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Abstract: The inspection-class Remotely Operated Vehicles (ROVs) are crucial in underwater in-
spections. Their prime function is to allow the replacing of humans during risky subaquatic opera-
tions. These vehicles gather videos from underwater scenes that are sent online to a human operator 
who provides control. Furthermore, these videos are used for analysis. This demands an RGB cam-
era operating at a close distance to the observed objects. Thus, to obtain a detailed depiction, the 
vehicle should move with a constant speed and a measured distance from the bottom. As very few 
inspection-class ROVs possess navigation systems that facilitate these requirements, this study had 
the objective of designing a vision-based control method to compensate for this limitation. To this 
end, a stereo vision system and image-feature matching and tracking techniques were employed. 
As these tasks are challenging in the underwater environment, we carried out analyses aimed at 
finding fast and reliable image-processing techniques. The analyses, through a sequence of experi-
ments designed to test effectiveness, were carried out in a swimming pool using a VideoRay Pro 4 
vehicle. The results indicate that the method under consideration enables automatic control of the 
vehicle, given that the image features are present in stereo-pair images as well as in consecutive 
frames captured by the left camera. 

Keywords: stereo vision system; vision-based control; remotely operated vehicle (ROV); local image 
feature 
 

1. Introduction 
Vision-based control of underwater vehicles enables autonomous operations. It facil-

itates complex missions, including surveillance of pipelines [1], inspection of cables [2], 
docking of vehicles [3], deep-sea exploration [4], and ship hull inspection [5]. These tasks 
require continuous visual feedback obtained from either monocular or stereo vision sys-
tems [6]. In order to improve performance, the vision system is often supported by acous-
tic and inertial sensors [7]. 

Therefore, a more practical approach is the use of multi-sensors in Autonomous Un-
derwater Vehicles (AUVs) as they perform missions with full autonomy. Consequently, 
long-term operations in unknown environments are achievable. The most common col-
laborating devices for this purpose are [8]: the Doppler Velocity Log (DVL); the Inertial 
Navigation System (INS); the Inertial Measurement Unit (IMU); and the Sound Naviga-
tion And Ranging (SONAR). They also include: the Acoustic Aided Navigation inclusive 
of the Long Base Line (LBL), the Short Base Line (SBL), and the Ultra Short Base Line 
(USBL). Ultimately, each vehicle is equipped with a compass and a pressure sensor. These 
devices can support RGB cameras, especially during a distance operation to a bottom 
where a clear optical inspection is taxing. 

The multi-sensors approach allows the configuration of a measurement system that 
is composed of several devices. Therefore, to analyse the different sensors’ configurations, 
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research has been conducted in this field. Some of this research has classified the current 
sensors’ fusion techniques for unmanned underwater vehicle navigation [9]. The authors 
of this classification primarily focused on the fusion architecture in terms of the vehicle’s 
tasks. Moreover, underwater vehicle localisation in shallow water was addressed in [10], 
which utilised an Attitude Heading Reference System (AHRS), a pressure sensor, a GPS, 
a USBL, and a DVL. According to the authors, it was reliable even with some of the sensors 
temporarily switched off. Furthermore, based on raw measurements from the SBL, the 
Inverted Ultrashort Baseline (iUSBL), the IMU, and a pressure sensor and the SBL, a fur-
ther solution was presented in [11]. This solution proved its benefit in mining applications, 
allowing an operator to control the mining vehicle utilising virtual reality depiction. A 
final addition is the sensor fusion of an acoustic positioning system, the DVL, the IMU 
and a pressure gauge that was presented in [12]. The authors of this research proposed a 
hybrid translational observer concept for underwater navigation. 

Despite various sensors and measurement systems being used to navigate underwa-
ter vehicles, only a few of them are employed in inspection-class vehicles. This is because 
this vehicle type, equipped with propellers and a camera, is mainly devoted to gathering 
pictures from the underwater scene. Additionally, it is furnished with low-cost sensors, 
such as a pressure gauge, a compass, and an IMU [13]. This equipment is efficient for 
remote control, supervised by a human operator. Thus, inspection-class vehicles are sel-
dom equipped with DVL, INS, and SONAR systems due to their high cost, which in-
creases as the required quality of measurement is raised. Moreover, acoustic-aided navi-
gation systems are only used during operations on a larger area due to a measurement 
precision of a few metres. Alternating this for small areas, cameras, echo sounders, and 
laser rangefinders are considered for the control of inspection-class vehicles. 

RGB cameras are a viable option in AUVs for the operations of both Visual Odometry 
(VO) and Visual Simultaneous Localization and Mapping (VSLAM), which facilitate the 
vehicle’s navigation in large areas [4,14–18]. VO is a process of estimating a change in 
position over time using sequential camera images. VSLAM is also a process that, in ad-
dition to position estimation, creates an environmental map and localises a vehicle within 
the map simultaneously. The latter process has been at the centre of recent research. For 
example, Cui et al. [19] proposed a pose estimation method based on the Projective Vector 
with noise error uncertainty. The results discussed in the research reported that the pose 
estimation method has robustness and convergence while managing different degrees of 
error uncertainty. Further research in [20] improved variance reduction in fast simultane-
ous localisation and mapping (FastSLAM). FastSLAM introduced simulated annealing to 
resolve the issues of particle degradation, depletion, and loss, which lead to a reduction 
in the AUV location estimation accuracy.  

A distortion caused by the deep water’s visual degradation impedes both processes. 
This is because strong light absorption reduces visual perception up to a few metres, while 
backscattered light propagation has effects on the acquired images [21]. To overcome 
these impediments, some researchers select sonar systems to manage underwater naviga-
tion, which serves the purpose of eliminating the visual-degradation effect [22]. However, 
resorting to this leads to obtaining data that have the quality of reduced spatial and tem-
poral resolution. Therefore, RGB cameras are the optimum solution for AUV operations 
that are at a close distance from the bottom. 

Our previous research [23,24] indicates that usage of RGB cameras during underwa-
ter missions in the Baltic Sea, as well as in the Polish lakes, is very limited. This is due to 
the low visibility that allows operating at only a few metres from the bottom. Conse-
quently, the position of the vehicle can be estimated primarily using the DVL and INS 
systems. Even though the implementation of RGB cameras for the AUVs in terms of un-
derwater navigation is impracticable in our region, there is still the space to utilise them 
for underwater exploration carried out using Remotely Operated Vehicles (ROVs). They 
can be implemented in applications such as intervention, repair and maintenance in off-
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shore industries, and naval defence and for scientific purposes [25–27]. Other employ-
ments involve the autonomous docking of the vehicle [3,28] and cooperation with a diver 
[29].  

Some missions necessitate the gathering of pictures from the underwater scene in 
preparation for subsequent analysis. For example, any crime scene is video recorded and 
based on the presented video footage; the prosecutor can use it for investigation purposes 
[30]. In that case, the vehicle’s movement is required to be both on a set track with low 
speed and at a calculated distance from the bottom. Thus, by applying these requirements, 
the ROV is ready to gather representative footage. Cameras, echo sounders, and laser 
rangefinders are present to facilitate the automatic operations. The cameras enable calcu-
lation of both the speed and the distance from the bottom, while echo sounders and laser 
rangefinders compute the measurement of the distance from the bottom. The functions of 
these sensors also apply to the SLAM technique. However, it is not considered the best 
option for the precision of the vehicle’s movement in a small area. So, with the target of a 
more precise vehicle motion, visual servo control was designated for various robotic ap-
plications [31]. It facilitates precise control because it calculates error values in the close-
loop control, using feedback information extracted from a vision sensor. Therefore, we 
decided to employ this technique in the method under consideration. Additionally, we 
refrained from using an echo sounder, due to its high price, or a laser rangefinder, because 
it measures the distance to one point on the bottom. This limitation precludes the devel-
opment of a complex algorithm in the case of the presence of obstacles at the bottom. 

In terms of underwater operations, visual servoing has been mainly utilised in AUVs 
[1,6,32,33]. Some researchers have also used this technique in ROVs for vehicle docking 
[3,32], vehicle navigation [34], work-class vehicle control [35], and manipulator control 
[33]. Nevertheless, to the knowledge of the authors, previous research has not been as 
devoted as this one to utilising visual servoing for precise vehicle control at low speed 
and a calculated distance from the bottom in a small area. 

However, control of the ROV for the determined distance from the bottom using one 
camera is problematic because the distance to the object cannot be estimated in this case. 
To tackle this problem, some researchers have used laser pointers or lines [36,37] for dis-
tance measurement. Conversely, recent development in optical sensors, as well as the ca-
pability of modern computers, allows the capturing and real-time processing of images 
from more than one camera. For this purpose, the most popular solution is a stereo vision 
system, which comprises two cameras, mostly parallel and located near each other. This 
solution enables distance measurement utilising the parallax phenomenon. It also facili-
tates depth perception based on disparity calculation. 

To further explain, stereo vision systems are especially suitable for ROVs, for which 
the higher-order computation tasks can be performed by a computer located on the sur-
face. The high computational cost, in the case of visual servo control of underwater vehi-
cles, derives from the fact that images should be simultaneously analysed, not only in 
stereo-pair depiction but also in consecutive frames. For AUVs, where all the calculations 
are executed on board, the complex image-processing algorithms demand more compu-
ting and energy resources. Such demands can result in the need for a bigger size for the 
vehicle, which in turn means a higher cost for manufacturing. Finally, the stereo vision 
systems implemented on AUVs are mostly devoted to distance measurement and post-
processing depth perception. 

The stereo vision system has been used in various underwater applications. For ex-
ample, an ROV’s position estimation was presented in [38]. Rizzini et al. [39] also demon-
strated the stereo vision system’s ability for pipeline detection. In their research, the au-
thors proposed the integration of a stereo vision system in the MARIS intervention AUV 
for detecting cylindrical pipes. Birk et al. [40] complemented previous research by intro-
ducing a solution that reduces the robot operators’ offshore workload through a recom-
mended onshore control centre that runs operations. In their method, the user interacts 
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with a real-time simulation environment; then, a cognitive engine analyses the user’s con-
trol requests. Subsequently, with the requests turned into movement primitives, the ROV 
autonomously executes these primitives in the real environment. 

Reference [41] presented a stereo vision system for deep-sea operations. The system 
comprises cameras in pressure bottles that are daisy-chained to a computer bottle. The 
system has substantial computation power for on-board stereo processing as well as for 
further computer vision methods to support autonomous intelligent functions, e.g., object 
recognition, navigation, mapping, inspection, and intervention. Furthermore [42], by 
means of the stereo vision system, presented an application that detects underwater ob-
jects. However, experimental results revealed that the application’s range for detecting 
simple objects in an underwater environment is limited. Another application is ship hull 
inspection, which was introduced in [43]. The stereo vision system was made part of the 
underwater vehicle systems to estimate normal surface vectors. The system also allows 
the vehicle to navigate the hull in flat and over moderately curved surface areas. It is im-
portant to note that a stereo-vision hardware setup and the software, developed using the 
ROS middleware, were presented in [44], where the authors devoted their solution to cy-
lindrical pipe detection.  

Overall, even though vision systems have been implemented in some underwater 
applications, very few of them have been devoted to controlling underwater vehicles. This 
is mainly attributable to the high computational cost, which restricts real-time operations. 
However, as the performance of modern cameras and computers allows for the real-time 
processing of multiple images, we decided to utilise a stereo vision system for the vision-
based control of inspection-class ROVs. To this aim, we developed an application based 
on the image-feature tracking technique. As feature detection constitutes a challenging 
task in the underwater environment, the first step in our work was to perform analyses 
based on images and videos from prospective regions of the vehicles’ missions. This ap-
proach allowed us to evaluate the control system of the vehicle in a swimming pool, which 
would be very challenging in the real environment. 

The primary assumption for the devised method is that the one loop of the algorithm 
performs quickly enough to effectively control the vehicle in the case of precise movement 
at a low speed. Thus, all the algorithms developed for the method, such as image enhance-
ment, image-feature detection and tracking, or stereo correspondence determination, 
were developed to meet this requirement. In our solution, we utilised a compass and an 
IMU to facilitate the heading control as well as simplify the speed-control algorithms. 
Even though the devised system measures heading, its calculation is highly subject to the 
bias which stems from the integration error, which arises during the time of operation. 
Additionally, a compass is needed to decide the initially measured heading. Therefore, 
we resolved to employ a compass in the measurement system because of its low cost and 
higher precision. Furthermore, a pressure sensor was used to verify the distance from the 
bottom during trials in a swimming pool. Simultaneously, the vehicle’s speed and head-
ing were calculated using a vision system presented in [45]. Our results, obtained using 
the VideoRay Pro 4 vehicle, indicate that the proposed solution facilitates the precise con-
trol of inspection-class ROVs. 

In order to adopt our proposed solution, a laptop, two underwater cameras, and a 
vehicle equipped with compass and depth sensors were used as there was no need for 
any extra equipment. In our experiments, apart from the VideoRay Pro 4, we utilised two 
Colour Submergible W/Effio-E DSP Cameras with a Sony Exview Had Ultra High Sensi-
tivity image sensor and a computer with Intel Core i7-6700HQ CPU 2.6 GHz and 32 GB 
RAM. The computer constitutes a standard laptop. 

The remainder of this paper is organised as follows. The details of the proposed 
method are presented in Section 2. Section 3 discusses the experiments conducted to eval-
uate the practical utility of this approach. Finally, the conclusions are included in Section 
4.  
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2. Methodology 
The main goal of this method was to facilitate the vision-based control of inspection-

class ROVs. Consequently, local image features were detected and tracked between con-
secutive images. In this process, time is of the essence because a control signal should be 
sent to the vehicle at a constant rate. Based on experiments conducted previously, we de-
cided that the intervals should be less than 200 milliseconds [46]. This time was estimated 
taking into consideration the vehicle’s dynamic, propeller thrusts, and assumed speed. 
The obtained results indicated that for a low speed of inspection-class ROVs, a 200-milli-
second period was sufficient for all the tested vehicles. As a result, the one loop of the 
algorithm, comprising feature detection and matching as well as distance calculation and 
control-signal formation, should be executed in less than 200 milliseconds. This assump-
tion needed the use of the most efficient technique that accomplished the required 
timeframe. A block diagram depicting the developed method is presented in Figure 1. 

Image 
Enhancement

Image 
Enhancement

Distortion Removal Distortion Removal

Rectification Rectification

Stereo 
correnspondence

Triangulation

Feature Detection Feature Detection

Distance From 
Bottom Calculation

Feature Matching 
Between Frames

Velocity Calculation

Left Camera Right Camera

Control system

Propellers

 
Figure 1. Summary of the developed method. 

2.1. Underwater Imaging 
Underwater imaging poses a difficult task as many variables influence the level of 

light penetration. For example, the clarity of the water, turbidity, depth, and surface con-
ditions are all variables that affect that level of penetration. Additionally, the depth-rated 
lens used in deep-sea explorations to provide resistance to high pressure usually leads to 
nonlinear image distortions. The refraction of light at the water/glass and glass/air con-
nections also results in image deformation. Therefore, as these problems present obstacles, 
a method based on the mathematical modelling of the underwater environment and an-
other one related to image enhancement have been developed [47–50]. 

As for the mathematical modelling of the underwater environment, it involves the 
determination of the model’s parameters, including the attenuation coefficient, the object 
radiance, the scattering coefficient, and, finally, the water transmittance. These parameters 
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are variable and change their value depending on the temperate, depth, salinity, the re-
gion of operation, or even the type of marine vegetation. Accordingly, the estimation of 
these required parameters precedes each ROV’s mission, which makes it time-consuming. 
As this method is relatively complicated, its implementation in crucial situations is im-
practical.  

The image-enhancement technique, however, is based on digital-image processing. 
It is devoted to improving the human analysis of underwater, visually distorted scenes. 
Said analysis takes place in the post-processing phase, which removes the quick execution 
needed for real-time implementations. Therefore, to develop a solution dedicated to real-
time applications, we focused on fast and efficient image-processing techniques, taking 
into consideration not the human perception, but the number of detected image-feature 
points. The results of our analysis are presented in Section 2.2. 

Image processing allows an increase in the number of detected image-feature points, 
but the problem of image distortions remains unsolved. To undistort images, the intrinsic 
parameters of the camera must be estimated. They can be calculated through the camera 
calibration process, which constitutes a convenient solution due to plenty of algorithms 
available in the literature [51] Some of them have been implemented in computer vision 
libraries, such as OpenCV or MATLAB Computer Vision System Toolbox [52]. In our 
work, the method based on the Zhang and Brown algorithms and applied in the OpenCV 
library was used. The detailed description of its utilisation is presented in Section 2.3. 

2.2. Local Image Features 
Local image features are crucial in many computer vision applications. As opposed 

to global ones, such as contours, shapes, or textures, they are suitable for determining 
unique image points, widely utilised in object recognition and tracking. Among the most 
popular ones, the following can be encountered: SIFT [53], SURF [54], BRISK [55], ORB 
[56], HARRIS [57], FAST [58], STAR [59], BRIEF [60], and FREAK [61]. The algorithms 
mentioned above are used to determine the position of distinctive areas in the image. To 
find the same regions in different images of the observed scene, the descriptors of the 
image features are utilised. 

Most descriptors derive from feature detectors such as the SIFT, SURF, BRIEF, BRISK, 
ORB, and FREAK methods. They are used to describe feature points with vectors, the 
length and contents of which depend on the technique. Consequently, each feature point 
can be compared with the other by calculating the Euclidean distance between the de-
scribing vectors.  

In our method, the detection and tracking of at least three image features between 
the consecutive frames are necessary for correct performance. It stems from the fact that 
three points are needed to calculate the speed of the vehicle in 6 degrees of freedom. Ad-
ditionally, the processing time should be short enough to facilitate completing the one 
loop of the algorithm in less than 200 milliseconds. Consequently, we set the goal that the 
image-features detection and matching should be performed in less than 150 milliseconds. 
To calculate the targeted measurement, we simultaneously tested image-processing tech-
niques and feature detectors, taking into consideration how many image features were 
detected and correctly matched. The research was conducted using pictures and videos 
acquired during real underwater missions carried out by the Department of Underwater 
Works Technology of the Polish Naval Academy in Gdynia. The movies and pictures pre-
sented seabed and lakebed depictions obtained in the regions of the ROVs missions under 
different lighting conditions. The detailed analyses of our experiments were presented in 
[62]. They depicted that, standing apart from other image-processing methods, histogram 
equalisation allows an increase in the number of detected features. Additionally, its pro-
cessing time was short enough to meet the real-time requirements. When it comes to fea-
ture detection, the ORB detector outperformed the other methods. As for feature match-
ing, all the analysed descriptors yielded comparable results. However, due to the fact that 
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it is recommended to use a detector as well as a descriptor derived from the same algo-
rithm, the ORB descriptor was selected. The obtained results were in agreement with the 
ones presented in [63], where the authors performed similar analyses in the rivers, 
beaches, ports, and open sea in the surroundings of Perth, Australia.  

2.3. Stereo Vision System 
A stereo vision system facilitates depth perception using two cameras observing the 

same scene from different viewpoints. When correspondences are seen by both imagers 
between the viewpoints, the three-dimensional location of the points can be determined. 
In this calculation, the following steps are involved: 
− distortion removal—mathematical removal of radial and tangential lens distortion; 
− rectification—mathematical adjusting angles and distances between cameras; 
− stereo correspondence—finding the same image feature in the left and right image 

view; 
− triangulation—calculating distances between cameras and corresponding points. 

2.3.1. Distortion Removal 
The distortion removal step applies the perspective projection, which is widely used 

in computer vision and described by the equations [64]: 

, , ,X Yx f y f z f
Z Z

= = =  (1) 

where , ,X Y Z  denote the world coordinates of a 3D point, ,x y  are the coordinates of a 
point on the image plane and f  is the focal length of the camera, which is assumed to 
be equal to the distance between the central point of the camera and the image plane z . 
Apart from focal length, to remove the distortion of the image, a transformation between 
the coordinates of the camera frame and the image plane is needed. Therefore, the as-
sumption that a CCD array comprises a rectangular grid of photosensitive elements is 
used to determine the coordinates of the point on the image plane [65]: 

u 0 x

u 0 y

( )
( )

x x x s
y y y s
= − −

= − −
, (2)  

where 0x , 0y  are the coordinates in the pixel of the image centre and xs , yx  are the 
effective size of the pixel (in millimetres) in the horizontal and vertical directions, respec-
tively.  

The geometric distortions, introduced by the optics, are divided into radial and tan-
gential ones. The radial distortion displaces image points radially in the image plane. It 
can be approximated using the following expression [65]: 

d
2 4 6

1 2 5

d
2 4 6

1 2 5
2 2 2

c c

ˆ
1

ˆ
1

( ) ( )

x
x

k r k r k r
y
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=
+ + +

=
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, (3)  

where 1 2 5, ,k k k  are the intrinsic parameters of the camera-defining radial distortion, 

d d,x y  are actual pixel coordinates, ˆ ˆ,x y  are obtained coordinates, and c c,x y  are the cen-
tre of radial distortion. 

The tangential distortion is caused by the not strictly collinear surface of the lens and 
usually described in the following form [65]: 

2
t 3 u 4 u u

2 2
t 3 u u 4 u

( 2 ) 2

2 ( 2 )

y k r y k x y

x k x y k r x

= + +

= + +
, (4)  
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where 3 4,k k  are tangential distortion and t t,x y  are distorted coordinates. 
After including lens distortion, the coordinates of the new points ( d d,x y ) are defined 

as follows: 
d v t

d v t

x x x
y y y
= +
= +

 (5)  

The parameters mentioned above are determined using a camera calibration process, 
which has generated considerable recent research interest. Consequently, plenty of cali-
bration techniques have been developed. In our work, we used Zhang’s method for focal-
length calculation and Brown’s method to determine the distortion parameters. This was 
motivated by their high reliability and usability as the algorithms have been implemented 
in OpenCV and Matlab Computer Vision Toolbox. In this implementation, a chessboard 
pattern is applied to generate the set of 3D scene points. The calibration process demands 
gathering 3D scene points as well as their counterparts on the image plane by showing 
the chessboard pattern to the camera from different viewpoints. As a result, the perspec-
tive projection parameters and geometric distortion coefficients are determined.  

2.3.2. Rectification 
The mathematical description of a given scene depends on the chosen coordinate sys-

tem, which, for the sake of simplicity, is very often defined as the camera coordinate sys-
tem. However, when more than one camera is considered, the relationship between their 
coordinate systems is demanded. In the case of the stereo camera setup, as each camera 
has its associated local coordinate system, it is possible to change from one coordinate 
system to the other by a translation vector T  and a rotation matrix R . These transfor-
mations play a significant role in stereo rectification. 

Stereo image rectification comprises image transformations, assuring that the corre-
sponding epipolar lines in both images become collinear with each other and with the 
image scanning lines. Additionally, in rectified images, the optical axes are also parallel. 
The stereo vision system, which fulfils these conditions, is called a standard or canonical 
stereo setup. Its most significant advantage is that all the corresponding image features 
lie on the same lines in both images (see Figure 2). Consequently, the search space is re-
stricted to one dimension only, which is a very desirable feature from the computational 
point of view. 

P

1lp
1rp

0rp

0lp

lO

rO  
Figure 2. Stereo image rectification. 

The rectification process includes the following transformations: 
− rotation of the left and the right image to move the epipolar points to infinity, de-

scribed by the matrix Q , 
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− rotation of the right image by a matrix R . 
Additionally, without loss of generality, the following assumptions are adopted: 

− the focal lengths of the two cameras are the same, 
− the origin of the local camera coordinate system is the principal camera point. 

2.3.3. Stereo Correspondence 
Stereo correspondence matches a three-dimensional point in the two different cam-

era views. This task is simplified because the rectification step ensures that the three-di-
mensional point in both image planes lies on the same epipolar line. Consequently, the 
searching area is restricted to only one row of the image. What is more, considering that 
the location of the point is known in the left image, the coordinates of its counterpart are 
moved to the left in the right image.  

In order to find corresponding points, two attempts can be implemented. Firstly, the 
image features can be detected in both images and then matched with the restriction that 
the points must lie on the same epipolar line. Secondly, the image feature can be detected 
in one image only, and then, its counterpart can be found using a block-matching tech-
nique. The former demands more computational time and is not suitable for the presented 
solution as the slow matching step is used to track points between successive video 
frames. Therefore, we decided to employ the latter, which facilitates real-time execution. 

We tested three of the block-matching techniques in our work. The first one was 
based on the Normalized Square Difference Matching Method [64] to find matching 
points between the left and right stereo-rectified images. Despite its quick response, it was 
not as reliable in low-texture underwater scenes. The second algorithm, called the Nor-
malized Cross-Correlation Matching Method [66], was a bit slower but provided higher 
reliability and accuracy in all underwater scenes. The third algorithm, the Correlation Co-
efficient Matching Method [67], yielded the most accurate matchings. Even though it was 
slower compared to the first two techniques, its computational time matched the assumed 
time restrictions. Consequently, it was the best fit for the proposed method. 

2.3.4. Triangulation 
The triangulation task is simplified as the distortion removal and rectification steps 

were implemented in the method. Consequently, the stereo setup comprises two cameras 
whose image planes are coplanar with each other; the optical axes are parallel, and the 
focal axes are equal. Additionally, the principal points are calibrated and have the same 
pixel coordinates in the left and right images. This type of stereo setup, called the standard 
or canonical setup, is presented in Figure 3.  

P

Z
LX

Lp

b
f

RX

Rp

 
Figure 3. Canonical stereo setup. 

In this case, the distance to the 3D point can be calculated from the following formula: 
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x l r( , )
bfZ

D
=

p p
, (6)  

where Z  is the distance from the point P  to the baseline, b  is the distance between 
the cameras, and f  is the camera focal length. x l r( , )D p p  signifies horizontal disparity 
and is calculated as x l r L R( , )D x x= −p p , whereby Lx , Rx  are horizontal coordinates of 
the points lp  and rp  on the image planes. 

2.3.5. Distance Measurement  
Distance measurement depends on the geometric parameters of a stereo vision sys-

tem. In terms of accuracy, the following parameters are taken into consideration:  
− focal length, 
− distance between cameras, 
− CCD resolution. 

Figure 4 depicts the geometrical dependencies among the above parameters. Using 
the triangle similarity theorem, the equation describing geometrical dependence can be 
formulated as follows [68]: 

2rZR
fb rZ

=
−

 (7)  

where R  is measurement uncertainty, r  is pixel size, Z  is distance measurement, and 
b  is the distance between cameras. 

b r

f

Z R  
Figure 4. Distance reconstruction using a stereo vision system. 

The formula indicates that the increase in pixel size and the greater distance from the 
3D point impair measurement accuracy. The measurement accuracy can be improved by 
increasing the focal length or the distance between the cameras. However, in this case, the 
minimal measured distance is extended.  

In addition to the accuracy, there is the need to consider the stereo vision system on 
ROVs that can detect and match enough numbers of image features. For that reason, we 
performed analyses and simulations, which have been elaborately described in [69]. 
Therefore, in this paper, we only indicate the main assumptions and exemplary results. 

For detecting and tracking a sufficient number of image features, the following ex-
pectations were developed: 
− the distance between the cameras, b, and the distance between the vehicle and the 

bottom, h, should assure a 75% visibility of the corresponding region in both images; 
− the velocity of the vehicle in the forward direction, the distance from the bottom, and 

the frame rate of the image acquisition system should assure 75% visibility of the 
same region in the consecutive frames.  
In case of the distance between cameras, the corresponding region of visibility for a 

camera with focal length f = 47.5 mm and image resolution 768 × 576 pixels for different 
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baselines is presented in Figure 5. As can be seen, all the considered baselines meet the 
requirements at a distance of 2 m from the bottom. For shorter distances, the length of the 
baseline should be adequately reduced. 

 
Figure 5. Corresponding region of visibility for different distances from bottom and baselines. 

The relation between the distance from the bottom and the region of visibility, occur-
ring in consecutive frames of the left camera, delineating the vehicle’s various velocities, 
is presented in Figure 6.  

 
Figure 6. Corresponding region of visibility for different distances from bottom and the vehicle’s 
velocities. 

In this case, for the focal length f = 47.5 mm, acquisition rate = 5, and image resolution 
768 × 576 pixels, the vehicle should move at a distance of 3 m from the bottom to meet the 
required 75% correspondence for all speeds. Additionally, taking into consideration the 
fact that the camera can be mounted at the angle α  to the vehicle (see Figure 7), the value 
of the angle also influences the corresponding region of visibility.  

α

h

l  
Figure 7. An underwater vehicle with cameras. 
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Figure 8 shows the relation between the corresponding region of visibility and the 
distance from the bottom for different angles α . The other parameters are the following: 
baseline = 300 mm, focal length = 47.5 mm, velocity = 0.5 m/s, and acquisition rate = 5. 

 
Figure 8. Corresponding region of visibility for different values of α . 

The obtained results indicate that the demanded corresponding region of visibility 
for the established parameters in successive frames can be reached at a distance from the 
bottom that equals from 0.2 to 0.6 m, depending on the angle α .  

The conclusions from the conducted research point out that all the parameters should 
be considered together because, in the case of changing one of them, the other should also 
be adjusted. Consequently, for the established approximate distance from the bottom and 
the maximum velocity of the vehicle, the stereo vision system’s setting needs to be deter-
mined. 

2.4. Image-Based Motion Calculation 
In our research, we assumed that the vehicle moves at a close distance from the bot-

tom and captures images using a stereo-vision setup. The period between the acquisition 
of the new stereoscopic images is shorter than 200 milliseconds. For each pair of the stereo 
images, the following steps are applied: 
− distortion removal, 
− rectification, 
− detection of image features in the left image, 
− stereo correspondence to find counterparts for detected image features in the right 

image, 
− triangulation, to find distances from the bottom for matched image features, 
− image-feature correspondence in successive frames of the left camera. 

These steps allowed us to calculate the distances from the detected 3D points and 
analyse their positions in the consecutive frames. As camera motion along and about the 
different degrees of freedom causes different movements of feature images, analysis of 
this movement provides information about the velocity of the camera v : 

T

T

( , , )
( , , )
u v v
p q r

=

=

v
ω

, (8)  

where v  is the translational velocities (surge, sway, heave), ω  is the rotational veloci-
ties (roll, pitch, yaw).  

For a camera moving in the world coordinates frame and observing the point P  
with camera coordinates = (x, y,z)P , the velocity of the point relative to the camera frame 
is [69]: 
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= − × −P ω P v , (9)  

which can be rewritten in scalar form as: 
X YrZ q u
Y Zp Xr v
Z Xq Yp w

= − −

= − −

= − −







. (10)  

Taking into consideration the normalised coordinates of a point on the image plane:  

,X Yx y
Z Z

= =  (11)  

and applying the temporal derivative, using the quotation rule: 

2 2,XZ XZ YZ YZx y
Z Z
− −

= =
   

  , (12)  

the relation between the velocity of the image features and the velocity of the camera can 
be formulated as: 

2

2

1 0 (1 )

10 1

u
vx xy x yx wZ Z

y y py xy x
Z Z q

r

 
 

  − − +   
=    
    − + − −   

  
 





 (13)  

and reduced to the concise matrix form:  

p
 

=  
 

v
p J

ω


, (14)  

where pJ  is the Jacobian matrix for an image feature.  
The motion of the three image features may be considered by stacking the Jacobians:  

1

2

3

1

1
p

2
p

2
p

3

3

u u
v v
u w
v p
u q
v r

   
   
    
    

=    
         
        

J

J

J













. (15)  

Assuming that the image features are not coincident or collinear, the Jacobian matrix 
can be regarded as non-singular. Consequently, the velocity of the camera can be calcu-
lated using the following formula: 

1

2

3

1

1
1

p
2

p
2

p
3

3

uu
vv
uw
vp
uq
vr

−

  
  
    
    

=     
          
        

J

J

J













. (16)  

The formula indicates that only three correspondences between the feature points in 
consecutive frames are needed to calculate the six velocities. However, during the execu-
tion of the algorithm, the number of matched features is usually higher than 10. Therefore, 
the least-squares method for solving the system of equations was implemented. Figure 9 
depicts an example of feature points matching on consecutive left camera frames for the 
velocity calculation.  
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Figure 9. Feature points matching for velocity calculation. 

The velocity of the camera facilitates the calculation of the vehicle’s speed. To per-
form this calculation, the body-fixed and the inertial-fixed frames, presented in Figure 10, 
were adopted.  

 
Figure 10. Body-fixed and inertial frames. 

The motion of the body-fixed frame is described in relation to an inertial reference 
frame. At the same time, the linear and angular velocities of the vehicle are expressed in 
the body-coordinate frame. The translational velocity of the vehicle, described in the 
body-fixed frame, is defined as translational velocity in the inertial frame through the fol-
lowing transformation [70]:  

1( )=1 1 1η J η v , 
(17)  

where 
c c s c c s s s s c c s

( ) s c c c s s s c s s s c
s c s c c

ψ θ ψ φ ψ θ φ ψ φ ψ φ θ
ψ θ ψ φ φ θ ψ ψ φ θ ψ φ
θ θ φ θ φ

− + + 
 = + − + 
 − 

1 1J η . (18)  

Similarly, the rotational velocity in the inertial frame can be expressed using the ro-
tational velocity of the vehicle as [71]: 

( )2 2 2 2=η J η v  (19)  

for the transformation ( )2 2J η : 

2 2

1 s t c t
( ) 0 c s

0 s / c c / c

φ θ φ θ
φ φ

φ θ θ φ

 
 = − 
  

J η  (20)  

where: 
s a — sin a , 
ca — cos a ,  
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t a — tan a  
In our work, a compass and an IMU (Inertial Measurement Unit) support a vision 

system because they provide the heading of the vehicle as well as its position relative to 

the inertial frame, expressed as roll φ , pitch θ , and yaw ψ  (see Figure 8). This infor-
mation facilitates the calculation of the translational and rotational velocity in the inertial 
frame using Equations (22)–(25). Additionally, as the stereo-vision setup’s coordinate 
frame needs to be transformed into the vehicle’s coordinate frame, the transformation is 

achieved utilising Equations (22)–(25) for θ α=  and 0ψ θ= = . 

2.5. Control System 
A control system, developed to implement the stereo-vision technique into the con-

trol process, is presented in Figure 11. 

 
Figure 11. Control system. 

In this solution, the compass measures the heading of the vehicle. At the same time, 
a stereo vision system determines the motion of the vehicle in the x-direction (surge u) 
and the distance from the bottom h. The measured values are compared with the desired 
ones, and the obtained differences are passed to the controllers. The type of the controllers 
can depend on the ROV’s dynamics, but for many applications, fuzzy logic controllers are 
the best choice for underwater vehicles due to their high nonlinearity and nonstationarity. 

The preliminary experiments indicated that noise affected the values measured by 
the stereo vision system. The noise was attributed to the discrete character of an image 
and the inaccuracies during image-feature localisation. Therefore, to ensure the accuracy 
of the measurement, the Kalman filter was employed in the control loop. Based on the 
experimentations, our solution had the following parameters of the filter determined: 
− the state-transitional model of the surge motion and distance from the bottom: 

2

1
2

0 1
0 0 1

tt

t

 ∆
∆ 

 
= ∆ 
 
 
  

A , (21)  

− the observational model of the surge motion: 

[ ]0 1 0=H , (22)  

− the covariance of the process noise of the surge motion: 
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0.1 0 0
0 0.1 0
0 0 0.1

 
 =  
  

Q , (23)  

− the covariance of the observation noise of the surge motion 25=R , 
− the observational model of the distance from the bottom: 

[1 0 0]=H , (24)  

− the covariance of the process noise of the distance from the bottom: 

1 0 0
0 1 0
0 0 1

 
 =  
  

Q , (25)  

− the covariance of the observation noise of the distance from the bottom 125=R . 
The obtained result for the surge motion, presented in Figure 12, indicates that the 

Kalman filter reduces noise generated by the stereo vision system very effectively.  

 
Figure 12. Surge measurement with the Kalman filter. 

3. Results and Discussion 
The proposed method was developed to facilitate control of the ROVs at a close dis-

tance from the bottom using visual information. As this method is regarded as a practical 
solution, we aimed to develop and test it, considering the real imaging conditions. There-
fore, we carried out extensive research devoted to image-feature detection in various re-
gions of future operations and under different lighting conditions. Consequently, as the 
most promising methods were determined using videos acquired during various ROV 
missions, we decided that the control system would be tested in a swimming pool. This 
solution was convenient because it allowed for a precise measurement of the displacement 
of an ROV, which would be very challenging in the real environment.  

The experiments were conducted using a VideoRay Pro 4 underwater vehicle and a 
small inspection-class ROV (see Figure 13), implemented in plenty of applications world-
wide. It carries the cameras, lights, and sensors to the underwater places wanting to be 
observed. The vehicle is neutrally buoyant and hydrostatically stable in the water due to 
its weight distribution. It has three control thrusters, two for horizontal movements and 
one for the vertical one; therefore, the vehicle’s control is only available in the surge, 
heave, and yaw motion. Equal and differential thrust from the horizontal thrusters pro-
vides control in the surge and yaw motions, respectively, while the vertical thruster con-
trols the heave motion. 
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(a) (b) 

Figure 13. (a) VideoRay Pro 4 with stereo vision cameras; (b) swimming pool tests. 

The VideoRay Pro 4 utilises the ADXL330 accelerometer and the 3-axes compass, 
which provide information about the heading of the vehicle as well as the roll, pitch, and 
yaw angles. Additionally, we equipped it with two Colour Submergible W/Effio-E DSP 
Cameras with a Sony Exview Had Ultra High Sensitivity image sensor, constituting a ste-
reo-vison setup. The cameras and the vehicle were connected to a computer with Intel 
Core i7-6700HQ CPU 2.6 GHz and 32 GB RAM. The computer served as the central com-
putational unit for the developed algorithms. 

To conduct the experiments, a vision-based measuring system described in [45] was 
utilised. The system allowed the vehicle’s position determination with an error of fewer 
than 50 millimetres, which constituted a satisfying precision. Apart from position deter-
mination, the vision system allowed for the time measurement needed for the vehicle’s 
speed and heading calculation. A built-in pressure sensor in the VideoRay Pro 4 vehicle 
was used for measuring depth control. Its accuracy was estimated during hand-made 
measurements and indicated that the error was less than 20 millimetres. This error value 
was relatively small and did not influence the performed analyses. 

The vehicle was marked with a red circle. Through the segmentation based on a red 
colour separation, the circle was detected by the vision-based measuring system [45]. The 
system enabled the vehicle’s position determination using a camera mounted below the 
ceiling. During experiments, the vehicle’s position was recorded to the file with the inter-
val equal to 75 ms. At the same time, the applications devoted to communicating with the 
vehicle sent control signals and received the vehicle’s depth and heading with the interval 
equal to one loop of execution of the proposed algorithm. As both applications were run-
ning on the same computer, the sent and obtained data were stored in the same file, which 
facilitated further analyses. 

The presented method was compared with the SLAM techniques based on the ORB-
SLAM and ORB-SLAM2 systems [16–18]. ORB-SLAM and ORB-SLAM2 are state-of-the-
art SLAM methods that outperform other techniques in terms of accuracy and perfor-
mance. Their usability was proved in a wide range of environments, including underwa-
ter applications. Additionally, their source code was released under the GPLv3 license, 
making implementation very convenient.  

SLAM mainly utilises a monocular camera, which makes it prone to a scale drift. 
Therefore, the sensor fusion of a camera, lasers, and IMU were taken into consideration. 
The two parallel lasers are often used for distance calculation in ROV applications. Two 
points, displayed on the surface from the lasers mounted on the vehicle, enable simple 
distance calculation using Equation (1). For this calculation, only the camera parameters 
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are required. The performance of the SLAM technique is also often improved by employ-
ing an IMU or utilising a stereo vision system. As a result, the most general problem of 
scale ambiguity is resolved. 

3.1. Heading Control 
To develop heading control, the fuzzy logic controller for the heading control was 

designed. In this process, we used the mathematical model of VideoRay Pro 4 and Matlab 
Fuzzy Logic Toolbox. Based on conducted experiments, we decided that the fuzzy logic 
PD controller using Mamdani-Zadeh interference would be the most convenient solution 
for our application [71]. The defined memberships functions and the rule base are pre-
sented in Figure 14 and Table 1. It achieved a satisfying performance and did not require 
numerous parameters to be determined (in comparison with the PID fuzzy controller). 
The obtained results were verified during the experiments in a swimming pool, and some 
improvements to the controllers’ settings were introduced using input and output scaling 
factors. Finally, the scaling factors were set as follows: the error signal—0.02, the deriva-
tive of the error—0.01, and the output signal—1.  

   
(a) (b) (c) 

Figure 14. Membership functions: (a) error; (b) derivative of error; and (c) output. 

Table 1. Base rule of the fuzzy logic controller. 

 
e(t) 

UD US Z DS DD 

( )de t
dt

 

UD UD UD US US Z 
US UD UD US Z DS 
Z US US Z DS DS 

DS US Z DS DD DD 
DD Z DS DS DD DD 

The analysed methods were tested for various speeds of the vehicle using different 
control strategies. First, the variable input signal was used. The vehicle’s heading was 
changed from 0 to 360 degrees for various vehicle speeds. The exemplary results for ve-
locity equal to 0.1 m/s are presented in Figure 15. 
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(a) (b) 

  
(c) (d) 

Figure 15. Heading control for velocity equals 0.1 m/s: (a) stereo vision; (b) SLAM lasers; (c) SLAM stereo; (d) SLAM IMU. 

In the next part of the experimentation, the ability of the vehicle to keep a settled 
course was tested. During the tests, the vehicle moved at a constant heading for different 
speeds. Figure 16 shows the obtained results for velocity equals 0.2 m/s. 

  
(a) (b) 

  
(c) (d) 

Figure 16. Heading control for velocity equals 0.2 m/s: (a) stereo vision; (b) SLAM lasers; (c) SLAM stereo; (d) SLAM IMU. 

The Integral of Absolute Error (IAE) technique was implemented for the comparison 
of the analysed methods. The obtained results are depicted in Table 2.  
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Table 2. Integral of absolute error for heading control. 

 Stereo Vision SLAM Lasers SLAM Stereo SLAM IMU 
u = 0.1 m/s, variable heading 58,823 93,058 73,005 67,244 
u = 0.2 m/s, variable heading 56,344 89,976 68,679 66,995 
u = 0.1 m/s, constant heading 28,432 51,234 35,244 31,556 
u = 0.2 m/s, constant heading 27,564 47,564 49,567 34,773 

They point out that our method outperformed others in the case of variable and con-
stant headings. Slightly worse results for the variable headings were obtained using the 
SLAM IMU system, while the SLAM stereo and SLAM lasers delivered the worst perfor-
mance. 

3.2. Surge Control 
In case of surge control, similar to the previous experiments, the fuzzy logic PD con-

troller using the Mamdani-Zadeh interference was implemented. (The same memberships 
functions and base rule as for the heading controller were adopted. The scaling factors 
were set as follows: the error signal—2, the derivative of the error—3, and the output sig-
nal—1.) The trials were performed for the variable and constant surge velocity. The results 
obtained for varied speed are presented in Figure 17, while Figure 18 shows the outcomes 
for constant speed equals 0.2 m/s. 

  
(a) (b) 

  
(c) (d) 

Figure 17. Surge control at variable speed: (a) stereo vision; (b) SLAM lasers; (c) SLAM stereo; (d) SLAM IMU. 
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(a) (b) 

  
(c) (d) 

Figure 18. Surge control at constant speed equals 0.2 m/s: (a) stereo vision; (b) SLAM lasers; (c) SLAM stereo; (d) SLAM 
IMU. 

Table 3 presents the Integral of Absolute Error calculation for the analysed methods. 

Table 3. Integral of absolute error for surge control. 

 Stereo Vision SLAM Lasers SLAM Stereo SLAM IMU 
u = 0.1 m/s, variable course 39.2 43.5 62.4 73.4 
u = 0.2 m/s, variable course 31.1 35.2 44.6 54.2 
u = 0.1 m/s, constant course 21.2 24.6 31.7 32.8 
u = 0.2 m/s, constant course 18.9 21.3 25.3 25.3 

The obtained results indicate that the proposed method allowed controlling the surge 
motion with high precision. Other methods facilitated less accurate control. Our observa-
tions indicated that even a small movement of the tether behind the vehicle affected its 
velocity considerably.  

3.3. Distance-from-the-Bottom Control 
The distance-from-the-bottom control system was assessed using a pressure sensor. 

At this point, it should be emphasised that the pressure sensor measures the depth of the 
vehicle, while the analysed methods compute the distance from the bottom. As the depth 
of the swimming pool was known, it was possible to calculate the distance from the bot-
tom based on the vehicle’s depth. However, in most ROV applications, the exact depth of 
a water column is unknown, and information about the vehicle’s depth is insufficient to 
determine the distance from the bottom.  

Similar to the previous experiments, the fuzzy logic PD controller using the 
Mamdani-Zadeh interference was implemented. (The same memberships functions and 
base rule as for the heading controller were adopted. The scaling factors were set as fol-
lows: the error signal—1, the derivative of the error—3, and the output signal—1.25.) Dur-
ing the experiment, we tested the developed controllers for various speeds as well as for 
constant and variable depths. Figure 19 shows the results for variable depth and the vehi-
cle’s speed equal to 0.1 m/s, while Figure 20 depicts the results for constant depth and the 
vehicle’s speed equal to 0.2 m/s. 
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(a) (b) 

  
(c) (d) 

Figure 19. Distance-from-the-bottom control at a speed of 0.1 m/s: (a) stereo vision; (b) SLAM lasers; (c) SLAM stereo; (d) 
SLAM IMU. 

  
(a) (b) 

  
(c) (d) 

Figure 20. Distance-from-the-bottom control at a speed of 0.2 m/s: (a) stereo vision; (b) SLAM lasers; (c) SLAM stereo; (d) 
SLAM IMU. 

Table 4 presents the Integral of Absolute Error calculation for the analysed methods. 
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Table 4. Integral of absolute error for distance-from-the-bottom control. 

 Stereo Vision SLAM Lasers SLAM Stereo SLAM IMU 
u = 0.1 m/s, variable distance 120.5 187.9 191.6 168.7 
u = 0.2 m/s, variable distance 130.3 189.8 199.7 169.8 
u = 0.1 m/s, constant distance 63.5 77.1 90.2 137.5 
u = 0.2 m/s, constant distance 65.2 88.5 90.3 141.8 

The obtained results show that our method obtained better results for variable and 
constant distance-from-the-bottom control.  

The last part of the experiments was devoted to calculating the accuracy of the ana-
lysed method for variable speed, variable heading, and variable distance from the bottom 
at the same time. For the heading control, the vehicle’s heading was changed from 0 to 
360 degrees for vehicle speeds from 0 to 0.2 m/s and distance from the bottom in the range 
of 0.2–0.6 m. In the case of surge control, the vehicle moved with the speed of 0–0.2 m/s 
with the heading in the range of −30—30 degrees and with the distance from the bottom 
in the range of 0.2–0.6 m. A similar range of parameters was used for the distance control. 
The obtained results are in line with the ones obtained in previous experiments (see Table 
5). 

Table 5. Integral of absolute error for variable input signals. 

 Stereo Vision SLAM Lasers SLAM Stereo SLAM IMU 
heading control, variable distance, variable speed 57,268 90,098 68,728 66,870 
surge control, variable heading, variable distance 34.1 41.2 46.2 71.8 
distance control, variable heading, variable speed 1283.5 182.2 196.3 178.2 

The performed analyses indicate that the proposed method enables automatic con-
trol of the ROV’s surge motion, and it maintains the calculated distance from the bottom. 
It also achieved better results in heading control in comparison to the analysed methods. 
This situation may stem from the fact that the proposed solution employs visual feedback 
in each control algorithm’s loop. In the case of SLAM and the SLAM techniques, the con-
trol loop can perform with the previous data when the new position is not calculated. The 
results obtained for the constant input signals are crucial for future applications as the 
vehicle is expected to move with a constant speed and distance from the bottom.  

The mean computational cost of the analysed algorithms is presented in Table 6. It 
has been measured for one loop of the algorithms. The results show that all the algorithms 
perform faster than 200ms. It can also be noticed that the SLAM lasers and SLAM IMU 
are quicker than the stereo vision and SLAM stereo. This is because the SLAM laser and 
SLAM IMU need to analyse only one picture during execution.  

Table 6. Mean computational cost of the analysed algorithm. 

 Mean Computational Cost 
Stereo vision 176 ms 
SLAM lasers 153 ms 
SLAM stereo 191 ms 
SLAM IMU 143 ms 

4. Conclusions 
Prior work has documented the importance of vision systems for underwater appli-

cations. RGB cameras are a viable option for Visual Odometry, Visual Simultaneous Lo-
calisation and Mapping, and Visual Servoing. This is because they provide more accurate 
data than sonars in terms of temporal and spatial resolution. However, even though the 
cameras have been employed in plenty of underwater applications, very few of them were 
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devoted to controlling underwater vehicles. As our previous work indicates that the in-
spection-class ROV’s precise movement is desirable in many applications, we decided to 
address this problem. Therefore, the aim of this study was to develop a vision-based 
method which facilities the movement of an ROV at an established speed and determines 
the distance from the bottom.  

Our method is founded on local image-feature detection and tracking. As these tasks 
are challenging in an underwater environment, we performed analyses devoted to finding 
fast and reliable image-processing techniques. Selected techniques were subsequently im-
plemented in a control algorithm utilising the stereo vision system. This approach allowed 
for distance-from-the-bottom calculation, which constitutes a critical step in the vehicle’s 
movement determination.  

The results obtained indicate that the proposed method enables automatic control of 
ROVs and outperforms other methods based on the SLAM technique. However, the pro-
posed method demands that distinctive image features are present in stereo-pair images 
as well as in consecutive frames captured by the left camera. This condition is applicable 
during inspection-class ROV missions performed at a short distance from the bottom. 
However, the presented solution cannot be applied for AUVs as a clear view of the bottom 
is not always guaranteed during autonomous operations. As such, it is expected that a 
future study will focus on developing a method that facilities vision-based control with 
cooperation with other sensors. 
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