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Abstract 

This paper proposes a tracking method aiming at trajectory tracking for a remotely operated underwater vehicle 
(ROV) under external disturbances and measurement noises. Firstly, the six-degree-of-freedom kinematics model 
and dynamics model of the ROV are proposed to derive the discrete-time varying nonlinear model, where the Euler 
method is used and the assumption that the center of gravity of the ROV coincides with the center of buoyancy is 
made. The external disturbance representing ocean current is explicitly considered in the form of velocities instead 
of forces in the dynamics model to avoid the problem that forces on the ROV caused by ocean current are difficult 
to measure. Secondly, an extended state based Kalman filter (ESKF) is constructed to estimate system states and 
external disturbances in the presence of measurement noises and the filter gain is automatically tuned by the 
Kalman filter technique, which can greatly improve the estimation accuracy. Thirdly, the ESKF-based model 
predictive control (MPC) controller is newly formulated, and an objective function under linear time-invariant 
(LTI) constraints is constructed based on the tracking error and the desired control input increment to ensure the 
accuracy and prevent damage to actuators. Finally, the performance of the proposed method is verified by numerical 
simulations. 
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1. Introduction 

Remotely operated underwater vehicles (ROVs) 
are widely used in the exploration of territory, mining 
of marine resources (Choyekh et al., 2015), the laying 
of submarine cables and the maintenance of 
underwater artificial facilities (Tsukioka et al., 2015), 
without the need for real time human operations, 
which can significantly improve operational safety 
and efficiency (Fossen et al., 2006). The ROV 
performs tasks usually based on the control 
instructions sent by the operator on the sea mother ship 
through cables. However, the performance of  the 
ROV without automatic control function is relatively 
poor when completing difficult tasks such as three-
dimensional trajectory tracking (Soylu et al., 2016), 
which is a typical underwater operation in pipeline 
inspection and mineral handling (Zhou et al., 2017).  

Currently, many methods have been proposed in 
trajectory tracking, such as proportional-integral-
derivative (PID) control, backstepping control (BSC), 
fuzzy logic control (FLC), adaptive control, sliding 
mode control (SMC), neural network control (NNC) 
(Boehm et al., 2020; Chu et al., 2016). Due to the ease 
of practical implementation, PID control has been 
widely used in underwater vehicle control. Kim et al. 
(2013) proposed a dual-loop variable-structure 
controller with anti-windup, it fed the difference 
between the target input and force limits back to the 
integral term, which could reduce the integral-windup 
effect. Khodayari and Balochian (2015) introduced a 
new self-adaptive fuzzy PID controller based on 
nonlinear structure with multiple input and multiple 
output (MIMO), which combined an adaptive method 
and a dual PID controller, improving the performance 
with parametric uncertainties and model uncertainties. 
However, PID control cannot provide accurate 
trajectory tracking even if it tracks a linear second-
order desired trajectory. At the same time, PID cannot 
cope with nonlinear models and uncertain external 
disturbances. SMC can make the system states reach 
and slide along the sliding mode surface in a finite time 
by switching control variables, without being affected 
by parameter perturbations and external disturbances. 
Wang et al. (2011) proposed a nonlinear iterative 
sliding mode controller and established the equation of 

horizontal tracking error for an under-actuated 
autonomous underwater vehicle (AUV) to overcome 
singular value. Simulation results proved that the path 
tracking method was effective and the under-actuated 
AUV could track the desired horizontal path precisely. 
Qiao and Zhang (2019) designed two adaptive integral 
terminal sliding mode control frameworks to control 
an unmanned underwater vehicle (UUV) to track 
desired trajectories. This control framework could 
improve tracking accuracy and enhance robustness to 
parametric uncertainties and external disturbances. 
However, SMC may cause high-frequency oscillation 
called “chattering” on the sliding mode surface, 
resulting in low control accuracy and high energy 
consumption. FLC can make machines reason like 
humans. Dai et al. (2002) proposed a three-layer fuzzy 
logic controller for ROV navigation, which resulted in 
smooth motion control and robust performance. Liu et 
al. (2012) introduced a novel path planning algorithm 
based on fuzzy logic for AUV in 3D unknown space 
and simulation results demonstrated the effectiveness 
of the method. Sun et al. (2018) proposed a three-
dimensional trajectory planning method based on an 
optimized fuzzy control algorithm, which could 
achieve good planning results in complex underwater 
environments. However, the design of FLC fuzzy rules 
relies heavily on subjective experience, which brings 
contingency to the control effect. BSC has good 
robustness to parametric uncertainties and system 
nonlinearities. Repoulias and Papadopoulos (2006) 
developed a two-dimensional planar trajectory 
tracking method based on backstepping technology for 
AUV, which kept the tracking error within a small area 
of zero. Zain et al. (2014) considered a nonlinear 
control method for stabilizing all attitudes and 
positions of an underactuated X4-AUV with four 
thrusters and six-degree-of-freedom, the controlled 
system could be robustly stabilized for all the time. 
However, the computational complexity of BSC will 
increase rapidly as the order of the system increases. 
NNC can improve the adaptive learning ability of the 
system and has been extensively studied. Mon and Lin 
(2012) developed a guidance law based on supervisory 
recurrent fuzzy neural network control (SRFNNC) for 
AUV guidance systems. Simulation results showed 
that the proposed SRFNNC guidance law was robust 
and could obtain high accuracy. Cui et al. (2017) 
integrated two neural networks into an adaptive 
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controller that took control input nonlinearities, model 
uncertainties and external disturbances into account, 
this method achieved good effectiveness and 
robustness. However, the control performance of NNC 
depends on the number of neural network nodes, 
resulting in a large amount of calculation, which is not 
suitable for practical engineering applications. 

Further analysis of the methods mentioned above 
shows that the above methods have some common 
shortcomings. These methods cannot deal with 
constraints on system states and propulsion in the 
control process, which may cause poor tracking 
performance. In addition, these methods are also 
unable to solve the trajectory tracking problem 
considering external disturbances and measurement 
noises. 

MPC is a closed-loop optimization control strategy 
that can solve control problems with extra constraints 
on control inputs and system states, as well as real-
time external disturbances (Yan et al., 2020). It has 
become a powerful framework for the trajectory 
tracking of underwater vehicles (Bai et al., 2019). 
Molero et al. (2011) proposed a trajectory tracking 
method for a six-degree-of-freedom ROV based on 
MPC, which could reduce tracking error by 40% 
compared to PID controllers. Zhu and Xia (2016) 
developed an adaptive MPC for unconstrained 
discrete-time linear systems with parametric 
uncertainties. The adaptive MPC combined an 
adaptive updating law for estimated parameters and a 
constrained MPC for an estimated system. Simulation 
results showed that the adaptive MPC could deal with 
parametric uncertainties. Shen et al. (2017a) 
developed a novel Lyapunov-based MPC (LMPC) 
framework for an AUV to improve the trajectory 
tracking performance. Simulation results on the Saab 
SeaEye Falcon AUV model demonstrated that this 
method significantly enhanced trajectory tracking 
control performance. Shen et al. (2017b) designed a 
nonlinear MPC controller that could simultaneously 
solve the problem of trajectory planning and tracking, 
and the effectiveness of the method was proved by 
experiments. Zhang et al. (2019) used an MPC 
controller to track trajectories with the constraints of 
actuator saturation and system state boundaries. The 
ocean current disturbance is introduced in the 
simulation to verify the effectiveness and robustness 
of the control method. However, these proposed 

trajectory tracking methods did not consider the 
influence of external disturbances and measurement 
noises at the same time, which could not guarantee 
tracking accuracy. 

To settle the above mentioned problem, we newly 
propose an ESKF-based MPC based ROV tracking 
method, considering ocean current disturbances and 
measurement noises simultaneously, which can ensure 
tracking accuracy and robustness in real 
implementations. The main contributions of this work 
are: 

1. Ocean current disturbances are introduced into 
the dynamics model in the form of velocity rather than 
forces, which helps avoid the problem that it is 
difficult to measure forces on ROV applied by ocean 
current. In addition, it is beneficial for improving 
tracking accuracy during ROV operations. 

2. The ESKF is constructed to estimate system 
states and external disturbances in the presence of 
measurement noises, which is good for improving the 
robustness of the ROV against external disturbances. 

3. The discrete-time varying nonlinear model of 
ESKF-based MPC is derived based on the ROV 
kinematics model and dynamics. Measurement noises 
are introduced into the output equation so that they can 
be taken into account in the objective function 
established later, which can make the tracking 
algorithm robust to measurement noises. 

4. Applying the tracking error and the control input 
increment to construct an objective function under LTI 
constraints on the propulsion increment, which can 
ensure tracking accuracy and avoid damage to 
actuators. 

The rest of the paper is organized as follows: 
Section 2 introduces the kinematics model and 
dynamics model for ROV. Section 3 shows the details 
of the ESKF-based MPC controller. Simulation results 
are provided in Section 4 to validate the proposed 
method. Finally, Section 5 concludes the paper. 

2.  ROV modeling 

This section introduces the kinematics model and 
the dynamics model for the proposed ESKF-based 
MPC controller. These two models are used to derive 
the discrete-time nonlinear time varying model of 
ESKF-based  MPC in Section 3. 
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2.1. Kinematics model 

The kinematics model of the ROV is constructed in 
order to derive the state prediction equation of MPC. 
As shown in Fig.1, in order to numerically describe the 
position, attitude and velocity of the ROV, an inertial 
reference frame and a body frame are defined, using 
the right-handed coordinate system. The inertial 
reference frame is fixed with �� being its origin. The 

origin of the body frame is �� and it coincides with the 
ROV gravity center.  
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Fig.1. ROV coordinate system 
The ROV studied in this paper has 4 horizontal 

propellers and 3 vertical propellers. As shown in Fig. 
2, the axis of each horizontal propeller is parallel to the 
horizontal plane, and the angle between it and axis �� 
is 45 degrees. The axis of each vertical propeller is 
parallel to the vertical plane, and the angle between it 
and axis �� is 15 degrees. 
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Fig. 2. Propeller layout diagram 

The position and attitude of the ROV are denoted 
by vector � = [�, �, �, �, �, �]�, where �, �, and � are 

translation motions along axes ��, ��, and ��, and �, 

� , and � represent rotations of the ROV around axes 
��, ��, and ��, respectively. The velocity vector of the 

ROV is expressed as � = [�, �, �, �, �, �]�, where �, 
�, and � are the linear velocity along axes ��, ��, and 
��, and �, � , and  � are the angular velocity around 
��, ��, and ��, respectively. The relationship between 
� and � can be expressed as follows: 

�̇ = �� (1)

where 

� = �
�� ��×�

��×� ��
� (2)

�� = �

��� ��� ���

��� ��� ���

��� ��� ���

� (3)

�� = �

��� ��� ���

��� ��� ���

��� ��� ���

� (4)

��� = cos�cos� , ��� = sin�sin�cos� − cos�sin� , 
��� = cos�sin�cos� + sin�sin� , ��� = cos�sin� , 
��� = sin�sin�sin� + cos�cos� ,  ��� = cos�sin� · 
sin� − sin�cos� , ��� = −sin� , ��� = sin�cos� , 
��� = cos�cos� , ��� = 1 , ��� = sin�tan� , ��� =
cos�tan� , ��� = 0 , ��� = cos� , ��� = −sin� , 
��� = 0, ��� = sin�sec�, ��� = cos�sec�. 

� is the conversion matrix from the body frame to 
the inertial reference frame, �� is the linear velocity 
conversion matrix, and ��  is the angular velocity 
conversion matrix. 

2.2. Dynamics model 

The dynamics model of the ROV is used to 
compute the relationship between the desired motion 
of the ROV and the forces executed by actuators. In 
the paper, we introduce ocean current into the 
dynamics model in order to improve tracking 
accuracy. However, compared to the forces on ROV 
caused by ocean current, the ocean current velocity is 
relatively easy to measure. Denote by  ��  the ocean 
current disturbance on the ROV in the body frame. 
Then the ROV dynamics model is as follows: 

��̇ + �(� − ��) + �(� − ��) + � = � (5)

where  � = ��� + ��  is the inertia matrix (Shen et 
al., 2017), ��� = diag(�, �, �, ��, ��, ��)is the rigid 

body mass matrix,  � is the mass,  �� , �� , and ��  are 
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the moments of inertia regarding to �� , �� , and �� , 
respectively, �� = −diag(��̇, ��̇, ��̇, ��̇, ��̇, ��̇) is 

the hydrodynamic additional mass matrix, 
and  ��̇ ,  ��̇ ,  ��̇ ,  ��̇ ,  ��̇ ,  ��̇  are hydrodynamic 

coefficients. The function diag is used to construct a 
diagonal matrix. 

Here � = ��� + �� is the rigid body centripetal 
and Coriolis matrix, where  ���  is the rigid body 
centripetal force and Coriolis force matrix, and  �� is 
the hydrodynamic centripetal force and Coriolis force 
matrix, of which the expressions are as follows: 

��� = �
���� ����

���� ����
� (6) 

�� = �
��� ���

��� ���
� (7) 

where 

���� = �
0 0 0
0 0 0
0 0 0

� (8) 

����

= �

0 �(� − ���) −�(� − ���)

−�(� − ���) 0 �(� − ���)
�(� − ���) −�(� − ���) 0

� 
(9) 

����

= �

0 �(� − ���) −�(� − ���)

−�(� − ���) 0 �(� − ���)
�(� − ���) −�(� − ���) 0

� 
(10) 

����

= �

0 ��(� − ���) −��(� − ���)

−��(� − ���) 0 ��(� − ���)

��(� − ���) −��(� − ���) 0

� 
(11) 

��� = �
0 0 0
0 0 0
0 0 0

� (12) 

���

= �

0 −��̇(� − ���) ��̇(� − ���)

��̇(� − ���) 0 −��̇(� − ���)
−��̇(� − ���) ��̇(� − ���) 0

� 
(13) 

���

= �

0 −��̇(� − ���) ��̇(� − ���)

��̇(� − ���) 0 −��̇(� − ���)
−��̇(� − ���) ��̇(� − ���) 0

� 
(14) 

���

= �

0 −��̇(� − ���) ��̇(� − ���)

��̇(� − ���) 0 −��̇(� − ���)

−��̇(� − ���) ��̇(� − ���) 0

� 
(15) 

where ��� , ��� , ��� , ��� , ��� , and ���  are the 

translation and rotation components of ��  along the 
three coordinate axes. Here  ��  is converted from 
ocean current disturbance ��� in the inertial reference 

frame, and is described as follows: 

�� = ������  (16)

where ��� is the inverse of �. 

� = diag(�� + �|�|�|� − ���|, �� + �|�|��� −

����, �� + �|�|�|� − ���|, �� + �|�|��� − ����, 

�� + �|�|��� − ����, �� + �|�|�|� − ���|) , is the 

hydrodynamic damping matrix, where  ��,  �|�|�,  �� , 

 �|�|� ,  �� ,  �|�|� ,  �� ,  �|�|� ,  �� ,  �|�|� ,  �� , and 

 �|�|� are hydrodynamic damping coefficients. 

�  is the restoring forces and moments caused by 
gravity and buoyancy (Anderlini et al.,2018). 
Assuming buoyancy is equal to gravity, i.e., � = ��, 
where �  is the gravity acceleration. In addition, 
assume the coordinates of the floating center of the 
ROV in the body frame is (��, ��, ��) =
(0,0,0).Then: 

� =

�
�
�
�
�
�

(�� − �)sin�

−(�� − �)cos�sin�

−(�� − �)cos�cos�
���cos�cos� − ���cos�sin�

−���sin� − ���cos�cos�
���cos�sin� + ���sin� �

�
�
�
�
�

=

�
�
�
�
�
�
0
0
0
0
0
0�

�
�
�
�
�

 

 

(17)

where (��, ��, ��)  is the coordinates of the floating 
center of the ROV in the body frame. 

 � = ���, ��, ��, ��, ��, ���
�

 are the propulsion 

forces and moments applied to the ROV.  ��, �� and �� 

are the forces along the three coordinate axes 
generated by the propellers.  �� , ��  and ��  are the 

moments around the three coordinate axes generated 
by the propellers. 

The ocean current disturbance is explicitly 
considered in the constructed dynamics model, which 
is helpful to analyze the influence of ocean current 
disturbance on the ROV dynamic performance and to 
improve tracking accuracy. Various types of ocean 
current disturbance models can be adopted in the ROV 
dynamics model. In the subsequent experiments, we 
will consider the LTI disturbance and Gaussian 
disturbance.  
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3.  ESKF-based MPC controller 

The overall control architecture is shown in Fig.3. 
An ESKF-based MPC controller predicts the future 
state within the predictive horizon based on the current 
ROV state. The optimizer calculates the optimal 
control input that minimizes the cost function. Finally, 
the desired propulsion distribution block calculates the 
desired propulsion of each propeller. 

Desired 
trajectory

ESKF-based MPC controller

Prediction
model

Cost 
function

Control 
input 

constraints
Optimizer

Desired 
propulsion 
distribution  

ROV

ROV states

Optimal 
control

Desired
propulsion 

 

Fig.3. The overall control architecture 

This paper aims at solving the three-dimensional 
trajectory tracking problem for ROVs in the presence 
of ocean current disturbance and measurement noises. 
Ocean current disturbance and measurement noises 
are added in the state prediction and output prediction 
processes of ESKF-based MPC, respectively. This 
allows ocean current disturbance and measurement 
noises to be considered in the control process. Based 
on the error between the predicted output and the 
desired trajectory combined with the control input 
increment, an objective function is constructed to 
ensure tracking accuracy and to prevent damages to 
actuators. Combined with the physical constraints of 
the ROV, the LTI constraints of control input are taken 
into account, which makes trajectory tracking more in 
line with actual engineering applications and is 
beneficial for improving tracking accuracy. In each 
prediction process, the optimal control input sequence 
in the prediction horizon can be obtained by 
minimizing the objective function, and the first 
element in the sequence is used as the control input to 
actuators (Nakagaki and Zhai, 2020), driving the ROV 
to track the pre-desired trajectory. 

The ROV dynamic model in (5) can be written as: 

�̇ = −���(� + �)� + ���� + ���(� + �)��  (18) 

     Based on the ROV kinematics model in (1) and (18), 
a continuous varying nonlinear model can be obtained 
as follows: 

�̇ = �
��×� �

��×� −���(� + �)
� � + �

��×�

���
� � 

+ �
��×�

���(� + �)
� ��  

(19)

with 

� = [�, �]� (20)

MPC relies on state horizon model to predict the 
resulting output in the future time horizon. Although 
nonlinear MPC is possible, linear MPC results in much 
less computational effort, thus enabling a real-time 
implementation. The continuous varying nonlinear 
model is discretized with the Euler method as: 

�(� + 1) = �(�)�(�) + �(�)�(�) + �(�)�(�) (21) 

�(�) = �(�)�(�) + �(�)�(�) (22) 

with 

�(�) = �
�(�)

�(�)
� (23)

�(�) = �
��×� ��

��×� ��×� − ���(� + �)�
� (24)

�(�)=�
��×�

����
� (25)

�(�) = �
��×�

���(� + �)�
� (26)

�(�) = ��(�) (27)

�(�) = [��×� ��×�] (28)

In order to improve the robustness to the ocean 
current disturbance and measurement noises, the 
ocean current disturbance  �(�)  is considered as an 
extended state based on the idea of extended state 
observer (ESO) (Bai et al., 2018), then the ESKF for 
estimating the ROV state and ocean current 
disturbance can be designed as: 

�
��(� + 1)

��(� + 1)
� = 

��(�) �
��(�)

��(�)
� + ��(�)�(�) + ��(�)��� (�) 

−�� ��(�) − ��(�) �
��(�)

��(�)
�� 

(29) 

�(�) = �(�)��(�) + �(�)�(�) (30) 

with 

�� = (31) 
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−��(�)����
�(�) ���(�)����

�(�) +
��

1 + ��
�

��

 

���� = 

(1 + ��)���(�) + ����(�)������(�) + ����(�)�
�

 

+������
� +

1 + ��

��
��,� + ��,� 

(32) 

��(�)

= �

��×� �� ��×�

��×� ��×� − ���(� + �)� ���(� + �)�
��×� ��×� ��×�

� 
(33) 

��(�) = �

��×�

����
��×�

� (34) 

��(�) = �
��×�

��×�
� (35) 

��,� = �
���×�� ���×�

��×�� 4��
� (36) 

�� = 6diag(���, ���, ��� , ��� , ���, ���) (37) 

��,� = �
0.0009 ∗ ���×�� ���×�

��×�� ��×�
� (38) 

where ' ^ ' represents the estimation value, the 
estimation value of  �� (�) is defined as follows: 

��� (�) = max�min������(�), ���� , −����, (39) 

with 

����(�) = ��(� + 1) − ��(�) (40) 

where �̅(�) is the nominal value of �(�). 
According to the state estimation equation (29)  and 

the current state, the control inputs and system states 
in the prediction horizon can be estimated. Denote the 
prediction horizon by � , then the control input 
�̅(�) and state ��(�) in the prediction horizon can be 
described as: 

��(�) = [�(�|�), �(� + 1|�), ⋯ , �(� + � − 1|�)]T (41) 

��(�) = ���(� + 1|�), ��(� + 2|�), ⋯ , ��(� + �|�)�
�

 (42) 

In general, �(�) , �(�) , and �(�)  remain 
unchanged in the prediction horizon, then ��(�) can be 
represented as: 

��(�) = �̅(�)��(�|�) + ��(�)�(� − 1) + �(�)�(�) 

+��(�)�̅�(�) 

(43) 

where 

�̅(�) = [�(�), �(�)�, ⋯ , �(�)�]� (44) 

��(�) =

�
�
�
�
�
�

�(�)

�(�) + �(�)�(�)
⋮

� �(�)�

���

���

�(�)
�
�
�
�
�
�

 (45)

�(�)

=

�
�
�
�
�
�

�(�) 0 ⋯ 0
�(�) + �(�)�(�) �(�) ⋯ 0

⋮

� �(�)�

���

���

�(�)

⋮

� �(�)�

���

���

�(�)
⋱ ⋮

⋯ �(�)
�
�
�
�
�
�

 

=�

��� ��� ⋯ ���

��� ��� ⋯ ���

⋮
���

⋮
���

⋱ ⋮
⋯ ���

� 

(46)

�(�) = [ℎ(�|�), ℎ(� + 1|�), ⋯ , ℎ(� + � − 1|�)]� (47)

ℎ(� + �|�) = �(� + �|�) − �(� + � − 1|�) (48)

��(�) = �

�(�) 0 ⋯ 0
�(�)�(�) �(�) ⋯ 0

⋮
�(�)����(�)

⋮
�(�)����(�)

⋱ ⋮
⋯ �(�)

� (49)

�̅�(�) = repmat(��(�), �, 1) (50)

where repmat is a function, which is used to construct 
a block matrix of � rows and one column with ��(�). 

When designing the trajectory tracking controller 
based on MPC, it is necessary to consider the LTI 
constraints of control input increment. Control input 
increment ℎ(�) has its explicit lower bound and upper 
bound as follows: 

ℎ��� ≤ ℎ(�) ≤ ℎ��� (51) 

where ℎ���  is a predefined lower bound, ℎ���   is a 
predefined upper bound. 

Then the following constraints can be obtained: 

�(�) ≤ ���� (52) 

−�(�) ≤ −���� (53) 

The above constraints can be expressed in the 
following vector form: 

��(�) ≤ � (54)

where 

� = [���×��, −���×��]� (55) 

� = [����, −����]T (56) 

���� = repmat(ℎ���, �, 1) (57) 
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���� = repmat(ℎ���, �, 1) (58) 

The cost function is constructed based on the error 
between the predicted trajectory and the expected 
trajectory combined with the control input increment 
(Gan et al.,2019). The cost function is defined as 
follows: 

�(�) = �(‖�(� + �|�) − ��(� + �)‖��

�

�

���

 

+‖ℎ(� + � − 1|�)‖��

� ) 

(59) 

The first term is the tracking error penalty, which is 
used to ensure the tracking accuracy. �(� + �|�) is the 
predicted position at time � + � ,  ��(� + �)  is the 
desired position at time � + �, �(� + �|�) − ��(� + �) 
is the tracking error at time � + � , ��  is the state 

weight matrix. The second term is the control input 
penalty, which helps to avoid speed jerk and to make 
trajectory tracking more robust. ℎ(� + � − 1|�) is the 
control input increment at time � + � , and �� 
represents the control input weight matrix.  

Since �(�) = �(�)��(�) + �(�)�(�) , the cost 
function can be further transformed into the following 
form: 

�(�) = ‖��(�) − ��
����(�)‖���

� + ‖�(�)‖���

�  

+ � ���(� + �|�)��(�)���(�)�(�)

�

���

+ � ��(�)��(�)���(�)��(� + �|�)

�

���

(60) 

where 

��� = blkdiag(��, ��, ��, ��, ��, ��, ��, ��, ��, ��) (61) 

��� = blkdiag(��, ��, ��, ��, ��, ��, ��, ��, ��, ��) (62) 

�� = ��(�)���(�) (63) 

where blkdiag is a function, which is used to construct 
a block  diagonal matrix with ��. 
Then: 

‖��(�) − ��
����(�)‖���

� = 

��(�)��(�)���(�̅(�)��(�|�) 

+��(�)�(� − 1) + ��(�)�̅�(�) − ��
����(�)) 

+(���(�|�)�̅�(�) + ��(� − 1)���(�) + �̅��(�)���(�) 

−��
�����

(�))����(�)�(�) + ��(�)��(�)����(�)�(�) 

+�������� 

(64) 

∑ ���(� + �|�)��(�)���(�)�(�)�
��� = (65) 

��(�) �� ���

�

���

, � ���

�

���

, ⋯ , � ���

�

���

�

�

 

× ��(�)���(�)�(�) + �������� 

∑ ��(�)��(�)���(�)��(� + �|�)�
��� =  

�(�) �� ���

�

���

, � ���

�

���

, ⋯ , � ���

�

���

� �(�) + �������� 
(66) 

where 

�(�) = ��(�)��(�)���(�) (67) 

Ignore the constant term, then the cost function can 
be further written as: 
�(�) = ((���(�|�)�̅�(�) + ��(� − 1)���(�) 

+�̅��(�)���(�) − ��
�����

(�))����(�)

+ �(�) �� ���

�

���

, � ���

�

���

, ⋯ , � ���

�

���

�)�(�) 

+��(�)(��(�)����(�) + ���)�(�) 

+��(�)(��(�)���(�̅(�)�(�|�) 

+��(�)�(� − 1) + ��(�)�̅�(�) − ��
����(�)) 

+ �� ���

�

���

, � ���

�

���

, ⋯ , � ���

�

���

�

�

 

× ��(�)���(�)�(�)) 

(68)

That is: 

�(�) =
1

2
��(�)�(�)�(�) + ��(�)�(�) 

+��(�)�(�) 

(69)

where 

�(�) = 2(��(�)����(�) + ���) (70)

�(�) = 

((���(�|�)�̅�(�) + ��(� − 1)���(�) 

+�̅��(�)���(�) − ��
�����

(�))����(�) +

�(�)�∑ ���
�
��� , ∑ ���

�
��� , ⋯ , ∑ ���

�
��� �)T 

(71)

�(�) = ��(�)���(�̅(�)��(�|�) 

+��(�)�(� − 1) + ��(�)�̅�(�) − ��
����(�)) 

+ �� ���

�

���

, � ���

�

���

, ⋯ , � ���

�

���

�

�

 

× ��(�)���(�)�(�) 

(72)

In order to compute the optimal control input 
increment sequence �∗(�)  in the current state, we 
construct the objective function based on the above 
cost function as follows: 
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�∗(�) = �(�)
�(�)

������
 

�. �.  ��(�) ≤ � 
(73) 

Solving the above objective function under the 
provided constraints can yield the optimal control 
input increment sequence �∗(�) in the current state. 
Denote the first element of �∗(�) as ��

∗(�). Then, the 
expected propulsions and moments of  the propellers 
can be obtained as follows: 

�(�) =  �(� − 1) + �1
∗(�) (74) 

After obtaining the propulsions and moments, the 
expected propulsion vector ��  for each propeller can 

be calculated: 

�� = ��
��� (75) 

where 

�� = [��� ���] (76)

1

0 0 0 0
r

h h h h

h h h h

h h h h h h h h

cos cos cos cos

sin sin sin sin

T
z sin z sin z sin z sin

z cos z cos z cos z cos

y cos x sin y cos x sin y cos x sin y cos x sin

d d d d

d d d d

d d d d

d d d d

d d d d d d d d

- -é ù
ê ú- -ê ú
ê ú

= ê ú
- -ê ú

ê ú- -
ê ú
- - + + - -ê úë û

 

(77) 

2

0 0 0

0

sin sin 0

r
v v

v v v v v v

v v

sin sin sin

cos cos cos
T

y cos y cos

z sin x cos z sin x cos z sin x cos

y y

s s s

s s s

d d

d d d d d d

d d

-é ù
ê ú
ê ú
ê ú

= ê ú
-ê ú

ê ú+ + - -
ê ú

- -ê úë û

 

(78) 

where ��
�� is the inverse of ��. � is the angle between 

the axis of each horizontal propeller and axis ��, � is 
the angle between the axis of each vertical propeller 
and the axis �� . �� , �� , and ��  are the distances 
between the axis of each horizontal propeller and 
�� ,  �� , and  �� , respectively. �� ,  ��  and ��  are the 
distances between the axis of each vertical propeller 
and ��, �� , and ��, respectively. 

In this section, we have derived the discrete-time 
varying nonlinear model of ESKF-based MPC based 
on the kinematics model and dynamics model of the 
ROV, and have introduced measurement noise into the 
output equation, which is conducive to improving the 
robustness to measurement noise. In addition, we have 
considered LTI constraints on control input increment, 
which helps make control closer to actual use. In order 
to ensure tracking accuracy and prevent damages to 
actuators, we have also constructed an objective 
function based on the tracking error and the control 

input increment. Based on the optimal control input 
increment calculated by the objective function, we 
have finally obtained the desired propulsion needed to 
drive the ROV. 

4. Simulations 

In this section, simulations of a tracking three-
dimensional sine curve and a spiral curve are carried 
out, which are usually used by researchers to verify the 
trajectory tracking performance of the ROV. 

The key ROV parameters are shown in the Table 1. 
The simulation setups are as follows: initial speed 
�� = [0,0,0,0,0,0]�, the unit of the first three values in 
this vector is m/s, and the unit of the last three values 
is rad/s, prediction horizon � = 10, sampling period 
� = 0.5�, the weighting matrices �� = diag(1,1,1,1,1, 

1), �� = diag(1,1,1,1,1,1) , constraints on control 
input ℎ��� = [300,300,300, 150,150,150]T, the unit 
of the first three values in this vector is N, and the unit 
of the last three values is N · m , ℎ��� =
[−300, −300, −300, −150, −150, −150]� , the unit 
of the first three values in this vector is N, and the unit 
of the last three values is N · m, �(�) = diag(0.4,0.3, 
0.2,0.4,0.3,0.2), �(�) = [ randn(1) , randn(1) , 
randn(1), randn(1), randn(1), randn(1)]T, the unit 
of the first three values in this vector is m, and the unit 
of the last three values is rad , �� = 0.0009 ∗
�6×6 , �� = 0.000001 , �� = 0.001 ∗ [1,1,1,1,1,1] ,
��,� = 0.001, � = 1,2,3,4,5,6. 

Each simulation experiment will be carried out 
under three conditions: no ocean current disturbance, 
constant ocean current disturbance, and random ocean 
current disturbance. Denote by ���  the ocean current 
disturbance vector relative to the inertial reference 
frame. We consider constant ocean current disturbance 
vector ��� = [−0.3,0.3,0.3,0,0,0]�, and random ocean 
current disturbance vector ��� = [0.3randn(1), 
0.3randn(1), 0.3randn(1), 0, 0, 0]T, with unit being 
�/�. 

4.1. Tracking of a three-dimensional sine curve 

The first curve tracked by the ROV is a three-
dimensional sine curve. The expression of the sine 
curve is as follows: 
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�

�� = �
�� = 25��� (0.1�)
�� = 3�/10 − 50

      0 ≤ � < 100 (79) 

The initial ROV position and attitude of the three-
dimensional sine curve tracking simulation is ���� =
[5,5, −45,0,0,0]�, the unit of the first three values in 
this vector is m, and the unit of the last three values is 
rad.  

Results are shown in Fig.4 and Fig.5. Position 
errors after the ROV has moved for 5 minutes are 
shown in Fig.6 and Fig.7. From Fig.6 and Fig.7, it can 
be seen that tracking errors when there are no 
measurement noises are smaller than those with 
measurement noises. It can be known from the 
calculation that average tracking errors under three 
different conditions without measurement noises are 
0.0031m, 0.0032m, and 0.0033m, respectively. 
Average tracking errors under three different 
conditions with measurement noises are 0.0871m, 
0.1009m, 0.1014m, respectively. it is shown that the 
tracking error under random ocean current disturbance 
is the largest, followed by the tracking error under 

constant ocean current disturbance, then the tracking 
error without ocean current disturbance. This is 
because the ocean current disturbance causes the ROV 
to deviate from the desired trajectory. The tracking 
errors rapidly decrease to a small value approaching to 
0 in about 5 seconds and the errors in the whole 
tracking process are very small. In addition, root mean 
square errors under three different conditions without 
measurement noises are 0.0019m, 0.0021m, and 
0.0018m, respectively. Root mean square errors under 
three different conditions with measurement noises are 
0.0550m, 0.0657m, and 0.0588m, respectively. By 
comparing these values, it is found that tracking errors 
when there are measurement noises are more 
fluctuating than those with no measurement noises. 
This is because sensor noises can interfere with 
position measurement. All in all, tracking errors 
rapidly decrease to a small value approaching to 0 in 
about 5 seconds, errors and fluctuations in the whole 
tracking process are very small. These results 
demonstrate that the trajectory tracking algorithm is 
effective and robust.

Table 1 
Parameters related to the ROV 

Parameters Value Unit Parameters Value Unit 

� 4187.5 �� �� 4451 ��/� 

�� 2038 ���� �� 5013 ����/(� · ���) 

��  3587 ���� �� 4527 ����/(� · ���) 

�� 3587 ���� �� 5684 ����/(� · ���) 

��̇ -3179 �� �|�|� 1924 ��/� 

��̇ -4546 �� �|�|� 2381 ��/� 

��̇ -7282 �� �|�|� 517 ��/� 

��̇ -4516 ���� �|�|� 1513 ����/���� 

��̇ -6035 ���� �|�|� 2178 ����/���� 

��̇ -3614 ���� �|�|� 2033 ����/���� 

�� 1347 ��/� � 9.8 �/�� 

�� 2401 ��/� �� 0 � 

��  0 �� �� -0.39 � 

� �/4 ��� � �/12 ��� 
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�� 1.155 � �� 0.555 � 

�� 0.6 � �� 1 � 

�� 0.555 � �� 0.6 � 

Desired propulsions required for 7 propellers are 
plotted in Fig.8. It can be seen from Fig.8 that expected 
propulsions of these propellers calculated according to 
the obtained optimal control input are smooth, which 
is conducive to the control of propellers. 

 

Fig.4. ROV trajectories for the 3D sine curve under 
different disturbances without measurement noises 

 
Fig.5. ROV trajectories for the 3D sine curve under 

different disturbances with measurement noises 

 

Fig.6. Position tracking errors for tracking the 3D sine 
curve under different disturbances without 

measurement noises 
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Fig.7. Position tracking errors for tracking the 3D sine 
curve under different disturbances with measurement 

noises 

 
Fig.8. Propulsions of propellers for tracking the 3D 

sine curve under different disturbances 

4.2. Tracking of a three-dimensional spiral curve 

The second curve tracked by the ROV is a three-
dimensional spiral curve. The expression of the spiral 
curve is as follows: 

�

�� = 10��� (0.03�)
�� = 10��� (0.03�)

�� = −0.05�
      0 ≤ � < 200 (80)

The initial ROV position and attitude in the three-
dimensional spiral curve tracking simulation is ���� =

[0,5,0,0,0,0]�, the unit of the first three values in this 
vector is m, and the unit of the last three values is rad.  

Results are shown in Fig.9 and Fig.10. Errors of 
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tracking the three-dimensional spiral curve after the 
ROV has moved for 5 minutes are shown in Fig.11 and 
Fig.12. Average errors and root mean square errors of 
tracking under three different conditions with or 
without measurement noises are listed in Table 2. 
Table 2 
Average errors and root mean square (RMS) errors 
under three different conditions with or without 
measurement noises 

Disturba-
nces 

Noises Average(m) RMS(m) 

without 
without 0.00030 0.00035 

with 0.1001 0.0731 

constant 
ocean 

current 

without 0.00032 0.00029 

with 0.1076 0.0730 

random 
ocean 

current 

without 0.00035 0.00034 

with 0.1143 0.0654 

From  Fig.11, Fig.12 and Table 2, similar 
observations can be made as tracking the three-
dimensional sine curve. In addition, errors and 
fluctuations in the whole tracking process are also very 
small. Tracking results show that the trajectory 
tracking algorithm can converge and stabilize quickly. 

Desired propulsions required for 7 propellers under 
measurement noises are plotted in Fig.13. At the 
beginning of simulations, desired propulsions change 
quickly since the initial position of ROV is not the 
same as the starting point of the desired trajectory. 
However, the expected propulsions remain basically 
unchanged after stabilization, while desired 
propulsions when tracking the spiral curve change 
sinusoidally with time. In the meantime, there is no 
problem of chattering, which helps to avoid damage to 
propellers. 

 

Fig.9. ROV trajectories during tracking the 3D spiral 
curve under different disturbances without 

measurement noises 

 
Fig.10. ROV trajectories during tracking the 3D spiral 
curve under different disturbances with measurement 

noises 
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Fig.11. Position tracking errors for tracking the 3D 
spiral curve under different disturbances without 

measurement noises 

 
Fig.12. Position tracking errors for tracking the 3D 

spiral curve under different disturbances with 
measurement noises 

 

Fig.13. Propulsions of propellers for tracking the 3D 
spiral curve under different disturbances 

5. Conclusion 

In this paper, a method for trajectory tracking of a 
six-degree-of-freedom ROV is designed based on 
ESKF-based MPC. First, the kinematics model and the 
dynamics model of the ROV are established, where the 
assumption that the centre of gravity of the ROV 
coincides with the centre of buoyancy is made. The 
ocean current disturbance is introduced into the 
dynamics model in the form of velocities rather than 
forces, which helps avoid the issue of unmeasurable 
forces caused by the ocean current. Second, a discrete-
time varying nonlinear model is constructed based on 
the proposed ROV kinematics and dynamics, where 
the Euler method is used. Process disturbance caused 
by the ocean current disturbance is considered in the 
process of state prediction and measurement noises are 
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considered in the process of output prediction. Third, 
ESKF is constructed to estimate system states and the 
ocean current disturbance in the presence of 
measurement noises in order to improve the resistance 
of the tracking algorithm to the ocean current 
disturbance and measurement noises. Fourth, LTI 
constraints of the control input increment are taken into 
account. Fifth, the ESKF-based MPC controller in the 
presence of the ocean current disturbance and 
measurement noises is newly formulated and an 
objective function is established based on the tracking 
error and the control input increment to transform the 
trajectory tracking problem into an optimization 
problem under LTI constraints, which is beneficial for 
ensuring tracking accuracy and preventing damage to 
actuators. Finally, simulation results of tracking two 
different types of curves show the effectiveness and 
robustness of the controller in the presence of the ocean 
current disturbance and measurement noises. 

In the future research, model uncertainties and 
experiments in real seas will be considered. 
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