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Abstract—Predictive control methods can substantially im-
prove the performance of Unmanned Underwater Vehicles
(UUVs), particularly in shallow water environments or near the
free surface where wave induced disturbance are of magnitude
comparable to the vehicle characteristic inertia. To facilitate the
adoption of these methods, a fast estimation of the time evolution
of hydrodynamic forces acting on a vehicle is required. To this
end, we perform experiments in a wave tank with an ROV
to validate the use of Linear Wave Theory (LWT) to capture
the time history of surge, heave and pitch wave induced forces
and moments. Validation is performed for various sea states,
reconstructed with a mean correlation of 0.9138 in comparison to
experimental measurements, displaying a maximum normalised
mean error deviation between simulation and experimental data
of 0.16 and 0.27 respectively for surge and heave forces, and 0.34
for pitch moment. The effectiveness of employing real-time wave
disturbance forecasting for the purpose of anticipatory control is
then assessed by incorporating the predicted loads within a Model
Predictive Controller. Results display a mean RMS positional
error reduction of 47.32% in comparison to a standard PD
controller. This presents evidence that accurate, near real-time
predictions of the wave-generated forces and moments on an ROV
can be produced, laying the foundation for developing model-
based predictive control strategies that better suit operation in
harsh environments.

Index Terms—Marine Robotics, Disturbance Estimation,
Motion Control, Model Predictive Control, Station Keeping.

I. INTRODUCTION

ACURRENT trend in the offshore energy industry is the
shift towards fully autonomous operation, one aspect of

which is the deployment of underwater vehicles for tasks such
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as inspection, maintenance and decommissioning of marine
renewable energy devices [1], [2]. To reduce the overall
operating costs of the plant, accurate sensor deployment and
systematic maintenance must be undertaken in a cost-efficient
manner through the adoption of relevant technologies [3]–[5].
The oil and gas industry has previously utilised Remotely
Operated Vehicles (ROV) for the aforementioned tasks [6],
however, they are often not equipped to operate in a more
dynamic environment where marine renewable energy devices
are commonly situated [7]. In comparison to a deep water
scenario with negligible disturbances, performing tasks in
these daunting conditions presents situations where strong
currents are coupled with high wave energy, which can greatly
influence the vehicle behaviour [8].

Evolving from remote to fully autonomous operation gives
rise to the particular challenge of accurately estimating the
vehicle dynamic response when subjected to external forces
and moments, applied to the body by sources such as surface
waves or ocean currents [9]. This is particularly necessary
for shallow water applications, where the highly dynamic and
non-linear nature of the ocean environment makes it critical
that disturbance rejection for safe station keeping can be
performed to facilitate autonomous operation in close prox-
imity to submerged structures. Typical approaches have either
focused on developing methods for disturbance estimation and
rejection from in-situ observations [10]–[12] as opposed to in
a predictive manner, or have focused on rejecting disturbances
arising from steady or impulse perturbations rather than wave
disturbances [13], [14].

When operating in waves, typical dynamic positioning
control aims at filtering out the first order, short timescale
component of the wave, while rejecting disturbances from
the wave drift component alone [9]. However, for manipu-
lation tasks or visual inspection at close-quarters, both precise
positional and attitude control is required for effective station
keeping, thus requiring active disturbance rejection of the
oscillatory wave component. For this type of control task,
classic position/velocity feedback control or even acceleration
feedback cannot offer a satisfactory level of performance,
especially when exposed to large amplitude, quickly varying
disturbances [15]–[17]. This highlights the need for control
strategies which incorporate estimation of the highly unsteady
disturbance in an anticipatory fashion [18]–[20].
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Fig. 1: The BlueRobotics BlueROV2, [26].

Fast prediction of fluid forces on submerged bodies is
commonly performed via potential flow-based approximations.
One such example broadly employed for bodies operating
in waves is represented by Response Amplitude Operators
(RAOs), which are used extensively for studying the force
and motion response of complex geometries in the frequency
domain [16]. Similarly, by approximating the body shape to
elementary geometrical units and relying on suitable coeffi-
cients for the hydrodynamic parameters, Linear Wave Theory
(LWT) can provide an estimate of local flow features, thus
enabling a solution of the body dynamics in the time domain.
While this approach has been employed extensively for design
practice [21], it also lends itself to employment for control pur-
poses due to its very limited computational cost. Nonetheless
its usage in real-time disturbance prediction for the purpose of
feed-forward control remains sparse and its real applicability
uncertain.

Following this approach, in this letter the external forces and
torques induced by a dynamically changing sea state acting
on an ROV are simulated and validated against data collected
during an experimental study conducted at the FloWave Ocean
Energy Research Facility, University of Edinburgh [22], [23].
These estimations are then implemented within a Model
Predictive Controller to simulate a station keeping scenario,
drawing performance comparisons with a PD controller. The
results aim to demonstrate the degree of accuracy which can
be achieved with a low-order model in capturing the vehicle
dynamics in highly-perturbed, wave-dominated environments
and through this, justify the employment of such models for
the purpose of predictive control in such scenarios.

II. THEORETICAL MODELLING

This section details the underlying theory and approxima-
tions which are applied to obtain an estimate of the hydrody-
namic forces acting on the vehicle due to the surface activity.

TABLE I: BlueROV2 dimensions and hydrodynamic parame-
ters utilised in the simulations; data based on [25]–[27].

Parameter Nomenclature Value
Density of Seawater ρ 1025 kg/m3

Dry Mass md 11 kg
Vehicle Length l 457 mm
Vehicle Width b 338 mm
Vehicle Height h 254 mm

Rotational Inertia, q Iyy 0.16 kgm2

Added Mass, x Xu̇ 5.5 kg
Added Mass, z Zẇ 14.57 kg
Added Mass, q Mq̇ 0.12 kgm2/rad

Restoring Moment Arm, q BGz 0.02 m
Maximum Output Thrust Tmax 40 N

Thruster Angle, x α1, α2, α3, α4 45o

The simulated scenario is modelled in conjunction with the
parameters of the experiments detailed in Section III.

A. Vehicle Dynamics

The ROV is modelled as a rigid, neutrally buoyant body.
The concerned Degrees of Freedom (DOF) are the surge,
heave and pitch, as this work concerns 2D planar waves and
the disturbances induced in the same plane. Using SNAME
notation, the vehicle dynamics in these 3DOF (surge, heave
and pitch) can be represented by:

md[u̇+ wq − xGq2 + zGq̇] = Xu̇u̇+Xẇ(ẇ + uq)

+Xq̇ q̇ + Zẇwq + Zq̇q
2 +Xu|u|u|u| − (W −B) sin θ

+ Tx cos θ + Tz sin θ (1)

md[ẇ − uq + xGq̇ + zGq
2] = Zẇẇ +Xẇ(u̇− wq)

+ Zq̇ q̇ −Xu̇uq −Xq̇q
2 + Zw|w|w|w|+ (W −B) cos θ

+ Tz cos θ + Tx sin θ (2)

Iyy q̇ +md[zG(u̇+ wq)− xG(ẇ − uq)] = Xq̇(u̇+ wq)

+ Zq̇(ẇ − uq) +Mq̇ q̇ −Xẇ(u2 − w2)− (Zẇ −Xu̇)uw

+Mq|q|q|q|+Mw|w|w|w| −BGzW sin θ + δTz (3)

where u and w represent the relative velocities between the
local flow speed and the vehicle, such that:

u = up − uv, w = wp − wv

where subscript p and v represent the fluid particle and vehicle
velocity, respectively. Also, T , BGz , W , B and δ are the thrust
produced by the propellers, the vector between the centre
of gravity and centre of buoyancy in the heave, the vehicle
dry weight, the vehicle buoyancy and the moment arm to
the vertical thrusters, respectively. The terms Xu̇, Zẇ, Xu|u|,
Zw|w| represent the linear added mass and viscous damping
coefficients, while Mq̇ , Mq|q| are the coefficient of rotational
drag and added moment of inertia for the pitch. The restoring
moment is also considered in the pitch dynamics. The physical
parameters of the simulation and the BlueROV2 are displayed
in Table I following data from [25], [26].
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Fig. 2: Particle velocities and resultant forces acting on
the vehicle in both the local and global co-ordinate frame,
depicting the different components acting along the vehicle
longitudinal axes with reference to the vehicle pitch, θ.

B. Wave-induced flow prediction

Estimation of up and wp is based on LWT, according
to which the time history of the sea elevation η(x, t) at a
prescribed location can be represented as a composition of N
monochromatic waves [24] of known wave height, H , period,
T , and phase offset, φ, thus yielding:

η(x, t) =

N∑
i=1

Hi

2
cos(kix− ωit+ φi) (4)

where k, ω and λ represent the wave number, the angular
frequency and the wavelength.

Knowledge of these characteristics for each wave compo-
nent facilitates the reconstruction of the local flow field in the
whole domain [8]:

up(x, z, t) =

N∑
i=1

πHi

Ti

cosh k(z + d)

sinh kd
cos(kix−ωit+φi) (5)

wp(x, z, t) =

N∑
i=1

πHi

Ti

sinh k(z + d)

sinh kd
sin(kix−ωit+φi) (6)

where z and d are the operating depth of the vehicle and total
depth of the water column respectively.

C. Wave-induced hydrodynamic loads prediction

Estimation of quadratic drag and inertial fluid forces on
the vehicle is straight forward, as the forces are considered
as a simple superposition [9]. However, computation of the
moment exerted by the wave on the vehicle requires an ad-
hoc treatment, since it requires consideration of force variation
over the body. In consideration of the need for fast prediction,
a low-order integration of the hydrodynamic forces over the
sagittal plane of the vehicle is employed. Whilst this approach
stretches the validity of slender-body theory in the case of an
ROV, it enables a degree of prediction within a time frame
suitable for real-time control.

TABLE II: Experimental parameters for the test cases consid-
ered. For monochromatic cases R01 - R03, the peak frequency
refers to the wave frequency.

.
Case Reference Significant Wave Height (m) Peak Frequency (Hz)

R01 0.1 0.5
R02 0.2 0.5
R03 0.4 0.5
JS01 0.2 0.5
JS02 0.4 0.5
JS03 0.6 0.5

Having defined x′ and z′ the body-fixed coordinates of the
vehicle, we refer to vt and vn as the flow velocity components
tangential and normal to the vehicle, computed by projection
of vt and vn along the local coordinates, see Fig. 2. We assume
the vehicle can be treated as a set of identical sections with the
same hydrodynamic properties, thus the local Morrison force
exerted on an infinitesimal section of the vehicle’s x′ axis can
be defined as:

F (x′, t) = ρV v̇n(x′, t) + ρCaV v̇n(x′, t)

+
1

2
ρCdAivn(x′, t)|vn(x′, t)| (7)

where V is the spanwise volume of the section, Ca is the
added mass coefficient, Cd is the drag coefficient and Ai is
the section incident area to the flow. The above correlates with
Eq. 3, such that the resulting moment can be expressed as the
integral along x′, producing:

Mq̇ q̇ +Mq|q|q|q| =
∫ L

2

−L
2

F (x′, t)x′dx′ (8)

where L is the vehicle longitudinal length. This methodology
presents a basis for theoretically evaluating the resulting
moment due to an non-constant flow arising from fluctuations
at the sea surface. For the pitching of the vehicle, only the
normal force acting on the vehicles local heave plane was
considered to be sufficiently contributing to this motion.

D. Thrust Allocation

The BlueROV2 features six vectored thrusters, 4 horizontal
and 2 vertical and is controllable in 5 DOF, the pitch being
the only uncontrollable plane, see Fig. 1 . If we consider the
bilinear model, τ = Bµ, where B is an allocation matrix and
µ is a vector of control inputs; the applied forces and moments
from the thrusters can be deduced from their specifications and
geometries in the vehicle’s local co-ordinate frame [9]. As the
surge and heave are the two controllable planes in this letter,
the vector of output thrusts is summarised as:

τ =

[
Tx
Tz

]
= Tmax

[
cα1 cα2 cα3 cα4 0 0
0 0 0 0 1 1

]
µ (9)

where c is shorthand for cos, the angles α1 - α4 are the
horizontal thruster orientation with respect to the vehicle’s
local x-axis and µ = {µ1, µ2, µ3, µ4, µ5, µ6}T . This model
can be implemented within the simulation for evaluating the
station keeping performance of different control architectures.
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(a) (b)

Fig. 3: Experimental set-up used for collecting data, visualising the position of the load cells with their respective assignments
and how the vehicle was restrained within the frame, with reference to the Still Water Line (SWL). Fig. 3a shows an image
of the actual apparatus within FloWave (raised tank floor) and Fig. 3b schematically describes the arrangement, with the load
cell number assignments shown.

III. EXPERIMENTAL PROCEDURE

To facilitate validation of the estimated hydrodynamic
forces, experimental data was collected during an investigation
at the FloWave facility, University of Edinburgh. The vehicle
utilised in this work was the BlueROV2 produced by Blue
Robotics, a small scale ROV who’s physical and hydrody-
namic parameters are displayed in Table I [25], [26].

The BlueROV2 was restrained within a purpose-built frame
by eight tethers to minimise interference of the supporting
structure with the flow around the ROV. Each tether was
fitted with an in-line load cell to measure the force exerted
on the body by the wave, as shown schematically in Fig.
3. The upper volume of the wave tank has a total depth
of 2m and a diameter of 25m, with the vehicle situated in
the centre at 1m depth for all experiments. The vehicle was
subjected to varying degrees of wave disturbances created by
the surrounding wave makers and the force acting on the
vehicle was monitored, as well as any very small motions
in 6DOF evaluated based on a Qualisys underwater motion
capturing system. The disturbances are generated by specify-
ing the parameters of the frequency spectrum, which is then
transformed into a wave height time-history; this is transferred
to the wave-makers, resulting in movement to produce the
desired waveform. The test case conditions are listed with
assigned case references in Table II. The load cells measure
the inline force vector, which can be decomposed into the
individual 3-dimensional force components by considering the
geometrical arrangement of the apparatus. The force vector
orientation was determined based on two points (one on the
frame and a virtual one calculated based on the rigid body
of the ROV), measured with the underwater motion capturing
system to an accuracy within the range of 1mm. This processed
data [30] was used for validation against the estimated forces
presented in this work. Each load cell is assigned a number
for ease of analysis, ranging from LC1 up to LC8, shown
in the experimental apparatus in Fig. 3. Further information

regarding the collected data, processing of the data and the
full experimental procedure can be found in [28].

Within the simulations, it was assumed that the vehicle
remained perfectly stationary and the oncoming wave was
assumed to be a perfect head sea. When the waves are
generated in the FloWave Facility, a wave-height time history
is created by the software and passed to the wave makers.
It was possible to extract this time history for all experi-
ments; therefore, Fourier analysis could be used to obtain
the frequency components and their attributes (H , T and φ)
to reconstruct each case in simulation, applying the theory
detailed in Section II-B. The simulations were performed by
implementing a fifth-order Runge-Kutta integration [29] to
solve the differential equations presented in Section II; each
case was simulated for a total of 300s and compared with
the corresponding experimental data. The complete processed
dataset for the conducted experiments is available via the
DataShare of the University of Edinburgh [30].

IV. RESULTS

Comparing the measurements with the experimental data for
the surge force, heave force and pitching moment (based on the
previous observations) presents an impression of how realistic
the simulation is. For all cases, the sea state created by the
wave makers was emulated; for the irregular cases, Fourier
analysis was utilised to identify the JONSWAP frequency
components as previously mentioned. From these frequency
components, the sea state was reconstructed and the hydrody-
namic forces estimated according to LWT; a section of the time
histories for the fully developed wave in cases R02 and JS01-
JS03 are depicted in Fig. 4-7. These show good correlation
between the estimations and the experimentally collected data,
demonstrating that the lower order model can provide a fair
representation of the particle motions and resulting forces
induced by surface waves. It should be noted that a Savitzky-
Golay filter was applied to the experimental data to smooth
the signal and reduce the amount of sensor noise; however,
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Fig. 4: Comparison between simulation and experimental data
for case R02, showing the time segment 50s - 70s. The sub-
plots display the (a) wave height, (b) surge force, (c) heave
force and (d) pitching moment.

Fig. 5: Comparison between simulation and experimental data
for case JS01, showing the time segment 50s - 70s. The sub-
plots display the (a) wave height, (b) surge force, (c) heave
force and (d) pitching moment.

all plots still show some effect of noise on the resulting trace.
This is mainly due to 2 of the load cells being rated higher,
causing low magnitude wave elevations to be affected by a
higher degree of background sensor fluctuation [28]. There
may also be components operating at a frequency similar to
that of the wave associated with the frame and measurement
gauges, which are difficult to segregate from the force signal.
Furthermore, the motion capturing system documented very
small rotations and translations, which are not reproduced in
the LWT approach due to the assumption of a perfect still
geometry. However, the overall behaviour can still be seen
as consistent, particularly for case JS03 where the significant
height is largest.

Further analysis was conducted regarding the statistical
similarity between the simulated data and the experimental
data. The data is graphically represented in Fig. 8, which
again demonstrates that the distribution of the data matches
well for all cases. Expanding this analysis further, the nor-
malised error for all test cases are shown in Fig. 9; for
the four variables considered here (wave height, surge/heave
force and pitching moment), the correlation factors were

Fig. 6: Comparison between simulation and experimental data
for case JS02, showing the time segment 50s - 70s. The sub-
plots display the (a) wave height, (b) surge force, (c) heave
force and (d) pitching moment.

Fig. 7: Comparison between simulation and experimental data
for case JS03, showing the time segment 50s - 70s. The sub-
plots display the (a) wave height, (b) surge force, (c) heave
force and (d) pitching moment.

also obtained to offer further quantitative insight into the
simulation/experiment comparison, listed in Table III. This
additional analysis presents insight into the deviation of the
estimated forces with reference to the real-world case.

Finally, to demonstrate the applicability of the force
estimation, we conclude our results with a station keeping per-
formance comparison between a classic PD control and Model
Predictive Control (MPC); the key parameters associated with
both controllers can be found in Table IV. The objective of
this comparison is to demonstrate the potential performance
improvement through inclusion of wave disturbances within
the control scheme. For the PD controller, the control inputs
are determined according to the control law defined by:

µ(t) = Kpe(t) +Kd
de(t)

dt
(10)

where Kp, Kd and e are the proportional gain, derivative gain
and positional error respectively.

Alternatively, the MPC objective is to minimise the cost
function, J , for the sum of squared distances between the
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Fig. 8: Boxplot distribution comparing the simulated data
to the experimentally collected data. The plots display the
median, the interquartile range (IQR), outliers (points which
fall ≥ 1.5x IQR above the third quartile or below the first
quartile, individually marked by a ’+’) and whiskers extending
to the most extreme data points not considered outliers by
mathematical definition.

desired state, Λd, and the predicted state, Λj [19]:

J =

K∑
j=1

{Λd − Λj(µj)}2 + (µj)
2 (11)

where K is the horizon length, j is the current time step and
the term (µj)

2 is intended to minimise energy usage. The
control inputs are constrained such that −1 ≤ µ ≤ 1 as
the output thrust cannot exceed the maximum attainable, as
described by Eq. 9. Subsequently evaluating the Jacobian with
respect to the control input determines the optimised values
for the control vector µ.

This analysis concerned cases JS01-JS03, where the vehicle
was subjected to the surface waves and the controller at-
tempted to hold the vehicle position at (0,−1) m, mimicking
the experimental conditions; as with our previous analysis,
the simulations were performed for 300s, see Fig. 10 which
depicts an example for case JS03 (showing only 0-60s for
clarity), providing clear evidence that inclusion of disturbance
estimations greatly improves the vehicles station keeping abil-
ity. Across all cases there was a mean reduction in Root Mean
Squared (RMS) error of 47.32%, with the explicit RMS errors
shown in Fig. 11.

V. DISCUSSION

Upon reflection of the results detailed in Section IV, it
is shown that the modelled theory accurately represents the

Fig. 9: Normalised mean error magnitude for each case, rel-
ative to the maximum force recorded throughout the duration
of the case relative to the significant height of the wave train.

hydrodynamic forces under varying conditions. These results
show that LWT is capable of closely matching a wave profile
consistent with a complex wave series, such as that produced
by the wave makers. With reference to Fig. 8, the moment
value, Fig. 8(c), displays the largest deviation in range between
the datasets, which correlates with the results displayed in
Fig. 9; this suggests that the angular torques feature higher
uncertainty. Due to the error analysis being a timewise point-
to-point comparison, there will be occasions where the lower-
order model and the experimental data largely differ, which
will produce a larger error range, as demonstrated in Fig.
9. However, the overall model output closely follows the
unsteady behaviour of the systems with remarkable accuracy,
with the majority of the data falling within a small normalised

TABLE III: Correlation coefficients between the estimated
forces and the experimental data for the wave height, η, surge
force, Fx, heave force, Fz and pitching moment, Mθ.

Variable
Case

R01 R02 R03 JS01 JS02 JS03
η 0.9671 0.9423 0.8484 0.9403 0.9259 0.8585
Fx 0.925 0.9811 0.7207 0.9349 0.9661 0.9459
Fz 0.9205 0.9882 0.6567 0.9688 0.9707 0.9317
Mθ 0.8728 0.8796 0.4570 0.6571 0.7637 0.6402

TABLE IV: Controller parameters for the PD and MPC
controllers utilised for comparing station keeping performance,
exclusive and inclusive of disturbance prediction.

Controller Parameter Nomenclature Value

PD
Proportional Gain Kp,x, Kp,z 1.4, 1.8
Derivative Gain Kd,x, Kd,z 2.7, 3.2

MPC
Prediction Horizon tp 0.8s

Prediction Steps ∆t 4
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Fig. 10: Station keeping performance using a PD controller
vs a Model Predictive Controller, when operating under the
wave train in case JS03 and attempting to station keep at the
position (0,−1)m.

error range. It can also be seen that the mean error is slightly
positive, which could indicate some experimental errors, sup-
ported by a slight constant y-offset witnessed in Fig. 4-7,
particularly Fig. 5. For all cases, the normalised mean error
recorded is < 0.35 showing that the model is a fair general
representation of the wave induced forces and moments. This
is supported by the correlation factors listed in Table III, which
are close to 1 for all parameters across the majority of cases.

One factor which contributes to the error is the assumption
that the vehicle is held perfectly stationary and oriented
perfectly head-on to the oncoming wave. However, unwanted
small-scale displacements of the vehicle during the exper-
iments were inevitable, yielding an unavoidable mismatch
with the simulated case-scenario. Additionally, within the
simulation only the forces arising from the added mass and
viscous damping effects are considered and other forces, such
as the Froude-Krylov force for example, are disregarded.

Considering the apparatus, the restraining cables were
chosen as inextensible lightweight Dyneema rope; however,
there will still be an effect on the recorded moment due to
the vehicle not being held perfectly stationary. Additionally,
it’s possible that imperfect pre-tensioning or momentaneous
misalignment of the supporting rig will cause discrepencies,
as these could allow room for some unwanted small angular
motions. This could be the reason that the comparison of
recorded and simulated moments in Fig. 4(d)-7(d) do not
match as closely as the linear forces, but the overall behaviour
exhibited still shows good consistency. This could also account
for the offset witnessed in the recorded moment, which appears
to be shifted slightly for all cases tested; if the vehicle is
not orientated perfectly head on to the wave throughout the
entire experiment, additional contributions will be present in
the measured forces which were not accounted for within the
simulation, thus affecting the accuracy of our results.

A clear factor effecting the correlation is that the emulated
wave is not an identical match to the wave generated by the
wave makers; the experimental case will feature imperfections
and this will therefore cause deviations before any approx-
imations are even considered. Limitations of LWT make it
applicable only under various assumptions, such as the wave

Fig. 11: Associated RMS errors for cases JS01 - JS03 over a
300s simulation, showing a mean reduction of 47.32% when
using Model Predictive Control over PD control.

steepness (H/λ) remaining small and the sea floor having
negligible impact on the sinusoidal nature of the wave. While
these are satisfied for the cases tested and for a broad range
of real-world scenarios, the validity of these assumptions will
be stretched for waves which diverge from a pure swell [24].

Looking at the improved performance using MPC, there
is a substantial reduction in RMS error for all tested cases;
18.58% for Hs = 0.2m, 59.92% for Hs = 0.4m and 63.46%
for Hs = 0.6m which was the largest significant wave height
tested. Although promising, these results were achieved when
assuming full knowledge of the wave spectrum at the vehicle’s
location had been achieved through the prediction algorithm.
Also, the thrust delivered was assumed to not suffer from
any time delay, analogous to [19], while it can be expected
that even small time lag in the thrust response signal can
significantly affect controller performance [17].

With reference to the above, the estimated forces validated
in this letter present a good approximation in comparison
to those measured during the experiments. These estimations
provide an understanding of the dynamic response of the
vehicle subject to surface wave disturbances, and were shown
to improve performance when incorporated into controller
design, specifically for tasks such as station keeping in harsh
environments. Furthermore, the model not only captures the
complex dynamics with good accuracy but computes the
hydrodynamic forces at a speed applicable for real-time appli-
cations (a 20s time history is analysed in≈ 5s using MATLAB
on a laptop with a 1.6GHz Dual-Core Intel Core i5 processor),
strengthening the case for use in dynamic control applications.

VI. CONCLUSION

This letter presents experimental validation of the estimation
of hydrodynamic forces acting on an ROV under regular and
irregular waves of different significant heights. The resulting
estimations have been subject to both qualitative and quanti-
tative analysis, which has shown that the employed low-order
model provides a good degree of accuracy at very limited
computation cost. With reference to the irregular sea states
tested, the wave elevation was consistently captured with a
mean correlation factor of ≈ 0.9, while the associated surge
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and heave forces were predicted with a mean correlation
factor of 0.95 and 0.96 respectively. The model accurately
forecasts the variation of these linear forces throughout the
experiments, closely matching their spreading over the median
and interquartile range, predicting the measured signal with a
normalised mean error smaller than 0.17, see Fig. 9. Prediction
of the hydrodynamic pitching moment, despite requiring a
coarse piecewise integration, correlated with the measured
data with a 0.69 factor when averaged over the irregular
cases. The normalised mean error between experimental data
was consistently below 0.35, and fell below 0.14 for the
largest significant wave height tested. The model can also be
executed at a speed which suggests it is applicable for real-
time applications.

To prove that low-order models can be deployed as predic-
tive tools for both positional and attitude control, the estimates
from the model were incorporated within a predictive control
architecture, ultimately showing station keeping performance
was improved between 18-63% across different sea states
compared to a typical PD controller. To further investigate
our approach, future work will focus on expanding our anal-
ysis by considering multi-directional spectra to determine the
performance of our proposed system in a scenario analogous
to real-world environments. While significant improvements
are essential to successfully employ predictive control tools
in real-world applications, these results constitute a solid
foundation upon which the challenge of autonomous operation
in harsh ocean environments can be addressed.
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