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Abstract— An integrated navigation system design is pre-
sented for an underwater remotely operated vehicle (ROV).
The available navigation information is an acoustic position
measurement and a Doppler log speed measurement. Both
measurements are studied in detail and modeled statistically. A
kinematic model is assigned to the ROV with its driving noise
from a Gaussian mixture, and a particle filter is suggested to
estimate ROV position and velocity.

The advantages of using a particle filter in this ROV
navigation scheme are: 1) to make full use of all available
information to improve the estimation performance, such as
the speed measurement that is a nonlinear function of the
states; 2) the particle filter makes good use of a Gaussian
mixture as the driving noise, which makes the ROV kinematic
model more realistic in both high and low frequency ranges;
3) a good estimate of the ROV velocity vector is achieved. The
algorithm of the particle filter is presented and verified through
a simulation based on real data. This shows that the estimation
performance of the particle filter is clearly better than that of
a Kalman filter.

I. INTRODUCTION

In the past decades, more and more remotely operated
underwater vehicles (ROVs) have emerged in marine opera-
tions, such as offshore hydrocarbon production and ocean
scientific exploration. An ROV is a tethered underwater
vehicle, connected with a support surface vessel with power
supply and signal transmission cables through an umbilical.
Typically, the support vessel is equipped with a dynamic po-
sitioning (DP) system, which controls the vessel to maintain
a desired position. The ROV is controlled from a command
center installed onboard the support vessel. Since the ROV
is controlled relatively to the support vessel, the relative
position and velocity states of the ROV must be obtained
as accurately as possible through an ROV navigation system
involving appropriate measurements and navigation filters.

There are several sensors for measuring the kinematic
variables of an ROV; see for instance the review in [1] where
different sensors are classified by their usage and discussed
according to measuring principles and levels of accuracy.
In [2], the pros and cons regarding the acoustic measure-
ment and Doppler log measurement for ROV navigation is
discussed. Kalman filters or complementary filters are good
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estimators if the position, orientation, and possibly velocity
measurements are available. When no speed measurements
are available, model-based estimators are generally used.

The particle filter (PF) has drawn great attention since
it was proposed in [3], due to its ability to solve optimal
estimation problems in nonlinear non-Gaussian scenarios.
After being introduced by [3], the PF solutions have been
enriched by [4], [5], and others. Later, a constructive tutorial
for PF designs was presented by [6], and more recently a
PF review was provided in [7]. As of today, the PF has been
successfully applied in applications including target tracking,
computer vision, digital communications, speech recognition,
machine learning, and other areas as reported in [8].

The contribution of this paper is an ROV navigation
scheme based on a particle filter that can be summarized
as follows:
• A particle filter is designed and applied as a navigation

filter instead of a Kalman filter to take advantage of all
measurements, including the Doppler speed log being
a nonlinear function of the linear velocities, in order to
improve the estimation performance and robustness.

• Detailed statistical models for the position and speed
sensors are derived, based on real data, and applied in
the design. This ensures effective attenuation of position
and speed measurements noise without having a kinetic
model of the ROV available.

• As the solution is based only on a hydroacoustic po-
sition measurement and a Doppler speed log, the pro-
posed design can be applied as a redundant ROV state
estimator in addition to other state-of-the-art methods.

II. NAVIGATION OBJECTIVE

A. System Description

The navigation problem considered here was motivated
by full-scale ROV experiments conducted at the Applied
Underwater Robotics Laboratory (AUR-Lab) at NTNU. The
AUR-Lab has access to NTNU’s research vessel R/V Gun-
nerus and the ROV Minerva, for which the aim is to
develop new technology for marine monitoring and ocean
observation. A short term goal for the AUR-Lab is to develop
an ROV control system with user interface, having 3D
dynamic positioning (DP) and tracking capabilities for use in
ROV research missions. Essential to this development is to
design a robust and high-performing ROV navigation system
based on a minimum number of sensors operating in a real
environment.
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Fig. 1. The configuration of the ROV-vessel system.

The operational setup is to use the R/V Gunnerus as a sup-
port vessel, performing stationkeeping or low-speed tracking,
while the ROV Minerva is controlled from an onboard com-
mand station. Several navigation sensors are installed on the
ROV Minerva, such as a depth sensor, a fluxgate compass,
a Super-Short Base Line (SSBL) hydroacoustic positioning
system, and a Doppler speed log. Only the horizontal motions
of the vessels are of interest, and Figure 1 shows the relevant
reference frames and corresponding position and velocity
vectors. The position of the support vessel is represented in
the earth-fixed North-East (NE) frame, and the corresponding
vectors are indicated with a superscript ‘n’. A vessel-fixed
frame (V) for the support vessel is indicated by a superscript
‘v’ and defined with origin at a given fixed center point Ov in
the vessel (typically midships and waterline), the xv-axis in
the longitudinal direction, and the yv-axis in the transversal
direction. The position and linear velocity of the ROV in the
NE-frame are given by pn

ROV and vn
ROV , respectively, while

pv
ROV and vv

ROV are the corresponding vectors in the (V)-
frame. Since only the position and linear velocities of the
ROV are of interest in this navigation design, the orientation
and angular velocity are not considered.

The ROV control system has been tested in several mis-
sions and different test scenarios. The data set considered in
this paper, named “110228G002”, is an approximate 5 hour
long mission record. During that period, the R/V Gunnerus
was in stationkeeping mode and the maneuvering control
system for the ROV Minerva was tested. The DP system for
the support vessel provides accurate and reliable estimates
of the vessel’s position pn

v , orientation, and corresponding
velocities [9].

B. Problem Statement

The problem considered in this paper is to robustly and
accurately estimate the relative position pv

ROV and linear
velocity vv

ROV of the ROV based on only a relative SSBL
hydroacoustic position measurement and a Doppler speed log
measurement. The ROV heading is not available. As can be
seen from Figure 2, these measurements contain significant
levels of noise and disturbances that the design must account
for.
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Fig. 2. Time history of SSBL acoustic positioning system and the Doppler
speed log measurement.
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Fig. 3. Position measurements from the stationary segment between 5200
s and 5800 s. The position measurements, moving averages with window
sizes of 50 s and 200 s, and the mean values over the whole period.

III. STATISTICAL MODELING OF MEASUREMENTS

A. SSBL Hydroacoustic Position Reference

The position of the ROV is measured by an SSBL acoustic
system, with an example of the measurements shown in
Figure 2. The motion of the ROV in this data set is a
composition of stationary and maneuvering segments. If the
position of the ROV has no significant changes during a
period, this segment is termed stationary. In order to analyze
the statistical characteristics of the measurement noise, a
time-window with stationary behavior is selected and plotted
in Figure 3.

Figure 3 also shows different moving average curves, and
the means of the position measurements during the segment.
The PSD clearly has a lowpass character with a bandwidth
of 0.2 rad/s. The error ellipse in position error has axes
(0.33m)2 and (0.22m)2. This is close the to theoretical
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Fig. 4. The power spectrum density (PSD) analysis of the position
measurement signal in x and y direction, respectively.

values of the SSBL measurement itself, and it can be
concluded that the ROV position is stationary during the
segment, implying that the variation is due to measurement
noise and system noise. This conclusion is also reached
by analyzing the power spectrum density (PSD) of position
measurements, as shown in Figure 4. Since the magnitudes
of the PSD curves at low frequency are below 10−0.8dB, it
is concluded that the ROV has no significant low frequency
motion and is therefore stationary in this segment.

The PSD in Figure 4 shows that the measurement signal
is a colored lowpass filtered noise. In addition, the shapes
of the power spectrum density curves are not the same,
such that the auto-correlation functions of the measurement
noise in the xv and yv directions are different in at least this
segment. However, considering the measuring principle of
SSBL, the measurement noise is supposed to be isotropic.
So, for simplicity of design, only a single fitting curve is
used to approximate these two PSD curves:

Gfitting (z) =
0.001203(z+1)2 (z−0.8182)2

(z2−1.761z+0.8039)2 . (1)

The sampling frequency is 1Hz, which is the update fre-
quency of the acoustic measurement.

A stochastic process that generates this PSD is obtained
as H (z) where H (z)H∗ (z) = Gfitting (z),

H (z) =
0.0343(z+1)(z−0.8182)

z2−1.761z+0.8039
, (2)

This transfer function is realized in state-space form as

ξ k+1 = Aζ ξ k +Bζ wk (3)
ζk = Cζ ξ k +Dζ wk, (4)

where ξ the intermediate states; wk is a white noise se-
quence of unit variance; and ζ is the colored noise output

sequence. Moreover, Aζ =

[
1.7608 −0.8039

1 0

]
, Bζ =

[
1
0

]
,

Cζ =
[
0.0667 −0.0557

]
, and Dζ = 0.0343.
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Fig. 5. Four segments are picked from the test data set, assuming the speed
of the ROV is constant in each of these segments. The time intervals of the
segments are listed in Table I.

B. Doppler Speed Log Measurement

In the NE frame, the ROV velocity is denoted as

vn
ROV=

[
vn

ROV,N
vn

ROV,E

]
, (5)

where vn
ROV,N and vn

ROV,E are the velocity of the ROV in the
north and east directions, respectively, and sD =

∥∥vn
ROV

∥∥
2 is

the corresponding speed. For the speed measurement two
assumptions have to be made: 1) there is no correlation
between the measurement noise in the different directions,
and 2) the variances of the measurement noises in the
different directions are equal. Then the speed measurement
can be seen as a normal random vector with expectation vn

ROV
and covariance matrix Σ, that is

vD ∼ N(vn
ROV ,Σ) , (6)

where Σ is diagonal with identical diagonal entries. For a
Doppler log, the noise in the measurement increases with
the speed [10]. Therefore,

Σ(‖vn
ROV‖2) =

[
σ2

D
(∥∥vn

ROV

∥∥
2

)
0

0 σ2
D
(∥∥vn

ROV

∥∥
2

) ] , (7)

where σ2
D is the variance of the Doppler speed log measure-

ment in one direction.
As mentioned, this experiment suffers from the lack

of a heading measurement. Therefore, the only helpful
information to this navigation problem from the Doppler
log is the nonlinear speed measurement sD = ‖vD‖2.
It is deduced from the normality distribution assump-
tion of the velocity measurement that the speed mea-
surement is a Rice distributed random variable, that is
sD ∼Rice

(∥∥vn
ROV

∥∥
2 ,σv,D

(∥∥vn
ROV

∥∥
2

))
.

To model the distribution of the speed measurement, the
main task is to formulate the function σv,D

(∥∥vn
ROV

∥∥
2

)
. Here

we also pick up some segments from the whole measurement
as shown in Figure 5. The means and variances of the speed
measurements in these segments are listed in Table I.

A Rice distributed variable x ∼Rice(δ ,σ), has δ as the
distance parameter and σ as the scale parameter. The Rice

https://www.researchgate.net/publication/41719873_DVL_velocity_aiding_in_the_HUGIN_1000_integrated_inertial_navigation_system?el=1_x_8&enrichId=rgreq-9c19cf92a43a2ab25635917d6523401f-XXX&enrichSource=Y292ZXJQYWdlOzIzNzA2MzAzNztBUzoxNzg3NDA0NDExMzMwNTZAMTQxOTYyNjQ1MDc0Mg==


TABLE I
STATISTICAL PROPERTIES OF DIFFERENT SPEED MEASUREMENT

SEGMENTS

Segment Time interval Mean Variance δ σ

2 [4810,4980] 0.217 0.0242 0.22 0.024
3 [5200,5800] 0.014 0.00792 ≈ 0 0.012
4 [6550,6750] 0.103 0.00852 0.10 0.009
5 [15925,16020] 0.545 0.0662 0.54 0.066
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Fig. 6. The estimated (δ ,σ) pair in four segments, and straight line fitting.

PDF is

f (x|δ ,σ) =
x

σ2 exp

(
−
(
x2 +δ 2

)
2σ2

)
I0

(
xδ

σ2

)
, (8)

where Ik (z) is the modified Bessel function of the first kind
of k’th order.

A method to estimate the Rice parameters recursively was
shown in [11]. Following this method, the estimations of
the parameters of each segment are obtained and shown in
Table I. To obtain the whole expression of σD

(∥∥vn
ROV

∥∥
2

)
,

we use two linear segments to fit the four estimated (δ ,σ)
pairs, as shown in Figure 6. The feature that the Doppler log
measurement noise increases with the speed coincides with
the technical specification in [12]. The analytical expression
of σv,D

(∥∥vn
ROV

∥∥
2

)
is

σv,D (‖v‖2)=

{
0.012−0.0331‖v‖2 , 0≤ ‖v‖2 < 0.1
−0.0046+0.130‖v‖2 , 0.1≤ ‖v‖2

.

(9)

IV. ROV MODEL AND NAVIGATION SYSTEM DESIGN

A. ROV Kinematic Model

Since the thrust of the ROV is not measured in the ex-
periment, only a noise driving kinematic model is available.
Taking the ROV position pv

ROV , velocity vv
ROV , and accel-

eration av
ROV into consideration, a discrete ROV kinematic

model ispv
ROV,k+1

vv
ROV,k+1

av
ROV,k+1

=

I I 1
2 I

0 I I
0 0 I

pv
ROV,k

vv
ROV,k

av
ROV,k

+
 1

6 I
1
2 I
I

wa,k. (10)

with sampling frequency 1Hz as the update frequencies of
the measurements, and wa,k is a white driving noise. This
model assumes that the support vessel is stationary and
thereby constitutes an inertial frame, which is an acceptable
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Fig. 7. Probability plot of data and a Gaussian mixture fitting. The
Gaussian mixture distribution fits data very well in the probability range
0.001 to 0.999. Tails are wider than Gaussian but this not essential for this
application.

assumption because the support vessel is in station keeping
mode during the experiment. The ROV kinematic model is
written compactly as

η
v
k+1 = Aη η

v
k +Bη wa,k, (11)

where ηv
k=
[

pv
ROV,k vv

ROV,k av
ROV,k

]>
is the general kine-

matic state vector of the ROV, and Aη and Bη follow from
Equation (10).

As shown in Figure 2, the ROV motion is a combination of
stationary and maneuvering sections. In order to enhance the
tracking performance, it is necessary to assign a flexible dis-
tribution to the driving noise wa, making the model dynamics
more realistic. By differencing the position measurement
twice, an estimation of the ROV acceleration is obtained
and shown in Figure 7, including a corresponding Gaussian
mixture fitting curve. The Gaussian mixture is formulated as

wa,k ∼ mix

0.7826 ·N
(
[0,0]> ,6.89×10−5I

)
0.2174 ·N

(
[0,0]> ,0.049I

)  . (12)

The operator mix [·] is a mixing operator defined
as of probability density functions. For a
vector of weighted probability density functions
f =
[

w1 f1 (x) w2 f2 (x) · · · wn fn (x)
]>, where wi

(i = 1, · · · ,n) are the weights satisfying ∑i wi = 1, and fi (x)
are the probability density functions on the same support
set. The mixing operator gives a probability density function
mix [f] = ∑i wi fi (x).

B. Modeling of the measurement
1) SSBL Acoustic Measurement: Following the equations

(3) and (4), the SSBL acoustic measurement is modeled as

ξ
+
k+1 = A+

ζ
ξ
+
k +B+

ζ
wζ ,k (13)

ζ
+
k = C′+

ζ
ξ
+
k +D+

ζ
wζ ,k (14)

pv
A,ROV,k = pv

ROV,k +ζ
+
k , (15)
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where pv
A,ROV,k is the acoustically measured position at time

instance k. ξ
+
k , ξ

+
k+1, and ζ

+
k are the vertically tile expansion

of ξk, ξk+1, and ζk. A+
ζ

, B+
ζ

, C′+
ζ

, and D+
ζ

are 2-by-2 block
diagonal matrixes of Aζ , Bζ , C′

ζ
, and Dζ , respectively. wζ ,k

is a two dimensional white noise vector with independent
components and unit variance for each.

2) Doppler Log Measurement: The speed measurement
from the Doppler log is modeled as a Rice distributed random
variable, such that sD ∼Rice

(∥∥vn
ROV

∥∥
2 ,σv,D

(∥∥vn
ROV

∥∥
2

))
,

where σv,D
(∥∥vn

ROV

∥∥
2

)
is formulated in (9). It follows that the

speed measurement from the Doppler log can be expressed
as

sk = sD,k. (16)

C. Particle filter design

Combining the system model and the measurement model
yields the following model of the ROV[

ξ
+
k+1

ηv
k+1

]
=

[
A+

ζ
0

0 Aη

][
ξ
+
k

ηv
k

]
+

[
B+

ζ
0

0 Bη

][
wζ ,k
wa,k

]
(17)[

pv
A,ROV,k

sk

]
=

[
C′+

ζ
Cη

0 0

][
ξ
+
k

ηv
k

]
+

[
D+

ζ
0

0 0

][
wζ ,k
wa,k

]
+

[
0
1

]
sD,k, (18)

where Cη =
[
I 0 0

]> and sD,k ∼
Rice

(∥∥∥vv
ROV,k

∥∥∥
2
, σv,D

(∥∥∥vv
ROV,k

∥∥∥
2

))
. For compactness, the

system model in (17) and (18) is given by

xk+1 = Axk +Bwk (19)
yk = Cxk +Dwk +FsD,k. (20)

Because some of the noise terms are non-Gaussian and one
measurement is nonlinear, which violates the assumptions
of a Kalman filter, a particle filter is proposed to solve the
problem. The PF algorithm partially follows the sampling
importance resample particle filter in [6], and is given by

Algorithm Particle filter for ROV navigation
1) Initializing: At time l, initialize the particles deter-

ministically, such as xi
l−1 =

[
04×1

(
pn

A,ROV,l−1

)>
04×1

]>
(i = 1, · · ·Ns), where Ns is the number of particles in
the filter. And the weights of the these particles are
initialized as wi

l−1 =
1

Ns
.

2) System time update: At this step, the objective
is to draw new particles xk|k−1 with the posterior
p(xk−1|y1:k−1) from last cycle. Introducing the impor-
tance density q

(
xk|xi

k−1,yk
)
= p

(
xk|xi

k−1

)
, we draw

new particles from the importance density p
(
xk|xi

k−1

)
.

That is, for xi
k|k−1 =

[
ξ
+
k|k−1 ηv

k|k−1

]>, ξ
+
k|k−1 is drawn

from N
(

Aζ ξ
+
k ,Bζ B>

ζ

)
, and ηv

k|k−1 is drawn from
(11). Note that the noise terms are randomly generated
according to their PDFs.

3) Measurement update: At this step, the measure-
ment is used to update the weights of the particles.
Since the importance density has been chosen as
q
(
xk|xi

k−1,zk
)
= p

(
xk|xi

k−1

)
, the update process of the

weights will be wi
k ∝wi

k−1 Pr
(
yk|xi
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)
. For the PF in this

paper, the Pr
(
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)
is analytically expressed as
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where vi denotes
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In Equation (21) the second term on the right hand
side originates from the analytic expression of the Rice
distribution.

4) Resampling: The PF in this paper uses the residual
resampling method proposed by [5], to prevent the
degeneracy problem. The procedure is:

a) For each i = 1, · · · ,Ns, return ni =
⌊
Nswi

k

⌋
copies

of particle xi
k.

b) Let Nr = Ns− n1− ·· · − nNs and get Nr identi-
cally and independently distributed draws from{

xi
k

}
(i = 1, · · · ,Ns) with probabilities propor-

tional to Nswi
k− ki (i = 1, · · · ,Ns).

c) Normalize the weights wi
k = 1/Ns.

As a consequence of the residual resampling method,
all the weights of particles are identical to 1/Ns at the
end of the step.

5) Go to step 2 and start the next cycle.

V. SIMULATION ON EXPERIMENTAL DATA

The proposed PF based navigation system is verified
with the following simulation with experimental data. The
estimated ROV position of the PF is compared with the
estimations of two different KF based navigation, which is
based on the same ROV kinematic model.

The first KF based navigation uses only the SSBL acoustic
position measurement. Considering the colored noise, the
system equation is also augmented as (13) and (14). This
navigation system is referred to as KF#1.
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Fig. 8. The structures of the KF#1, the KF#2, and the PF based navigation
systems.

A second KF navigation utilizes the KF#1 supplemented
with an estimation of direction of the velocity. This is
further used to decompose the speed measurement from the
Doppler log. Finally, another Kalman filter is used to merge
the position measurement and the estimated velocity. This
scheme is named KF#2 in the following. The structures of
KF#1 and KF#2 are shown in Figure 8.

The simulation uses the entire test data set as input, but
only sections of the result are shown in the Figures 9 and
10.

Figure 9 shows the tracking performance of Segment 1,
when the ROV was stationary. The PF based navigation has
better performance since its estimation oscillates less than
KF#1 and KF#2, which means the colored noise in the posi-
tion measurement is well attenuated. There is bias between
the speed measurement and the estimated speed, because
when the magnitude of the ROV velocity is small, the effect
of the measurement noise dominates the measurement of the
Doppler log.

Figure 10 left column shows the tracking performance of
the time range [4000sec,5000sec]. During this period, the
ROV changed its velocity direction several times. At these
points the position estimation of the PF has less overshoot
and delay than KFs.

The right column of Figure 10 shows the tracking perfor-
mance of time range [15000sec,16000sec], when the ROV
switches between stationary and maneuvering. The PF based
navigation system responds to the ROV kinematic variation
faster than the KFs, and it can still handle well the colored
position measurement noise in the stationary sections. The
PF based navigation system seem to have better performance
than the KF systems in both high and low frequency ranges

VI. CONCLUSION

This paper described the navigation system design for an
ROV. The available information of the ROV was hydroacous-
tic position and scalar Doppler log speed measurement. The
ROV heading and thrust commands were not available. This
configuration was shown to require a particle filter rather than
a Kalman filter since the speed measurement is a nonlinear
non-injective function of the ROV kinematic states.

Based on the configuration of the ROV experiment mea-
surements were studied in detail and modeled. The hydroa-
coustic positioning system suffers from a colored Gaussian

noise, while the speed measurement is modeled as a random
variable from a Rice distribution family with scale parameter
being a piecewise linear function of the ROV kinematic
states. A kinematic model was assigned to the ROV using
driving noise from a Gaussian mixture model.

A particle filter was introduced based on the ROV model
and the noise model to estimate the position and velocity of
the ROV. The algorithm of the particle filter was given and
explained in detail. Simulations based on real data showed
the estimation from the particle filter to outperform that of
traditional Kalman filter approaches. Handling of transients
when the ROV motion went from stationary to maneuvering
was also found better with the particle filter.

In conclusion, this particle filter-based navigation scheme
was able to accurately reconstruct the velocity of the ROV.
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Fig. 9. Tracking performance of time range [5200sec,5800sec].
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Fig. 10. Tracking performance of time range [4000sec,5000sec], and [15000sec,16000sec].


