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Abstract: Remotely Operated Vehicles (ROVs) are a class of manually operated underwater 

vehicles that are designed for specific applications in maritime environments. For an underwater 

vehicle, vigilant precautions must be ensured in designing the navigation module because of the 

inconsistent nature of underwater channels. This paper aims to focus on the same, by developing 

an apt navigation system for the Remotely Operated Vehicle, ORCA which has been equipped 

with sensors such as temperature, pressure, and leak detector, for monitoring the ambient 

conditions during deployment and an Inertial Measurement Unit for tracking and positioning of 

an ROV. Mission Oriented Operating Suite-Interval Programming runs as the platform for 

navigation.  Emergency Float-Up Mechanism that allows the system to be easily retrieved during 

emergency failures has been built in. The authors have made a successful attempt at building a 

navigation module that achieves stability and accurate positioning of an ROV after certain post-

processing of data.  

1. Introduction

The future of research in maritime technology is promising in the decades to come. Everything from

rivers to oceans is being thoroughly inspected with the help of fast pacing underwater robot technology

instead of human probation. This is done to ensure the safety of the human workforce in such harsh and

mercurial environments. A Remotely Operated Vehicle (ROV) is an underwater robot that is customized

and designed to serve specific applications. It is maneuvered by the operator with a tether, to capture

real-time pictures and to stream video footage. Underwater ROVs are used in a variety of industries:

Search and Rescue, Military, Recreation and Discovery, Aquaculture, Marine Biology, Oil, Gas,

Offshore Energy, Shipping, Submerged Infrastructure, and more. The advancement in navigation and

sensing technologies opened a wide variety of solutions to be incorporated in the ROVs for efficient and

smart navigation in unpredictable environments. These localization and navigation methods range from

acoustic navigation, geophysical navigation, doppler-based navigation, a fusion of LBL (Long Baseline)

and, doppler-based navigation to advanced and efficient technologies like dead reckoning and inertial

navigation systems [1], [2], [3]. In [4], [5], position tracking systems for an ROV are discussed using a

laser-based vision system and IMU.

The control of an underwater vehicle is complex because there are highly nonlinear hydrodynamic 

effects resulting from the interaction with the environment that cannot be quantified. Hence the 

development of an efficient control system for stabilized movement is essential [7], [8], [9], [15]. There 
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are a variety of control systems that differ based on efficiency which can be developed for ROV [10], 

[11].  The Proportional Integral Derivative (PID) controllers are the standard controllers for industrial 

automation and are extremely popular due to their flexibility. The development of an efficient PID 

closed-loop system for control and positioning of the ROV is very crucial [6], [12], [13], [14]. The 

remote operation of the system is enabled by various communication strategies used in ROV telemetry. 

Sensors like altimeter, pressure sensor, inclinometer, magnetic and, gyrocompass are also used to help 

ROVs understand their environment [3], [2]. ROVs are commonly equipped with cameras for 

surveillance and video streaming. [16] discusses the design and implementation of Aquabot, an ROV 

developed with the focus of tackling real-time video streaming difficulties and other development 

strategies. 

This paper aims to focus on the development of an efficient navigation and control system that can 

be integrated into ORCA for smooth maneuvering and inspection. The data acquisition and position 

tracking were enabled with the use of an Inertial Measurement Unit (IMU) and sensors to monitor 

temperature, pressure, and water ingress into the electronic chamber. The paper is divided into two 

sections. The first section elaborates on the hardware design and various sensors equipped in ORCA 

The second section highlights the MOOS-IvP software, which is the prime navigation tool used in this 

development. MOOS-IvP is a robust software developed by MIT, Massachusetts, to provide autonomy 

to underwater robots. Although this software focuses only on autonomous robots, an exclusive MOOS 

Application (MOOS-App) has been developed by the authors to impart remote operation for an ROV. 

This development in Orca helps it stand out in terms of integration of various sensors with ease and 

efficacious control system algorithms for stability the incorporation of the Inertial measurement unit in 

ORCA for stabilized navigation has also been highlighted. Finally, the results based on the practical 

deployment of ORCA are discussed. 

2.  ORCA Design 

ORCA is a 500 x 350 x 210 mm vehicle weighing 8kgs which is equipped with sensors and a camera to 

serve the prime application of underwater inspection and survey. This six thruster ROV was fabricated 

using HDPE. It comprises two sealed acrylic enclosures on the body, to carry the electronics and the 

battery, respectively. The whole system is powered using the 14.8V, 18Ah Li-ion battery. The flexibility 

in mounting the T200 thrusters at two different angles has extended the adaptability of ORCA. In this 

section, the electronic system development by integrating the sensors is detailed. 

2.1.  Sensors in ORCA 

Sensors are vital for any underwater inspection and survey to happen effectively. Various sensors 

specific to the application are equipped in ORCA to carry out detailed underwater monitoring. These 

sensors also serve as a health monitor for ORCA to prevent its navigation beyond the operating range.  

2.1.1. Temperature and pressure sensor. This ROV was equipped with a DS18B20 temperature sensor 

with a usable temperature of -55 to 125°C to monitor the temperature underwater for any alarming 

temperature variations. The DF Robot Analog pressure sensor was used to provide real-time pressure 

data which helps in determining the depth of the ROV. It measures a range of 0-1.6MPa of pressure and 

serves as an external aiding sensor for position tracking of ORCA by providing depth. The data from 

these sensors are serially communicated to the microcontroller which is connected to the processor. 

They are powered by a 5V converter. These sensors were placed along the inner walls of the ROV frame 

and wired into the enclosure via a slotted acrylic flange as shown in figure 1. The data obtained during 

the operation of ORCA was remotely monitored by the user and logged.  
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Figure 1. Representation of temperature and 

pressure sensor mounted on ORCA. 

 

 

 

 

2.1.2. Camera. A Lowlight HD USB camera with a tilt system was mounted at the front end of the 

acrylic housing to provide continuous live video footage to the user and to help in smooth navigation 

underwater. It has an onboard H.264 compression chip where all the video compression is done onboard 

reducing the load on the microprocessor allowing it to support the addition of multiple cameras in the 

future for alternate views. It offers a Field of view of 80 degrees horizontally and 64 degrees vertically. 

The tilt system was PWM controlled by the controller for 180-degree movement. 

2.1.3. Safety sensors. A safety sensor used in the system is the Blue robotics SOS leak sensor wherein 

four reusable sponge-tipped probes interfaced with the sensor probe host board, are placed on the corners 

of the enclosure which helps in monitoring from the penetrators to front and rare flanges for any water 

leakage into the electronic enclosure. An attractive safety mechanism incorporated in this positively 

buoyant ROV is the emergency float-up mechanism which involves powering off and floating the 

vehicle to the surface with an alarm in case of any water leakage into the improperly sealed electronic 

enclosure. This ensures no damage to the electronics inside the enclosure and prevents any electrical 

catastrophe due to leakage. 

2.1.4. Inertial Measurement unit. The prime attraction of ORCA for realizing its efficient navigation is 

the presence of this industrial-grade HG1120 IMU which contains a MEMS gyroscope and 

accelerometer for providing compensated incremental angle and velocity data for navigation and angular 

rates, linear accelerations, and magnetic fields for control through a digital serial interface bus. The IMU 

measures angular rates(rad/sec), linear acceleration(m/sec2), and magnetic fields(milli-gauss) in a body-

mounted strap down configuration along the three axes which are fed to a sensor fusion algorithm to 

obtain the attitude and heading of ORCA with respect to the earth’s frame. The navigation data involving 

the incremental angles and velocities along the three axes are primarily used for positioning the ROV 

while the control data is used in the determination of the orientation in Euler angles (roll, pitch, and 

yaw) and control of the vehicle. Since stand-alone gyroscope has no frame of reference in contrast to 

accelerometer with earth’s acceleration due to gravity as the reference and magnetometer with the 

earth’s magnetic north as a frame of reference, all the three sensors are fused to obtain the complete 

orientation of the sensor with respect to a navigation frame. The control data frames are filtered and 

sampled at 1800Hz while the navigation data frames were sampled at 300Hz. The IMU was powered 

with a 5V converter. It was mounted vertically on the flat tray at the center of gravity of the vehicle such 

that the x-axis of the IMU as shown in figure 2, coincides with the direction of the vehicle’s heading. 

Further calibration of the IMU after placing it at the COG was done to reduce the bias and obtain precise 

values. 

Figure 2. IMU embedded in ORCA. 
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2.2 Electronic circuitry of ORCA 

The electronic circuitry of ORCA is responsible for signalling to and from the control side and data 

acquisition during the survey. This will be securely sealed inside the electronic enclosure. The master-

slave architecture is reflected in the working of Orca with the master being the user PC and the slave 

being the onboard processor. The T200 thrusters mounted in ORCA involve four thrusters vectored at 

45° helping in the horizontal motion along with two vertical thrusters to dive. This configuration thus 

allows us to actively control the system in 6 degrees of freedom. The sensors required for the inspection 

were added as payload and integrated with the circuitry. Cat 5 Ethernet cable, having a maximum 

transmission rate of around 1 Gb/s was used as the tether for transmission of control signals, the camera 

feed, and the sensor data from the ROV. 

 

Figure 3. Schematic Representation of the Electronic Circuitry in ORCA. 

Figure 3 presents the schematic representation of the embedded circuitry in ORCA. It primarily 

comprises a 64-bit 1.2GHz microprocessor (Raspberry Pi Model B+) interfaced with the inertial 

measurement unit connected to a 16-bit microcontroller (Arduino Uno R3). Connected to the Arduino 

are the Electronic speed controllers (ESCs) that are mounted on a flat tray fit inside the leak-proof 

enclosure. The microprocessor is pivotal in relaying control signals from the user end to the thrust 

controller board, Arduino. This Arduino further provides PWM signals via the Electronic Speed 

Controllers (ESCs) to the six T200 thrusters to achieve the desired movement as signalled by the joystick 

by controlling the speed and direction of the thrusters. The efficient thrust vectorization algorithm 

developed and embedded on the Arduino hence helps navigation of ORCA in 6 degrees of freedom 

namely surge, sway, heave, roll, pitch, and yaw. Various inspection sensors as shown are integrated with 

the Arduino aiding in the underwater survey. 
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3.  Navigation System of ORCA 

                                                                     

 

Figure 4. The architecture of ORCA navigation and control system using MOOS-IvP 

 

Mission Oriented Operating Suite-Interval Programming (MOOS-IvP), a set of C++ open-source 

modules has been incorporated in this ROV as the major tool for navigation. Although in a general 

scenario, MOOS-IvP is widely used only for providing autonomy to robots, the authors have modified 

and developed it to drive ROVs as well. Field tests to run the vehicle in both autonomous and remotely 

operated modes have been performed successfully due to the adaptability in design as well as the 

software making it unique in its style. The layout emphasizing the relation between the different 

elements of a MOOS Community on the user and the vehicle side is portrayed in figure 4. 

Two different MOOS-IvP communities with the “publish-subscribe” principle run on the user 

computer and ORCA as shown in figure 4. Various applications for running on each community are 

connected to the MOOSDataBase (MOOSDB) in its community forming a centralized control. The 

MOOSDB contains all the variables or data published by the respective applications which can be 

subscribed by other MOOS-Apps based on their requirement.  The remote operation of the ROV was 

achieved by a uniquely developed MOOS Application (MOOS-App), pJoystick which publishes the 

axes coordinates of the input provided by the user joystick to MOOS-DB (MOOS-Database) on the 

master side at every clock frequency. These coordinates are mapped to the desired thrust, rudder, and 

depth before being relayed to ORCA. This enables on-demand movement of the vehicle as per the user’s 

command. uSimMarine was used as the simulator tool wherein the underwater environment was created 

along with the vehicle’s parameters before the actual hardware testing.  

The IvP Helm (pHelmIvP) publishes high-level control decisions. The PID controller (pMarinePID) 

converts the high-level control decisions to low-level actuator decisions. Finally, the simulator 

(uSimMarine) reads the low-level actuator postings to produce a new vehicle position. Post achieving 

the navigation of the vehicle as per the user’s interest using uSimMarine, the hardware implementation 

was tested and validated. The pMarineViewer, MOOS Graphical User Interface(GUI) application is 

used as a geo display which helps the authors to feed the latitude-longitude of the place of inspection 

along with the map as a .tiff file. Local reference coordinates were defined on the map, to track the 

vehicle’s movement easily. The communication between both the MOOS communities to relay the 

user’s command to the vehicle is achieved using the pShare over a UDP link. This MOOS-App has been 

developed to publish and subscribe messages that include the thrust, rudder, and depth flows from 

MOOS-DB at the master to the one at the slave, where it must be requested for subscription by another 

MOOS-App pArdserial. It involves serially transferring the control details to the Arduino where the 

thrust vectorization is done to realize the vehicle’s movement.  

https://oceanai.mit.edu/ivpman/apps/pHelmIvP/index.html
https://oceanai.mit.edu/ivpman/apps/uSimMarine/index.html
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3.1.  IMU integration with MOOS-IvP 

The integration of the IMU was done by developing a MOOS-App, pIMU. The 9-axis IMU renders 

the vehicle’s current acceleration, angular rate, and magnetic field along x, y, and z axes respectively 

w.r.t to a reference post initial calibration. A MOOS-App was designed to log the above-mentioned 

data and serve the current position of ORCA to MOOS as feedback to form a closed-loop system 

during the run-time and hence enhancing the stability of the vehicle. The logged data in a  .CSV file 

was analyzed as shown in the results. At the time of writing this paper, the authors are currently 

involved in fusing the data obtained from the IMU with the AHRS algorithm to obtain the orientation 

of the vehicle in the navigation frame. 

3.2.  Closed-Loop Control System Algorithm in MOOS-IvP 

Highly nonlinear hydrodynamic effects resulting from the interaction with the environment occur, that 

cannot be quantified. Thus, an open-loop control system wherein the command is provided to the vehicle 

and corresponding PWM signals are supplied to the thrusters to achieve the motion seems to be 

ineffective. It was observed that the drift suffered by the vehicle could not be substantiated. Hence, a 

closed-loop PID control system as shown in figure 5 was implemented to minimize the positional errors 

and drift of the vehicle thus inducing stability in its movement. The basic PID controller implementation 

was carried on in MOOS-IvP. The application pMarinePID has three basic PID controllers operating to 

control heading speed and depth based on incoming desired heading, speed, and depth objectives. On 

tuning the respective Kp, Ki, and Kd variables using trial and error, the exact fit for achieving minimum 

error was obtained. Thus, the system can achieve the desired movement and navigate successfully. 

 

Figure 5. Block representation of 

closed-loop PID controller system used 

in ORCA. 

 

 

 

 

 

 

 

 

4.  ORCA Navigation Test Results 

A series of tests were conducted on ORCA for about more than ten days. However, 8 test deployments 

were made on January 11, 2020, at a pool (length - 25m, breadth - 15m, depth - 1.82m) in The Village 

Apartments (Lat- long: 12.742437, 80.198086) for ORCA where proper logging of data and thus further 

analysis based on that was carried out. pLogger MOOS-App was used for successful logging of the data 

involved in each process or MOOS application as shown in figure 6. 
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Figure 6. pLogger publishing logged data to other MOOS-Apps. 

4.1.  Assembly and Preliminary Bench Tests 

The ROV was successfully assembled and proved to be leakproof as shown in figures 7(a) and 7(b). All 

the electronics were placed in the enclosure and sealed tightly. Preliminary bench tests as in Fig.10 were 

performed to realize the movement of the vehicle as per the joystick command and satisfactory results 

were obtained. Simultaneously, respective temperature and pressure sensor readings after calibration 

were logged continuously at each clock frequency. 

 

,  

 

Figure 7(a) and 7(b): Fully fabricated ORCA with Integrated Navigation System 

 

4.2. Testing, Operation, and Post-Processing Stages 

Finally, the system was deployed in the pool as in figure 8 and multiple straight-line missions were 

accomplished with an open-loop system for 5-15 mins each to study the behaviour of the system along 

with the IMU connected. The data collected during these missions were visualized into graphs for 

comprehensive analysis of the various environmental parameters on the vehicle and to study the 

dynamics of it as it moves.  
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Figure 8. Real-time deployment in a pool. 

 

These missions involved the movement of the vehicle in a straight line at a constant depth, hence the 

acceleration along the x-axis in the graph has a small value due to the forward surge, while in the z-axis 

it is close to 9.8 m/s2, acceleration due to gravity (Az -green) as shown in figure 9(a). ROV suffered a 

deviation to its port side due to water circulation in the pool which explains the spike in the angular 

velocity in the z-direction (Gz -green) as shown in figure 9(b).  

 

 

 

Figure 9. (a). IMU post-processed graphs - acceleration vs time (b). IMU post-processed graphs - 

Angular velocity vs. time 

5.  Conclusion and Future Work 

This paper presents the development of a navigation and control system for an ROV, which was tested 

and experimented on a research class ROV, ORCA. This system is equipped with temperature, pressure, 

and leak sensors to monitor the ambient parameters. The ROV’s navigation is aided by the IMU which 

is integrated with MOOS-IvP as a closed-loop system. The GUI of MOOS-IvP helps in identifying the 

real-time position of the ROV to precisely navigate inside the underwater environment. The major 

advantage of MOOS comes in its ability to run the vehicle autonomously. Trial runs in the pool with 

predefined missions were also carried out successfully, where the IMU data was logged and analysed. 

The current scope of work involves the fusion of sensor data from IMU into useful positioning 

information using the Attitude Heading Reference System (AHRS). Moreover, a safety protocol has 

been developed to aid the recovery of the vehicle in case of power failure, tether snap, or any detection 

of water ingress in the electronic chamber. This module, the Emergency Float-Up Mechanism eliminates 

the possibility of losing the vehicle in case of unforeseen circumstances. External sensors like pH, 

salinity, and turbidity will be incorporated into the system. The images stored in the repository will be 

used to develop a Map-Based Localization technique along with MOOS-IvP to enhance autonomy. This 

can be further extended by pre-feeding the maps of specific environments to automatically reduce the 

speed of the vehicle at zones prone to failure, leading to better inspection underwater.  
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