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Abstract—ROVs are the primary tool used in marine envi-
ronments for conducting dexterous manipulation tasks and the
teleoperation of which requires experienced operators. In an
attempt to ease the fatigue of the operators and to potentially
improve task efficiency, we propose an image based framework
to automate underwater routine tasks via imitation learning.
In particular, we utilize the gaze information of the operator
for extracting task-relevant information from the raw image
input by an encoding network. We further demonstrate that the
incoporation of the eye gaze encoder facilitates the training of the
task policy which includes both maneuver and decision making.

Index Terms—Gaze map, Imitation learning, ROV, Task au-
tomation, State encoder

I. INTRODUCTION

Autonomous capture of sea animals such as sea cucumber is
highly demanded, since manual capture performed by experi-
enced divers presents high risk and is economically inefficient.
However, control and task automation of underwater robots
are challenging problems, primarily because of the lack of
accurate robot dynamic models and the highly dynamic and
unpredictable marine environments the robots are operated in.
In addition, precise and real-time underwater localization are
still open questions, which adds difficulty to the automation
problems. Control and task automation frameworks for ROVs
usually treats localization and control as two separate tasks:
multi-modality sensors or object recognition networks are
usually required [1] for object localization; as for decision
and control, traditional model-based control [2], learning based
control [3] and their hybrid [4] were investigated. In particular,
vision based control or visual servoing predicts the target posi-
tion from visual information. Current visual servo control for
ROV, however, cannot cope with large external disturbances
where the target is out of sight, Unless state estimation [5]
and decision modules are incorporated.

We seek to solve the problem with inexpensive sensors
like monocular camera and pressure sensor in an end-to-
end fashion. End-to-end learning control, that outputs control
and decision making commands directly from sensory input,
receives wide research interest for applications in self-driving
cars [6], [7] and robot manipulation [8], [9]. Recent effort in
applying end-to-end sensory motor control methods for marine
robotics can be seen in [10].

Traditional architectures of learning visualmotor control
policies take raw images as the input, followed by convolu-
tional neural networks for feature extraction. These architec-
tures present low sample efficiency, weak intepretability and
poor generalization to unseen environment and tasks. Gaze
patterns have been studied by psychologists, neuroscientists
and deep learning scientists [11], and shown to be important
cues for decision making in a variety of tasks such as human-
machine interactions [12] and self-driving cars [13]. Shi et al.
improves the generalization capability of imitation networks
by exploiting gaze map as an additional input and as a novel
dropout mechanism. We intend to propose a different way of
utilization of the gaze map to encode spatial location of the
target in the image, which is highly relevant to the object
targetting and capture task we are trying to solve. In contrast
to [1], where the target locations are inferred by an object
recognition network, extensive manual labeling is not required
in our approach.

In this work, we consider the learning of a low dimensional
state representation of raw images for underwater task au-
tomation, in particular, autonomous capture of sea cucumbers.
The task requires the operator to first detect the object to
catch, teleoperate the ROV to move towards the target object
until they are close enough for the manipulator to catch. The
latter two subtasks are considered here for automation: learn a
maneuver policy for vision servo control; learn when to stop
servoing and start closing the manipulator for capture (decision
making).

We adopted the Learning from Demonstration (LfD) frame-
work, which consists of (1) dataset collection; (2) training the
eye gaze map for state representation; (3) training the policy
network for maneuvering and decision making. Fig.1 shows
the setup for dataset collection. An experienced ROV operator
performed the task multiple times from vision feedback, where
the initial state of the ROV is randomized and the location
of the target is fixed. Images, depth of the ROV, eye gaze
information of the operator and the joystick commands were
recorded from the demonstrations. To simulate the terbulance
environment, we apply external load to the ROV with a rigid
rod manually, and 10% of the demonstrations were conducted
with disturbance.

Key contributions of this work can be summarized as
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Fig. 1. Experimental setup of the data collection process. The Blue ROV equipped with monocular camera and depth sensor is deployed in the pool
environment. A sea cucumber model is placed in the bottom of the pool as the object. An experienced ROV operator is asked to teleoperate the ROV to
perform the object capture task with only vision feedback. A Tobii 4C eye tracker is mounted on the screen to record the gaze information.

Fig. 2. Network architecture of the proposed method. The neural network consists of a gaze map prediction model that extracts task relavant information and
a control/decision model that outputs either maneuver policy or decision signals acoording to the task selector. The gaze model is of a conv- deconv structure
and the conv part is shared between the two tasks.

Fig. 3. The raw images (First row); the corresponding estimated gaze maps
(Second row) and their overlaps(Third row)

follows:

• We train an eye gaze model via a convolution-
deconvolution architecture to extract task-relavant fea-
tures that encode spatial information of the targets. The
trained network can predict and track the position of the
object in both trained and unseen environments.

• We exploit the possibility of incorporating the trained
gaze map into an end-to-end imitation learning frame-
work, where the low-dimensional bottleneck layer of the
gaze model is extracted as the input state to a LSTM
network for both task segmentation and maneuver policy
learning. The LSTM layer embeds sequential information
and outputs robust policy even when the ROV is subject
to external disturbances, which is particularly common in
marine environments.

• The incorporation of the eye gaze information facilitates
training of the imitation learning framework with reduced
training time, but with comparative performance com-
paring to networks with raw image input. The proposed
framework, without manual labeling process required,
is also advantageous over traditional architectures that
incoporate object recognition and visual servo control [1].



II. METHODOLOGY

Popular approaches to solve imitation learning problmes are
Behavior Cloning (BC) and Inverse Reinforcement Learning
(IRL) [14]. Here, we adopt the BC framework, for it’s simple
to apply. Behavior Cloning is formulated as supervised learn-
ing problems, where K completions of task demonstrations are
collected, {τ1, τ2, ...τK}, each consists of Nk, k = 1, 2, ...K
observations of state-action pairs (ski , a

k
i ), i = 1, 2, ...Nk. The

dataset is then formed by D = {(s1, a1), (s2, a2), ...}. The
goal is to learn a policy πθ(ai|si), parameterized by θ, that
can follow the policy from the demonastration as closely as
possible, by minimizing the following loss,

L = Esi,ai∈DDKL(πθ(ai|si)||p(ai|si)) (1)

where we use KL-divergence to characterize the similarity
between the learned policy and the expert policy.

One problem of Behavior Cloning is that it requires large
amount of data samples to be able to learn an adequate policy,
and we propose a state encoding method with additional gaze
information that extract the most salient features relavant to
the task to improve sample efficiency. Hence, we introduce a
mapping s̃ = f(s) to represent the state encoder to map the
original image input to the gaze-supervised low-dimensional
feature.

A. Task Demonstration

The setup of the dataset collection process is shown in Fig.2.
We performed the sea cucumber capture task with BlueROV
(Blue Robotics Inc), a consumer level ROV equipped with
a monocular camera to provide visual information of the
environment, depth sensor and IMU to provide its positional
and motion information. The ROV is connected by a Fathom
tether to a topside PCfrom which, the ROV operator can
visualize and monitor the state of the ROV in real time
through a GUI and tele-operate the ROV through a joystick. A
plastic basket was designed to store the sea cucumber and was
installed below the ROV. A pair of 1 DoF manipulators were
attached at the front of the basket to ”sweep” the sea cucumber
into the basket when the ROV approached the target. An eye
tracker device, Tobii 4C (Tobii Gaming), was mounted at the
screen of the PC to record the operator’s eye gaze data in real
time (runnig at 90Hz). A data collection routine was developed
with ROS and Ubuntu 16.04 to package the image and various
sensor data in ros bag format.

We asked a well-trained ROV operator to perform the
demonstration, who was provided with visual information
from the ROV camera only without the sight of the task
environment. A sea cucumber model was placed in the pool
in advance to serve as the target. At the start of each demon-
stration, the BlueROV was deployed in the pool at different
locations with respect to the target. We kept the pitch of
the camera fixed. We used a rod to interrupt the motion of
the ROV at random directions to simulate the environmental
disturbances. In each demonstration, the ROV is likely to go
through a searching-approaching-landing process, and once the
ROV landed close enough to the target such that the target

is in the ”sweeping” region of the manipulator, the demo is
regarded as successful. In total, 24 successful demonstrations
were recorded, and within which, 3 are with disturbances.

B. Dataset Preparation

We first extract images I, depth data h, eye gaze data
e = (u, v) and the 4 dimensional joystick commands J =
(J1, J2, J3, J4) which corresponds to longitudinal, lateral, yaw
and ascend/descend motion respectively, from the recoreded
ros bag. The data were aligned temporally with a reference
frequency of 33Hz. We manually segmented each demo into
three phases: searching, approaching and landing and kept the
latter two for subsequent process. We prepared three datsets
corresponding to 3 models: gaze model, manuever model
and decision making model. Image data were resized into
3× 224× 224 and normalized for each model.

Gaze model:As eye data is highly dynamic and sensitive, we
applied several filtering procedures to stably extract the gaze
fixation. As fixation is defined as the pause of gaze within a
spatially limited region (0.5− 1degree) for a minimum period
of time (80−120ms) [15], we ran a mean average filter with a
window size of 10 (approximately 100ms). We ran a statistics
analysis for each window by calculating standard deviation
sx, sy and Pearson’s r r. Data samples with sx > 0.02 or sy >
0.02 or r ≥ 0.5 or r ≤ −0.5 were filted out. We fitted a 2D
Gaussian distribution for each running window and resized to
a 64×64 gaze map for the target of the gaze model. The input
to the model is the raw image, which was cropped into two
sub-images to potentially increase the percentage of the ”small
object” in the dataset. Small object detection is a challenging
yet active research area in computer vision, and many methods
exist to enhance the detection rate [16], [17]. We found the
cropping technique to be effective for our dataset as shown
in Fig. 3. We also apply other augmentation techniques by
randomly shifting the brightness, constrast and gamma online
for each image while training. We obtained a dataset of 30, 000
samples and we devided the dataset into training set and testing
set with a ratio of 3 : 1.

Manuever model: The manuever model takes the low-
dimensional bottlenet feature of the gaze model, appended
with the depth information as the input, where the depth is
normalized into [−1, 1]. The target of this model is the 4-axis
joystick commands, data in each axis were discretized into
5 clusters by Gaussian Mixture Modeling (GMM) as shown
in Fig.4. Hence, the manuever model was formulated as a
54 = 625 classification problem.

Decision making model: The decision model was formulated
as a 2D classification problem: 0 as servoing and 1 as landing
and the data were labeled manually. The input is the same as
the manuever model and thus was processed similarly.

C. Neural Network Structures

The network architecture is illustrated in Fig.2. The gaze
model takes raw images as the input and outputs the estimated
gaze maps. Inspired by the VAE-GAN architecture [18],
we employed the conv-deconv structure, where the skeleton



Fig. 4. Discretization of the joystick commands performed by GMM, where clusters were represented by different colors.

network is Resnet18. We were surprised to find that the gaze
map stably encodes the position of the sea cucumber in the
image, as demonstrated in Fig. 3. The bottleneck layer of the
gaze model, together with the depth information of the ROV
from the water surface, are the input to the control/decision
making network, which is formed by LSTM layers. LSTM
is expected to account for time history state information, to
better assist decision making in robotic control tasks [19].
Particularly, localization techniques in dynamic underwater
environment is not maturally developed and sensors like IMU
that can tell time-history state information of ROV is subject
to integration error, in such cases, however, visual information
serves as an alternative to infer the history state of the ROV.
Moreover, in target capturing task, lost tracking of the target is
quite normal when the ROV is subject to external disturbances,
traditional visual servoing controllers [10] without referring to
the history states is invalid. The two subtasks, selected by a
switch signal, share the same state representation input.

III. EXPERIMENTAL RESULTS

Experimental results on the dataset collected from the pool
environment can be seen in https://youtu.be/ed8WGyNUZTI.
We detail the training and evaluation of the gaze model as
well as the Imitation learning model in the following.

A. Evaluating the Gaze Model

The objective of the gaze model here is to investigate the
possibility of encoding spatial information of the target in
the image using gaze data, without extensive manual labeling

process, that is indispensable for object detection networks
[20]. We train our eye gaze model (model (a)) separately by
minimizing the KL divergence, and compare the prediction
performance of the proposed auto-encoder structure with two
other models as illustrated in Fig. 5. Model (b) directly outputs
the spatial location of the gaze point by minimizing the mse
loss while training. Model (c) reconstructed the gaze map by
an m component GMM with the same setting as in [21]:

P (y|x) =
m∑
i=1

p(i)gi(y|x) (2)

L = − ln

{
m∑
i=1

p(i)gi(y|x)

}
(3)

where x is the encoded feature, y is the target gaze point, p(i)
is the mixing coefficient and they sum up to 1:

∑m
i=1 p(i) = 1,

g(i) is a multivariate Gaussian with mean ui and variance σ2
i .

We set m = 4 in the experiments after several rounds of trials.
The loss is defined as the negative logarithm likelihood of 2
as in 3. The setting of the hyperparameters for training the 3
models are the same, where the learning rate is lr = 0.001,
SGD optimizer are adopted with momentum of 0.9 and weight
decay of 0.001.

Model (a) and (b) converges easily within less than 50
ephochs, while we have to early stop model (c) to obtain the
results. Training, testing and prediction results are summarized
in Table I. We quantify the similarity of the predicted gaze
with the true target. For fair comparison, the prediction error

https://youtu.be/ed8WGyNUZTI


for all 3 models is quantified by mse. For model (a) and (b),
we extracted the point (xmax, ymax) that takes the maximum
value of the reconstructed gaze map, which was represented
by the red dot in the supplementary video, so that mse can be
calculated. The proposed eye gaze model outputs the minimum
mse as shown in Table I, so we adopt the same structure in
the imitation model.

TABLE I
TRAINING AND PREDICTION PERFORMANCE OF THE 3 GAZE MODELS.

TRAINING AND TESTING PERFORMANCE FOR THE 3 MODELS ARE
QUANTIFIED BY THEIR LOSS FUNCTIONS INTRODUCED IN SECTION III-A.
PREDICTION ERROR IS QUANTIFIED BY MEAN SQUARED ERROR FOR ALL

3 MODELS.

Train Test Prediction
Model(a) 0.0146 0.5550 0.0040
Model(b) 0.0085 0.1466 0.0105
Model(c) 0.1676 1.3896 0.0809

B. Training the Imitation Network

We adopted a two layer LSTM with the latent space size
as 512 + 1 (512 from the encoded eye gaze information and
1 for the depth). We trained the network with a sequence of
8 time-steps and batch size of 32 for 50 epochs. RMSProp
was adopted as the optimizer with initial learning rate of
0.005 and decay of 0.999. At test time, the entire sequence
of a demonstration was fed into the network for prediction.
Since the data samples in the two categories for the decision
making datset are imbalanced, we applied random downsam-
pling to the class with more samples for data balancing [22].
The prediction results are demonstrated in the supplementary
video, where we overlay the original video with 2 dots to
emulate the joystick commands. One nice property of the
trained policy is that while the target is out of the screen due
to disturbances, the policy can drive the ROV until the target is
back to the screen, without substantial localization techniques
and decision modules.

To illustrate the capability of the eye gaze map to encode
low-dimensional task-relevant features, we compare the pro-
posed architecture on the decision making task, with an state-
of-the-art end-to-end network without eye gaze information,
but instead uses a spatial softmax layer as an encoder [8]. The
classification results are represented by confusion matrix and
are shown in Fig. 6. We can observe that the performance of
the two architectures are comparable, with the eye gaze model
performing slightly better. Moreover, our model offers better
interpretability.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose an end-to-end imitation network to
automate routined ROV underwater manipulation tasks, where
we incoporate eye gaze data to encode low-dimensional task
relevant information from the original high dimension input.
We successfully demonstrate that by an encoding network, the
predicted eye gaze map efficiently capture the target spatial
information from the image in a sea cucumber capture task.

We segment the intended task into visual servoing phase and
decision phase, modeled by LSTM layers, where the feature
net share the weights with the eye gaze model. The trained
net successfully automate the task in both training and unseen
environment, even with disturbances. The proposed framework
provides an alternative solution to underwater control tasks
such as automatic capture of sea cucumbers. The automation
of routined ROV tasks can potentially lower mental burden and
fatigue of the operators, thus reduce human-induced errors and
improve task efficiency and safety.

Our work can be improved in several directions in the
future. Our framework was evaluated by an underwater object
reaching and capture task, where the object stays unmooved.
We plan to extend the framework and apply it to visual servo
control tasks with dynamic objects and dexterous manipulation
tasks such as valve opening. Moreover, such a framework
needs to deploy to the real ROV platform to evaluate its
feasibility in real-world experiments and its generalization ca-
pability. Thirdly, the gaze information may also encode human
intentions implicitly and can be utilized in task segmentation.
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