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A B S T R A C T   

Ensuring the safety of umbilical cables is a core challenge in deep-sea robotics. The umbilical cable usually 
amplifies the motion amplitude of the mother ship owing to its elastic material. Under the joint action of the 
mother ship motion and ocean current, the strong internal force waves generated in the umbilical cable tend to 
cause serious accidents such as umbilical cable breakage. Based on the Kirchhoff rod theory, a dynamic model of 
an umbilical cable under complex sea conditions is established. The differential quadrature method and New
mark method are used to discretize the equation in the space and time domains. The characteristics of the 
umbilical cable under different conditions are analyzed. The results show that the amplitude amplification rate of 
the umbilical cable is directly proportional to the velocity of the ocean current and amplitude of the mother ship 
motion, and inversely proportional to the period of the mother ship motion. When the length of the umbilical 
cable changes, the amplitude amplification rate reaches a maximum at 3000 m.   

1. Introduction 

In recent years, abundant marine resources have gradually attracted 
the attention of all countries, especially with the depletion of resources 
on land, which has stimulated and driven the rapid development of 
deep-sea remotely operated vehicles (ROVs) (Chen and Liu, 2018). ROV 
systems are usually composed of a supporting mother ship, an umbilical 
cable, a tether-management-system (TMS, also named cage), and the 
ROV, as shown in Fig. 1. The umbilical cable is responsible for energy 
transmission, information interaction, and receiving and releasing the 
ROV, which is the lifeline of the ROV system (Li et al., 2013). Under 
complex sea conditions, the mother ship generates a large 
six-degrees-of-freedom motion in three-dimensional space. The heave 
motion of the mother ship has the most significant effect on the cage 
(Driscoll, 1999). The gravity and buoyancy of the ROV are almost equal 
in water, and its impact on the cage is negligible. The umbilical cable 
amplifies the motion amplitude of the mother ship owing to its elastic 
material, and a high cage motion amplitude may cause serious 

accidents, such as equipment damage and umbilical cable breakage. 
Therefore, theoretical research on umbilical cables is urgently required 
(Zhu et al., 2008). 

Extensive research on the nonlinear mechanical model of ROV um
bilical cables has been performed based on the mass-spring model, finite 
difference method and finite element method. Driscoll et al. (1999, 
2000a, 2000b, 2000c) established a one-dimensional mass-spring model 
for umbilical cables, and the equation of motion was determined by 
assembling a finite element discrete force balance equation. Buckham 
et al. (2001, 2003) established a mass-spring model for an umbilical 
cable under low tension, and the internal bending force was deduced in 
terms of the local curvature. The mass-spring method is a low-order 
finite element method that has the advantages of modularity and can 
easily to embed cable modules with different properties. Park et al. 
(2003, 2005) used the finite difference method to model a towed sonar 
system, and considered the influence of the cable tangential and normal 
resistance coefficients. The numerical calculation results were in good 
agreement with the experimental data. Koh and Rong (2004) used the 
finite difference method and conducted a three-dimensional dynamic 
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analysis of general cables used in engineering, considering the geometric 
nonlinear factors of stretching, bending, torsion and large deformation. 
The accuracy of the dynamic analysis was verified experimentally. Based 
on the finite element method, Cho et al. (2004) proposed a method for 
analyzing the dynamic response of an umbilical cable by considering the 
coupling between the mother ship and ocean current. Eidsvik and 
Schjolberg (2016, 2018) used the linear finite element theory based on 
the Euler–Bernoulli beam theory to construct a numerical model for an 
ROV umbilical cable, which is suitable for low-tension situations. Curic 
(2003) established an umbilical cable model with variable length based 
on the finite element method and evaluated its effectiveness using nu
merical simulations. Jordan and Bustamante (2007, 2008) ignored the 
gravity of the umbilical cable and analyzed the stability of the ROV 
system under the action of heaving motion and nonlinear vibrations. 
Quan et al. (2014, 2015, 2016, 2020), calculated the stress state of the 
ROV umbilical cable endpoint under the joint action of the mother ship 
and ocean current using the finite element method and the geometrically 
accurate beam model. 

The elastic rod theory is a modeling method that is different from the 

mass-spring model, finite difference method and finite element method, 
and mainly includes the Cosserat theory (Liu and Xue, 2011; Kumar, 
2016; Gao et al., 2017) and Kirchhoff rod theory (Kratchman et al., 
2017; Luo et al., 2014; Bretl and Mccarthy, 2014). Compared with the 
Kirchhoff rod theory, the Cosserat theory considers the strain of the 
elastic rod, where the model is more accurate, but more complex and 
difficult to solve. Owing to its simple mathematical model, the Kirchhoff 
rod theory is widely used. Liu et al. (2018) established a curved surface 
constraint theoretical model for a soft cable based on the Kirchhoff rod 
theory. Liu et al. (2014) and Wang et al. (2012) used the Kirchhoff rod 
theory to develop a simulation for a cable in a virtual assembly process 
and obtained good simulation results. Based on the Kirchhoff rod theory, 
Goyal et al. (2005, 2008) studied the process of twisted submarine ca
bles, and applied the model to DNA research. Currently, the application 
of the Kirchhoff rod theory in cable modeling mainly focuses on the 
simulation of the static form of the cable in the virtual assembly process. 
However, only a few applications in ROV umbilical cable analysis have 
considered the external environmental force and axial tensile 
deformation. 

Nomenclature 

L Umbilical cable length 
N Number of discrete units 
d Umbilical cable diameter 
ρ Umbilical cable density 
ρw Sea water density 
S Umbilical cable cross-sectional area 
J Umbilical cable inertia tensor 
K Umbilical cable stiffness coefficient 
r Umbilical cable section position vector 
s Umbilical cable centerline arc coordinates 
F Force on the umbilical cable section 
M Moment of the umbilical cable section 
E Young’s modulus 
G Shear modulus 
e3 T-axis unit vector 

φ Umbilical cable section angle 
v Umbilical cable section velocity 
vw Ocean current velocity 
C1 Tangential water resistance coefficient 
C2 Normal water resistance coefficient 
C3 Subnormal water resistance coefficient 
Ca Additional mass force coefficient 
Gw Umbilical cable gravity in water 
mc Cage mass in water 
ω Change rate of the section angular displacement relative to 

the arc coordinate 
Ω Section angular velocity 
f Distribution force 
f w Force of the ocean current on the umbilical cable 
f a Umbilical cable additional mass force 
f g Umbilical cable gravity  

Fig. 1. Schematic diagram of a deep-sea ROV umbilical cable system.  
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Based on the Kirchhoff rod theory, a nonlinear dynamic model is 
established, considering the axial tensile deformation, the force of the 
ocean current on the umbilical cable and the complex sea conditions. 
The remainder of this paper is organized as follows. Dynamic models of 
the umbilical cable are described in section 2. The static form of the 
umbilical cables with different lengths under different sea conditions 
and the dynamic characteristics under the joint action of the mother ship 
motion and ocean current are calculated in section 3. The conclusions 
are presented in section 4. 

2. Dynamic analysis of an umbilical cable 

2.1. Main model 

A dynamic model of an umbilical cable can be built from the 
Kirchhoff rod theory in the world coordinate system O − ξηζ, Frenet 
coordinate system P − NBT, and spindle coordinate system P − xyz, as 
shown in Fig. 1 (Jordan and Bustamante, 2007). The origin O of the 
world coordinate system O − ξηζ is connected to the initial point of the 
umbilical cable centerline. The Frenet coordinate system P− NBT fol
lows the movement of point P. The axes are defined as follows: tangent 
vector T(s) = dr/ds, main normal vector N(s) = dT/(|dT /ds|ds), and 
vice normal vector B(s) = T(s)× N(s). The spindle coordinate system 
P − xyz is fixed to the cable section. The z-axis coincides with the T-axis, 
while the angle between the N and x axes is denoted by α. 

As shown in Fig. 2, the micro-arc is analyzed in the world coordinate 
system O − ξηζ. The internal forces and torques in the negative section of 
point P are F and M, respectively. And the internal forces and torques in 
the section of point P0 are F + ΔF and M + ΔM, respectively. The 
distributed forces, including the distributed forces of current and grav
ity, are f. At point P, we obtain 

v=
∂r
∂t

(1)  

Ω=
∂φ
∂t

(2)  

where φ is the section rotation angle from time t to time t+ Δt. 
From the momentum theorem and the moment of momentum the

orem, we obtain 

∂F
∂s

+ f = ρS
(

∂v
∂t

)

(3)  

∂M
∂s

+ e3 × F =
∂(JΩ)

∂t
(4)  

where e3 is the z-axis basis vector in the spindle coordinate system P −

xyz. The inertia tensor J = diag(Jx,Jy,Jz), and 

Jx = ρ πd4

32
​ ​ ​ Jy = ρ πd4

32
​ ​ ​ Jz = ρ πd4

64
(5) 

Let ω be the curvature-twisting of the section, which is the rate of 
change of the section angle φ relative to the arc coordinate s (Liu, 2006). 

ω=
∂φ
∂s

(6) 

ω and Ω satisfy 

∂ω
∂t

=
∂Ω
∂s

(7) 

Taking the partial derivative of Eq. (1) with respect to s yields 

∂v
∂s

=
∂e3

∂t
(8) 

In the spindle coordinate system P − xyz, Eqs. (3), (4), (7) and (8) can 
be written as (Liu, 2006): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ω
∂t

=
∂Ω
∂s

+ ω × Ω

∂v
∂s

+ ω × v = Ω × e3

∂F
∂s

+ ω × F + f = ρS
(

∂v
∂t

+ Ω × v
)

∂M
∂s

+ ω × M + e3 × F =
∂(JΩ)

∂t
+ Ω × (JΩ)

(9) 

Eq. (9) can be written in a scalar form as follows: 

u1 =
∂Ωx

∂s
+ ωyΩz − ωzΩy −

∂ωx

∂t
= 0 (10)  

u2 =
∂Ωy

∂s
+ ωzΩx − ωxΩz −

∂ωy

∂t
= 0 (11)  

u3 =
∂Ωz

∂s
+ ωxΩy − ωyΩx −

∂ωz

∂t
= 0 (12)  

u4 =
∂vx

∂s
+ ωyvz − ωzvy − Ωy = 0 (13)  

u5 =
∂vy

∂s
+ ωzvx − ωxvz + Ωx = 0 (14)  

u6 =
∂vz

∂s
+ ωxvy − ωyvx = 0 (15)  

u7 =
∂Fx

∂s
+ ωyFz − ωzFy − ρS

(
∂vx

∂t
+Ωyvz − Ωzvy

)

+ fx = 0 (16)  

u8 =
∂Fy

∂s
+ ωzFx − ωxFz − ρS

(
∂vy

∂t
+Ωzvx − Ωxvz

)

+ fy = 0 (17)  

u9 =
∂Fz

∂s
+ ωxFy − ωyFx − ρS

(
∂vz

∂t
+Ωxvy − Ωyvx

)

+ fz = 0 (18)  

u10 = kx
∂ωx

∂s
+
(
kz − ky

)
ωyωz − Fy − Jx

∂Ωx

∂t
+
(
Jy − Jz

)
ΩyΩz = 0 (19)  

Fig. 2. Arc-microelement force diagram. The position of any point P on the 
centerline is determined by the vector r. The position of P and P0 relative to 
point O are r and r+ Δr, respectively. The arc-coordinates relative to point O 
are s and s+ Δs, respectively. 

P. Chen et al.                                                                                                                                                                                                                                    



Ocean Engineering 239 (2021) 109854

4

u11 = ky
∂ωy

∂s
+ (kx − kz)ωxωz + Fx − Jy

∂Ωy

∂t
+ (Jz − Jx)ΩxΩz = 0 (20)  

u12 = kz
∂ωz

∂s
+
(
ky − kx

)
ωxωy − Jz

∂Ωz

∂t
+
(
Jx − Jy

)
ΩxΩy = 0 (21) 

The Euler angle is usually employed to describe the robot posture, 
which appears singular. The Euler parameters (q1,q2,q3,q4) can also be 
used to describe the posture of the section, which eliminates singular 
solutions. Therefore, the Euler parameters are adopted to describe the 
section posture of the umbilical cable. The relationship between the 
Euler parameters, ω and Ω is defined as follows (Liu, 2006): 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ωx = 2
(

− q2
dq1

ds
+ q1

dq2

ds
+ q4

dq3

ds
− q3

dq4

ds

)

ωy = 2
(

− q3
dq1

ds
− q4

dq2

ds
+ q1

dq3

ds
+ q2

dq4

ds

)

ωz = 2
(

− q4
dq1

ds
+ q3

dq2

ds
− q2

dq3

ds
+ q1

dq4

ds

)

(22)  

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ωx = 2
(

− q2
dq1

dt
+ q1

dq2

dt
+ q4

dq3

dt
− q3

dq4

dt

)

Ωy = 2
(

− q3
dq1

dt
− q4

dq2

dt
+ q1

dq3

dt
+ q2

dq4

dt

)

Ωz = 2
(

− q4
dq1

dt
+ q3

dq2

dt
− q2

dq3

dt
+ q1

dq4

dt

)

(23) 

The partial differential equations for (vx,vy,vz,q1,q2,q3,q4,Fx,Fy,Fz) 
can be obtained by unifying all the physical quantities with the Euler 
parameters, where the Euler parameters satisfy 

u13 = q2
1 + q2

2 + q2
3 + q2

4 − 1 = 0 (24) 

Before solving the dynamic model for the umbilical cable, the 
boundary conditions musted be defined. The initial point of the umbil
ical cable moves with the mother ship. Considering only the heaving 
motion of the mother ship and ignoring horizontal motion, the heaving 
motion of the mother ship at sea level can be expressed using a sine 
function: 

Z =B sin
(

2π
T

t
)

(25)  

where B is the amplitude and T is the period. The position of the um
bilical cable at the initial point is 

u14 =

⎡

⎣
ξ1 − 0
η1 − 0
ζ1 − Z

⎤

⎦ = 0 (26) 

The form of the section is limited by the Euler parameters. Supposing 
that the sections at the initial and end positions in the spindle coordinate 
system P − xyz are set parallel to those in the world coordinate system 
O − ξηζ, the Euler parameters at the initial and end position sections 
satisfy: 

u15 =

⎡

⎢
⎢
⎣

q1,1 − 1
q2,1 − 0
q3,1 − 0
q4,1 − 0

⎤

⎥
⎥
⎦ = 0 (27)  

u16 =

⎡

⎢
⎢
⎣

q1,N+1 − 1
q2,N+1 − 0
q3,N+1 − 0
q4,N+1 − 0

⎤

⎥
⎥
⎦ = 0 (28) 

The force on the end section of umbilical cable is 

u17 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fx,N+1 − mc
∂vx,N+1

∂s

Fy,N+1 − mc
∂vy,N+1

∂s

Fz,N+1 − mcg − mc
∂vy,N+1

∂s

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0 (29) 

Eqs. 26–29 constitute the boundary conditions of the umbilical cable 
dynamics. 

Written in matrix form, 

u= [ u1 u2 ... u17 ]
T
= 0 (30) 

The closed partial differential in Eq. (30) represents the umbilical 
cable dynamics model. 

2.2. Distribution force 

The rotation matrix of the spindle coordinate system P − xyz with 
respect to the world coordinate system O − ξηζ is expressed in terms of 
the Euler parameters as follows: 

R=

⎡

⎢
⎢
⎣

q2
1 + q2

2 − q2
3 − q2

4 2(q2q3 − q1q4) 2(q2q4 + q1q3)

2(q2q3 + q1q4) q2
1 − q2

2 + q2
3 − q2

4 2(q3q4 − q1q2)

2(q2q4 − q1q3) 2(q3q4 + q1q2) q2
1 − q2

2 − q2
3 + q2

4

⎤

⎥
⎥
⎦ (31) 

The velocity vw of the current is approximately linearly proportional 
to the sea depth. There is almost no sea current below 2000 m. There
fore, it is assumed that the velocity is only a function of depth: 

vw = vw0

(
1 −

z
H

)
, 0 < z < H (32)  

where vw0 is the current velocity at sea level and H = 2000 m. In the 
world coordinate system O − ξηζ, 

vw = vwξe1 + vwηe2 (33) 

In the spindle coordinate system P − xyz, the current velocity is 

v̂w =RT

⎡

⎣
vwξ
vwη
0

⎤

⎦ =

⎡

⎢
⎢
⎣

v̂wξ
v̂wη
v̂wζ

⎤

⎥
⎥
⎦ (34) 

In the spindle coordinate system P − xyz, the relative speed of the 
ocean current and the umbilical cable is 

v̂r =RT v̂ − v̂w =

⎡

⎢
⎢
⎣

v̂rξ
v̂rη
v̂rζ

⎤

⎥
⎥
⎦ (35) 

And the force of the ocean current on the cable is 

f w =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
1
2

ρwC1πdv̂rξ

⃒
⃒
⃒
⃒v̂rξ

⃒
⃒
⃒
⃒

−
1
2

ρwC2dv̂rη

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

v2
rη + v2

rζ

√

−
1
2

ρwC3dv̂rζ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

v2
rη + v2

rζ

√

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(36) 

In addition, in a marine environment, the influence of the additional 
mass force on the umbilical cable model must be considered. The 
additional mass force of the cable in the spindle coordinate system P −

xyz is: 

f a = ρwCaS
∂v
∂t

(37)  

where ρw is the density of sea water. 
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The umbilical cable is subject to gravity and a force distribution from 
the ocean current in the world coordinate system O − ξηζ. Let the dis
tribution of the gravitational force be f g. The projection of the force 
distribution in the spindle coordinate system P − xyz is: 

f =

⎡

⎣
fx
fy
fz

⎤

⎦ = RT

⎡

⎣
0
0
fg

⎤

⎦+ f w + f a (38)  

2.3. Discretization of the equations 

The differential quadrature method (DQM) algorithm is used to 
discretize Eq. (30) with the zero point of a Chebyshev polynomial as the 
node, as shown in Eqs. (39) and (40). 

si =
1 − cos[(i − 1)π/N]

2
L (39)  

drx
dsr

⃒
⃒
⃒
⃒

s=sj

=
∑N+1

i=1
Ar

jkxi (40) 

Using the Lagrange interpolation basis function, the formula for 
calculating the weight coefficient matrix A is 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(1)
ij =

∏N+1

k=1

k∕=i,j

(si − sk)

/
∏N+1

k=1

k∕=j

(
sj − sk

)
​ ​ ​ ​ (i, j = 1, 2, ...,N + 1; i ∕= j)

A(1)
ii =

∑N+1

k=1

k∕=i

1
si − sk

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (i = j)

(41)  

where x represents an unknown quantity x =

[q1, q2, q3, q4, vx, vy, vz, Fx, Fy, Fz]
T. 

Owing to the tensile deformation of the umbilical cable centerline, 
the model must be modified when performing spatial dispersion. The arc 
coordinate in the stressed state is represented by s′ , and the arc coor
dinate in the relaxed state is represented by s. The relationship between 
the two is given by 

ds′

=

(

1+
Fz

ES

)

ds (42) 

The implicit time-domain algorithm is used to solve Eq. (31) in the 
time domain, as shown in Eqs. (43) and (44) (Quan et al., 2014). 

Fig. 3. Flow chart showing the optimization algorithm.  

P. Chen et al.                                                                                                                                                                                                                                    



Ocean Engineering 239 (2021) 109854

6

v(n+1) = λ1
(
u(n+1) − u(n))+ λ2v(n) + λ3a(n) (43)  

a(n+1) = λ4
(
u(n+1) − u(n)) − λ5v(n) − λ6a(n) (44)  

⎧
⎪⎪⎨

⎪⎪⎩

λ1 =
α

βΔt
, λ2 = 1 −

α
β
, λ3 = 1 −

α
2β

Δt

λ4 =
1

βΔt2, λ5 =
1

βΔt
, λ6 =

1 − 2β
2β

(45)  

2.4. Numerical solution 

In Eq. (30), the partial differentials at each moment in time are 
combined to form a completely closed algebraic system of equations 
f(x) = [f1(x), ..., fm(x)]T = 0, where m is the number of equations. The 
problem can be transformed into a nonlinear least-squares problem, 
where the objective function is 

⎧
⎪⎨

⎪⎩

minF(x)

F(x) =
1
2
∑N+1

i=1
f 2
i (x)

(46) 

The optimization algorithm shown in Fig. 3 is used to solve the 
model. (α, ​ β, ​ μ, ​ q, ​ ε1, ​ ε2) are preset parameters, k is the number of 
iterations, and x0 is the initial value in each iteration. J(xk) is the f(x)
Jacobi matrix at xk, gk is the gradient, and GK is the modulus of gk. 

gk = J(xk)
T f (xk) (47)  

GK = |gk| (48)  

where dk is the search direction, which is divided into the Gauss–Newton 

(GN) and Levenberg–Marquardt (LM) directions. When the Hesse matrix 
is singular, a LM direction search is performed, and when the Hesse 
matrix is not singular, a GN direction search is performed. Sometimes, 
the determinant of the Hesse matrix is extremely large in the calculation 
process. Owing to the limited computing power of computers, the 
inversion fails. Therefore, when the Hesse matrix determinant is very 
large, the search is also performed in the GN direction. 

d
(

xk

)
= − xk

)(
xk
)
(xk)

TJ
(
xk
))− 1g

(
xk

) (
GN

)
(49)  

d
(

xk

)
= − xk

)(
xk
)
(xk)

TJ
(
xk
)
+ μI

)− 1g
(

xk

) (
LM

)
(50) 

The Flag is an identifier, where Flag = 0 indicates a search along the 
GN direction andFlag = 1 indicates a search along the LM direction. 

The optimal iteration step size is determined using the Armijo 
criteria. 

F(xk + βad(xk))<F(xk) + αβag(xk)d(xk) (51) 

r is the ratio of the actual decline to the theoretical decline, and r1 

and r2 are the thresholds of the trust-region radius. xk+1 and μ are 
adjusted based on the search direction and trust region. 
{

xk+1 = xk ​ ​ ​ ​ if ​ ​ r < r1&Flag = 1
xk+1 = xk + βmd(xk) ​ ​ ​ ​ ​ if ​ ​ r ≥ r1

(52)  

μ=

⎧
⎨

⎩

μq ​ ​ ​ ​ ​ ​ if ​ r < r1
μ ​ ​ ​ ​ ​ ​ ​ ​ if ​ r1 ≤ r ≤ r2
μ/q ​ ​ ​ if ​ r > r2

(53)  

Table 1 
ROPOS umbilical cable parameters.  

symbol name value symbol name value 

d (mm) Diameter 30 C1  Tangential water resistance coefficient 0.02 

Gw (N/m) Cable gravity in water 25.9 C2  Normal water resistance coefficient 2.0 

mc(kg) Cage mass in water 4320 C3  Subnormal water resistance coefficient 2.0 
E (GPa) Young’s modulus 64.4 Ca  Additional mass force coefficient 1.5 
G (GPa) Shear modulus 26.9 Fs(kN) Safe working load 200  

Fig. 4. Comparison between measured data and calculated values for the Cage. (c) means calculated values and (r) means real values.  
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3. Calculation results 

In this section, we verify the accuracy of the umbilical cable dynamic 
model using existing test data and then calculate the static and dynamic 
characteristics of the umbilical cable under different sea conditions. 

3.1. Model validation 

Data showing the motion of the mother ship and cage collected by 
the ROPOS Canadian deep-sea ROV system were used to verify the 
model (Driscoll et al., 1999). The relevant parameters of the umbilical 
cable are listed in Table 1. A comparison between the theoretical and 
actual values of the cage is shown in Fig. 4, for the case where the motion 
of the mother ship is considered and the effect of the ocean current is 
ignored. In Fig. 4(a), we calculate the movement of the cage based on the 
measured movement of the ROPOS’s mother ship and compare it with 
the measured movement of the cage. As shown in Fig. 4(b), the theo
retical calculation value of the cage motion coincides with the actual 
value, and the difference Ze between the theoretical and the actual 
values was calculated. The mean difference Ze is 0.0040. 

3.2. Static analysis of the mother ship’s heaving motion with constant 
current 

When the motion of the mother ship is ignored, the umbilical cable 
reaches static equilibrium under the action of the sea current, and total 
time derivatives in Eq. (30) are set to 0, that is, Eq. (30) is reduced to a 
steady state. Then, the variables in Eq. (30) become 

ũ1 = ũ2 = ũ3 = ũ4 = ũ5 = ũ6 ≡ 0 (54)  

ũ7 =
∂Fx

∂s
+ ωyFz − ωzFy + fx = 0 (55)  

ũ8 =
∂Fy

∂s
+ ωzFx − ωxFz + fy = 0 (56)  

ũ9 =
∂Fz

∂s
+ ωxFy − ωyFx + fz = 0 (57)  

ũ10 = kx
∂ωx

∂s
+
(
kz − ky

)
ωyωz − Fy = 0 (58)  

ũ11 = ky
∂ωy

∂s
+ (kx − kz)ωxωz + Fx = 0 (59)  

ũ12 = kz
∂ωz

∂s
+
(
ky − kx

)
ωxωy = 0 (60) 

Eqs. 54–60 constitute the static equations of the umbilical cable, 
which can be written in the matrix form as follows: 

ũ=
[

ũ7 ũ8 ⋯ ũ12

]T
= 0 (61) 

Before solving the static model for the umbilical cable, the boundary 
conditions must be defined. In the static model for an umbilical cable, 
the postures of the sections at the initial and final positions are the same 
as those in Eqs. (28) and (29), respectively. However, Eqs. (26) and (29) 
must be modified as follows: 

ũ13 =

⎡

⎢
⎢
⎣

ξ̃1 − 0
η̃1 − 0
ζ̃1 − 0

⎤

⎥
⎥
⎦ = 0 (62)  

ũ14 =

⎡

⎢
⎢
⎢
⎣

F̃x,N+1 − 0
F̃y,N+1 − 0
F̃z,N+1 − mcg

⎤

⎥
⎥
⎥
⎦
= 0 (63) 

Eqs. (27), (28), (62) and (63) define the boundary conditions of the 
static umbilical cable. 

The ocean current in the η = ξ direction and there is no current below 
2000 m. We calculate the static form of the umbilical cables under 
different lengths and sea conditions. When the umbilical cable is not 

Fig. 5. Umbilical cable shape at different ocean current velocities.  

Table 2 
Offsets of the endpoints under different ocean current velocities.  

velocity 0.1 m/s 0.2 m/s 0.3 m/s 0.4 m/s 0.5 m/s 

offset 1.326 m 6.221 m 13.367 m 20.915 m 24.394 m  
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affected by ocean currents, it remains upright. Under the action of ocean 
currents, the umbilical cable bends and deforms. We define the distance 
of the endpoint of the umbilical cable relative to the ζ axis as the offset. 

The shape of the 2000 m long umbilical cable in ocean currents with 
different velocities is shown in Fig. 5. The umbilical cable has a larger 
deviation relative to the ζ-axis as the ocean current gradually increases. 
When the ocean current velocities are 0.1, 0.2, 0.3, 0.4 and 0.5 m/s, the 
offsets of the umbilical cable end relative to the ζ-axis are 1.326, 6.221, 
13.367, 20.915 and 24.394 m, respectively, as shown in Table 2. At the 

same time, the equilibrium position of the endpoint of the umbilical 
cable gradually rises under the action of the ocean current, as shown in 
Fig. 5(c). However, the furthest point from the umbilical cable to the 
ζ-axis is not the endpoint, but a point near the center of the cable. There 
are two reasons for this phenomenon: 1) the two ends of the umbilical 
cable are constrained, as shown in Eqs. (62) and (63); 2) when the ocean 
current velocity decreases with depth, the force gradually decreases. 

The shapes of the umbilical cables with different lengths when the 
ocean current velocity is 1.0 m/s are shown in Fig. 6. When the lengths 
of the umbilical cable are 1000, 2000, 3000, 4000, and 5000 m, the 
offsets of the endpoint to the z-axis are 14.412, 24.393, 17.828, 17.749 
and 10.989 m, respectively, as shown in Table 3. The offset of the um
bilical cable end first increases and then decreases because there is no 
current below 2000 m, and the umbilical cable only experiences gravity. 

It is assumed that the direction of the ocean current is different in the 
range of 0–1000 m and 1000–2000 m. The velocity of the ocean current 
at sea level is 0.5 m/s, and the length of the umbilical cable is 2000 m. 
S1 ~ S4 represent four cases where the directions of the current are 
different, and the direction of the current in each case is shown in 
Table 4. The shape of the umbilical cable for each case is shown in Fig. 7. 
When the direction of the ocean current is different at different depths, 
the static form of the umbilical cable is different, and the position of the 
endpoint is also different. The umbilical cable is bent in a three- 
dimensional space. 

The dynamic form of the umbilical cable under the joint action of the 
mother ship’s motion and ocean current oscillates near the static 

Fig. 6. Shapes of the umbilical cables of different lengths.  

Table 3 
Endpoint offsets for umbilical cables with different lengths.  

length 1000 m 2000 m 3000 m 4000 m 5000 m 

offset 14.412 m 24.394 m 17.828 m 17.749 m 10.989 m  

Table 4 
Direction of the ocean current.   

S1 S2 S3 S4 

0–250m − η  − η  − ξ  − ξ  

250–500m + ξ  − ξ  + η  − η  

ξ and η represent the axes. 

Fig. 7. Shapes of umbilical cables with different current direction.  
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location. The static shape can be used as a theoretical reference for the 
dynamic shape. At the same time, the form parameters can be used as the 
initial state of the algorithm in the dynamic analysis. 

3.3. Dynamic analysis under joint action 

Determining the dynamic characteristics of the umbilical cable under 
the joint action of the mother ship and ocean current is of great signif
icance to the stability of the ROV system. This section describes the 
calculation of the dynamic characteristics of an umbilical cable under 

Fig. 8. Comparison of the motion and forces at the initial point with different ocean current velocities. In (a)–(e), the red dotted line represents the movement of the 
mother ship, and the solid blue line represents the movement of the end of the umbilical cable and the force at the head. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 
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different conditions. 

3.3.1. Different ocean current velocities 
Suppose the equation of motion for the mother ship is 

Z =B sin
(

2π
T

t
)

(64)  

where B = 1 m and T = 5 s. 
When L = 3000 m, we calculate the dynamic motion of the umbilical 

cables with different ocean current velocities. The static results are 
considered as the initial state of the umbilical cable, and we assume that 
each node has the same initial velocity v0 but no initial acceleration. 

Fig. 9. Comparison of motion and force at initial point with different periods of mother ship motion. In (a)–(e), the red dotted line represents the movement of the 
mother ship, and the solid blue line represents the movement of the end of the umbilical cable and the force at the head. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 
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v0 =B
2π
T

(65) 

As shown in Fig. 8(a)–(e), the phase difference gradually increases 
with an increase in the current velocity. When the ocean current ve
locities are 0.25 m/s, 0.5 m/s, 0.75 m/s, 1.00 m/s and 1.25 m/s, the 
corresponding amplitude amplification ratios are 1.530, 1.532, 1.538, 

1.540 and 1.541, respectively, indicating that the amplitude amplifica
tion ratio gradually increases with an increase in the current velocity, as 
shown in Fig. 8(f). However, the force change at the head end of the 
umbilical cable is small. Compared to the umbilical cable gravity and 
cage gravity, the force generated by the ocean current is small, so the 
impact on the stress state of the umbilical cable is small. The umbilical 

Fig. 10. Comparison of motion and force at initial point with different amplitudes of mother ship motion. In (a)–(e), the red dotted line represents the movement of 
the mother ship, and the solid blue line represents the movement of the end of the umbilical cable and the force at the head. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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cable has a stress of 80–160 kN at the head within a safe working load 
range. 

3.3.2. Different periods of the mother ship motion 
Suppose the motion amplitude of the mother ship is B = 1 ​ m, and 

the ocean current velocity is v0 = 0.5 ​ m/s. We calculate the effect of 

different periods of the mother ship on the umbilical cable. 
As shown in Fig. 9(a)–(e), with an increase in the motion period, the 

phase difference gradually decreases. When the mother ship motion 
periods are 2.5, 5.0, 7.5, 10.0, and 12.5 s, the corresponding amplitude 
amplification ratios are 1.56, 1.53, 1.51, 1.49, and 1.48, respectively. It 
can be observed that the amplitude amplification ratio tends to decrease 

Fig. 11. Comparison of motion and force at initial point when the mother ship is in sinusoidal motion with different cable lengths. In (a)–(e), the red dotted line 
represents the movement of the mother ship, and the solid blue line represents the movement of the end of the umbilical cable and the force at the head. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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with an increase in the motion period, as shown in Fig. 9(f). The stress on 
the umbilical cable decreases with an increase in the movement period 
of the mother ship. When T ≥ 5s, the force on the head of the umbilical 
cable is always within the safe working load range. However, when T =

2.5s, the force on the head of the umbilical cable is greater than 200 kN, 
which exceeds the safe working load. Therefore, when the sea conditions 
are serious and the motion period of the mother ship is small, the um
bilical cable is most likely to break. 

3.3.3. Different amplitudes of the mother ship motion 
Suppose the motion period of the mother ship is T = 5 ​ s, and the 

current velocity is v0 = 0.5m/s. We analyze the effects of different 
mother ship amplitudes on the umbilical cable. 

As shown in Fig. 10(a)–(e), the phase difference gradually increases 
with an increase in the mother ship motion amplitude. When the mother 
ship motion amplitudes are 0.5, 0.75, 1.0, 1.25 and 1.5 m, the corre
sponding amplitude amplification ratios are 1.50, 1.52, 1.53, 1.54, and 
1.55, respectively. The amplitude amplification ratio increases with an 
increase in the amplitude, as shown in Fig. 10(f). The stress on the 
umbilical cable increases with an increase of the amplitude. When the 
amplitude is 1.5 m, the maximum force on the head of the umbilical 
cable is 75–185 kN, which is within the safe working load range. 

3.3.4. Different umbilical cable lengths 
Suppose the ocean current velocity is v0 = 0.5m/s, the motion period 

of the mother ship is T = 5 ​ s, and the motion amplitude of the mother 
ship is B = 1 ​ m. We calculate the dynamic motion of the umbilical 
cables of different lengths. 

As shown in Fig. 11(a)–(e), when the length of the umbilical cable 
increases, the phase difference increases. When the lengths are 1000, 
2000, 3000, 4000 and 5000 m, the amplitude amplification ratios are 
1.18, 1.32, 1.53, 1.47 and 1.43, respectively. As the length increases, the 
stress on the umbilical cable also increases. When the length is 5000 m, 
the maximum force on the head of the umbilical cable is 140–200 kN, 
which is within but very close to the safe working load range. 

When the sinusoidal heave motion of the mother ship is transmitted 
to the cage through the cable, the heave motion of cage is also observed. 
Within a certain underwater depth range, the movement amplitude of 
the cage will be increased to the maximum, and the amplitude of the 
tension fluctuation of the cable will also be increased to the maximum. 
Determination of the depth range is essential for the safe operation of the 
deep-sea ROV systems. We call this depth range the resonance region of 
the deep-water umbilical cable system. As shown in Fig. 11(f), when the 
length is 3000 m, the amplitude amplification ratio is the largest, indi
cating a strong resonance phenomenon is generated at 3000 m. 

3.3.5. Actual motion action of the mother ship 
In this section, we use the motion data of the mother ship, which 

were measured by the "Da Yang Yi Hao" research ship. The measured 
data for the mother ship are shown in Fig. 12. The ocean current velocity 
is v0 = 0.5m/s. We calculate the dynamic motion of the umbilical cables 
of different lengths. 

As shown in Fig. 13(a)–(e), when the length of the umbilical cable 
increases, the phase difference increases gradually. When the lengths of 

the umbilical cable are 1000, 2000, 3000, 4000, and 5000 m, the cage 
amplitude amplification ratios are 1.17, 1.26, 1.45, 1.43 and 1.39, 
respectively, as shown in Fig. 13(f). This trend indicates that the um
bilical cable system exhibits a large resonance phenomenon at 3000 m. 
The heave amplitude of the cage is amplified underwater, but not infi
nitely. The cage amplitude amplification ratio varies from 1.1 to 1.5, in 
the range of 1000–5000 m. The stress fluctuation ranges at the initial 
point of the umbilical cable are 60–80, 80–110, 100–130, 130–160 and 
150–190 kN, respectively. When the length is 5000 m, the stress of the 
umbilical cable is close to the safe working load of 200 kN. If the length 
of the umbilical cable continues to increase or the sea conditions become 
more adverse, the umbilical cable may break. A heave compensation 
device should be added to ensure the safe operation of the umbilical 
cable. 

3.3.6. Discussion 
We analyze the effects of different sea conditions, the movements of 

different mother ships and the length on the dynamic characteristics of 
the umbilical cables, as shown in Table 5. The results show that the 
amplitude amplification ratio is proportional to the current velocity and 
amplitude of the mother ship, and inversely proportional to the period of 
the mother ship. The force on the head of the umbilical cable is inversely 
proportional to the period of the mother ship motion and proportional to 
the length of the umbilical cable, and is less affected by the current 
velocity and amplitude of the mother ship motion. The phase difference 
is proportional to the current velocity, amplitude of the mother ship 
motion and length of the umbilical cable, and inversely proportional to 
the period of the mother ship motion. 

Based on the analysis presented in sections 3.3.4 and 3.3.5, it can be 
observed that when the length of the umbilical cable changes from 1000 
to 3000 m, the amplitude amplification ratio of the cage gradually in
creases. When the length of the umbilical cable changes from 3000 to 
5000 m, the amplification ratio of the cage amplitude gradually de
creases, indicating that the umbilical cable system produces a strong 
resonance phenomenon in the 3000 m region. When it is far away from 
this resonance depth range, the heave amplitude of the cage is signifi
cantly reduced. We compare the effect of the different mother ship 
movements on the amplitude amplification ratios, as shown in Fig. 14. 
As the amplitude of the average motion of the mother ship increases, the 
amplitude amplification ratio also gradually increases. When the mother 
ship undergoes sinusoidal motion, the average motion amplitude and 
amplitude amplification ratio are the largest, which is the same 
conclusion as that in section 3.3.3. 

4. Conclusion 

During the underwater operation of the deep-sea ROV, the umbilical 
cable often breaks owing to the joint action of the mother ship’s motion 
and ocean current, resulting in the loss of the expensive underwater 
robot. Considering the shortcomings of existing modeling methods, a 
new modeling method based on the Kirchhoff rod theory was presented 
in this paper. After deriving a dynamic model, the DQM algorithm was 
used for spatial discretization, and the Newmark − β method was adop
ted for iterations in the time domain. The accuracy of the model was 
verified against the data collected by the Canadian ROPOS system. The 
static shape and the dynamic characteristics of the umbilical cables were 
calculated. 

The motion amplitude and period of the mother ship and ocean 
current velocity have little effect on the amplitude amplification rate of 
the cage, but the length of the umbilical cable has a significant effect. In 
particular, when the length of the umbilical cable is 3000 m, the 
amplitude amplification rate reaches a maximum. Therefore, the cage 
should avoid staying in the 3000 m area for too long, as it may result in 
cable damage. 

Fig. 12. Real heave motion data of ship “Da Yang Yi Hao”.  
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Table 5 
Relationship between the dynamic characteristics of the umbilical cable and 
various parameters.   

CV↑ PMM↑ AMM↑ LUC↑ 

amplitude amplification 
ratio 

↑ ↓ ↑ Take the maximum at 
3000m 

force on the umbilical 
cable 

— ↓ ↑ ↑ 

Phase difference ↑ ↓ ↑ ↑ 

CV: current velocity; PMM: period of the mother ship motion; AMM: amplitude 
of the mother ship motion; LUC: length of the umbilical cable; 

Fig. 14. Effects of different mother ship movements on amplitude amplifica
tion ratios. 
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