds to a threshold supersaturation pressure of over 1,400 bar.
It should be noted that raising r to 1.1 nm lowers the formation rate by nine
orders of magnitude, and that the threshold pressure is therefore very sharply
defined.

The constant of proportionality occurring in equation �.22! may be esti-
mated by assuming that bubbles are the only permissible energy fluctuations, and
that the integral sum of all such fluctuations is unity. This yields



The threshold supersaturation pressure for pure water determined using
equation �.31! is much larger than the tensile strength, which has been corn-
puted by Apfel �970! to be about 1,400 bar. This difference arises because
the E~ energy term was included in the bubble formation energy while Apfel used
only the El term. The physical difference between the two treatments is that
Apfel computed the probability of the occurrence of a vapor cavity while equa-
tion �.31! gives the probability of the occurrence of a true bubble. Because
equation �.20! has been used to convert from a radius to a critical supersatu-
ration pressure, and because this equation is based on the validity of the
defining equation �.1!, it is clearly necessary that the energy E2 be included
in the formation energy. Since the threshold supersaturation pressure of the
gas-liquid system is larger than the tensile strength of the pure liquid,
saturating a fluid with an inert gas evidently does not alter its tensile
strength.

1.3. The existence of cavitation nuclei

The theory of homogeneous nucleation outlined in the previous section works
well for certain very pure liquids. Apfel �971! showed, for example, that the
measured tensile strengths of ether and n-hexane are close to the theoretical
levels. In most fluids, however, the critical supersaturation pressure for
bubble formation is well below the expected value. In water at room temperature
the predicted cavitation threshold is found from equation �.31! to be about
2,100 bar. The highest threshold actually observed in water of extreme purity
was found by Hemmingsen �970! to be 270 bar. Samples of common tap water
cavitate at ultrasonic and supersaturation pressures of less than one bar, a
result which is more than three orders of magnitude below the theoretical pre-
diction. Yount and Strauss �976! reported that weak gelatin mixtures will
cavitate when decompressed by 0.83 bar, while the onset of decompression sick-
ness in humans was found by Gray �944! to occur at 0.6 bar. It is evident that
the bubbles formed in common fluids at modest supersaturation pressures do not
originate de novo fram thermodynamic fluctuations within the liquids. Therefore,
the bubbles must arise from weak spots in the fluids that are associated with
the impurities known as "cavitation nuclei."

This argument for the existence of cavitation nuclei has been known since
the time of Becker and Doring �935!. Its relevance to decompression sickness
in humans was first pointed out hy Harvey et al. �944!. In the remainder of
this publication are reported the results of experimental and theoretical
studies designed to elucidate the physical properties of the cavitation nuclei
that occur in common fluids, including animal tissue.



CHAPTER 2. THE GELATIN EXPERIMENTS

A possible method of studying bubble formation in fluids is to saturate a
sample with gas by exposing it to elevated pressure for a sufficient amount of
time and to then decompress until the desired supersaturation is achieved. In
liquid samples, however, the resulting bubbles float rapidly to the surface,
making exact observation of their numbers and sizes difficult. Several
workers have made the suggestion that this problem could be avoided by employ-
ing, instead of a liquid, a viscous medium in which bubbles would be stabilized
where they were formed. The first application of this technique was accom-
plished by Le Messurier {1972! and Le Messurier et al. {1979!, who used weak
gelatin mixtures to trap bubbles resulting from various pressure schedules.

In the period from 1972 to 1973 an experimental protocol for cavitation
experiments was independently developed by Strauss {1974!. In his experiments
samples of transparent gelatin were exposed by saturation pressure schedules
and then decompressed to produce bubbles. The most important difference
between the gelatin model as developed by Le Messurier {1972! and Strauss
{1974! is the adherence to saturation dives by Strauss; saturation i~sures
that diffusion equilibrium has been reached within the gelatin, and this
greatly simplifies the analysis of the resulting data.

In the following sections the protocol of the gelatin model experiments as
developed by Strauss is outlined, and the principal results of several experi-
mental programs are compiled.

2.1. Ex erimental rotocol

The basic apparatus involved in these experiments consists of a small
pressure vessel, four glass counting chambers in which the gelatin is held dur-
ing the course of the experiment, and a large stock of frozen gelatin samples.
The general layout of the experimental apparatus is shown in Figure 2,1.

The pressure vessel was constructed from a 27 cm length of seamless weld-
ing pipe having an internal diameter of 15 cm. Machined collars were welded
to the ends of the pipe, and faceplates were bolted through these collars.
The front plate contains a circular plexiglass window surrounded with lights
by means of which the interior of the chamber may be illuminated for viewing,
The pressure vessel was fitted with inlet and outlet valves and with an accu-
rately calibrated pressure gauge.

Inside the chamber rests a small platform which supports a glass dish of
rectangular shape having an optically polished front window. Within this dish
are suspended the four cells containing the gelatin samples. The dish is
filled with water to buffer the samples from the fluctuations in the ambient
gas temperature which occur during compression and decompression, A mercury
thermometer, visible through the front window, is suspended in the water to
allow the temperature of the gelatin to be monitored.

The four counting chambers which contain the gelatin are identified as
CS1, CS2, CS3, and CS4, They were constructed by sealing one end of sections
of optically polished pyrex glass tubing, and forming lips around the open end.
The counting chambers have rectangular cross- sections of 3.00 x 0,84 cm and
have lengths of 50, 44, 38, and 32 mm, respectively. These staggered lengths
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Figure 2.1. Apparatus used for the gelatin experirrrents

allow the lowest 6 mm of each cell to be seen when the chambers are suspended
from their lips in sequential order. When the chambers are in position within
the pressure vessel, all four may be simultaneously examined through the window
of the vessel. A set of grid lines etched into the lower 6 mm of each cell
provides fiducial reference marks for filling of the chambers and for counting
of bubbles. A photograph of CS4 is shown in Figure 2.2.

To insure uniformity of behavior, the gelatin used in these experiments
was produced in large batches and frozen in individual aliquots for subsequent
use. The gelatin was mixed with distilled water that had stood overnight to
allow time for gross bubbles to float to the surface and for small bubbles to
diffuse away. To prepare a batch, 27 g of unflavored Knox gelatin powder were
first mixed into 800 ml of water at room temperature. The resulting gelatin
sludge was diluted with an additional 2,000 ml of water which had been warmed
to 37 C and was poured through a funnel into a large plastic bottle which was
then placed in a 40'C waterbath. An additional 2,200 ml of water were added
to bring the total volume of gelatin to 5,000 ml. The solution was left in the
bottle for 50 minutes to dissolve thoroughly, during which time it was stirred
occasionally. After 50 minutes a small volume of the gelatin was siphoned
through a rubber tube into a beaker and discarded. Each of 320 previously
prepared plastic sample bottles was then filled with 10 ml of gelatin, capped,
and placed in a freezer.
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Figure 2.3. General ized pressure schedule
used i n the ge i a t in exper iments

.into the pressure vessel at a rate of 0.23 bar/sec until the desired maximum
pressure prrr was reached. This maximum pressure was maintained for a time
at which point the pressure was reduced to the saturation pressure pa and held
constant for a time 4<. During this saturation period, the solution in count-
ing chambers CS2 and CS4 gelled. Following saturation, the chamber was decom-
pressed in 10 seconds to the final pressure p~, and hubble formation was thus
initiated in the gelatin samples.

Bubbles first became visible several seconds after decompression and grew
rapidly during the next few minutes. Their growth was essentially complete
after 10 minutes, and the resulting bubbles persisted for several days if the
sample was left undisturbed. The typical diameter of a nitrogen bubble was
around 1 mm, and the bubbles were uniformly distributed in the lower 3 mm of
the counting cells. The number of bubbles occurring in a counting cell was
generally less than SOO. They were of uniform size and randomly distributed
throughout the sample. The bubble density was never so high that coalescence
occurred.

Five minutes after decompression, the number of bubbles in each sample
chamber was counted three times; if the tallies were not in agreement a
fourth count was made. To avoid any possible effects of surface contamina-
tion or rapid gas flow in the miniscus, only bubbles in the lower 3 mm of the
sample chambers were included. In a few cases in which the number of bubbles
was very large or the bubbles were large and distorted, the chamber was recom-
pressed to 5.25 bar to reduce bubble size and facilitate counting. In dives
which resulted in extremely large bubble numbers only one tally was made.

12



After the counting was finished, a series of photographs was taken of tIre
counting chambers to provide a permanent record of the experimental results.

Upon completion of the experiment, the counting chambers were removed
from the pressure chamber, and the gelatin was washed out with hot water.
Immediately before their next use, the chambers were washed with a cotton-
tipped applicator dipped irr a dilute soap solution, emptied, and flushed at
least three times with tap water. Following an additional flushing with dis-
tilled water, the chambers were filled with acetone and shaken, the acetone
was dumped, and the chambers were placed upside down to dry on a clean paper
towel.

2.2. Preliminary ex eriments

A most useful property of the ge1atin model is its ability to yield repro-
ducible data over time periods exceeding one year. This allows extended
research programs to be conducted and the results confirmed by multiple and
easily reproducib1e experiments,

TABLE 2.1. TRIAL RESULTS OF FOUR GELATIN

MODEL EXPERIMENTS

No. of bubbles per sampIe

CSI CS2 CS3 CS4
TriaI No.

62 64 66

8g 62 66 8S

6Z SZ 55 6O

66 66 66

2.2.1. Assignment of errors

As indicated in sectiorr 1.3, the bubbles produced in these experiments
originated from cavitation nuclei. It has been found that the number of bub-
bles produced by a given pressure schedule depends upon the number of nuclei

As an initial test of the repeatability of the gelatin rrrodel, four dives
using identical pressure schedules and adhering to the protocol outlined in
section 2.1 were conducted in a one-week period. The results of these experi-
ments are shown in Table 2,1, The average number of bubbles per sample pro-
duced by this pressure schedule was 66.13, with a standard error in the mean of
2.45. As an additional test of the stability of this model, a similar experi-
ment was conducted by each new operator to use the equipment. In all cases it
was found that after mastering the technique, the operator could obtain consis-
tent bubble numbers for a given pressure schedule from sample to sample and
from dive to dive. The longer term repeatability of the gelatin measurements
may be inferred from the data reported in section 2.3, where measurements made
at time intervals of many months are found to be in agreement.



larger than some critical size. Thus, while the ultimate size of a bubble
will depend upon both the bubble density in the sample and the quantity of
dissolved gas, the threshold supersaturation pressure required for the growth
of an> given nucleus into a gross bubble will depend only on the properties of
the fluid and the constituents of that nucleus, and not upon interactions with
other nuclei. The occurrence of hubbles in a sample may therefore be regarded
statistically as a Poisson process, and the distribution of bubble numbers
resulting from independent measurements is expected to follow a Poisson dis-
tribution. As is well known, the error associated with a single measurement
of a variable having a Poisson distribution is the square-root of the observed
number, i.e., Dill.

The validity of this error assignment is demonstrated by the data in
Table 2.1. The average number of bubbles per sample is 66.13 with a standard
deviation of 9.17 and a standard error in the mean of 2.45. Using the assump-
tion of Poisson statistics to assign an error of f66.13 to each of 13 data
points yields an error in the mean of 2,17.

Unless otherwise noted, the errors reported in this study were calculated
assuming Poisson statistics. The error f: assigned to a single measurement of
N bubbles is thus WN; the error resulting from combining n individual measure-
ments N - is computed as

c~ = $N /nt'n � 2! � 1!

2.2.2. Gelatin saturation time

As discussed in section 2.1, the gelatin samples used in this study were
contained in glass cells filled to a depth of 4 mm. The time required to
saturate these samples with nitrogen gas was investigated with a series of
dives in which bubbies were counted for various saturation periods. The
results of this study are shown in Figure 2.4. It is seen that the bubble
~umber at first increases rapidly with increasing exposure time, levels out at
about 5.25 hours, and then declines until an equilibrium state is reached at
around 14 hours.

2.2.3. Tera erature effects

The weak gelatin mixtures employed in these experiments were found to0 0
meit at 26 C, Since the chamber temperature was usually near 24 C, this
low melting temperature was not a problems but it did serve to limit the tern-
perature extremes encountered in this work from the initial 20 C of the water
bath to the 26 C gelatin melting point. The temperature of the gelatin was
normally 24 C and was routinely monitored and recorded during all experiments.

0 0
The effect of temperature on bubble number within the range from 20 C to 26 C
was investigated by performing a series of similar dives in which the gelatin

14

In order to complete individual dives conveniently, a saturation time t��
of 5.25 hours was chosen for standard use. Because the slope aN/dna vanishes
at this point, the resulting bubble numbers are not strongly influenced by small
changes in ta. Unless otherwise noted, the value of ~ used in this work is
5.25 hours.
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Figure 2.4. Bubble number as a function of saturation time

temperature varied from day to day in response to changes in the ambient tem-
perature. The results of this investigation are given in Table 2.2. These
data indicate that the variations in temperature were small and that these
small fluctuations did not significantly alter the bubble counts.

TABLE 2.2. EFFECT OF TEMPERATURE ON BUBBLE NUMBER

Temperature  'C!
Number of' bubbles

per sample
Date

T�! T t ! T ts! T tf!

15.6

15.6

21.6

19.0

17.0

22.0

18.0

27.0

6 Aug 73

7 Aug 73

9 Aug 73

13 Aug 73

13 Aug 73

20 Aug 73

22 AUQ 73

24 Aug 73

0 4 8 I2 I6 20 24 28

SATURATION T IhhE, t ~  HOURS !

20.0 21.7 24.8 24.0

20.0 21.9 25.0 24.0

20.0 22.0 25.0 24.0

19.8 21.5 24.7 24.0

19.8 21.4 24.2 23.9

19.8 21.2 24.8 24.1

19.9 2l.6 25.0 24.l

l9.8 21.4 25.'I 24.3



2.2.4. Com ression rate

 ~ 2!
Pc~ah = Pm � Po

To determine whether large changes in the compression rate affect the
bubble numbers, a series of dives using a "slow" compression rate was per-
formed by increasing the pressure by 1 bar every 30 minutes. It was found
that slow-compression dives yielded an order of magnitude more bubbles than
the corresponding rapid-compression dives. The data comparing fast and slow
compression dives are presented in Figure 2.5. In section 4.3 the theoretical
effects of compression rate on bubble number are discussed, and the large dif-
ference in bubble yield between fast and slow compression is explained.
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Figure 2.5. One-atmosphere-envelope for gelatin batch A
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The rate of compression from the initial ambient pressure pz to the maxi-
mum pressure pIII was standardized at 0.23 bar/sec. This compression rate is
referred to as "rapid." The effects of small changes in this rate on bubble
numbers were negligible. The magnitude of the largest rapid compression occur-
ring in a pressure schedule is known as the "crushing pressure." This was
normally equal to the difference between the maximum and initial pressures,



2.3. Saturation-excursion dives

The most decisive results obtained from the gelatin experiments are
reported in this section. In this series of dives the pressure was rapidly
raised to the maximum value p~, and the gelatin was allowed to saturate with
gas at the same pressure, pz = p~. The gelatin was then decompressed to the
final pressure p~, and the resulting number of bubbles was counted. The objec-
tive of these experiments was to determine how the bubble numbers depend upon
the saturation and supersaturation pressures.

For this type of dive profile the change in pressure Zp occurring during
decompression is identical to the supersaturation pressure,
pea = Dp =  ps � pr!. All compressions were normally done at the rapid rate of

J
0.28 bar/sec, while decompressions were accomplished in 10 seconds, i.e., at a
rate of 0. 27  pa � pp! bar'/sec.

Two independent sets of data are presented in this section. The first
group of experiments  Yount and Strauss, 1976!, conducted in April and May of
1973, utilized gelatin mixed on 16 March 1973. This set of gelatin samples is
referred to as batch A. The second group of experiments  Yount et al., 1977!
used samples from gelatin batch D, mixed on 4 June 1976. These dives were
done in the fall of 1976 as part of the filtration experiments discussed in
the following section.

Figures 2.5, 2.6, and 2.7 show the results of dives in which the crushing
pressure is equal to the supersaturation pressure, pz~ag = pa8. Since these
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Figure 2.6. One-atmosphere-envelope for ge'lat in batch D
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Figure 2. 7. Low pressure end of the one-atmosphere-envelope

pressure profiles begin and end at an absolute pressure of one atmosphere, the
resulting data define a curve known as the "one-atmosphere-envelope." As seen
in Figure 2.7, in the range between zero and six atmospheres the number of
bubbles produced by this type of pressure schedule increases linearly with
increasing pressure. The close agreement between gelatin batch A and batch D
in this low pressure range is not an intrinsic feature of the cavitation pro-
cess, but instead reflects the fact that batch D was specially prepared to
produce bubble counts similar to those of batch A. The bubble count continues
to rise sharply in the pressure range from seven to twelve atmospheres, beyond
which it levels off and then declines slowly. Included in Figure 2,5 is the
one-atmosphere-envelope for "slow" compression dives as described in subsec-
tion 2.2.5.

The results of three additional sets of experiments for each of the two
types of gelatin are shown in Figures 2.8 and 2.9. In these studies p was
held constant and ps' was varied. Data points thus produced trace out the
relationship between the bubble number and the supersaturation pressure for a
fixed value of the saturation and crushing pressures; these curves are there-
fore referred to as "loci of constant pa" or "loci of constant per~ay."

The data in Figures 2.8 and 2.9 can be shown in a more useful form by
plotting the saturation and supersaturation pressures required to form a
fixed number of bubbles  Yount et al., 1977!. This is done graphically from
either Figure 2.8 or Figure 2.9 by constructing a series of lines parallel to
the abscissa which correspond to fixed numbers of bubbles, by establishing the
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intercept of these lines with each of the three loci of constant p< and the one-
atmosphere-envelope, and by then reading the corresponding supersaturation pres-
sures from the abscissa scale. As an example, the A' = PPd line shown in Figure
2.9 crosses the one-atmosphere-envelope at. 6.1 bar, and the 8.3, 13.8, and 20.7
bar loci of constant p~»~g at supersaturation pressures of 7.7, 10.8, and 14.5
bar, respectively. These four  p~»ag, ps'! points may now be plotted to define
a curve af constant bubble number. Isopleths of bubble number for the two sets
of gelatin data are shown in Figure 2.10.
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Figure 2.10. Isopleths of constant bubble number

From examination of Figure 2.10 it. is seen that the supersaturation pres-
sure required to form a fixed number of bubbles increases with the crushing
and saturation pressures. From interpolation of the data in Figure 2.10 it
is possible to determine what combination of supersaturation and saturation
pressures will yield a given number of bubbles.

2.4, Filtration ex eriments

In order to establish the initial size of the nuclei responsible for the
bubbles observed in the gelatin experiments, a series of dives was performed
in which the gelatin samples were filtered before compression  Yount et al.,
1977!. The protocol used in these tests was similar to that previously des-
cribed, with the exception that immediately after being thawed, the gelatin
was pipeted into a filter-holding syringe and in this manner passed through

20



Scanning electron micrographs show smooth,
flat surface and uniform, straight-through
cylindrical pores of 10 pm ''thin, 0.4 ym
pore size Nuclepore membrane  top! with
rough, tortuous paths of a 150 um "thick,"
0. 45 wm pore si ze cellulosic fi lter

Figure 2.11.
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a "Nuclepore" filter. These filters have holes etched to an accuracy of
+0/-20't; a photomicrograph of such a filter is shown in Figure 2.11.



Experiments were conducted with filters having nominal pore diameters of
3.0, 1.0, 0.8, 0.6, and 0.4 rrm. It was not possible to pass the gelatin
through a 0.2 pm diameter filter. After filtration the samples were subjected
to a standard one-atmosphere-envelope pressure schedule, p~~6> = p66, and the
resulting number of bubbles was counted. An unfiltered sample was included as
a control in each of these experiments. The results are shown in Figure 2.12.
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Figure 2.12. Gelatin filtration data

From examination of Figure 2.6 it can be seen that passing the gelatin
through a 3.0 pm filter had no effect an the observed bubble numbers. Evi-
dently, the nuclei responsible for the observed bubble formation in gelatin
initially had diameters of less than 3 lrm. For gelatin passed through the
1.0 rrm filter, two differences from the unfiltered data are noted: the
threshold pressure for bubble formation is shifted from 1.6 bar ta 2.4 bar,
and the maximum number of bubbles is lowered by about a factor of two, For
gelatin passed through the 0.8 pm, 0.6 rrm, 'nd 0.4 arm filters, the threshold
pressure is increased to 3.0, 4.0, and 6.1 bar, respectively, and the maxi-
mum number of bubbles is further reduced.

The systematic increase of the threshold pressures with decreasing fil-
ter size observed in this experiment establishes the important concepts of
critical radius and the ordering theorem. In analogy with the result for
pure bubbles discussed in subsection 1.1.2, it is assumed that for a pressure
history resulting in a supersaturation pressure p , there exists a critical867
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N r ! = n r!cb

where n, z'! is the size distribution of nuclei in the sample when the critical
radius has the value x'z .

The ordering theorem can be used to determine the initial distribution of
nuclear sizes in the gelatin samples. From the data presented in Figure 2.12,
it is seen that the threshold for bubble formation in gelatin passed through
a 0.5 um radius filter is 2.4 bar. This represents a direct determination
that the critical radius ror a 2.4 bar one-atmosphere-envelope dive is 0.5 pm.
From the number of bubbles counted at 2.4 bar for the one-atmosphere-envelope
for unfiltered gelatin, also shown in Figure 2.12, it is concluded that there
were initially 54 nuclei larger than O.S rrm. To reach this conclusion only
the ordering theorem has been assumed. From the examination of the remaining
filtration data the number of nuclei initially larger than 0.4 arm, 0.3 pm,
and 0,2 rrm in radius may be established. The observed number of nuclei ini-
tially larger than these radii are illustrated in Figure 2.13.

An excellent fit to these data is provided by the exponential function

N z'! = 776 ex'p  -z'/0.286! �.4!

where r is measured in pm. This equation is the integral size distribution
of those nuclei which produce gross bubbles,

�. S!

where n r! is the differential nuclear size distribution in number per cm per
ml. Taking the derivative of equation 2.5 yields the expression

dN r!/2r = -n r!

Applying this result to equation 2.4 yields

�, 7!n r! = 4,17Z exp  -r/0.286!; O.Z ~ < x < 0.8 rrrrr
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radius rc such that any nucleus having a radius larger than z'z will grow into a
gross bubble, while nuclei of lesser size will remain small. The "ordering
theorem"  Yount et al., 1977! states that if at some time nucleus 'a' is larger
than nucleus 'b,' then at any time in the future both nuclei will still be
present in the sample and nucleus 'a' will still be larger than nucleus
When applied to a large number of nuclei, this theorem states that if at some
point in time when there are N nuclei larger than nucleus 'a,' then at any time
in the future there will remain N nuclei larger than nucleus 'a.' This theo-
rem is applicable when nuclei change in size in a continuous manner, such as
during the application of a pressure spike, but not when nuclei are selectively
or discontinuously deleted from the sample by an external agent, such as a fil-
ter. When an experiment is performed that results in a supercritical super-
saturation pressure, the ordering theorem states that the number of bubbles
produced in the sample will be given by the integral
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Figure 2.�. Initial distribution of nuclear radii

This is the distribution of initial nuclear sizes in the gelatin as determined
by the filtration experiments, The only assumptions entering into this mea-
surement have been the ideas of critical radius and the ordering theorem as
combined in equation 2.3. In this sense, the result is model independent and
does not rely upon any detailed knowledge of the physics of the nuclei,

The other significant feature of the filtration data shown in Figure 2.12
is the anomalous decrease in bubble number in the filtered samples relative to
the unfiltered controls. As an example of this effect, it is expected from
the observed distribution of nuclear sizes that the 0.5 vm radius filter
would remove 54 nuclei from the gelatin sample. For one-atmosphere-envelope
dives to pressures greater than the 2.4 bar threshold observed for this size
filter, the number of bubbles produced in the filtered samples might be
expected to be 54 less than that observed in the control. This is not the
case. It is seen from the data that the 0.5 gm filter curve lies between
140 and 250 bubbles per ml below the unfiltered control.

This anomalous behavior is attributed to the non-ideal action of the fil-
ters used in these experiments. While it is a necessary condition that a
nucleus have a size less than the filter pore size to pass through the filter,
this is not sufficient to insure its passage. When a given amount of gelatin
is filtered there will be nuclei smaller than the pore size originally present
in the sample that will not pass through the filter, In this sense the action
of the filter is non-ideal. The physical cause of this non-ideal behavior is
believed to be the partial clogging of individual pores with debris from the
filtrate. This partial clogging reduces the effective size of some of the
filter pores and, thus, prohibits the pa,ssage of some nuclei that an unclogged
filter would transmit. A more complete discussion of the physics of partially
blocked filters is given in Yount et al, �977a!.
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A quantitative description of the amount of non-ideal behavior exhibited
by a filter is expressed by the filter efficiency factor. This number is
defined as the ratio of the number of objects that pass through the actual
filter to the number that would pass through an ideal filter. It is to be
expected that this efficiency factor will depend on the size of the objects
being filtered, becoming small for objects near the pore size, and tending
toward unity as the objects become much smaller than the filter pores. This
is because small objects passing through a pore are not impeded if that pare
is partially obstructed, while larger structures may be stopped.

Filter efficiency factors for the gelatin data are computed from the
formula

N

0 1
�.8!

TABLE 2.3. FILTER EFFICIENCY FACTORS

Initial nuclear radius  rrm!Ps  bar!
0.5 0.4 0.3 0.2

8.6

10.4

13.8

17.2

20.7

.43

.48 .40

.50 ,05

53 .13

.52 .45

.55 .49

.60

~ 57

.58

.64
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It should be noted that the imperfect nature of the filtration process
used in these experiments does not challenge the arguments regarding the ini-
tial size distribution of nuclei as developed in the beginning of this sec-
tion. In this work it was assumed only that no nuclei larger than the pore
size passed through the filter. While the non-ideal nature of the filtration
prohibited some nuclei from passing through the actual filter that would have
passed through an ideal filter, it did not permit nuclei to remain in the
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where N is the observed number of bubbles for a particular filter and pres-
sure combination, No is the number of bubbles in the unfiltered control at
this pressure, and N1 is the number of nuclei in the sample larger than the
filter size. The computed efficiency factors as a function of filter size
and pressure are presented in Table 2.3. It is seen that for a fixed pressure
the efficiency drops as the filter size decreases, and that for a given filter
size the factor increases with increasing pressure. The first observation
shows that small pores clog more rapidly than larger ones, which is expected.
The second observation may be understood by remembering that the larger bubble
numbers seen at higher pressures imply that smaller nuclei are growing into
bubbles. These smaller nuclei are less affected by the clogs in the filter
pores, and the filter efficiency thus rises,



sample that ideally would have been filtered out. The conclusions about
nuclear size are thus unaffected.

The observed nuclear size distribution given by equation 2.4 allows the
isopleths of constant bubble number to be interpreted in terms of initial
nuclear radii. As an example, a bubble number of 273 is seen to correspond
to an initial nuclear radius of 0.2 pm, the N = 278 ieop7etF, in Figure 2.10
is therefore associated with the supersaturation pressure required to induce
a nucleus of 0.2 pm initial radius to grow into a bubble after having been
rapidly compressed by an amount pe>>ag. Similar  pe~8g, pa+! relationships
for G.5 pm, 0.4 pm, and G.3 pm nuclei can be found by determining isopleths
of constant bubble numbers of 54, 90, and 150, respectively. The measured
values of  pe~sg, pas! points are plotted in Figure 2.l4.
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2,5. Denucleation

The data presented in Figure 2.10 demonstrate that the number of bubbles
formed in response to a fixed supersaturation decreases as the crushing pres-
sure rises. If it is assumed that the critical radius for bubble formation
depends only on the supersaturation pressure and not the absolute pressure,
then this result implies, through use of the ordering theorem, that the
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application of a rapid compression shifts the size distribution of nuclei
toward smaller radii. In order to test the validity of this hypothesis, a set
of dives was conducted in which pa and p~~ were held constant, but a pressure
spike was applied to the gelatin samples prior to the beginning of the satura-
tion period. Since both the saturation and supersaturation pressures were
constant, the critical radius for bubble formation at the final pressure
remained constant and was independent of the magnitude or duration of the
pressure spike. Any change in bubble number induced by the pressure spike
must therefore have as its cause a shift in the distribution of nuclear sizes.

fhe dive profile used in these tests is shown in Figure 2.3. The sam-
ples were compressed at the rapid rate of 0. 28 bar/sec to a maximum pressure
pz of 21.7 bar, and this pressure was held for a time t~. The chamber was
then decompressed in 10 seconds to the saturation pressure ps of 11.3 bar,
where the samples were allowed to stand for a time period of  8 2D � t~!
hours. The total length of the experiment was thus held constant at about
5.25 hours. After saturation the samples were decompressed to ambient pres-
sure, and the resulting number of bubbles was counted. All of these dives
utilized samples from gelatin batch A. These experiments are somewhat simi-
lar to those of Harvey et al. �944!, who showed that the threshold for ultra-
sonic cavitation can be similarly increased by the application of a pressure
spike.

The results of this program are shown in Figure 2.15. The number of bub-
bles produced when the pressure spike was held for one second is 275 per ml.
The number of bubbles produced in a 1.0-11.3-1.0 bar one-atmosphere-envelope
dive is about 1,210 per ml. The pressure spike thus reduced the bubble yield
by a factor of 4.4. As tz increased, the number of bubbles decreased sharply
for the first two minutes and then leveled out at 39 bubbles per ml. The
ultimate effect of the pressure spike was to reduce the bubble yield to 3.2
percent of its nominal amount. Since pa and pa<, and thus r'c, remained
unchanged, it was concluded that the rapid app2ication of hpdz'oatatic pz'es-
sure to the gelatin resulted in the modification of the oziqinaL nuclear size
aistz ibuti on.

These experiments suggest that gelatin might be completely denucleated by
the rapid application of sufficiently large pressure. To check this conjec-
ture, tests were conducted in which gelatin was subjected to very large hydro-
static pressures by centrifugation. The gelatin was thawed in the usual
manner, pipeted into the bottom of a centrifuge tube, and then gelled in an
ice-water bath. The remainder of the tube was filled with cold distilled
water, covering the gel to a depth of about 4 cm. The tube was then spun at
25,000 rpm for 15 minutes in an ultra-centrifuge, the water exerting a minimum
hydrostatic pressure of 1,000 bar upon the gelatin during this period. After
being spun, the water was emptied from the tube, and the gelatin was remelted..
Normal dives were then conducted with the centrifuged gelatin.

For pressures up to the 21.7 bar limit of the chamber, the centrifuged
samples produced no bubbles. Samples drawn from either the top or bottom of
the treated gelatin sol in the tube failed to nucleate in all cases. As an
additional check that the nuclei were being crushed rather than physically
removed from the samples, gelatin adulterated with 0.2 pm polystyrene spheres
was subjected to the same treatment. The spheres were not centrifuged out of'
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the sample. The rapid application of large hydrostatic pressure to the gela-
tin is thus an effective method of reducing the size of nuclei sufficiently
to suppress bubble formation at supersaturation pressures of up to 20.7 bar.

Gelatin sol denucleated by centrifuging remains denucleated for periods
greater than two days, the maximum that has been tested. The gelatin may be
frozen and stored for many months without the reappearance of detectable
nuclei. The observation that gelatin denucleated prior to the beginning of
the standard dive protocol remains denucleated afterward demonstrates that
the nuclei studied in the gelatin model experiments are not introduced into
the samples during freezing, melting, or pipeting.

2.6. Summar of the elatin ex erimental results

The gelatin experiments reported in this chapter provide data from which
the following conclusions concerning the physical nature of cavitation nuclei
are drawn:

1. The nuclei are associated with gas phases. This is inferred from
the fact that the application of modest hydrostatic pressures will markedly



affect both the nucleation thresholds  section 2.4! and the bubble numbers
 section 2.3!, and that large pressures will effectively denucleate a sample
 section 2.5!. Because solids and liquids are little affected by such pres-
sure changes, the nuclei must be associated with gas phases. This result is
not new; it was first demonstrated by Harvey et al. �944!.

2. The nuclei are gas permeable. The data presented in subsection 2.2.5
show that the compression rate can greatly affect the final bubble numbers.
This suggests that the gas within a nucleus is normally not isolated from the
surrounding fluid, but can diffuse through the liquid-gas interface. This
conclusion is supported by the observation of Strauss and Kunkle �974! that
bubbles can be produced in gelatin by isobaric switching of the ambient gas
from nitrogen to helium. This sensitivity to atmospheric composition demon-
strates conclusively the gas-permeable nature of the nuclei.

3. The nuclei are stable. As reported in section 2.5, gelatin may be
effectively denucleated. This may be achieved either by modifying the nuclei
within the gelatin, as by the application of large hydrostatic pressure, or by
removing the nuclei from the sample by processes such as filtration. Once a
sample has been denucleated, it remains that way for a period in excess of
two days. This shows that cavitation nuclei are not being continuously
replaced; hence, they must be stable, physical structures and not ephemeral
products of kinetic processes such as random motion of the water molecules or
ionization by cosmic rays.

4. Initially, the nuclei have an exponential size distribution given by
equation �.4!.

S. A rapid compression modifies the nuclear size distribution,
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CHAPTER 3. NODEI S OF GAS CAVITATION NUCLEI

In this chapter several proposed models of gaseous cavitation nuclei are
briefly reviewed and their validity in light of the results of the gelatin
experiments is examined.

3.1. Classification of nuclear models

dr/dt = �RT<xSy/r!/�Y/z + 8P >! �. IS!

For a nucleus to be stable dr/dt must, by definition, vanish. This can be
accomplished in four ways:

Provide a source to replace gas lost from the nucleus.
Arrange for the perfusion constant m to vanish.
Make the radius arbitrarily large.
Oppose the fluid surface pressure Ry/r with an independent pressure
or reduce the total surface tension at the liquid-gas interface to
zero.

2.

4.

Each of these hypothetical operations has been used as the basis for one or
more models of cavitation nuclei.

Nuclear models of the first kind make no attempt to prevent the outflow
of gas from the nucleus, but instea provide a supply to replace that which is
lost, Mathematically, these models add a source tenn to the gas flow
equations.

The simplest of such mechanisms was suggested by Plesset �969!, who
argued that solid, hydrophobic spheres would act as cavitation nuclei. The
spheres are viewed as being immersed in a continuous fluid in which therrno-
dynamic fluctuations at the solid-liquid interface act to produce a thin shell
of gas surrounding the sphere, Plesset's model thus uses statistical fluctua-
tions as a gas source.

This model has recently been re-examined by Yount and Kunkle �97S!, who
assumed that shell thicknesses of less than the diameter of a water molecule
are not physically meaningful. A finite shell thickness of this size would
lower the probability of shell formation by many orders of magnitude, indi-
cating that the theoretical cavitation threshold for this model is about 1,000
bar. This is not very different from the result predicted for homogeneous
nucleation. The Plesset model was tested experimentally by Kunkle and Yount
�97S!, who added sub-micron poly-styrene spheres to gelatin. In no case was
it. found that these spheres acted as cavitation nuclei. Evidently, the nuclei
studied in the gelatin experiments were not smooth hydrophobic spheres.
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The basic problem to be overcome in stabilizing a gaseous cavitation
nucleus is to prevent the collapse of the nucleus due to outward diffusion of
the internal gas. For the similar case of the perfusion-limited collapse of a
bubble in a saturated fluid held at constant ambient pressure, equation  I.IS!
gives the time rate of change in radius as



Nuclear models of the second kind prevent the diffusion of gas from a
nucleus by assuming the liquid-gas interface to be impermeable. A model of
this type was first introduced by Fox and Herzfeld �954!, who postulated the
existence of nuclei composed of gas bubbles enclosed in impermeable, elastic
skins of protein molecules. So long as the skin remains impermeable and
intact, the size of such a nucleus depends only on the instantaneous value df
the ambient pressure. It follows that the cavitation threshold should be
independent of any previously applied ambient pressure. This prediction proved
to be inconsistent with the subsequent experiments of Strasberg �956, 1959!,
which showed that the critical pressure for the onset of ultrasonic cavitation
in water varies smoothly upon the magnitude of a previously applied crushing
pressure. Because of this conflict, Herzfeld �957! abandoned the organic
skin model. Since the gelatin experiments clearly showed the cavitation nuclei
to be permeable, they directly ruled out the applicability of impermeable-skin
nuclear models.

Nuclear models of the third kind are characterized by gas-fluid interfaces
with infinitely large radii of curvature; that is, flat surfaces. In practice
this is accomplished by filling a crevice in a solid body with gas and by
arranging the contact angles of the solid-liquid gas system in such a manner as
to cause the curvature of the liquid-gas interface vanish. The stabilization
of gas in crevices is the mechanism responsible for the majority of the bubbles
observed in common supersaturated fluids, such as champagne, beer, and tonic
water. Most of the bubbles in these systems do not originate in the fluid, but
rather on the walls of the container, Harvey et al. �944! generalized this
observation of bubble formation in solid crevices on container walls to nucle-
ation within fluids by postulating that cavitation nuclei are small solid
particles containing gas-filled crevices.

The crevice model has been recently re-examined theoretically by Yount
�979b!. He found that the madel is viable in general, but that it fails to
account properly for the results from gelatin studies. In particular, the
crevice model as developed by Apfel �970! is, according to its author, not
applicable to supersaturation problems such as the gelatin experiments.
Strasberg's version of this model �959! was compared by Yount �979b! to the
gelatin data and found to fail. Thus, neither of the existing crevice models
can properly explain the gelatin results,

In addition to the particular problems in describing nucleation in gelatin
with the crevice model, several fundamental observations suggest that this
rrrechanism is not applicable to aqueous media in general, Sirotyuk �970! found
that the complete removal of solid particles from a sample of water increased
the cavitation strength by at most 30 percent, demonstrating that most of the
cavitation nuclei present in high purity water are not associated with solid
particles. Bateman arrd Lang �944! attempted to introduce nuclei into liquids
by mixing in solid impurities, experimenting with charcoal, blood corpuscles,
dialyzed colloidal ferric hydroxide, ivory black, and sodium bicarbonate. The
net result of the experiments was that the addition of solid impurities to
liquids had little effect on the cavitation threshold. Bernd �963! noted that
gas phases stabilized in crevices are not usually truly stable, but tend to
dissolve slowly. This instability is caused by imperfections in the geometry
of the liquid-gas interface, which is almost never exactly flat. While it may
be possible to realize conditions in which a gas phase is truly stabilized in

31



a crevice, for this configuration to remain stable following a rapid compression
of many atmospheres seems to be an untenable assumption.

Cavitation experiments have produced two additional results which indicate
that cavitation nuclei are not of the crevice type. In the filtration experi-
ments reported in section 2,4 it was found that the size of a nucleus is
strongly correlated with the critical supersaturation pressure required for
bubble formation. In the context of the crevice model this result implies that
crevices of a given size and shape are associated uniquely with particles of a
single size. Because it seems likely that the type of fissures occurring in
small particles would also occur in larger ones, this experimental result
argues against the applicability of the crevice model to gelatin. In addition,
both Strasberg �959! and Bernd �963! noted that the threshold pressure for
ultrasonic cavitation in water can be increased by permitting the water to
stand quietly for many hours, and Bernd showed that this increase can be con-
sistently explained by the rise of the largest nuclei to the surface of the
water. Because solid particles generally will not float, these experiments
again indicate that cavitation nuclei are at least not exclusively of the
crevice variety.

In surrmrary, nuclear models of the third kind consist essentially of gas
phases stabilized in crevices in solid particles. While the crevice conjecture
represents a viable nuclear model, none of the existing mathematical treatments
make predictions that are supported by the gelatin experiments. In addition to
problems with the mathematical development of this model, experimental studies
show little or no correlation between the cavitation strength of a liquid and
the number of solid impurities in the sample. The nuclei found within gelatin,
water, and most common fluids are most probably not of this type.

Nuclear models of the fourth kind consist of gas bubbles in which the sur-
face tension of the surrounding medium is opposed by a third constituent of the
system. The basic operational principIe of this class of models is to reduce
the net interfacial surface tension to zero. Several methods of achieving this
result have been proposed.

If the medium surrounding a bubble has a non-vanishing shear modulus, it
will be capable of mechanically supporting holes larger than some critical
radius. The material can be viewed as having sufficient mechanical strength
to support incIusions under pressure, a common example being foam rubber in
which the individual cells can withstand pressures of many atmospheres without
collapsing, Gent and Tompkins �969! studied the nucleation and growth of bub-
bles in elastomers and found that gas phases could be stabilized by this mecha-
nism. This model is not applicable to gas bubbles in either water or gelatin,
however, since the shear modulus of water vanishes, while that of gelatin is
negligible in comparison with the pressure Zy/r when r is of a typical nuclear
size.

A second mechanism, suggested by Akulichev �966!, is to oppose the sur-
face pressure of the fluid with the force arising from an electric surface
charge of ions residing at the liquid-gas interface. The Coloumb repulsion
between these ions pushes them outward against the fluid and thus counteracts
the surface tension. The applicability of the ionic model to water and gelatin
has been experimentally tested. Sirotyuk �970! showed that the cavitation

32



strength of water does not depend on its conductivity due to dissolved ions and
concluded that the ion model is not characteristic of the nuclei found in water.

In experiments in which salts were added in solution to gelatin samples, Kunkle
and Yount �975! found no correlation between bubble number and the free ion
concentration of gelatin. This lack of correspondence is evidence that the
nuclei in gelatin are not of the ianic type.

The third example in this class, and the main subject of this work, is the
surfactant stabilized model. Here a layer of surface-active molecules residing
at the liquid-gas interface of a bubble appases the surface tension of the sur-
rounding fluid and at equilibrium causes the nct interfacial tension to vanish.
This mechanism is consistent with Siratyuk's �970! observation that "the
stabilization of gas bubbles acting as cavitation nuclei in water is always
attributable to the presence of surface-active substances in the water." In
agreement with the results of the gelatin experiments, the surfactant nucleus
is gaseous, permeable, and stable. Furthermore, mathematical models based upon
the hypothesis are able to quantitatively replicate the results of the gelatin
experiments. For these reasons, it is felt that the surfactant model is the
best choic.e from the available candidates to represent the nature of the cavi-
tation nuclei found in gelatin and water.

3.2. A cam arison of three models of surfactant-stabilized nuclei

The surfactant-stabilized nucleus is a gas bubble enclosed in a skin of
surface-active molecules. Three mathematical models of the system have been
introduced: thc Impermeable Organic Skin model of Fox and Herzfeld �954!
 FH model!, the Varying Permeability model of Yount �979b!  VP model!, and
the Surfactant Stabilized model  SS model! detailed in Chapter 4 of this work.
These models have some points in common, but they also have many differences.
This is partly because each seeks to explain the nature of the system at a more
fundamental level than its predecessor. In this section the three models are
compared and their salient features discussed.

The principle components of the surfactant nucleus are the nuclear skin
and the gas cavity which it encloses. Any model must at least implicitly
account for certain physical properties of this system. In particular, it must:
�! outline the general structure of the nucleus; �! identify the type and
structure of the skin; �! stipulate an equation of state for the surfactant
material; �! discuss the gaseous permeability of the skin; and �! determine
the stability of the system. The manner in which each of the three proposed
models deals with these properties is discussed below.

1. General structure of the system. In all three madels the nucleus is
assumed to be spherical, The skin is of uniform thickness, and this thickness
is small compared with the nuclear radius.

2. Type and structure of the skin. The skin of the FH model is composed
of one or more layers of soluble organic molecules, the VP model uses one or
more layers of insoluble surfactant molecules, and the SS model employs a mono-
laycr of insoluble surfactant molecules.



3. Surfactant equation of state. The most detailed treatment of the
surfactant equation of state is given in the SS model. In this model the ten-
sion of the skin, Ii, is assumed to depend on the surface area per surfactant
molecule, A. The functional dependence II A! is derived from experimental mea-
surements of common surface-active substances. The value of II can vary between
zero and an upper limit of II>~�->. This upper limit is related explicitly to the
desorption of energy of the surfactant and the dynamic state of the system.

�.1!

where H A! is Heavyside's unit step function. Comparison of this equation with
the SS model's force-area relationship shows that the surfactant used in the
VP model is a special type of that used in the SS model.

The value of II~~ used in the VP model is found empirically to depend on
the equilibrium size of the nucleus, i o, in the approximate manner

+~/Y~ = 2.00 + 2.40 vo �.2}

where the initial radius i"o is expressed in micrometers. If Ii~~z is assumed to
be determined only by the chemical nature of the surfactant material, then this
result indicates that nuclei of different initial sizes are stabilized with
different surfactants or differing mixutres of surfactant materials. If iim~
depends mostly on the nuclear curvature, or other non-chemical effects, then
this inference is not valid.

The organic skins used in the FH model obey the particularly simple equa-
tion of state

�.3}II = Constant

Changes in the nuclear radius are calculated using the equation given by Love
�944} for an ideal elastic shell. Yount �979b} has demonstrated that the
application of this equation is equivalent to constraining II to be constant
and employing equation �.8} for the mechanical equilibrium of the system to
calculate differential changes in the nuclear radius.

4, Permeability of the skin. The permeability of the skin in the SS
model depends on the fractional area of the liquid-gas interface covered by
surfactant molecules. The specific resistivity ~ thus depends on the molec-
ular area A and may have any value between zero and infinity. When the
surfactant molecules are packed closely together and thc skin tension is
therefore near the maximum, the diffusive resistivity is very large; when the
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The VP model also assumes that II depends on A and has an upper limit II<~,
but it does not explicitly employ an equation of state relating II to A. The
value of II is permitted to assume whatever value is required to maintain the
mechanical equilibrium of the system. It is assumed that the compressibility
of the skin is sufficiently small that a negligible amount of work is done in a
compression of the skin to its limiting tension, and that the nuclear radius
remains nearly constant during the skin compression. The functional dependence
II A! used in this model is thus arbitrarily close to the form



molecules are farther apart, so that the tension decreases, the resistivity
approaches zero.

The VP rnode1, as its name implies, also considers the diffusive resistance
of the surfactant skin to be variable. In this case, however, only two values
are considered: r = 0, a fully permeable skin, or r = , a fully impermeable
skin. This change in permeability is attributed physically to the changing area
per surfactant molecule, but it should be noted that the change in resistivity
occurs after the skin tension has reached its maximum value and is being held
constant. The diffusive resistivity in this model thus does not depend explic-
itly on the skin tension, but instead is determined by a change in the ambient
pressure.

In the FH model the diffusive resistance of the skin is always infinite.
This impermeability is of crucial importance to this model because it is
necessary to maintain a pressure differential between the internal gas and the
ambient environment. The impermeable nature of the nucleus contradicts the
experimental results of Strasberg �956! and this contradiction caused Herzfeld
�957! to withdraw the mode1.

5. Stability of the nuclear skin. The organic compounds employed in the
FH model are assumed to be soluble in the fluid surrounding the nucleus, For
such soluble comporrnds the concentration of molecules at a liquid-gas interface
is determined by the rate of diffusion of rnolecules from the skin into the
fluid. For sufficiently slow cha~ges in the nuclear radius, the molecular con-
centration at the interface will remain fixed at the equilibrium value. The
value of 11 therefore depends only on the chemical properties of the liquid-
surfactant-gas system, and not on the size of the nucleus.

The surface-active materials used in the VP and SS models are assumed to
be nearly insoluble in the surrounding field. These molecules are bound by
strong electro-chemical interactions, and work must be done to remove them
from the interface.

ln the SS model the desorption energy of the surface-active molecules is
explicitly related to the maximum allowable skin tension. If an attempt is
made to further compress a nucleus whose skin is already stressed to the rnaxi-
murn tension, individual rnolecules are lost from the skin at a rate sufficient
to maintain II at a value less than or equal to II ~. Molecules desorbed from
the skin into the fluid are assumed to be permanently inaccessible to the
system.

The molecular stability of the VP model is similar to that of the SS model
in that material is removed from the interface when a nucleus is additionally
compressed beyond the point when II first equals 11~~. In this model, however,
molecules are stored in the system and are available for use in any subsequent
re-expansion of the skin. This may be accomplished by assuming, for example,
that the lost rnolecules are either trapped inside the nucleus or form into a
mul.tilayer sheet. No attempt is made to derive the value of II~~ from the
chemica properties of known surfactants or from geometric considerations.

The three models outlined above may be regarded as successively more
detailed treatments of the same physical system. The FH model can be viewed
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as a special case of the VP model in which only the impermeable equations are
considered, while the VP model itself is in many ways a special case of the
SS model. Through a suitable choice of the parameters associated with the SS
model it is possible to replicate several features of the VP model, including
the surfactant equation of state and the permeable-impermeable nature of the
nuclear skin. Important differences between these two models remain, however.
The values of IIm~ are generally larger in the SS model than in the VP model
for a nucleus of the same initial size. For identical dive profiles, corres-
pondingly more rnolecules are removed from the skin of a VP nucleus than an SS
model nucleus. While the material desorbed from the SS model nuclear skin is
permanently lost, the molecules removed from the skin of a VP nucleus are stored
and may be used to partially repopulate the skin during decompression. This
skin restoration does not occur in the SS model.

The most basic difference between the SS and VP models, however, involves
the computational methods employed in their construction. The VP model is an
analytic approximation model in the sense that it simplifies some of the rele-
vant physics in order to produce results in closed-form expressions. Examples
of the type of approximations used in the VP model are the surfactant force
curve in equation �.I! and the idealized permeable-impermeable nature of the
skin. In contrast, the SS model is a differential model that calculates the
response of the system to changes in its environment by numerical techniques.
The physical behavior of the components of the SS model can be stipulated to
whatever accuracy is desired. As an example, the approximation to the sur-
factant force curve used in the VP model is replaced by an analytic equation;
if additional accuracy is desired, this equation can be replaced by the data
on an individual surfactant. This model therefore provides a deeper view into
the basic physics of the surfactant nucleus than does the VP model, and it
enables the study of some phenomena, such as bubble nucleation in non-saturated
fluids and non-saturation decompression schedules, that have not been addressed
by the VP model.
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CHAPTER 4. THE SURFACTANT STABILIZED MODEL

In this chapter the equations describing the Surfactant Stabilized model
are presented. Che relevant physics is introduced in section 4.1, the algo-
rithm developed to solve these equations discussed in section 4.2, and the model
predict ions compared witii the gelatin data in section 4. 3.

4.1. The mathematical structure of the Surfactant Stabilized model

As discussed in Chapter 3, the Surfactant Stabilized model considers a
cavitation nucleus to be a gas phase enclosed in a gas-permeable monomolecular
skin of surface-active molecules. It is assumed that the parameters describing
the nucleus are angularly isotropic and thus spacially dependent on a single
radial variable, This is equivalent to assuming that the nucleus is spherical
and that the surfactant skin is uniform in composition and thickness. A cross-
section of the nucleus is shown in Figure 4.1. The nuclear radius 1 is defined
to be the radius of the liquid-gas dividing surface. The surfactant skin has
an inner radius of 1 I, an outer radius of 1 >, and a thickness of tspj717 : 1'p � 1'I.
In all cases considered in this work, it is assumed that the thickness of the
skin is much less than the nuclear radius  t.,p7.'77 « 7 ! and that the same radius
can be used for both the gas-surfactant and surfactant-liquid interfaces� I = 7" 2 = 1'!- ID- GAS

RFACE
FLU

SKI

Figure Il. I . Cross-sectional view of a surfactant-
stabilized nucleus

The nucleus is assumed to be filled with a single species of gas. The
amount of gas is N moles, and the internal gas pressure is p. The equation of
state relating 1, iV, and p is taken to be the second-order virial expansion of
the ideal gas law,

PV = NBT l + PBp + P~Cp!



aT ~T = 0
a*

�. 2!

The amount of gas contained in the nucleus is not necessarily constant, it
varies as gas diffuses into or out of the nucleus through the surfactant skin.
Because the nuc.lei are observed to be much smaller than the minimum size given
by equation �.12b! for diffusion-limited gas transfer, the role of gas flow is
perfusion-limited. The flow rate is given by the equation

�. 3!

where U i"! is the concentration of gas in the fluid just beyond the surfactant
skin, Uz is the concentration necessary to establish equilibrium with the gas
in the nucleus, and e is a proportionality parameter. The value of u is not
constant, but vari.es in response to changes in the skin. Equation �.5b! sets
the relationship between p and Uo to be

Uo �,4!

where 0 is Henry's solubility constant.

The fluid around the n«cleus is exposed to an ambient pressure of p~p�! .
The amount of gas dissolved in the fluid, i.e., the gas tension, will vary with
both time and position in the sample, It is assumed that the scale length for
spatial changes in the gas tension is large compared with the size of the
nucleus. This allows the nucleus to be viewed as being contained within an
isotropic, quasi-infinite sphere of fluid in which the equilibrium gas tension
varies with time. This region, referred to as the "nuclear domain," is shown

Figure

lecithin the nuclear domain, variations in the gas tension are related pri-
marily to the flow of gas through the nuclear skin. The gas concentration in
this region U p, .! is therefore spherically symmetric, depending only on time
and the radial distance p from the center of the nucleus. Outside of the
nuclear domain the gas tension I is independent of nuc.lear processes and is
determined by the global geometry of the fluid sample and the ambient pressure
history.
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where V is the internal volume of the nucleus, A is thc universal gas constant,
2' is the gas tempcrat«re, and F3> and C,, are the first two virial coefficients of
the gas. The gas temperature i~s taken to be constant and equal to the tempera-
ture of the surrounding fluid, hence



TI N

EAR DOMAIN

Figure 4.2. The nuclear domain

� =DU U+v - VU,
3U �. sa!

where D is the diffusion constant and v is the velocity of the fluid. The
boundary conditions on this equation are that at large radial distances U p,f!
becomes equal to the asymptotic concentration hi t!,

�. 5b!

that the rate of gas transport in the fluid at the interface is equal to the
gas flux through the skin,

�.5c!

and that the initial distribution of gas in the nuclear domain is given by the
f unct ion g  p!,

�. 5d!U p,O! = g p!

The asymptotic gas concentratio~ V t! must be found by an independent calcula-
tion.

The transport of gas through the fluid within the nuclear domain is modeled
by the Fickian diffusion equation



The surface tension of the liquid around the nucleus exerts a pressure on
the liquid-gas interface of 2y/r . The surfactant molecules oppose the surface
tension of the fiuid, lowering it by an amount JI. The total surface pressure
is thus

psurgaee = �. 6!

The value of II depends on the type and number of surfactant molecules in the
skin, as well as upon r and dz/d5. The physics of surfactant monolayers at
liquid-gas interfaces is discussed in subsection 4.1.1, where the functional
form of JI is investigated. Tolman �949! showed from thermodynamic considera-
tions that the value of the surface tension should be affected by the curvature
of a surface. His result is

y = y /� + 2E/r! �. 7!

It is postulated that the nucleus is in mechanical equilibrium at all
times. This means that the vector sum of the forces acting at any point is
always close to zero. Therefore, the difference between the total inward and
outward pressures must vanish. Hence,

p~~y + 2 y � JI!/z = p �. Sa!

and

2  ~ � » = ~ p � p~~! . �.8b!

This equation differs from the corresponding relationship for the equilibrium
of a bubble by the addition of the 2JI/r term, which is due to the surfactant
skin.

Equations �.1!, �.3!, and �.8! may be combined and differentiated to
yield

�. 9a!

and

[V � NRT B + 2pC !]dp + pdV = RT i + pB + p~C !dN . �. 9b!

Equation �.9b! may be simplified by introducing the new variables V and R
defined by

V - =V � NR'l' Bp + 2pcp!

R = R l + pBp + p~Cp!

�. 10a!

�. 10b!
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where h is on the order of 10 cm. The smallest nuclear radius encountered in

this work is larger than 4 x 10 ~ cm, a curvature which reduces the surface ten-
sion by 0.5 percent. In view of this result, the simplifying assumption is made
that y is a constant and independent of the nuclear radius.



Note that for an ideal gas, Bp and Cp vanish by definition, so that V becomes
equal to V and 8 becomes equal to B. Substituting V and B into equation �,9b!
yields

dp �  RTdN � pdV!/V . � 11!

Substituting this last result in equation �.9a!, one obtains

~ p- p~b> +> ~=T p=
dv

v v
-rdp~g + 2dII = 0 �.12!

Solving this equation for cb' yields

R
T � clap~

V

~ 4~ dIIr~=- 2 � �  p-p p!
V

�. 13!

Finally, dividing by dt and substituting for dN/dt with equation �.3! produces
the desired expression,

dz' � V spam&DRTn, U  r ! � Sp! � � r
V

V dn
p =  p parnb!V 22

�. 14!

Equation �.14! relates the instantaneous values of the parameters with the
differential increment of the radius. Evidently, for a permeable nucleus of
finite size held at constant ambient pressure to be stable in the sense that
dr/dt is zero, it is necessary that U p! be equal to Sp, and p be equal to p~g:

�.15a!p = pamb

and

U ,t! = Sp �. 15b!

When put in equation �.8!, this condition for nuclear stability clearly
requires that the total surface pressure vanish. A necessary and sufficient
condition for the stability of a surfactant-stabilized nucleus in an isobaric
environment is that the total surface pressure be zero, which implies the
relationship

�.16!

A nucleus existing in a saturated fluid held at constant pressure such that
equations �.15! and �.1b! are satisfied is said to be in "stable equilibrium."
Because II is a function of the single variable A, the interfacial area per sur-
factant molecule, the condition stated by equation �.lb! is equivalent to
demanding that the surface area of the nucleus be equal to the product of the
number of surfactant molecules and the particular molecular area Ay which results
in a value of II equal to y. The equilibrium size of a surfactant-stabilized
nucleus is thus determined uniquely by the chemical nature of the surfactant
material and by the number of' such molecules in the nuclear skin.



4.1.1. Ph sics of insoluble surfactant monola ers at li uid- as interfaces

The definitive property of surface-active substances is their ability to
reduce the free energy of an interface. If the surface tension of a pure two-
component system is y~, the addition of a surfactant to the interface will
reduce the surface tension by an amount JI to a final value of y. Hence, these
quantities are related by the expression

�. 17!

The parameter jl is universally known as the "surface pressure of the sur-
factant." The name is a misnomer, since the units are actually those of a ten-
sion or compression and not a pressure. The surface pressure is not necessarily
constant; it can vary with the concentration of surface-active molecules on the
interface, increasing as the mean distance between molecules decreases. The most
important quantity involved in the functional dependence oF II is the average area
per surface-active molecule. In many cases II is a function only of this area,

�. I8!

where A is commonly measured in square-angstroms, i.e., in units of 10 cm

The surfactants of interest in this work are those that reside at liquid-
gas interfaces. Such molecules are composed of two functional parts: a polar
group at one end and a non-polar hydrocarbon chain at the other. If the sepa-
ration between these two regions is more than a few angstroms, each group will
be chemically unaffected by the other, and each will independently seek energy
equilibrium within the system, which is Langmuir's principle of independent
action. By definition, it is energetically favorable for the polar group to be
immersed in water and the hydrocarbon tail in other hydrocarbons or in gas. If
the spacing between these two chemical groups exceeds the thickness of the
liquid-gas interfacial region, then such a molecule resident at the dividing
surface will be aligned with its polar head in the fluid and the hydrocarbon
tail in the gas, as shown in Figure 4.3. To move the molecule entirely into
the liquid, work must be done to pull the hydrocarbon tail through the inter-
face and into the fluid. Similarly, to move the molecule into the gas, work is
required to translate the polar head out of the liquid and through the inter-
facial region.

A schematic potential energy diagram for the surfactant-liquid-gas system
is shown in Figure 4.4. The work required to desorb or evaporate a molecule,
Za>I and Kerr<>, respectively, will in general depend on the concentration of
similar molecules in the surrounding liquid or gas, For the special case of
nearly insoluble substances, the concentration of surfactant molecules in the
liquid and gas is nearly zero, and the evaporation and desorption energies are
sensibly concentration independent, The surface-active molecules considered in
the SS model are assumed to be nearly insoluble in both water and gas, and that
the energies E'<<I and Kz<z are taken to be constant. A lower limit to the
values of these energies may be established from thermodynamic arguments. If
the surfactant molecules are assumed to be in thermodynamic equilibrium, then
they have an average thermal energy of I/2 kT in the radial direction. For the
molecules to be kept at the interface it is clearly necessary that both R'8>I
and E<><> exceed the average thermal kinetic energy, which is about 2.0 x 10
erg at room temperature.
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The form of the II A! relation for surfactants has been the subject of much
laboratory work, beginning with the studies of insoluble oil films on water by
Pockels in l89l. The usual method employed in determining II A! is to spread a
known amount af material on a fluid surface to form a monomolecular layer. A
thin linear wire is used to compress the film, and as the monolayer is compressed
the force exerted on the wire rises, The area per molecule A is found by divid-
ing the area covered by the film by the number of molecules. The value of II is
computed by dividing the force by the length of the wire. While simple in con-
cept, the work is difficult in practice. Gaines  l966! gave a complete discus-
sion of the techniques used in making these measurements.

A schematic force-area diagram characteristic of long-chain insoluble
surfactants is shown in Figure 4.5. Following the nomenclature of Gaines �966!,
this curve may be divided into three monolayer states: gaseous, expanded, and
condensed. In the gaseous region the surface area per molecule is much larger
than the geometric cross-section area of a molecule,

MAX

IY

co 7

Ld

CO

MOLECULAR AREA

Figure 4.5. Force-area diagram of a hypotheticai
surface-active substance
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A»Ao �. 19!

where Ac is the minimum possible molecular area. The molecules may be viewed
as forming a two-dimensional ideal gas with average molecular energy kT; the
equation of state for this idealized system is

HA = kT . �. 20!

This equation can be made more realistic by allowing for the finite area of each
molecule,

H A-A,! =kT. �. 20!

which is the two-dimensional equivalent of the van der Waal's equation of state
for non-ideal gases. It has been shown by Adam and Jessop �926! and by Adam
�928! that the behavior of many real materials approaches this equation at
sufficiently large values of A.

The condensed state is of primary interest in this work since it. is here
that large va1ues of the surface pressure  H = yc! are encountered. In this
domain A is nearly equal to Ac, and the surfactant molecules are almost solidly
packed together. As seen in Figure 4.5, the dependence of H on A becomes very
sharp as A approaches Ac, with the slope dH/dA increasing rapidly. An equation
of state representative of surfactant materials in the condensed state has been
empirically determined by fitting the observations of saturated lecithins by
Phillips and Chapman �968! with various mathematical functions. The two-
parameter representation

H A! = C,e-A~AI �, 22!

The behavior of monolayers in the expanded state is characterized by sev-
eral shallow curves in the H A! diagram, which usually include one or more
critical points, possibly signifying phase transitions in the surfactant mate-
rial. Films in this region behave very much like two-dimensional liquids or
super-liquids, and this region is often subdivided into several discrete states,
such as the liquid-expanded, intermediate, and liquid-condensed states recog-
nized by Harkins t1952!. There is controversy over the molecular arrangements
and phase transitions which lead to the observed behavior. For purposes of the
Surfactant Stabilized model, the behavior of the monolayer in this region is of
little practical interest since the model is relatively insensitive to the exact
nature of this portion of the H A! curve. It is only required that H A! mono-
tonically decreases as A increases through the expanded and gaseous regions.
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fits these data very well, as can be seen in Figure 4.6. The H A! curves for
other condensed monolayers, such as fatty alcohols and acids, are, however, more
complicated. A rigorous treatment of these materials at moderate values of H
 H = 20 +re/cd! would require a more detailed equation of state than an expo-
nential, but for large values of H, most surfactants are satisfactoriIy modeled
by this equation. Because the high-tension region of the H A! curve is of pri-
mary interest in this study, it is assumed that equation �.22! represents the
proper form of the II A! relationship for the surfactant material used in the
SS model and that this equation adequately describes the H A! curve for all
values of A.
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Figure 4.6. Force-area diagrams of two surfactants
 Data points measured from Phi 1 I ips
and Chapman, I968!

Equation �.22! gives the functional form of the II A! relation adopted in
this work. The maximum value of II predicted by this equation is that which
occurs at the minimum possible area, II A<!. In practice the maximum value of
the surface pressure is limited by the stability of the surfactant skin to
values well below H A !. The upper limit to II, Hm~, is reached when it becomes

0energetically favorable for the surfactant molecules to desorb into the surround-
ing fluid rather than to be further compressed.

To develop an analytic expression for the limit Iim~ that is applicable to
a stationary monolayer, consider the work done in the compression of the mono-
layer by an amount equal to the area of a single molecule.

aV = Ii A!A �. 23!

If the energy hV is larger than the desorption energy Eeoc, then the work done
in decreasing the surface area of the skin by an amount A will be less if a
molecule leaves the skin than if all the molecules are further compressed. The



upper limit to H for a stationary monolayer is thus determined by the critical
relationship

Hmax' = ~sot/Am~a �. 24!

where Am>n is that area which satisfies the equation

-Amirv AIH Amain! = C]e = ZsoPAmin �. 25!

As is intuitively expected, Hm~ is greater for materials having larger desorp-
tion energies.

limes 15 + 2. 54 x 10~ /dtA/dt dyne/em �. 26!

The constant appearing in this equation may be identified with the Esog/Am~n
term in equation �.24!. The general expression for 11m~ is thus

yssxs = ysot/<mes + yl~>l<* �. 27!

where BI is a parameter characteristic of the surfactant-fluid combination.
The value dA/dt to be used in this equation is the rate that occurred just
before Hm~ was reached. The value of 11m~ therefore depends on the dynamic
state of the nucleus under consideration.

TABLE 4.]. OBSERVED DEPENDENCE OF Hmax ON dA/dt

~dA/dt  cm/sec! "max  dyne/cm!

2.01 x 10

5.96 x 10 Io
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23

Source: Rab inov I tch et a I . �960!
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The value of Hm~ given by equation �.24! is that characteristic of a
stationary monolayer. In laboratory work it has been found that the limiting
value of H depends on the rate at which the skin is compressed, Hm~ increasing
with increasing values of the molecular compression rate  dA/dt!. The measure-
ments reported by Rabinovitch et al. �960! of Hm~  dA/dt! for stearic acid
are reproduced in Table 4.1; these data indicate that the functional dependence
of IIm~ on dA/dt for this particular nonstationary monolayer can be expressed
as



If an attempt is made to adjust the system such that II exceeds II~~, mole-
cules will desorb from the skin into the liquid. It is assumed that this loss
will occur at a rate sufficient to insure that Ii is less than or equal to IIm~
at all times. This is tantamount to assuming that the time scale for changes
in the nuclear parameters are long compared with the tirrre required for moleculcs
to leave the skin. This later time may be estimated from the thickness of the
skin  -10 nm! and the average thermal velocity in the radial direction as

L4 = Csee; /u = t,.I . ~kT/m = 20 sea �.28!

where the molecular weight has been assumed to be 300 amu. Because this time is
short compared with the most rapid changes in internal parameters encountered in
this work, q~'/ dq>/dr.'! greater than 10 ~ sec, the above assumption is clearly
justified. The stability limit II~~ is evidently a true upper limit to II, and
for the systems and materials studied in this work II is always less than or equal
to

Equations �.22! and �. 27! give that functional form of the Ii A! relation
used in the SS model. A given surface-active substance is specified by the four
parameters AI, 8>, C<, and R»g. Because the type of surfactant material actu-
ally occurring in the nuclei is not known a pz'zor"i, these four parameters must
be deduced from observations. The knowledge of these parameters gained from
model fitting will eventually permit the tentative identificatio~ of the surface-
active material involved in these nuclei.

4.2. Numerical inte ration of the SS model e uations

The differential equations �.9! along with the surfactant equations of
state �.22! and �.27!, and the diffusion equations �.5! form a set of coupled,
non-linear, second-order partial differential equations which describe the
dynamical behavior of the SS model. A closed-form analytic solution to this
set of equations has not yet been developed; indeed, experience with such prob-
lems indicates that the discovery of such a solution would be downright miracu-
lous. In the absence of an analytic solution, an algorithm has been developed
to integrate the equations numerically, When used in a computer program, this
algorithm traces the physical parameters describing the nucleus through a given
pressure profile. The program is designed to permit comparison of the SS model
with the results of the gelatin model experiments. This is done by following a
nucleus through a standard pressure profile and by determining whether it remains
of sub-micrometer size or grows into a gross bubble.

4.2,1. Calculation of the ambient ressure and of the as tension in the
gelatin

The generalized pressure profile used in the SS model, shown in Figure
4.7, is composed of a number of linear prcssure changes. These segments are
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The algorithm is composed of three parts: the first computes the gas ten-
sion in the general vicinity of the nucleus; the second computes the gas tension
in the nuclear domain; and the third integrates equations �.9! given the current
value of U p!, By separating the large-scale depth variations of the first cal-
culation from the radial variations of the second, the combined problem is
greatly simplified. Each of the three procedures is examined below.







V~ t + ht! = I ~  t! + bV~.

= V>. t! + htD[V 2 t! + V 2 t! � 2V< t!]/DZ2 �,35!

There are two regions in which this equation does not apply, these being
the j = 2 and j = Nt ~ layers. In the case of the j = Nt � layer, the flux
through the interface with the j+2 layer is zero because this region is an
impermeable wall. Hence,

V  t + 5t! = VN  t! + htD[Jv' 2  t! � V  t!]/DZ
tau

�. 3e!

~ = D Dl [~Pamb  t! ~l  t! ] ! �. 37!

where the constant D> is defined to be the gas uptake parameter and has the
units of an inverse length. The value of D> depends on the combination of
liquid and gas, but not on the pressure or gas concentration. The total flux
into the first layer is now given by the equation

� � = D Dl [SP~g  t! � Vl  t! ] + [V2  t! � V,  t! ]/DZ!dv.
at

�. 38!

The gas concentration becomes

Vl  t + Dt! = Vl  t! + AtD Dl [SParnb t! � 4'y  t! ]DZ + V2  t! � Vl  t! !/ DZ! . �. 39!

Equations �.35!, �.3e!, and �.39! allow the gas concentration at any
point within the gelatin to be calculated by time-step integration, given the
initial gas concentration V>�! and the ambient pressure profile p~p t!. For
the purpose of these model calculations, it is assumed that at time zero the
gelatin is fully saturated with the ambient gas. The initial condition on
V>. t! is therefore

�.40!I-�! = Sp ~�!� : Sp

4.2.2, Calculation of the as tension in the nuclear domain

The nuclear domain, as defined in section 4.1, is a spherical volume cen-
tered on the nucleus enclosing that portion of the gelatin acting directly on
the nucleus. It is assumed that the size of this sphere is small compared with
the thickness of the integration layers in the gelatin slab, but large compared
with the nuclear radius. The depth dependence of the gas tension can then be
neglected locally, while the tension at the outer boundary of the nuclear domain
is insensitive to gas exchange with the nucleus itself. The radius of the
nuclear domain, p~~, is thus bounded by

�.41!DZ !! pm~

53,

For the first layer, the interface between the gth and j+2th layers is the
gelatin-gas dividing surface. The flux of gas through this interface is modeled
by the perfusion equation



In practice the optimum size for pm~ is found to be about 25 times the initial
radius of the nucleus,

pm' = ~~+o �. 42!

and that the model calculations are relatively insensitive to the value of
pm' ~

For the larger nuclei studied in this project, ro is 1 pm, and p~~ is then
25 Nm. The layer thickness DZ used in the diffusion calculation is 500 >m.
Thus, in all cases considered in this work the choice of p~~ given by equation
�.42! satisfies the conditions in equation �.41!. This is to say that it is
legitimate to perform the diffusion calculations by separating the problem into
nuclear and non-nuclear domains as first suggested in section 4.1.

The procedure for calculating the gas tension in the nuclear domain is simi-
lar to that described in subsection 4.2.1 for diffusion in the gelatin slab. As
shown in Figure 4.9, the nuclear domain is divided into n thin shells, the gas
concentration in the jt" shell at time 0 being U �!. The flux of gas flowing

Jinto the jth shell through the interface with the j+2th shell is given by Fick's
law:

�. 43!

SHELL NUMBER

NUCLEUS

W~ Ntou
GAS CONCENTRATION ~

Figure 4.9. Division of the nuclear domain into n
thin shells



where

Dp = [Om~ � r t!]In �. 44!

is the thickness of the individual shells. The total. rate at which gas enters
the jth shell is then

dz>
TrP  [2' t! + ~pp]2 [U~,+g  t! U~  t! ]

+ [r t! +  j � 1!pp] [U>' Z t! � U> t!]!jpp, 2 �. 45!

�.46!

where the volume of the jt" shell is

V~ = � m [r t! + jpp! � [r t! +  Z � 1!Dp] !4
J 8 �. 47!

The gas concentration at time  t + ht! is then

U> t + ht! = U> t! + AU> . �. 48!

There are two regions in which this equation is not applicable. In the
outermost shell, j is equal to n and the value of U +g is therefore not well
defined. The gas flux through this outermost interface is taken to be

~ = D[~Nt~~ >! �. 49!

where VNt � t! is the gas concentration at the bottom of the gelatin slab, as
determined by equation �.36!. The net rate at which gas enters the nth shell
is thus given by the equation

dNn = 4mD [r t! + npp] [VNt  t! � Un t!]
+ [r t! +  n - !!Dp] [Un-g  ! � Un t!]!f~pp �. 50!

The remaining .pecial region is the first shell, where the inner interface
is the liquid-surfactant dividing surface. The gas flux across this interface
is modeled by the perfusion equation

F =  8 ~ D ~ Dl! [+ t! Ul t!] �.51!

Maintaining this gas flow for a time interval ht will change the concentra-
tion of gas in this shell by an amount:



where Dj is the gas uptake parameter and 8 is the fractional area of the inter-
face accessible for gas diffusion. The factor 8 must be included because a
portion of the liquid-gas interface is blocked with surfactant molecules. The
resistivity of the monolayer to gas diffusion is assumed to depend linearly on
the fractional area covered by surfactant material. If the interface were
densely packed with molecules, then the value of 8 would approach zero, but if
no molecules were present, then 8 would be unity. The use of the fractional
area assumption to model the resistivity of a monolayer to gas transport has
been investigated by Barnes et al, �970!, who showed that it results in the
minimum possible resistance.

The expression for 8 adopted for use in the SS model is

8 = 2 �  Amz � Appal!/A �. 52!

where Arrrz~ is the minimum allowable molecular surface area as defined by equa-
tion �,25!, and Agqfy is the area available for gas diffusion at maximum skin
tension. That the value of Agzyy does not vanish reflects the fact that a mono-
layer of surfactant rnolecules packed together at rninirnurn area does not form a
perfectly impermeable skin, but instead reduces the permeability to a small but
finite value. Measurements of the diffusive resistance of monolayers at the
air-water interface to the transport of various gases have been reported by
Hawke and Alexander �962! and Blank �962!. The parameter Ag>yf is not known
a pz'zorz and must be determined by fitting the model to the data. In practice,
the value of Ag>yy is found to have little effect on the results of saturatio~
dives, and its magnitude is established largely from analysis of non-saturation
experiments, such as the crushing-time study reported in section 2.5.

The total rate at which gas enters the first shell is given by

dt = <rrD 8> DI [Sp � U]1 + [x' + Dp j [Uy � Ui]/Dp! �. 53!

U> �! = Sp p�!� : Sp �. 54!

An examination of equation �.44] shows that the spacing between the shells
in the nuclear domain is not constant, but varies as the nucleus changes size.
Because the radius of the inner boundary of the nuclear domain varies with time
while the size of the outer boundary is held fixed, the position of each shell
is time dependent. If, during a time At, the nuclear radius changes by an
amount W, the radius of the outer surface of the jth shell, p - t!, moves to
the new position given by

�.55!p ~  t + dt! = p . t! + M� � j jn!
j

Equations �.45!, �. 50!, and �. 53!, along with equation �.48!, allow the gas
concentrations U<  t + At! to be calculated, given the values of U> t!, Vyt z t!,
p t!, and 8 t!. As in subsection 4.2.1, it is assumed that at time zero the
material in the nuclear domain is fully saturated with gas. The initial values
of U>  t! are therefore



The volume of the j shell also varies in response to the change in radius,
the new value being given by

V- t + At! = � m[p. t + At!~ � p ~  t + At�]
3 J-2 �. 56a!

The change in volume caused by a small variation in radius hr is denoted by AV>,
which is related approximately to Ar by the equation

AV< � � V>- t + At! � V>- t!

4zAr[p .  t! � � j/n! - p .  t! � - g/n - 2/n!]
j-2 �. 56b!

Now consider the first shell. If Ar is less than zero, then AV> is greater
than zero, and the volume of this shell is increased by the decrement in radius.
In order to filI the new shell with fluid, an amount af material AV> must be
obtained from the old j � 2 shell. The gas concentration in the new j � 2 shell
is therefore given by the weighted average

UI  t + At! � [VI  t!UI  t! + VIUE t!]/Vl  t + At! �.57!

Similarly, the new ~' = 2 shell must now be filled with material from the old
j � 2 and j = 3 shells, which produces a new concentration of

U~ t + At! =  [vp t! � AVl]Up t! + [AVy + AVg]Us t!!/Vp t + At! �. 58!

The process of filling the j new shell with material from the jt" and
 j-2!th old shells will in general yield a new gas concentration of

0-2U~  t + Ct'! = V~ t! - g AVt U~  t! +  !~ 't!  t! g 't  t /V!  t + tt!
R=2 %=2

�. 59!

For the special case of the nth shell, we obtain

n-2 j
V  't! � g AVZ U� t! + Alg  t! g AVZ

J � 2 R,=2
V� t + at! . �.eO!

In equations �.59! and �.60!, it is assumed that the change in radius is
sufficiently small that the inequality

�. 61!

is always satisfied; this assures that all of the material needed to fill the
new jt shell can be found in the old jth and  j+2! " shells.

The entire procedure for calculating U> t + At! is carried out in two
separate steps. In the first step, equations �.48!, �.45!, and �.50! are
used to calculate the change in concentration due to gas diffusion during the
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time interval ht. Equations �.59! and �.60! are then used to compute the
variations due to the change in nuclear radius occurring during the same time
interval.

4.2.3. Calculation of differential variations in the internal arameters

The internal parameters describing the nucleus at a given time are the
nuclear radius r t!, the internal gas pressure p t!, the amount of gas in the
nucleus N t!, and the number of surfactant molecules in the skin N~oZ t!. The
parameters z' t!, p t!, and N t! are related through the equation of state in
equation �.1!. Equation �.8! places a constraint among r, p, and the surface
pressure II, while equation �.22! gives the functional dependence of II on A, the
surface area per surfactant molecule. The parameters A, N<oZ, and r are con-
nected through the geometric relationship

4vrr = ANmoZ2 �. 62!

The concentration difference appearing in equation �.3! can be evaluated
by replacing U r,t! with UI t!, as determined by equation �.53!. The param-
eter a in equation �.3! may oe identified with the leading terms in equation
�.51!,

Q t! = D ' D] ~ H t! �.63!

The derivative dll/L in equation �.14! can be calculated using the definitions
in equations �.22! and �.62!,

dn n A! d

A I dr NmoZ
�. 64!

Writing out the derivative, this equation becomes

dII II Bmr 4 z2 ~moZ
AI NmoZ  NmoZ
 dz

�.65!

The dill<>Z/dr term in equation �.65! is associated with the desorption of
surfactant molecules from the nuclear skin into the surrounding fluid. In sub-
section 4.1.1 it was indicated that molecules will leave the skin if and only
if II exceeds the critical value +~. This limiting skin tension may be associ-
ated with that particular value of A which satisfies the equation

�.66!

dNmoZ =0;dz'! 0. �.6~!
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Thus, a small change in the radius hr will result in a loss of molecules if
and only if it results in a new value of A, A, that is less than or equal to
A<z'z. Evidently, if A is greater than or equal to A~~z, then an increment in
the radius will result in a larger value of the molecular area, and no material
will be lost as a result of this process. Hence,



If 6r is less than zero and if the value of A produced by this perturbation is
greater than A~~z, then there is again no molecular loss:

aNmpp
=0-A >A~,-�

QP
�. b8!

In the case that A is equal to A~zz and 6r is less than zero, the value of
A that would be predicted using equation �.62! with N~zg fixed is less than
A~z~. In this situation molecules will be lost from the interface. It is
assumed that the rate of molecular loss is sufficiently fast that the value of

can never be significantly less than A~~~. The decrement in radius will
therefore result in the desorption of enough molecules to maintain A equal to
A~z� and JI equal to II~~, or in mathematical terms,

~� � � 0; ch < 0 and A Amindn

lp �, e9!

Substituting this result into equation �.65! yields

~Nba L ~Nmo L
dr < 0 and A = A~zn

dr r
�. 70!

Equation �.14! can now be used to estimate the change in radius M occur-
ring during the short time interval ht:

dz
hz

dt
�. 71!

For this approximation to be valid, the value of drjdt must be sensibly constant
during the time step. Because the right-hand side of equation �,14! depends
mainly on the values of the internal parameters, a useful estimate of the long-
est time step that may accurately be used in equation �.71! can be derived by
demanding that none of the internal parameters change significantly during this
interval, This may be expressed analytically as choosing hi such that each of
the parameters of interest q . satisfies an equation of the form

dq ~ /
At jq.~6 �.72!

where 6 is an arbitrary accuracy parameter. Smaller values of 6 will result in
shorter time steps and better accuracy in the approximations.

When a surfactant molecule desorbs from the nuclear skin into the surround-
ing fluid, it is assumed to be permanently lost from the system, More explic-
itly, it is postulated that there is no significant accretion of surfactant
molecules from the fluid to the skin. Because molecules running into the
nucleus may be incorporated into the skin if II is less than II<~, this assump-
tion might not be valid over long time intervals. Hence, it is assumed only
that the time scale for molecules to be reacquired is long compared with the
5.25-hour duration of most gelatin experiments.



In practice Dt is calculated by choosing the smallest member of the set
Dt>, defined, in part, by

�. 73!At.- � 6q ..

The variables that must be considered in computing the time interval are:
 g 1 r!  g2 p!  g 3 8!, and  q>, JI! ~ An additional constraint on the choice of
ht is that it be small enough that the diffusion calculations in equations
�.48! and �.36! will be done correctly. The calculations will proceed
accurately only if At is less than or equal to O.h DX~/D where DX is the thick-
ness of an individual integration layer. It can be assured that the use of
equations �.48! and �.36! to compute U  t! and V  t! is valid by p1acing ele-
ments in the set ht>- of

= 0.5 DZ~/D �.74a!

and

ht6 = 0. 6 Dp2/'D �. 74b!

Two further additions to the set At> are necessary. The first is the time
remaining until the next change in dp~p/dt, which is given by

�. 7Sa!

where k is chosen such that

�.75b!k t � tk-2

4Vr Z + IL58! = Apjg~y~~g �. 76!

is satisfied. The element ht8 is therefore taken to be

�.77a!
cfz/dt

if dz'/dt is less than zero and A is greater than A~z~, or

As described in subsection 4.2.1, this constraint is necessary to insure that
dip/dt does not change discontinuously during the time step. The final limi-
tation on At is that which is necessary to prevent discontinuous changes in
dII/dr. As shown by equations �.68! and �.70!, such an abrupt change can occur
only as A decreases to A~><. If dr/dt is greater than zero, or dr/Ct is less
than zero and A is equal to ~q~, then this discontinuity will not occur. These
situations therefore place no constraint on ht, and the value of ht< is thus
set to the value of At5. In the case that dr/dt is less than zero and A is
greater than A~>.�, the interval ht8 is calculated by estimating when A will
become equal to A~z�, which occurs about when the equation



8 �.77b!

if &/dt. is greater than zero or dv/'dt is less than zero and A is greater than
~mzn.

The longest time step consistent with the choice of 6 can now be found by
determining the minimum element of Bt>. The values of the internal parameters
z, p, and N at time  t + At! can bc estimated using the equations

dq - t!
q - t + 5*! = q - t! + At �.78!

where the current values of ay~/dt, dq~/at, and dqg/dt are given by equations
�.14!, �.9a!, and �.9c!, respectively. A more accurate estimate can be made
by numerically calculating the second derivatives and by including these terms
in the expansion. This leads to

dq  t! > d q  t!
q>  t + nt! = q  t! + at +

dt gt2
�. 79!

where

d q>- t! aq  t! clq. t � at!
j

dt's dt
�. 80!

The number of surfactant molecules in the skin at time  t + Dt! can be
computed using equations �.67!, �.68!, and �.70!. This gives

N 7  t + At! � N~og t! �. 81a!

if ar/at is less than zero or cb/dt is greater than zero and A is greater than
A<><, and it gives

Nmo g
N~py  t + ht! = Nmg7  t! + 2 hr �.81b!

if dr/at is less than zero and A is less than or equal to Azzz.

Equations �.29!, �.30!, �.35!, �.48!, �.59!, �.79!, and �.81! allow
the complete state of the nucleus and environment to be determined at time
 t + ht!, given the condition of the system at time t. The only additional
requirement is an orderly system for performing the calculations, An outline
of the algorithm developed for use in this study is described below. Using
this algorithm it. is possible to trace accurately an initially stable nucleus
through any given pressure profile and to determine in detail its condition at
any later time,
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4.2.4. The calculational al orithm

The following algorithm organizes the work to be done in comput.ing the
state of the nuclear system at t-ime  t + At!, given the complete condition of
the system at time t and the ambient pressure profile,

Z. Use equations �.73 through 4.77! to determine the current value
of the eight elements of At J'

8. Compute II t + At! and N'og t + At! from equations �.22!, {4.62!,
and �.81!, and then use equation �.52! to find H t + At!.

9. Determine the second derivatives d~q ./4t~ from equation �.80!.

10. Use equations �.59! and �.60! to calculate the change in U> t!
due to the change in radius occurring during the time step.

ll. Compute U> t + bt! from equation �.48! and from equations �.45!,
�.50!, and �.53!.

By repeating this sequence it is possible to determine the state of the
nucleus and environment at any time. The accuracy of the calculations is deter-
mined by the parameter b, and they can be made arbitrarily exact by reducing 6
to a sufficiently small value,

A computer program employing this algorithm has been developed for use in
model calculations. In this program it is assumed that at time zero the system
is in stable equilibrium as defined in section 4.1. The initial conditions on
the internal parameters are therefore

pamb parnb
l

1. Use equations �,9a!, �. 9c!, and �. 14} to calculate dr'/dt,
dp/dt, and dN/ct, respectively.

3. Set AL to be the smallest clement of At ..

4. Calculate r t + At!, p t + At!, and N t + At! using equation
�.79!.

5. Compute the values of R t + at! and V t + dt! from the defini-
tions in equation �.10!.

6. Use equations �.29! and �.30! to determine p~p t + At! and
dp b t + At!/dt.

7. Using equations �.35!, �.36!, and �.38!, calculate the gas
concentrations V>.  t + At! .

12. Use equation �.27! to calculate II~~ t + At!.

�. 82a}

{4.82b!



A' = pV/ RT '2 + pB + p C' ! ] �. 82c!

and

j>q./gt~ = g �.82d!

The initial value of the nuclear radius vc is a free parameter, subject only to
the constraints that it be much smaller than the layer thickness DZ and much
larger than the skin thickness

In Table 4.2 the values of the various physical constants used in this pro-
gram are tabulated. In all of the work reported in this publication it is
assumed that the gas is nitrogen and the surrounding fluid is gelatin. The
diffusion properties of nitrogen in gelatin are assumed to be similar to those
of nitrogen in water. The surface tension of the gelatin used in the experi-
ments has been reported by Yount �977a! as Dl + 5 dyne/cm for gelatin batch A
and 5o + ~ c2ynejcm for gelatin batch D. The intermediate value of 54 dyne/cm
will be used in all future computational work.

TABI E 4.2. PHYSICAL CONSTANTS USED IN MODEL CALCULATIONS

ValueConstant Reference

295'K

8.31 x 10 erg/deg mole

Subsection 2,2.3T Temperature

R Universal gas constant

Bp First-order virial
coefficient -1.94 x 10 ~ bar Gray �963!

Gray �963!
Cp Second-order virial

coefficient 2.10 x 10 6 bar

y Gelatin-nitrogen
surface tension

S Solubility

D Diffusion coefficient

Dl Gas uptake constant

4.3 Results of SS model calculations

The results of numerical calculations performed using the SS model are
reported in this section. The goal of this computational program was to deter-
mine the values of the five constants that describe the surfactant skin: Al,
CI, Ag�yy, Ez>7, and Bl. This has been accomplished by using the SS model as
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54 dyne/cm

6.7 x 10 13 mole/cm dyne

1.8 x 10 cm /sec

183 cm

Subsection 4.2.4

Gerrard �976!

Barte 1 s �971!

Blank �962!



represented by a computer program to model the results of the gelatin experi-
ments reported in Chapter 2. The work may be conveniently divided into three
parts, each part serving to determine one or two of the five unknowns. In
subsection 4.3.1 the calculations of decompression thresholds for nuclei ini-
tially in stable equilibrium are used to find A~ and C'I,. the parameters R'>zan
and Bj are found through an analysis of rapid compression saturation-excursion
dives in subsection 4.3.2; and in subsection 4.3.3 the value of Agzyy is
deduced from a study of crushing-time experiments.

The calculations reported in this section were performed on the PDP 11/40
Computer of the University of Hawaii Institute for Astronomy. The analysis of
a single dive profile required between 3 and 10 minutes on this machine, and
data from about 700 such dives were computed in this program. Several types of
profiles were considered, including simple decompressions from ambient pressure,
decompressions following rapid compression and prolonged exposure at the maxi-
mum pressure, and decompressions following variable compressions and prolonged
exposures at various levels not necessarily equal to the maximum pressure.
These are discussed below,

4.3.1. Calculation of decom ression thresholds

The pressure profile employed in the decompression threshold calculations
consisted of a single pressure step that was accomplished in 10 seconds, during
which time the ambient pressure was decreased from the initial saturation pres-
sure p8 to the final pressure py. The supersaturation pressure p~e is therefore
equal to the pressure change hp:

�. 83!
psst = ~p = ps pr

Following decompression the numerical integration was continued for a length of
time sufficient to determine if bubble growth would occur.

By examining equation �.14!, it is seen that the nuclear radius will
increase if and only if the inequality

�.84!
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The threshold pressure for bubble formation is defined to be the maximum
pressure reduction to which an initially stable nucleus may be rapidly subjected
without its growing into a gross bubble. In practice, a useful definition of a
"gross bubble" is found to be a gas phase larger than twice the initial radius
of the nucleus. Because of the exponential character of the surfactant force
curve, this quadrupling of the nuclear surface is usually sufficient to reduce
lt to a very small value. At this point the nucleus acts much like a true bubble
free of surfactant constituents, and equation  !.20! therefore may be evaluated
to determine if' it will continue to grow. In all of the cases studied in this
work, it was found that after increasing in size by a factor of two, the nuclear
radius was larger than the critical radius for bubble growth. The above defini-
tion of a "gross bubble" was thus found to be satisfactory.



is satisfied. The validity of this inequality defines a "rapid decompression."
If dpz~p/dt. is sufficiently small that the condition fails, then the nucleus
will not grow during decompressi.on. The SS model thus predicts the existence
of a minimum decompression rate necessary to induce hubble growth. Because
aII/dr is less than zero when A is greater than A~><, equation �.14! indicates
that the nuclear size wil] increase during the decompression, as one might
expect. Examination of equation �.67! shows that no molecules will be lost
during a decompression. For this reason the upper limit to Ii of II+~ plays no
role in decompression threshold computations, and it is therefore possible in
this case to omit from consideration the two parameters that determine II~~,
namely, Z-o q and BI. It follows that only three parameters characteristic of
the surfactant material are of interest in the study of decompression thresh-
olds: Al, Cl, and A~. ~...
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Figure II.IO. Calculated relationship between the equilibrium
nuclear radius and the minimum pressure reduc,�
tion required for bubble growth
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Computed pressure reduction limits for nuclei stabilized by a skin composed
of dicapryl lecithin are plotted in Figure 4.10. The force-area curve for this



substance is shown in Figure 4.6; the characteristic parameter values are
02Cp = 1 1 05 dydee/oPt A ] = 1 0 A . The decompression thresho1 ds for this materia 1

are seen to be inversely proportional to the initial radius, and an excellent
parameterization of the computed points is provided by the function

hP = 72. 7/vo dyne am �. 85!

The surprisingly simple mathematical form of this result is found to be a
general feature of the SS model and has been obtained also from the VP model
 Yount et al., 1977b; Yount, 1979b!. Decompression thresholds for all of the
surface-active compounds studied in this program were found to be of the mathe-
matical form

�. 86!ap = E/r

where the slope parameter E is determined by the chemical nature of the particu-
lar material being studied and depends only on the values of Cl and A>.

Computations done in this program enable us to draw two further conclusions
concerning decompression thresholds. These are:

1. The pressure reduction limits do not depend on the initial ambient
pressure p~g, which in this case is equal to the saturation pressure pa. This
is illustrated in Figure 4.11, where Ap is plotted as a function of pa for a

O
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Cl

O IL'

«n 4
LIJ
L

0 10 20 30 40 50 60

SATURATIOH PRESSURE  BAR!

Figure LI. 1 1. Calculated dependence of the pressure
reduction limit on the saturation

pressure for a O.l-urn nucleus
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0.1->m nucleus. This remarkable prediction was made earlier by Yount and
Strauss �976!, who based their arguments on the crevice model of Harvey et al.
�944!. It also follows from the VP model  Yount et al., l977b; Yount, 1979b!.
Thc prediction was tested by Yount and Strauss �976! by decompressing gelatin
mixed at 6.9 bar with water that had stood for several days at high pressure.
The bubble formation threshold measured from p~g = 6'.9 bar was Ap = 0.88 bar'--
the same as that found from atmospheric pressure,

2. The value of the parameter Ag>yy has little effect on the decompres-
sion thresholds. The data in Figure 4.12 demonstrate the dependence of Ap on
Agzyy for a O.l-um nucleus. This lack of sensitivity to Ag~yf is due to the
fact that the fractional area for gas diffusion through the nuclear skin does
not depend strongly on Ag~yp unless A is near A~~~ fsee equation �.52!].
Because the decompressions studied in. this article always begin from the equi-
librium state and only result in larger values of A, the inequalities

�.87!A ! AY + Ar4gn

�.88!
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are satisfied throughout the decompression, where AY is defined by the equation



The value of A is never close to A.,�z~, and the diffusive properties of the
nucleus are therefore not strongly dependent on Ag~yy.

In Figure 4.13 graphs of Ap versus 2/~z are shown for the six hypothetical
surfactant materials having force-area curves displayed in Figure 4.14. In each
case the decompression thresholds are of the form given by equation �.86!.
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Figure 4.]3. Calculated dependence of the pressure
reduction limit on the equilibrium
nuclear radius for six surfactants

66



90

80

70

X EJ
60

CI

50

Lu
f 40

ll 30

20

10 0 30 40 50 60 70 BO 90 100 110 I 20 130
MOLECULAR AREA  A !

Figure 4.14. Force-area diagrams of six hypothetical
surfactants

Examination of these graphs shows that the value of the slope parameter 0
depends on the steepness of the corresponding surfactant force-area curve.
This relationship is displayed explicitly in Figure 4.15, where the steepness
parameter s, defined by the equation

14.89!

is plotted versus the slope <. This curve may be used to determine the value
of   for a surfactant having known values of C'1 and AI. lt should be noted
that a given choice of E uniquely determines the value of C~ and the ratio
Ay/AI, but it does not place a constraint on A> itself.

Examination of equation �.20! shows that a bubble has a slope parameter
of 2y--in this case 208 dyne/cm. As shown in Figure 4.15, the decompression
threshold of a surfactant-stabilized nucleus is always below this value. This
result is not striking since the surfactant molecules are expected to counter-
act partially the surface tension of the water and thus reduce the amount of
work necessary to increase the size of the nucleus. The quantity of work done
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by the skin in the complete expansion of a nucleus initially in stable equi-
librium is given by the integral

AV = 8~xII r!dr = Nmo7 lI A!dA = 4~1'O2y-
"o V Ay �. 90!

Evidently, as Al/Ay increases the quantity of energy stored in the skin
increases, and the value of   thus decreases. In the limiting case of an
incompressible skin, Al vanishes and the skin plays no role in the expansion;
the slope parameter is therefore equal to that of a bubble

L&t
s w ~ E s! = Zy �. 91!

In the case of an ideal elastic skin the ratio A~/Ay is arbitrarily large, and
II is constant at the equilibrium value of y. Equation �.8b! becomes

dP = dPamb �.92!



and it is seen that an arbitrarily small decrease of the ambient pressure will
result in gas supersaturation leading to growth of the nucleus. Evidently the
decompression threshold vanishes in this case, and the lo~er limit to E s! is
given by

�.93!

The value of the slope parameter characteristic of the nuclei studied in
the gelatin experiments can be deduced from the determination of the decompres-
sion threshold for nuclei of a known size. Such a measurement was made by using
a vacuum pump to decompress gelatin samples. In these experiments  Yount and
Strauss, 1976! it was found that decompressing gelatin batch A samples by 0.83
bar produces a bubble yield of S + 2 bubb7,es pez' rn'.. The nuclear radius associ-
ated with a bubble number of 5 may be determined from the initial size distri-
bution given by equation �.4! to be 0.93 pm. The observed value of E is then:

E = 0.88 x 10 x 0.9Z x 20 ~ = �7 + 8! dyne/cm �. 94!

This corresponds to an a value of �.82 + 0.,3!, from which the ratio Ay/AI can
be computed to be �. 74 + 1.0!. The magnitude of CI may be calculated by using
equation �.22! as

RnCI = KnY + AY/AI � � ,3.99 + B. 74 = 7, 73 + 2.0 �, 95a!

which gives

CI = 2,278 dyne/cm �. 9Kb!

II  r ! = CI ezP [-4~r ~/Nmo LAIC �. 96a!

or, if no molecular loss has occurred,

II  ! = CI Pt-  / !'AY/Al] �.96b!

The derivative dII/iz appearing in the differential equation �,14! therefore
depends on the ratio AY/A> and not on the singular value of AI.

For computational convenience and to enable illustrative values of several
parameters to be computed, a value to AY of ~~8 A~ has been arbitrarily assigned.
This area is close to that of several saturated lecithins having slope param-
eters similar to that observed in gelatin. It must be emphasized, however,
that this value is arbitrary, and that any other physically reasonable choice
of AY would be equally valid and yield identical computational results. Given
this value of AY, the parameter AI is calculated to be

AI = Ay/z. 74 = �2.86 I 4. 7
~ �. 97!

The value of AI is not determined by this measurement, and its exact value
is not strictly needed for further computational use. This is because the
quantity of work done by the skin in response to a given change in nuclear
radius depends on the ratio AY/AI, and not on the value of A> itself. The point
is more clearly illustrated by using equation I4.62! to rewrite equation �.22!
in the form



In this subsection the results of the rapid-compression saturation-
excursion dives reported in section 2,3 are analyzed to determine the value of
the variables F'~~< and Bl. for these computations an initially stable nucleus
is exposed to the prcssure schedule shown in Figure 4.7. The resulting values
of the internal parameters are graphed in Figure 4.16 as a function of time for
a typical dive, This figure shows many of the salient features of the experi-
ments.
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The dive begins with a rapid compression from the initial ambient pressure
of I bar to the saturation pressure of 21.7 bar, During the first few seconds
of compression, the dII/dv term in equation �.14! dominates the calculation of
dr/dt, forcing dr/dt, dp/dt, and dill/dt to assume relatively small values while
II increases rapidly. This initial interval is therefore characterized by small
changes in r', p, and N, and by a large increase in II. The work done upon the
nucleus during this stage is used almost entirely to force the surfactant mole-
cules closer together, thus raising the value of II,

About seven seconds into the compression, II reaches its maximum value of
II~~. At this time molecules begin desorbing from the skin into the liquid at
a rate sufficient to keep II fixed at II<~ [see equation �.70!] . During the
remainder of the compression, II remains constant at Q~, while the values of
the internal parameters change rapidly,

Following the compression is a relatively long saturation period during
which the ambient pressure remains constant. At the start of this interval the
gas tension in the nuclear domain r is equal to the initial ambient pressure of
1 bar. Throughout the subsequent six-hour exposure, r steadily rises as gas
diffuses into the gelatin slab. At the end of the saturation interval, x is
essentially equal to pa and the gelatin slab is very nearly in diffusive equi-
librium with its surroundings; that is, I is nearly equal to pe.

�. 98!"f = ro

Using the results in subsection 4.3.1, the minimum pressure reduction
necessary to induce bubble formation can be computed from the equation

�.99!Ap = 77/vp ,

Given the values of the three parameters Ea~p, BI, and Ag�yy, the threshold
pressures AP x'~,pa! can now be computed. In Table 2.5 the results of the gela-
tin model determinations of these thresholds are presented. These data are
plotted in Figure 2.14, which shows how the decompression limit for a nucleus
of initial size vo depends on the crushing pressure p~~ag, which in this case
is related to the maximum pressure and saturation pressure by the equation

�.100!
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During the initial phase of the saturation period, the pressure within the
nucleus is much higher than the ambient tension, and gas diffuses out. This
loss of gas forces the nucleus to contract further, in accordance with equation
�.14!. Because c&'/lt is less than zero and A is equal to Azzz, the value of
II remains fixed at II<~ and additional surfactant molecules are lost from the
skin. The loss of molecules continues until p is equal to r. Throughout the
rest of the saturation period, p remains equal to ~, and at the end of the
exposure the nucleus is very nearly in stable equilibrium. The nuclear size
immediately before decompression will therefore depend only upon the number of
surfactant molecules left in the skin. If the initial number of molecules was
Nz<7 and the final number Nf >, the final radius z'~ may be determined from equa-
tion �.62! to be

mo5'



The values of E«g and B~ are now to be found by fitting the model to the data
in Table 2.5,

The effect of the parameter Agzyy on the decompression thresholds for a
fixed choice of B>, R«g, r~, and p~~�~g is shown in Figure 4.17. The shape
of this curve may be understood by an examination of Figure 4.16. During the
compression phase of the dive, Agzyy has little effect on arjdt. This is
because a change in Agzff causes H to increase or decrease, and the difference
[U r,t! � Sp] to decrease or increase correspondingly. The product
H[U r',t! � Sp] occurring in equation �.14! thus tends to remain relatively
constant, and the value of dr!dt is therefore stationary with regard to Agcy~.
At the beginning of the saturation exposure, the internal gas pressure p is
higher than the ambient gas tensio~ ~. Because p is determined primarily by
isobaric gas diffusion out of the nucleus, the elapsed time until p equilibrates
to ~, t<~Z, will depend almost entirely an the ratio Agjff/A~jiq. If this time
is short compared with the quasi-exponential rise time ar r, tgzyy, then Agzyf
will have little effect on the number of molecuies lost during the saturation.
On the other hand, if te<g is long in comparison with tgjff the number of mole-
cules lost will depend strongly on Agzyy . This behavior is clearly evident in
Figure 4,17, In order to minimize the effect of Agzyy on the decompression
thresholds, it is assumed that Agzjy is sufficiently large that t~<7 is much
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Ag~yy = 5 x 20 " A~jg = 240 x 20 �.101!

Having determined a preliminary value of Agqgf, the experimental results in
Table 2.5 can be used to deduce the value of the parameters Eeoc and Bl. This
is done by employing the SS model to compute the value of Iim~ necessary to pro-
duce the observed value of bp, given the values of z'z and pz~zg. This calcula-
tion is performed by finding an upper and a lower limit and by then employing
the method of successive halving to iterate the proper value of +~. The
results of these calculations are shown in Figure 4.18, where ii ~ is plotted
as a function of MdA~t. The expected functional dependence of ~ is given
in equation �.27! as
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Figure 4.18. Dependence of the maximum skin tension
of the rate of change in molecular
area. Computed points from observed
data in Table 2.5.
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less than tg~ff. In the following subsection it is shown that this assumption
i: s in fact valid and that the ratio Ag~yy//'Am~~ is on the order of 8 x 40 ~. For
the remainder of this subsection it is assumed that



From the data in Figure 4.18, the values of the parameters are found to be

~oo7./~min = 69 dyne/crrr �.102a!

and

10
BI = 2. 22 x 20 dyne seel/2/cm2 �.102b!

Using equation �.25!, the magnitude of Arrrzrr can be determined to be

�. 103!

The value of Z<cI, may now be found from equation �.102a!:

EecZ = 8. 22 x IO erg = 4. 45 heal/rrroZe �.104!

The ratio Esca/�/2!kT is 15.33, and the skin is therefore stable against
thermal fluctuations, as required by the discussion in subsection 4.1.1. It
should be noted that the observed value of Br is very close to that deduced from
the measurements reported by Rabinovitch et al. �960! for stearic acid.

Fquation �.99! provides the information necessary to deduce the final size
of a nucleus following a rapid compression from the critical supersaturation
pressure required to make the nucleus grow into a bubble. As an example,
Table 2.5 shows that after a 0.5-pm nucleus has been rapidly compressed by
20.7 bar, it requires a supersaturation of 10.4 bar to make that nucleus grow
into a bubble. The final radius of the nucleus just before .decompression evi-
dently is

77r~ � < � � 0. 074 arm �. 105!

The post-compression size distribution of nuclei may now be determined by
use of the ordering theorem introduced in section 2.5 and the initial nuclear
size distribution. Continuing with the above example, it is found from equa-
tion �.4! that there were initially 54 nuclei larger than 0.5 rrm. Although
the rapid compression reduced the equilibrium nuclear radius to 0.07 pm, the
ordering theorem states that there must still be 54 nuclei larger than this new
size. The post-compression nuclear size distributions obtained in this manner
are plotted in Figure 4.19, along with the original distribution. It should be
noted that for each value of pc~st there exists a critical radius such that
nuclei smaller than this size will be unaffected by the compression, i.e., such
that r ~ is equal to ~c.

In this manner it is possible to compute z p for each of the entries in Table 2.5.
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4.3.3. Crushin time ex eriments

The crushing time experiments measure the number of bubbles as a function
of the time at maximum pressure t~. Because the pressure spike was always fol-
lowed by a saturation exposure at lower pressure, the critical radius for bubble
formation was constant throughout this program. The value of z'~ can be found
from equation �.99! to have been

rc 0' 0744
77

20. 86 x 20~
�. 106]
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In section 2.5 a series of gelatin experiments is described in which a
pressure spike was applied to the sample before the saturation exposure. The
results of this program are shown in Figure 2.13. In this subsection these data
are employed, along with the previously determined values of Al, Cl, Z>oy, and
Bl, to find the value of Ag>yf. As mentioned in subsection 4.3.2, the determi-
nation of Ajjff is not necessarily decoupled from that of Za>g and Bl. If the
value of Agzff is sufficiently small that the ratio Agz~~/A z< is on the steep
end of the curve shown in Figure 4.17, then an iterative procedure to determine
Ag~yy, Zs~g, and Bl simultaneously is clearly necessary. As will be seen, the
derived value lies on the flat portion of this curve, and the independent calcu-
lation of these parameters is therefore justified.



These experiments can now be interpreted as measuring the number of nuclei
larger than 0.074 pm at the end of the dive, The initial nuclear radius corre-
sponding to any given bubble number can be found from the nuclear size distri-
bution given by equation i2.4!. The effect of a pressure schedule that yields
N bubbles is to reduce a nucleus of initial radius ~~ N! to a final size of r*o.
As an example, an experiment done with 0~ of 120 sec produced 118 bubbles per
ml, The corresponding initial radius is calculated from equation �.4! to be
0.35 um. It is possible to determine the value of' Agz~c from this datum by
using the SS model to compute the final size of a 0.35-lIm nucleus as a function
of Agz~ , keeping the parameters Ci, Al, 8 zg, and 91 fixed at their previously
determined values. The results of these calculations yield a value for Agq.'yy
af

Ag�yg= 2.6 x 20 �.107!

The number of bubbies produced by a dive having a pressure spike of arbi-
trary duration may be determined by calculating the modified nuclear size dis-
tribution produced by that schedule. This is done by computing the final sizes
of several nuclei subjected to the same profile, and then plotting rf' against
RnN ro!, as determined from equation �,4!. The results of such calculations
for several values of Q are shown in Figure 4.20. The effect of the pressure
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schedule on the nuclear size distribution is to shift the curve to smaller sizes

and steepen the slope. It should be noted that only those nuclei having initial
si es of less than about 0.04 pm were not affected by the crushing pressure af
20.7 bar, The number of bubbles produced by a pressure spike of arbitrary
length can be found by measuring the intercept of the proper distribution with
the 0.074-pm line. In Figure 4.21 the results of the SS model calculations are
compared with the data from Figure 2.15, and the two are seen to be in close
agreement.



CHAPTER 5. THE GROWTH AND CHEMICAL NATURE OF SURFACTANT-STABILIZED NUCLEI

ln this chapter two related questions are considered: What type of
surface-active material forms the skin of surfactant-stabilized nuclei, and
what physical mechanisms are responsible for the occurrence of the nuclei and
lead to the observed exponential size distribution? These questions are of
practical significance because their answers supply information pertinent to
any ability to solve problems of bubble formation by destroying existing nuclei
and preventing their subsequent regrowth.

S.l. Identification of the nuclear surfactant

The analysis of the gelatin data using the Surfactant Stabilized model
described in section 4.3 has yielded values of the parameters Cl, P.1,
Agz'yy/Arrrz~, Ay/Al, and Eszg/Arrrz~. These numbers are representative of the
surfactant material associated with the nuclei f'ound in gelatin. In this sec-
tion these observed results will be compared with measurements of known surfac-
tant materials in order to identify, so far as is possible, the chemical
constituent s! of the nuclear skin.

TABLE 5.1. PHYS ICAL PROPERTIES OF SELECTED SURFACE-ACTIVE SUBSTANCES

Ay A1 11e Solubi 1 i ty
 g2! 1  g2!  dyne/cm!  mole/cm !Material

Saturated Lecithins

1.10 48.9 6.99 16.30

2.56 43.6 16.92 3.37 36

1.11 48,3 7,01 16.0

C1rr and C12

C18

CID

Phosphatidyiethanolamines

2.66 37.3 18.30 2.61

0.88 41.7 6.41 17.24
C1.8

C10

Fatty Alcohols
4 x 10-110.442

0.431 40

3.80 20.0 49.07

3.80 19.3 48.90

C18 1-Octadecanol

C16 1-kexadecanol

The two most useful numbers for purposes of chemical identification are C1
and the ratio Ay/A>. The values of these parameters determine the shape of the
force-area curve of a given surfactant. To permit a comparison, representative
values of Cl, Al, and Ay for individual members of several classes of insoluble
surfactant materials at water-air interfaces have been determined. These are
summarized in Table S.l, along with the equilibrium spreading pressure Il~ and



water solubility of materials when available. Fxamination of this table indi-
cated that several of the saturated lecithins and phosphatidylethanolamines
have characteristic values of Ay/AI and CI that agree well with the measured
values. Because other surface-active substances might behave similarly, the
surfactant material cannot be identified uniquely as being a saturated lecithin
but it may only be concluded that this is one possibility consistent with the
observations.

The parameters BI and E z7/Azz~ provide information concerning the stabil-
ity and dynamic behavior of the skin. Because observations of the maximum
allowable skin tension +~ are difficult to make in even the most favorable
instances, understandably little information has been reported concerning the
dependence of +~ on the compression rate N/it; i.e., on the magnitude of 81.
The observed value of this parameter seems reasonable since it is close to that
reported by Rabinovitch et al. �960! for stearic acid, but it is of little use
in elucidating the chemical nature of the surfactant material. The ratio
E ./A determines the maximum tension to which the monolayer may be slowlySO'L mi.n
compressed without collapsing, Gaines �966! noted that this monolayer stabil-
ity limit is not necessarily equal to the equilibrium spreading pressure and
can even lie below the ESP. Munden and Swarbrick �973! and Phillips and
Chapman �968! were able to compress monolayers of saturated lecithins to sur-
face pressures well above 60 dyne!cm, at which point the compressions were usu-
ally terminated by spillage of water over the edge of the trough rather than by
collapse of the skin. The observed value of 69 dyne/cm therefore seems reason-
able when compared with the saturated lecithins.

Consider the small portion of monolayer shown in Figure 5.1. The surface-
active molecules, although packed together in a minimum area, do not densely
cover the interface but instead tesselate it into a number of small openings or
windows. Because the average window is smaller than a nitrogen molecule, it is
only through those fenestrations made larger by thermodynamic fluctuations that
gas molecules can pass. The absolute probability that a single window will be
increased in area by an amount o due to thermodynamic fluctuations is given by
the Boltzmann equation as

  !, -aII/kT �. 1!

where aII is the energy associated with the fluctuation.
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The ratio Agog '/A~~~ measures the ability of the monolayer to block the
flow of gas across the interface. As noted in subsection 4.2.2, the use of the
fractional area hypothesis in determining the diffusive resistivity of a mono-
layer has been examined by Barnes et al. �970!. This group used a mechanical
analog of hard spheres in a vibrating pan to estimate Agzyy'/A~z,~ for water mole-
cules diffusing through straight chain alcohols and found a limiting value of
about 3 x 10 3. Because this ratio depends strongly on the size of the molecules
involved, their number, although of the same order of magnitude as the observed
value of 0.5 x 10 ~, is not strictly relevant. An independent estimate of this
ratio applicable to densely packed monolayers can, however, be developed from
thermodynamic principles.





simultaneously. Assuming that there exists one window for each surfactant mole-
cule, the ratio Adiff/A � becomes

diff 8~~ -ogrI/kz'
Amin Ami n

�. 4!

The value of az will depend on the size and shape of both the gas and sur-
factant molecules. Following the example of Barnes et al. �970!, it is assumed
that the molecules present circular cross-sections. If the effective cross-
sectional area of a nitrogen molecule is taken to be S. 66 2 , while Amin has
been assumed to be 48 3 , then the area az is found by measurement to be 8.28 3
The ratio A«ff/Ami� then has the numerical value

"«ff V. 66= 0.2 ' exp -20.04/4.07! � 2 x 20
Win

�. 5!

where the value of II has been taken to be 120 dyne/cm . Because this result
depends strongly on the product aoJI occurring in the exponential in equation
�.4! and on the value of tI, the good agreement with the observed number is
somewhat fortuitous. The important point is that the magnitude of the measured
value is about what is expected from elementary considerations.

The calculation of monolayer permeation and evaporation resistance by
thermodynamic arguments has been previously considered by Blank �964!, who
arrived at the result

Adiff' 1
= � exp[- y - H!a>/kT]

Ami n
�. 6!

Blank's derivation is similar to the development of equation �.4!, with the
major differences being that the energy associated with a fluctuation in area
is o~ y � 0!, that the ratio A«ff/Amin is equal to the absolute probability
P, and that j is implicitly assumed to be unity. Dickinson �978! commented
that it would seem more appropriate to calculate the energy associated with a
fluctuation in area as o>II, which is a concept that has been used in deriving
equation �.4!. Another major difference between the two derivations is that
each open window is assigned an effective area for diffusion equal to the
cross-sectional area of a single gas molecule, while Blank uses the entire area
of the window. The net result of these three differences is that equation �.6!
predicts much larger values of Adiff/Amin than does equation �.4!.
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In surmrrary, the observed values of the five parameters do not provide
enough information to identify uniquely the surface-active substances from which
the nuclear skins are formed. Saturated lecithins and phosphatidylethanolamines
do, however, have CI and Ay/AI values and collapse pressures near that observed
in gelatin nuclei, and their minimum compression areas lead to reasonable values
of Agile. The observed pararrreters are therefore within the range of those

J J
characteristic of commonly occurring natural surfactants.



5.2. The e uilibrium size distribution and the rowth of nuclei

�.7!

In this section the physical processes by which nuclei can grow or be created
and destroyed are examined in view of the constraints imposed by the above
experimental results.

The observation that the distribution of nuclear sizes is time independent
does not necessarily imply that each individual nucleus is of constant size.
Any particular nucleus is free to grow, and nuclei may be added to or deleted
from the sample, in any manner that leaves the net size distribution unchanged.
Beginning with an examination of the mechanisms by which pre-existing nuclei
might grow, constraints will be placed on the creation and destruction of
nuclei by requiring that these processes combine with the rate of individual
nuclear growth to produce a stationary distribution of the observed exponential
form.

The nuclei in a fluid sample are ordinarily in stable equilibrium. Their
radii are related to the number of surfactant molecules in the skins by the
equation

m' = AyNmo2
�. 8!

It is evident that a nucleus will grow larger or smal ler as molecules are added
to or last from the surfactant monolayer. In equilibrium situations the net
rate at which material is transferred from the skin into the surrounding fluid,
or vice versa, is given by Fick's law of diffusion,

~moS 2 dC'
4m D~

p

where dC/dp is the gradient of the concentration of dissolved surfactant mole-
cules. This derivative may be approximated by the equation

 C � Cy!/xdC
0 �. 10!

where Cy is the molecular concentration just outside of the nuclear skin, Co is
the concentration in the fluid, and k is a characteristic length. The value of
Cp will depend on both the concentration of molecules at the liquid-gas inter-
face and on how strongly they are bound to the interface.

At any instant most of the surfactant molecules will have energies less
than the desorption energy Zezp and will therefore be bound into the skin and
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One of the basic results of the gelatin experiments is that the nuclei have
the initial size distribution given by equation �.7!. This size distribution
has been observed to remain unchanged over intervals of several days, from which
it is concluded that the distribution is stationary with regard to time, that
1s



not be available for diffusion, The fraction of molecules that are candidates
for di ffusion can be calculated using the Boltzmann energy distribution to be

-E/kT ~/J' -EkT ~ -Eeoc/kT
Eso7. /o

�. 11!

The concentration C - is therefore related to the molecular density by the equa-
tion

Cy � FS/AY �.12!

where S is a solubility constant having units of cm l. The molecular transfer
rate is given by the equation

~mo Z
dt = -<mr ~D   FS/AY � Co!/ �. 13!

The rate at which the nuclear radius changes in response to this molecular
transport may be computed using the differential form of equation �.8!, remem-
bering that the molecular area remains fixed at the equilibrium value throughout
this process. Hence,

d 8 2 � 2"Ay D FS/Ay Co! /i �. 14!

Defining the parameter

2 AYD FS/Ay Co!r ~2
�. 15!

this last expression can be rewritten as

�. 16!

This equation gives the rate at which the nuclear radius changes as a result of
the accretion or loss of skin molecules. Note that if ~ vanishes, then dr/dt is
zero and all nuclei remain of fixed size.

N  r+cLv, t+dt! = N r, 0! �. 17!

where the differentials av and Ch are related by equation �.16!, This last
result may be written in the differential form
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If nuclei were neither created nor destroyed, then the size distribution
would, if ~ were non-zero, change in response to the growth of individual nuclei,
This rate of change may be expressed using the integral size distribution defined
by equation �.5! and the ordering theorem introduced in section 2.4 as



3N 3N
dN = � dv + � dt = 0

av 3t
�.18!

Substituting for <~r in terms of dt yields

N r+~ri~t,t+d*! = N v, t! �, 19a!

or

3N aN
~r � + � = 0

a~
�.19b!

In order to include the possibility of the creation or destruction of
nuclei in this formalism the two functions f r! and g r'! are defined. The
"destruction function" f r! is the probability per unit time that a nucleus of
radius z' will be deleted from a unit volume of the sample; the "creation func-
tion" g z'! is the probability per unit time per unit volume for the spontaneous
creation of a nucleus of radius r. By definition these functions are always
positive valued, that is

,~ >!, g  ~! �. 20!

Allowance can now be made for the discontinuous addition and removal of

nuclei by modifying equation �.17! to obtain

V r+!r, +d!! =. !  r, ! � 2! f [!' p!n p! � q p!]dp �.21!

Using the chain rule of integral calculus, this equation can be rewritten as

� dr + � dt = dt h p!dp
3N 3N

3r
�.22!

where the function h r! is defined to be the net rate at which nuclei of radius
r are added to the sample,

h r! = g r! � f r!n r! �.23!

In order to find those forms of A r'! which result in stationary distribu-
tions, the value of 3N/3t in equation �.21! is set equal to zero, and this
equation becomes

h p!d p!
3N cb

31
�.24!

or, using equation �.6! and the fundamental theorem of integral calculus,
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Note that if ~ is zero, then the derivative 3N/3t vanishes and the distribution
is stationary.



�.25!

The value of az/dt is given by equation �.16!; putting this in the last equa-
tion gives

j v r n  z ! ] = h  z.!
d

�. 26!

This equation is the desired relationship between known values of ~ and the
distribution n z !, and the unknown function h z !. Substituting from equation
�.7! for n r! and performing the mathematical operations yields the final
result

h z"! = Kn r! � � 8.88m! �. 27!

This equation is the necessary and sufficient condition to insure that BN/3t
vanishes, given the distribution in equation �.4! and the nuclear growth rate
expressed by equation �.15!. It expresses the net rate at which nuclei must
be added to the sample to offset the growth of individual nuclei and thus keep
the size distribution constant.

�. 28a!

and

g r! = S.38 ~en z! � 8.38rf' z'!n z! �. 28b!

The destruction of nuclei is seen to be indiscriminate in that it does not
depend on nuclear size, while the creation function is seen to depend multipli-
catively on the number of nuclei and the nuclear radius.

Although the rates of nuclear creation and destruction are given by equa-
tion �.28!, the mechanisms involved in these processes remain unknown. One
possibility is that living organisms within the gelatin or the water with which
it was mixed trap both nuclei and surfactant molecules which they encounter.
The adsorbed material accumulates until a critical point is reached where new
nuclei, formed from the components of the trapped nuclei and from gas liberated
by the organism, are returned to the gelatin. This picture is, however, only
speculative and further work is needed to establish the actual mechanisms of
chemical reprocessing.

It is of interest to speculate on the physical interpretation of equation
�.27!. Secause it has been assumed that the surfactant involved in the nuclear
skin is nearly insoluble  C'z = 0! and because the ratio F/Ay is calculated from
the numerical results in subsection 4.3.2 to be 4.6 x 107, it follows from
equation �.15! that ~ is most probably less than zero. The creation and des-
truction functions can then, in the simplest case, be found by identifying g z'!
with the positive term in equation �.27! and f z ! with the negative term, i.e.,



CHAPTER 6. DECOMPRESSION SICKNESS

Decompression sickness is caused by the formation of bubbles in the tissues
and fluids of the body. It is most commonly associated with activities involv-
ing rapid pressure changes, such as deepsea diving, pressurized caisson work,
flying in unpressurized aircraft, and excursions from spacecraft. The disease
is not limited to man but also occurs in animals having widely differing physi-
ology, such as brine shrimp, snakes, fish, and other mammals. The first indi-
cation of he etiology of this malady was the observation by Hoyle �670! of
the formation of a bubble in the eye of a viper that had been decompressed using
Boyle's newly invented vacuum pump. Decompression sickness in humans was ini-
tially reported among tunnel and caisson workers in the middle of the nineteenth
century. Because its victims sometimes assumed contorted positions reminiscent
of the steps from a then popular ladies walk known as the Grecian Bend, the
disease acquired its nickname of "the bends."

In the first chapter of this report, it was noted that the minimum pressure
reduction required to induce decompression sickness in humans is about 0.6 bar.
This is more than three orders of magnitude below the theoretical value given
in section 1.2 for bubble formation by homogeneous nucleation. Evidently, the
bubbles that cause the bends originate from cavitation nuclei, and any detailed
understanding of decompression sickness must therefore include in its foundation
a knowledge of the nature of the cavitation nuclei present. in living animals.
The crucial importance of the nucleation process to decompression sickness has
been previously pointed out, especially by Harvey �951!, Hills �966!, and
Albano �970!, but little experimental effort has been directed toward eluci-
dating the nature of the cavitation nuclei present in humans or other animals.
This is, in part, because of the difficulty in relating the clinical signs and
symptoms of decompression sickness to the underlying nucleation process. For
this reason, the manner in which the number and volume of bubbles formed in
various body structures may be related to the onset of decompression sickness
is discussed briefly below.

6.1. Determinin factors in the onset of decom ression sickness

Bubbles induced by supersaturation form in many parts of the mammalian
body. Upon post-mortem examination they have been found throughout the vascular
system in both veins and arteries; in the lymph of the thoracic duct; in the
aqueous and vitreous humor; in cerebro-spinal, synovial, amniotic, pericardial,
and peritoneal fluids; in bile and urine; in liver, lungs, and spinal cord; in
the spleen, in the adrenal cortex, the myelin sheath of nerve fibers, and hepa-
tic cells; and in tendon sheath and bone, Evidently, the formation of bubbles
is a general phenomenon not limited to a few body structures, Studies of humans
by Rubissow and Mackay �974! and Evans and Walder �970! have shown that gas
emboli can be present in blood and. tissue without signs or symptoms of bends.

The pervasive but sometimes asymptomatic occurrence of bubbles suggests a
general principle concerning the nature of decompression sickness first enunci-
ated by Boycott et al. �908!: that the chance of being striken with decompres-
sion sickness depends on the total volume of gas evolved into bubbles, The
assumption that the released gas volume is the determining factor in the onset
of decompression sickness has also been discussed by Behnke �951! and Hills
�970!, and more recently by Hennessy and Hempleman �977!.
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Based on the concept of critical released gas volume, the study of decom-
pression sickness may be divided into three parts. The first part involves
elucidating the mechanisms responsible for the initial formation of bubbles
within the body; the second part concerns calculating the total volume of gas
evolved into these bubbles; and the third part deals with estimating the proba-
bility and severity of decompression sickness associated with a given volume of
evolved gas.

In the simplest case, the probability P of contracting decompression sick-
ness depends on the volume of gas rapidly released into bubbles per unit volume
of tissue. In mathematical terms, P is a function of V:

P = P V! �.1!

Because the body is composed of many different structures, each of which might
be reasonably expected *o behave differently than its neighbors, the simple
function in equation �.1! must be replaced by the more generalized summation

� 2!

p' = g p ~ v-!,
J J

j=2

�. 3!

where P ~ V-! is the probability that a volume of gas V . released into the jt
Jstructure induces the 1th type of condition. The cumulative probability of

displaying any sign or symptom is given by the summation of the individual
probabilities,

m m n
g P.X V.!

R=2 %=2 j'=2
�.4!

where m is the number of recognized maladies.

The functional form of the probabilities P<.~ V>.! is not known, However,
the limiting condition

v o pz~ v~! = o �. 5!

where V ~ is the volume released in the jth structure, and the function P  V>!
is the probability that this release of gas will result in the bends. But
decompression sickness itself is not a single disease, but an array of condi-
tions ranging from itching and tingling sensations through limb bends and
vertigo to central nervous system damage, permanent paralysis, and death. The
single probability in equation �.2! is therefore to be replaced with the dis-
crete probability of a given endpoint, i.e., the probability of a particular
decompression malady. Equation �.2! evidently must be supplanted by an expres-
sion of the form



can be assumed. This expresses the idea that if no bubbles are formed, then
there is apso facto no chance of decompression sickness. It is also logical to
assume that the liberation of larger volumes of gas will never decrease the
chance of becoming bent. This implies that the probabilities must be mono-
tonically increasing functions; hence,

dP>
0

dV~
� 6!

The conditions under which the net probability of a given endpoint will be con-
stant can be determined by setting the derivative of equation �.3! to zero.
This yields

�-7!

The evolved gas volumes V>- are related to the size and number of bubbles
occurring in a structure by the integral equation

V = � rr  n  r!r~dz4
D 8 J' �.8!

where n  z*! is the size distribution of bubbles in the J h structure. The
jradius of a spherical bubble within a tissue is given by the equation

p=p~t+ � +' ~2Y �. 9!

�.10!

where p<> is the supersaturation pressure. Therefore, in the case of complete
bubble growth, equation �.8! becomes

V> � � > rrz*e f n< r!dr = V~N>.4

0

�.11!

where re is the equilibrium radius determined by equation �.10! and where N<
is the total number of bubbles per ml. A constraint on equation �,11! is that
sufficient gas must be available in the initial supersaturation to insure that
each nucleated bubble can grow to the equilibrium size. In quantitative terms,
this requires the validity of the inequality

N>' Sj PssRT/PU. �.12!
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where 6 is the "deformation pressure" of the tissue surrounding the bubble. If
there is sufficient time and sufficient gas for the bubble to reach diffusive
equilibrium with the environment, its final size z 8 will be determined by the
equation



~as
N ~ < Z,OOO �,

p
�.13!

where pz is the pre-decompression saturation pressure.

In the next section it will be shown that the limiting value of the ratio
pa /pa required for the onset of decompression sickness in humans has a numeri-
cal value between 0.3 and 0.7, Evidently, large numbers of bubbles must be
evolved before equation �.11! will fail. The concept of critical released gas
volume is therefore at least sometimes synonymous with the assumption that the
determining factor in the onset of decompression sickness is the number of
bubbles formed per unit volume of tissue. In mathematical terms, the probabil-
ities P>-JL are in this case functions of N> ..

�.14!

The concept that the number of bubbles is critical in determining the onset of
decompression sickness has been previously suggested in Yount and Strauss �976!
and in Kunkle �977!, and its applicability to rats and humans has been quanti-
tatively investigated in Yount �979a!.

6.2. Pressure-reduction limits

In this section the results of three studies designed to measure the maxi-
mum pressure decrease that can be tolerated before the onset of decompression
sickness in rats and humans are considered. The pressure profile used in these
programs is similar to that shown in Figure 2.3. It involves rapidly compress-
ing a subject from one atmosphere to an exposure pressure pz, letting the animal
equilibrate for a time ta, and then rapidly decompressing by an amount Ap to the
final pressure p~. The object is to determine hp as a function of pa for a
fixed incidence of a specific type of decompression malady.

ln Figure 6.1 the measurements of Berghage et al. �976! of pressure-
reduction limits in rats are plotted. This series of experiments involved
helium-oxygen dives of subjects drawn from an initial population of 350 male
albino rats. In each dive, five rats were placed in a rotating cage within a
pressure vessel and then compressed to the exposure pressure pz at the rate of
0.8 box/min. Following a 40-minute saturation exposure, the rats were decom-
pressed to the final pressure at a rate of 0.5 bar/sec. The animals were then
observed for 15 minutes and rated on their ability to walk within the rotating
cage; those who would or could not walk normally were considered to be bent.
The pressure reduction which resulted in unwillingness or inability to walk in
50 percent of the rats was established using a least-squares linear fit to the
data at each exposure,
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where 5> is the gas solubility of the jth structure. If the solubility is taken
to be that of nitrogen in gelatin  see Table 4.2! and the equilibrium radius to
be 50 pm, which is about the size of the bubbles commonly detected by ultrasonic
Doppler techniques in venous blood, then the constraint on N>. becomes
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Figure 6.1. Reduction in pressure necessary to produce
decompress ion s i ckness in rats fol lowing
saturation helium-oxygen exposures. Solid
lines are best linear regressions showing
pressure reduction required for 5, percent,
50 percent, and 95 percent incidence of
decompression sickness.  After Berghage
et al., 1976!

The no-stop decompression thresholds for heliox breathing humans have been
measured by Barnard �976!, who subjected volunteers, three at a time, to rapid
decompressions following saturation exposures. The exact experimental protocol
was, as might be expected, more complicated and had a different endpoint than
did the rat experiments. In particular, the saturation exposures lasted for
24 hours, and the compressions and decompressions were done at rates between
0.2 bar /min and 2,2 baI'/min. The endpoint was the onset of any decompression
malady, usually the aches and pains of limbs. The results of this study are
shown in Figure 6.2, where the decompression limits established by Gray �944!,
Van der Aue �946!, and Belne and Bergeret �9S1! for rapid decompression of
humans breathing air have been included.

Examination of Figures 6.1 and 6.2 shows that the no-stop decompression
limits depend almost linearly on the saturation pressure, and that higher inci-
dences of decompression sickness are associated with larger pressure reductions.
In quantitative terms, these results determine the conditions under which the
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Figure 6.2. Reduction in pressure necessary to produce decompression sickness
in humans following a saturation exposure. Data points are from
Barnard �976! for one-day exposures breathing heliox  P02 = 0.22
bar!; regression 1ine computed by Hennessy and Hempleman �977!.

An important question concerning the decompression limits observed in the
above experiments is the degree of asymptomatic bubble formation that occurred
before the onset of clinical manifestations. More precisely, what is the mini-
mum pressure reduction required to induce any bubble formation'? This question
has been recently investigated by Watt and I,in �979!, who used ultrasound
techniques to identify bubbles in venous return blood of rats decompressed after
one-hour exposures breathing air. The results of their program are shown in
Figure 6.3. As in the human and rat decompression data, the thresholds depend
almost linearly on the exposure pressure, which indicates that bubble formation
in rats--and by inference in humans--is a threshold phenomenon in the sense that
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probabilities P~ will remain constant as the saturation and decompression pres-
sure vary. If it is assumed that the volumes of released gas do not decrease
along the isopleths of constant P~, then equations �.6! and �.7] indicate tha*
the derivatives dV> must vanish along these paths. Therefore, in terms of the
critical volume hypothesis, the isopleths in Figures 6.1 and 6.2 can be associ-
ated with fixed values of V>, and these experiments thus determine the pressures
pa and Ap required to liberate fixed, but unknown volumes of gas V In terms
of the critical bubble number hypothesis, the isopleths are associated with
lines of constant bubble number.
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Figure 6.3. Decompression threshoids for venous gas
embol i in rats  After Watt and Lin,
~979!

critical supersaturation pressures are required to induce the formation of
bubbles. In the manner in which the threshold pressure increases with increas-
ing crushing pressure, the initial formation of bubbles in rats is similar to
that observed in gelatin  see Figure 2.10!.

Hennessy and Hempleman �977! analyzed the results of Barnard �976! in
terms of the critical released gas volume concept. Following the ideas of
Hills �966! and Boycott et al. �908!, they assumed that all of the excess gas
present in supersaturation is liberated into bubbles, but that a critical pres-
sure drop is required to initiate bubble formation, Hennessy and Hempleman
found that a linear relationship between p8 and hp follows from these assump-
tions, and that the ratio of relative released gas volume to solubility necessary
for the onset of bends is 0.40. Using the solubility of nitrogen in gelatin
given in Table 4.2, this implies a critical fractional volume of about one per-
cent.

Kunkle �977! and Yount �979a! interpreted the results of Berghage et al.
�976! in terms of the critical bubble number concept. The loci of decompres-
sion limits are here associated with isopleths of constant bubble number, with
larger numbers of bubbles producing higher incidences of decompression sickness.
A comparison of Figure 6.1 with Figure 2.10 shows that the assumption of criti-
cal bubble number immediately enables the observed decompression limits in rats
to be understood in terms of the gelatin experiments. The quantitative corres-
pondence between bubble number and the incidence of decompression sickness is
shown in Figure 6.4, where the number of bubbles produced by decompression
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Figure 6.LI. Relationship between the incidence of
decompression sickness in rats and the
number of bubbles produced in a simi-
lar gelatin experiment

gelatin batch D samples from a saturation pressure of 21.7 bar is plotted against
the incidence of bends in rats exposed to similar pressure profiles. The proba-
bility of decompression sickness is seen to be strongly correlated with the num-
ber of bubbles produced in the gelatin samples. It should be noted that
relatively large numbers of bubbles form a gelatin when using schedules that
result in a zero incidence of bends in rats. This is consistent with the asymp-
tomatic occurrence of bubbles in humans observed by Rubissow and Mackay �974!
and Evans and Walder �970!. Yount �979a! has shown quantitatively that the
decompression limits in both rats and humans can be associated with isopleths of
constant bubble number, and that a somewhat better fit to the data is provided
by his approach than hy the critical volume model of Hennessy and Hempleman
�977!.

6.3. The nature of cavitation nuclei in animals

As was noted earlier, an important part of the study of decompression sick-
ness involves determining the mechanisms responsible for the initial formation
of bubbles within the body; that is, it involves elucidating the nature of cavi-
tation nuclei in animals. The experiments outlined in section 6.2 demonstrate
two important characteristics of these nuclei: that a critical decompression is
necessary to induce the growth of bubbles and that for saturation exposures this
limit increases with increasing pressure. This behavior is similar to that
observed in gelatin  see Figure 2.7 and 2,10!, and suggests that the cavitation
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Albano �970! proposed that the nuclei in animals are of the crevice vari-
ety  see section 3.1! with the interstitial spaces between cells serving as
crevices. The manner in which such a nucleus might grow into a bubble, or a
chain of bubbles, is shown schematically in Figure 6.5. Albano developed an

Figure 6.5. Growth of gas nuclei in the interstitial spaces
 from Albano, 1970!.  a! Ehe nucleus  z! at
rest within a cavity with negative surfaces.
 b! By effect of decompression, the nucleus has
increased in volume so that it pushes between
the elements of the tissue and projects in the
opposite direction together with the cap  w!.
This, because of a further increase, can free
itself in liquids  blood!, in the shape of a
spherical nucleus [as in  c!], or give birth to
a new duplication  d! or even a chain  "rosary"!
of bubbles.
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nuclei present in living animals are similar to those observed in water and gel-
atin, i.e., they are surfactant-stabilized nuclei. This supposition is not
surprising since animals are, from a microscopic point of view, composed mainly
of water and gelatin,



elegant theory of such nuclei in which the geometry of an interstitial crevice
is idealized by a cone having a convex lateral wall; the critical pressure dif-
ference required to induce nuclear growth is determined by the geometry of the
cone and the liquid-solid-vapor contact angles. When such a nucleus is rapidly
compressed, its volume is immediately reduced, but as the surrounding tissue
equilibrates at the exposure pressure the entire gas volume of the nucleus is
restored. Albano assumed that the restoration rate is exponential, with a half
time in humans of about 6.3 minutes  k = 0.022, C = 202. For exposures longer
than several half times, i.e., in excess of 30 minutes for humans, the decom-
pression threshold for such a nucleus is independent of the exposure pressure,
a prediction in disagreement with the experimental results. Evidently, cavita-
tion nuclei in animals do not consist mainly of gas phases stabilized in the
interstitial spaces between cells having exposed hydrophobic surfaces.

Hills �966! argued that bubble nucleation in animals occurs at interfaces
between aqueous and lipoidal fluids and is essentially a random process caused
by thermodynamic fluctuations at the interface. This method is similar to that
suggested by Plesset �969! for nucleation around hydrophobic spheres, the major
difference being the change from spherical to plane geometry. As discussed in
section 3.1, nucleation around small hydrophobic spheres is found both through
theory and observation not to be a viable process; the general. ization of this
concept to plane interfaces would therefore seem to be equally invalid. Hills
�966! conducted a series of experiments to investigate bubble nucleation at
various liquid-liquid interfaces. He found the no-bubble pressure reduction
limit from one atmosphere to be about 0.3 bar, and that beyond this point the
bubble number increased exponentially with increasing supersaturation pressure.
Evans and Walder �969! repeated these experiments and found similar behavior.
However, when the fluids were exposed to a crushing pressure of 816 bar before
decompression, no bubble for~ation was observed. Evans and %alder concluded
that "...although the interface in Hill's experiment appeared to have been free
of gas nuclei it is apparent that they must have been present; they can be elim-
inated by a suitable high pressure treatment." Hills himself stated that "it
was almost impossible to be certain that no micro-bubbles were present before
decompression." Because nucleation at hydrophobic liquid-liquid interfaces is
not expected theoretically and has not been clearly demonstrated experimentally,
this process does not seem to be a viable mechanism for explaining nucleation in
animals.

In the remainder of this chapter it is assumed that the cavitation nuclei
occurring in animals are surfactant-stabilized nuclei similar to those observed
in gelatin and that their behavior can be modeled by the SS model equations
described in Chapter 4, This assumption is necessary because the only other
nucleation process known to be viable--the crevice model--does not seem appli-
cable to animals. A strong indication of the validity of the assumption of
surfactant-stabilized nuclei is- its ability to explain a number of decompression
phenomena. It would, of course, be significant if the existence of surfactant-
stabilized nuclei in animals could be demonstrated directly, perhaps by i~ volvo
experiments with tissues and fluids; proposals for such studies have been made.

The assumption that surfactant-stabilized nuclei are the progenators of
bubbles induced by decompression allows the observed pressure reduction limits
to be interpreted in terms of nuclear sizes. The limiting pressure reduction
for a human equilibrated at a pressure of 1 bar absolute has been estimated by
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Gray �944! to be 0,6 bar, by Belne and Bergeret �95l! to be 0.7 bar, and by
Hennessy and Hempleman �977! to be 0.70 bar. The radius of the smallest
surfactant-stabilized nucleus that will be induced to grow by a supersaturation
of 0.7 bar can be determined using equation �.99!. The result is

x' = 77!�.7 x 206! = 2.2 ~,

The diameter of the laxgest nuclei normally present in humans is evidently about
2. 2 ]lm.

md= 7.7 pn, �.16!

which indicates that the effective size of' the splenic filter pores should be
about 2.4 gm, in good agreement with the diameter measured in Bloom and Fawcett
�975!. If this size is also assumed to be the diameter of the largest nuclei
normally present in human blood, then equation �.99! implies a decompression
limit of 0.64 bar, a prediction in excellent agreement with the observed limits.

The effect of rapid compression on the equilibrium size of a surfactant-
stabilized nucleus was discussed in subsection 4.3.2 and is shown graphically
in Figure 4.19. Such a compression reduces the size of the nucleus by forcing
surfactant molecules to desorb from the nuclear skin into the surrounding fluid.
Because the equilibrium radius of a nucleus is inversely proportional to the
supersaturation pressure required to induce bubble growth, a rapid compression
results in an increase in the pressure reduction necessary to form a fixed num-
ber of bubbles. The observed increase in pressure reduction limits in both rats
and humans with increasing exposure pressure can be understood in terms of a
similar reduction in nuclear sizes.

The largest nuclei normally present in the human body apparently have a
radius of about 1.2 pm. The rapid application of sufficiently large pressure
will decrease the size of these nuclei and thus increase the pressure reduction
limit. As an example, the data in Figure 6,2 indicate that rapid compression to
9.3 bar raises the decompression limit in humans from 0.70 to 3.03 bar; the size

96

The upper limit to nuclear sizes given by equation �.15! may be controlled
by one or more of the various filter systems in the human body. In particular,
the spleen may be critical in determining the upper limit, since it is the small-
est blood filter in the body. The spleen is a blood filter and reservoir placed
in the pathway of a wide blood stream, the lienal or splenic artery. It removes
dead and worn-out erythrocytes  red blood cells!, bacteria, and other debris.
Included among the debris filtered from the blood are, presumably, any nuclei
larger than the effective filter size of the spleen. This filter diameter i'
not well known, but from measurements of photomicrographs reproduced by Bloom
and Fawcett �975!, it appears to be between 2 and 3 um. An independent esti-
mate of the pore diameter can be arrived at by considering that one of the prime
functions of the spleen is to remove non-elastic erythrocytes from the body. A
normal erythrocyte is an extxemely elastic torus, 7.7 pm in diameter, which is
capable of deforming to pass through apertures much smaller than its normal
diameter; the splenic filter removes those cells unable to deform adequately.
The minimum diameter which an exythrocyte can assume may occur when the normally
flat torus is rolled into an incomplete cylinder. The diameter of the resulting
cylinder is related to its initial size by the equation



of the largest nuclei prior to decompression is evidently reduced from 1.2 pm to
0.25 um. A linear extrapolation of the data in Figure 4.19 yields a final size
of 0.21 um for a gelatin nucleus of similar initial size exposed to a crushing
pressure of 8.3 bar. The increase in pressure reduction limits in humans with
increasing exposure is therefore quantitatively similar to that observed in
gelatin, and this strongly suggests that the cavitation nuclei occurring in
humans are in fact surfactant.-stabilized nuclei.
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Figure 6.6. Comparison between the observed pressure-
reduction iimits for humans and those

predicted by the SS mode!

97

In general, the magnitude of the pressure reduction limit of a surfactant-
stabilized nucleus will depend on the composition of the nuclear skin and on the
surface tension of the surrounding medium. Because the chemical environment of
living animals is expected to be different from that of gelatin and might differ
from subject to subject, the quantitative results from the gelatin experiments
are not expected to be immediately applicable to humans. The difference between
humans and gelatin is shown in Figure 6.6, where the decompression thresholds
for humans are compared with those calculated for gelatin nuclei having an ini-
tial size of 1.2 pm. The gelatin curve is seen to be somewhat steeper than the
human curve, but it is in surprisingly good agreement considering the multiplic-
ity of possibilities  see section S.l!. Yount �979a! adjusted the parameters
of his Varying Permeability model to fit the human data almost exactly. A simi-
lar procedure is possible using the SS model, but has not yet been done.



The equilibrium size of a surfactant-stabilized nucleus depends on the type
and number of surface-active molecules composing the nuclear size, In section
5.2 it was noted that the number of molecules will normally not remain constant,
but will instead vary as they are gained or lost from the skin. The rate of
change of the molecular number depends on the concentration of surface-active
material in the surrounding fluid, and for concentrations near the critical
micelle limit, it will invoIve an accretion of molecules. Because the mammalian
body is rather heavily loaded with surfactant material, it is reasonable to
assume that the nuclei will accrete material and thus steadily grow larger.
This rate of growth is given by equation �.15!; according to this assumption,
any given nucleus increases its radius exponentially with time.

If nuclei do grow larger with time, then the decompression limits shown in
Figure 6.2 will depend on the duration of the exposures. It has previously been
shown that a nucleus initially 1.2 pm in radius will be crushed to 0.25 um when
rapidly compressed by 8.3 bar. It will not remain at this reduced size indefi-
nitely, however, but will instead immediately begin accreting surface-active
molecules and grow larger. As the nucleus is restored, its decompression limit
decreases. The process ends when the nucleus grows so large that it is trapped
in the splenic filters and destroyed. If there is sufficient time for complete
recovery to occur, the no-bends decompression limit should return to its initial
value of 0.7 bar, regardless of the exposure pressure.

Experience with long duration exposures has shown that this predicted
nuclear restoration does indeed happen. As an example, Beckman and Smith �972!
noted that the maximum allowable pressure reduction following very long--up to
60 days--exposures at 2.27 bar absolute is about 0.53 bar. The data in Figure
6.2 indicate that for a 12-hour exposure at this same pressure a decompression
of 1.03 bar would be safe. Evidently, "short" saturation exposures must be
handled differently from "long" saturation exposures. For exposures of inter-
mediate length, the value of ~ must be measured so that the size of the largest
nucleus can be calculated by integrating equation �.16!.

The crushing and slow regrowth of nuclei provide an explanation of the
common qualitative observation that greater pressure reductions can be tolerated
on repeat dives than on first dives. This behavior is quantitatively shown by
the data of Watt and Lin �979! in Figure 6,3, where the no-bubble decompression
limits are seen to be significantly larger for second exposures than for first
exposures. Now consider a diver who works daily at a depth of 8.3 bar. On his
first dive the largest nuclei are reduced in size from 1.2 pm to about 0.25 um.
The next day the nuclei have grown larger but have not yet been fully restored
to their original size; the diver therefore begins the second day with nuclei
of substantially reduced size, which are made even smaller by that day's dive.
This process continues until an equilibrium condition is reached where during
each day's diving the largest nuclei are crushed by an amount equal to that
which they grew overnight. The decompression table is adjusted to reflect the
corresponding increase in pressure reduction limits, and the work progresses.
The diver then takes a week of vacation, during which time the largest nuclei
are fully restored to their original 1.2 pm size, thereby decreasing the pres-
sure reduction limit. The diver returns to work and dives using the same "safe"
schedule used by his comrades, who have not been on vacation. The result may
be a bent diver.
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6.4. Calculation of decom ression schedules

If the onset of decompression sickness is associated with the initial forma-
tion of bubbles, then it may be seen from the gelatin results  see Figure 2.10!
and from the data on rats and humans  see Figures 6.1 to 6.3! that the Haldane
ratio principle is a reasonable first approximation for some exposures. However,
as may be inferred from Figure 2.15  Yount and Strauss, 1976!, there are, at
least in gelatin, many instances in which the ratio principle fails. This fail-
ure emphasizes the fact that the ratio principle was derived from empirical
results on humans and makes no attempt to accommodate the nucleation process per
se. In this section, methods by which non-Haldanian decompression schedules may
be computed using a nucleation model to determine the onset of bubble formation
are investigated.

6.4.1. Calculation of tissue as tension

Before beginning with the calculation of decompression schedules it is
necessary to consider briefly the manner in which tissue gas tensions may be
determined. This is because models for bubble nucleation and growth require
the supersaturation pressure be known. Continuing the development in section
6.1, it, is assumed that the body can be viewed as being composed of a number of
distinct structures. The gas tension in the jth such structure I - is related
to the gas concentration U>- by Henry's law, which states that

�. 17!U~ = x~.S~-

where S<. is the gas solubility. In general, four or more gases will be present:
oxygen and carbon dioxide for tissue metabolism, water vapor, and the inert
carrier gas, usually nitrogen or helium.

The nominal partial pressures of these four gases in arterial and venous
blood are shown in Figure 6,7, which is reproduced from Strauss �976!. The
arterial blood, with the exception of CO> and H20, is seen to be nearly equilib-
rated with the ambient atmosphere, while the venous blood is inherently unsatu-
rated. This unsaturation is caused mainly by the metabolism of the less soluble
oxygen into the more soluble carbon dioxide.

The amount of inert gas in a structure will depend on the ambient pressure
history. It is usually assumed that the rate of inert gas flow into a structure
is limited by blood perfusion and hence is determined by the equation

dU ~
c.z �.18!
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The problem of how to decompress a human without inducing bends was
addressed just after the turn of the century by J.S. Haldane. Working at the
behest of the Royal Navy, he developed the first set of practical, though empiri-
cal, decompression schedules Haldane demonstrated that, at least at small
depths, the body could withstand a two-to-one reduction in ambient pressure
without symptoms, and he used this 2:1 ratio to compute the maximum allowable-
pressure reductions occurring in his tables.
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where TyIo~g is the inert gas tension of the arterial blood in the capillaries
supplying the structure, and where C>r is an inert gas uptake parameter. The
arterial blood is often assumed to be in diffusive equilibrium, through the
lungs, with the ambient atmosphere. In this case, the arterial inert gas ten-
sion is equal to the ambient partial pressure pr >, and equation �.18! becomes

�. 19!

where equation �.17! has been used to convert concentrations into tensions.

Equation �.19! allows the inert gas tension T> to be computed, given the.r

ambient pressure history and the initial tension. A's an example, if at time
zero the ambient pressure is rapidly changed from an equilibrium value of P~
to a final value of P2, then equation �.19! can be integrated to yield

Z -tC r S-r�! = Py + � � 8 c7 c7 J p2 � P! �. 20!

The rate at which a tissue equilibrates is seen to depend on the ratio C~ !S>-z .r

with tissues having large gas .solubility taking longer to equilibrate. It
should be noted that the uptake parameter C>r is not ordinarily constant since
it depends on the density of capillaries and on the rate of blood flow, the
latter of which can change by an order of magnitude in response to physiologi-
cal stress.
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Figure 6.7. Norma! gas tensions in venous and arterial blood
 After Strauss, 1976!



6.4.2, Becom ression followin saturation ex osures

In this subsection the optimum decompression schedule for the case of ini-
tial diffusion-equilibrium with the ambient atmosphere is computed. The basic
idea is to prevent the formation of bubbles by requiring that the supersatura-
tion pressure never rises above some critical value throughout decompression.
quantitatively, this means that at all times the inequality

pamb -' pj' �. 2] !

must be satisfied, where p-,'~ is the minimum supersaturation pressure required
for bubble nucleation in the jth structure. As discussed in section 6.3, the
value of p>'" is related to the size of the largest nuclei, which will in turn
be determined either by the ambient pressure history or by the filtering mecha-
nism of the body.

If it is assumed that the breathing mixture is regulated so that the par-
tial pressure of oxygen is held constant at 280 urn Bg = 0. 22 bar, then the
tissue partial pressures of oxygen and carbon dioxide will remain constant, and
equation �.19! can be used to compute the rate of change in total tissue gas
tension. The result is

d~~- = [p~~ t! � r~ � 0.07]C~I/S~.l, �.22!

where the 0.07 bar term is the normal inherent tissue unsaturation. Substitu-

tion of equation �.21! into equation �.22! yields the maximum allowable rate
at which the tissue gas tension can change without the formation of bubbles:

QT ' = �  p " + 0. 07!C'~.~/S~~ �, 23a!

Equation �.23a! may be immediately integrated to give an equation for the
tissue gas tension as a function of time:

c J
Tg  t! = zg. �! �  p " + 0. 07! t

S2
�. 23b!

The decompression schedule is then:

g .2

p~g t! =  p. � p~»! �  p~-+ + 0.07!t .c7 j
�. 23c!

C~-/S~  p.~ + 0.07! b r/-ec
I
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Evidently, the decompression consists of a first pull during which the pressure
is decreased by an amount  ps � p> "!, followed by a linear pressure reduction at
a rate of



The validity of this type of decompression schedule has been checked in
gelatin by Yount and Strauss �976!. In experiments with gelatin samples in
which the ratio  S~/C~! was 15 minutes, they found that the optimum decompres-
sion was obtained using a short "first-pul.l" followed by a linear pressure
reduction. The resulting schedule was shorter than the proper US Navy diving
table f' or this type of dive, taking 12 minutes as opposed to 17 minutes, and
it. yie1ded many fewer bubbles, producing 0.42 + 0.29 buM Les per sample as
compared with 22.J + 2.0 bubb'Los per sample for the Navy decompressions.

The value of p " to be used in equation �.23c! will depend on the depth
and the duration of the exposure. As described in section 6.3, this is because
a rapid compression initially reduces the size of the largest nuclei and because
the nuclei subsequently regrow by the accretion of surfactant molecules until
they are removed from the body by the various filter systems. For "long"
diffusion-equilibrium exposures of more than a week, the value of p>.~ is set by
the splenic filter at about 0.6 bar, while "short" exposures of around 24 hours,
the value of p>" will depend on the exposure pressure, as shown in Figure 6.2.
Hennessy and Hempleman �977! have empirically determined the relationship
between pa and p> ~ for short diffusion-equilibrium exposures to be

p>~ = 0. 285 p~ + 0.42 bar �. 24!

Substitution of this result into equation �.23c! yields the optimum decompres-
sion schedule for a short diffusion-equilibrium exposure:

C-~

p~b E! = �. 72 p< � 0.42! � � �. 29 p< + 0. 42! i
S.Z

�. 25!

For "long" exposures the nuclei are fully restored in size so that the value of
p " returns to its original va.lue of 0.6 bar. The optimum decompression sched-
ule is in this case given by the equation

C,j

p~y  t! =  pa � 0. 7! � 0. 77
s.z

�. 26!
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The usefulness of equation �.25! or equation �.26! in computing decom-
pression tables is limited by the fact that these equations refer to specific
body structures and not the organism as a whole. To prevent the occurrence of
any bubbles, the maximum value of the ratio  C<~/S;~! must be known. An esti-
mate of this critical value in humans is provided by experience with long eqi-
librium exposure dives, such as the TEKTITE project, which indicate the maximum
permissible ascent rate to be about 2 fsw/hr or 1 x 10 3 bar/min  Beckman and
Smith, 1972!. Putting this result in equation �.26! yields a critical value
for the ratio  C>/S>.! of 770 inverse minutes, which corresponds to a tissue
half-time of 530 minutes. Because the tissue solubility and uptake rates enter-
ing into this ratio are not expected to depend on the ambient pressure, it is
reasonable to assume that this value of  C~~/S~~! is constant for all exposure
pressures. Substituting this ratio into equations �,25! and �.26! yields a



decompression schedule for short equilibrium exposures of

p~rrr h! = �.72 pe � 0.42! �  8.7 pe + S,B! x 20 4 t. �.27a!

and a schedule for long equilibrium exposures of

p~p t! �  pa � 0. 7! � j.0 x j0 t �.27b!

where time is measured in minutes.

As an example of these schedules, consider a rapid compression normox dive
to a depth of 30 msw. The exposure pressure is 4 bar absolute. For bottom
times of around a day, the dive is classified as a "short" diffusion-equilibrium
exposure, and the decompression schedule is given by equation �.27b!. The
decompression consists of a first pull to a pressure of 2.4b bm' = 24. 5 msv
followed by a linear ascent at a rate of 2. 2 mes/hour; the total decompression
time is 12.0 hours. For exposures lasting over a week, equation �.27b! for
"long" diffusion-equilibrr.um exposures must be used. The resulting pressure
schedule consists of a first pull to 6. 80 bar = 28. 0 ms', followed by a linear
ascent at a rate of 0. 60 ms'/houz, the total decompression time being 38.4 hours.

6.4.3. Decom ression followin non-saturation ex osures

The optimum decompression schedule for a non-saturation dive may be defined
as the fastest ascent profile that produces no bubbles. The condition for zero
bubble incidence is given by equatio~ �.21!,

parnb   pj"

which states that at no time can the supersaturation pressure exceed the criti-
cal limit p;". The calculation of the gas tensions t> during arbitrary pressure
schedules can, in principle, be accomplished by integrating equation �.19!.
This calculation is in reality much more complex than a simple integration,
since it depends strongly on the physiological state of the subject. Because
such considerations are outside the scope of this report, it is assumed that a
reliable method is available for computing gas tensions and that the values of
~> t! are known at all times.

C
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The magnitude of p-" depends on the size of the largest nucleus present in
the structure. As has been discussed in section 4.3 and 6.3, this maximum radius
will depend on the pressure history, the gas tension, and the nuclear growth rate.
In general, the only way to determine p>'" is by use of a nucleation model such
as the SS model or the VP model of Yount �979a!. The calculation of optimum
decompression schedules is therefore predicated on the existence of accurate
mathematical rrrodels of cavitation nuclei and upon detailed knowledge of the
chemical nature of the nuclei occurring in animals.
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