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Abstract

Bistatic active sonar enables robust and precise target position and tracking, making it a key
technology for autonomous underwater vehicles (AUVs) in underwater surveillance. This
paper proposes a multi-information-assisted target tracking algorithm for bistatic active
sonar, leveraging spatial and temporal echo signal structures to address the challenges of
AUVs in shallow water. First, broadened cluster formations in sonar echoes are analyzed,
leading to the integration of a spatial clustering-based data association. This paper departs
from conventional methods by fusing target position, echo amplitude, and Doppler infor-
mation during the movement of AUVs, which can improve the efficiency of association
probability computation. The re-derived multi-information-assisted association probability
calculation method and algorithmic workflow are explicitly designed for real-time imple-
mentation in AUV systems. Simulation experiments verify the feasibility of integrating
Doppler and amplitude information. The sea trial data from simulated AUV-deployed
bistatic sonar contained only amplitude information due to experimental limitations. By
utilizing this amplitude information, the algorithm proposed in this paper demonstrates
a 23.95% performance improvement over the traditional probabilistic data association
algorithm. The proposed algorithm provides AUVs with enhanced tracking autonomy,
significantly advancing their capability in ocean engineering applications.

Keywords: autonomous underwater vehicles; bistatic active sonar; multi-information-
assisted; probabilistic data association; interactive multiple model

1. Introduction
Compared to monostatic active sonar, bistatic active sonar with separate transmission

and reception equipment positioned at different locations offers higher survivability and
detection capabilities [1,2], particularly when deployed on coordinated autonomous un-
derwater vehicles (AUVs) for distributed surveillance [3,4]. This architecture attracts wide
attention due to its potential in AUV-enabled persistent target tracking, especially in anti-
submarine warfare and marine monitoring [5,6]. By leveraging AUVs as mobile bistatic
nodes, the spatially separated transmitter and receiver can dynamically cover expansive
areas through path planning, overcoming the spatial constraints of static sonar arrays in
complex environments [7]. AUVs can actively adjust transmitter–receiver geometries to
evade counter-detection. These advantages make bistatic active sonar in AUVs highly
valuable in marine monitoring applications.
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To obtain target tracking states, traditional bistatic sonars employ a one-way informa-
tion transmission framework of detection followed by tracking [8–10]. However, due to
the complex time-varying and spatially varying nature of the underwater acoustic channel,
the results of active sonar target detection are influenced by noise, multipath, Doppler
frequency, and reverberation, which are prone to errors, false alarms, and errors [11–13].
In addition, active sonar operates at low frequencies with limited bandwidth and small
array apertures, leading to significant measurement errors. Moreover, the relatively slow
speed of sound in water results in long detection times to cover a certain area, leading to
low data rates [14]. Consequently, active sonar target tracking faces challenges such as
low detection probability, high clutter rates, low data rates, and large measurement errors.
During the target tracking process, sonars can obtain various target feature information
such as amplitude, echo width, and Doppler [15,16]. If these pieces of information can be
fed back and used properly, the detection and tracking performance of targets is expected
to be improved.

When a target is identified on the bearing–time figure during active detection, many
measurements can be obtained. Traditional active sonar target tracking algorithms typically
use the point with the highest amplitude from the acquired measurements for state filtering,
without utilizing the remaining measurements. These measurements are generated due to
various factors, such as sidelobes of echoes and multipath arrivals, reflecting spatial and
temporal broadening [17]. Thus, we can obtain spatial clustering results of echo signals.
Scholars have proposed data association techniques to handle many measurements, aiming
to establish the association between each measurement and the true target, which is helpful
for using the acquired measurements [18,19]. Building upon this, many scholars have
conducted extensive research on utilizing target feature information for tracking and
have proposed improvement algorithms for data association algorithms. Although target
feature information cannot be used directly to update tracks, it can effectively reduce
the uncertainty in track association and play a significant role in association probability
calculations. Furthermore, combining the auxiliary target information can expand the
dimension of the measurement information and help identify and remove clutter [20].

Some scholars have proposed methods based on sound speed profile models to com-
pensate for tracking errors caused by the bending of acoustic propagation paths. However,
these approaches require substantial computational resources and prior knowledge [21].
In active sonar, amplitude and Doppler are two important signal parameters that play a
key role in target detection. When a sonar emits sound waves and receives the echoes
reflected by the target, if the target is moving relative to the sonar, the frequency of the
echo will shift due to the Doppler effect. Amplitude information refers to the amplitude
of echo signals after matched filtering in active sonar, typically reflecting the amount of
energy in the reflected echo of the target. Using this commonly used information, we
can obtain better results. Compared to random finite set (RFS) methods, data association
algorithms hold greater advantages in active sonar target tracking due to their refined
clutter suppression capabilities and engineering interpretability. In contrast, RFS methods
are more suitable for passive sonar scenarios involving dense target environments or highly
dynamic target populations [22,23]. Therefore, this paper will utilize the amplitude and
Doppler information integrated with data association algorithms for investigation.

The amplitude information was first pointed out in the tracking by the scholar Bar-
Shalom Y in 1990 [24]. Then, scholars combined the amplitude information with single-
target probabilistic data association (PDA) algorithms and applied them in interactive
multiple model (IMM) algorithms, demonstrating the effectiveness of this algorithm [25].
Researchers typically use amplitude information to determine the presence of valid mea-
surements, which is particularly useful in uncertain measurement sources. The amplitude
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information is independent of position information and can distinguish between measure-
ments originating from target echoes and false alarms. Based on this, it can be used as a
weight coefficient for the spatial clustering results of the echo signals from active detection.
Introducing amplitude information into the association probability favors measurements
with higher amplitudes, thereby influencing the mutual probability. The higher the ampli-
tude of the measurements within the tracking gate, the higher the probability of correctness
they are considered to have.

In 2009, the Doppler component was first incorporated into the data association pro-
cess by Wang X and Musicki D, and its excellent association performance was evaluated.
Subsequently, they utilized Doppler information to enhance target state estimation perfor-
mance and proved the reliability of tracking trajectories under severe clutter interference.
Finally, combining these two aspects aimed to improve association efficiency and improve
estimation accuracy [26,27]. Different moving targets possess varying Doppler informa-
tion, enabling multi-target tracking based on Doppler information [28]. In the spatial
clustering results of active detection echo signals, Doppler information can be regarded as
quantities with minimal variation. Measurements with small Doppler changes in adjacent
snapshots are closer to the true target position. Some scholars have modeled the position
measurement, radial velocity measurement, and amplitude measurement of active sonar
echo signals, calculating the generalized likelihood of measurements and achieving multi-
dimensional information fusion. Through Kullback–Leibler divergence, they evaluated the
contribution of information fusion, concluding that position, radial velocity, and amplitude
information can enhance target tracking [29].

Building upon the aforementioned research, this paper extends the target measure-
ment state by introducing amplitude and Doppler information into the active sonar tracking
process without altering the motion equation of the target. Instead of using a single position
information measurement likelihood function, this paper proposes a multi-information-
assisted PDA tracking algorithm using a joint measurement likelihood function of am-
plitude, Doppler, and position information. The algorithm first computes the probability
weighting coefficient for each valid observation point within the gating region. Then, it
associates the amplitude and Doppler information of each echo measurement using an
assisted algorithm for data association, thus calculating the weighted sum of all valid ob-
servations as the estimated value of true observations. Considering the maneuverability of
the targets and AUVs during tracking, the algorithm is combined with an IMM algorithm,
introducing a data association algorithm based on multiple models. During the tracking
process, the filter system determines the appropriateness of the current model based on
the specific probability of each model. Finally, a simulated AUV-deployed bistatic active
sonar experiment was conducted in the South China Sea, and the results showed that the
proposed algorithm can improve tracking accuracy.

The remainder of this paper is organized as follows: Section 2 details the problems
encountered in the positioning and tracking of bistatic active detection. In Section 3,
the algorithm proposed in this paper is introduced. Section 4 compares and analyzes the
improved algorithm with other algorithms through simulation experiments, validating
the effectiveness of the proposed algorithm. The performance of the proposed algorithm
is demonstrated using sea trial data. The discussions are shown in Section 5, and the
conclusions are provided in Section 6.

2. Related Work
This section introduces the basic principles of bistatic active detection in AUVs, includ-

ing echo detection algorithms and target location procedures. Subsequently, using an echo
data sample from an experiment, the spatial and temporal structure of active detection
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echoes is presented, which forms the basis for the processing algorithms discussed in
this paper.

2.1. Bistatic Active Sonar Detection, Positioning, and Tracking

Figure 1 depicts the flow chart of the active sonar signal processing chain, and
the bearing–time figure of the conventional beamforming and matched filter is shown
in Figure 2. In the active detection system, the source transmits sonar pulses with a given
pulse repetition interval. For each ping, the hydrophones of the receiving array collect the
acoustic signals in various directions and form beams to obtain the bearing–time figure of
the surveillance area. The wider bandwidth of transmitted signals corresponds to higher
distance resolution, and more classification features are contained in the signal.

Conventional 
beamforming

Matched filter

Tracking

Array data

Figure 1. Active sonar detection and tracking flowchart.

Figure 2. Active sonar detection result.

From Figure 2, it can be clearly seen that the first signal that appears is the direct
wave with a very high intensity, caused by the high-intensity signal from the sound source
reaching the receiver directly. During the beamforming process, the intensity of the direct
wave from directions other than the source has been suppressed effectively, allowing
the target signal to become more distinct. Further analysis of Figure 2 allows for the
determination of the specific bearing and arrival time of the target, which are 136° and
46.37 s. These results serve as input for the subsequent processing in the active sonar, which
is the tracking algorithm proposed in this paper.

The characteristics of bistatic sonar arise from the separation of transmitter and receiver
equipment in different locations; we usually consider the bistatic sonar and the targets in the
same plane. Bistatic active sonar is composed of spatially separated sources and receiving
arrays, and requires determining target localization based on the geometric relationship
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among them. Figure 3 illustrates the geometric relationship of the bistatic active detection
system, with the receiving array as the origin. lTS represents the distance from the sender
to the target, lRT represents the distance from the target to the receiver, lRS represents the
distance from the sender to the receiver, α denotes the bearing of the target echo, and β

is the angle between the target–receiver–source. In fact, we can obtain the arrival times
of the direct wave and the echo. By calculating the time between these two times and the
positions of the transmitter and receiver, we can estimate the position of the target. The
specific implementation method is as follows, the time between the direct wave and the
echo, named ∆τ is:

∆τ = τSTR − τRS (1)

where τSTR represents the time from the sender to the target and then to the receiver, and
τRS represents the time from the sender to the receiver. Then, we can get:

lTS + lRT − lRS = c∆τ (2)

where c is the sound speed. According to the cosine theorem:

l2
TS = l2

RT + l2
RS − 2lRT lRS cos β (3)

Substituting Equations (1) and (2) into Equation (3), we can obtain the following:

lRT =
c∆τ(lRS + c∆τ/2)

lRS(1 − cos β) + c∆τ
(4)

where the angle β is obtained through the bearing of the echo α and the bearing of the
sound source. The coordinates of the target position are:

X̂T = XR + lRT sin α̂

ŶT = YR + lRT cos α̂
(5)

where XR and YR represents the coordinates of the receiver. The absolute error of the target
localization is defined as:

e =
√(

X̂T − XT
)2

+
(
ŶT − YT

)2 (6)

where XT and YT are the true coordinates of the target, which can be obtained through
satellite positioning. In active sonar, observation measurements will lead to errors, which
can cause significant errors in target localization. The main factors contributing to these
errors are bearing error, sound speed error, and time error. Sound speed error is primarily
caused by the discrepancy between the group velocity of the compressed pulse peak and
the reference sound speed [30]. In deep-sea environments, the group velocity distribution
varies significantly due to factors such as ocean depth and temperature distribution. Time
measurement errors are mainly caused by the precision of pulse signal delay measurement,
system delays, and timing synchronization errors of the detection platform. The precision
of bearing measurement is primarily determined by the aperture of the array, the correlation
radius of the sound field, and the reference phase velocity, which can maintain directional
error within 1∼3°.
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Figure 3. Positions of the target, sender, and receiver in a bistatic active sonar system.

2.2. Spatial and Temporal Expansion Characteristics of Active Sonar Echoes

From Figure 4, it can be observed that multiple measurement information is generated
when observing a target, including information related to the target to be tracked as well as
false alarms. The reasons for generating multiple measurement information are as follows:

(1) The main lobe width formed by the beamforming algorithm.
(2) Existence of multipath phenomena in time.
(3) Reverberation and interference of ocean noise in shallow water.

(a) (b)

Figure 4. Active sonar echo: (a) bearing–time–amplitude result; (b) different amplitude measurements.

Traditional localization and tracking algorithms typically use the highest amplitude
point as the target position. A three-dimensional scatter plot of detection results is shown
in Figure 4, where it can be seen that there are many points with high amplitude, and only
using the point with the highest amplitude can lead to significant errors. As shown in
Figure 5, the true position is at the bearing of 91° with the relative time of 10.0600 s, while
the highest amplitude position is at the bearing of 89.5° with the relative time of 10.3040 s.
There is a deviation of 1.5° in bearing and 0.2440 s in relative time between the true position
and the highest amplitude position, which translates into a distance deviation of 373.32 m.
It can be seen that the deviation error is quite large, which will affect the tracking severely.

This paper utilizes the spatial clustering results obtained to track the target. Treating
the spatial clustering results as multiple measurement points generated by surface reflec-
tions of the same target, the multiple measurements originating from the target provide
more target information. Including the motion information and physical characteristics of
the target, such as amplitude and Doppler information. The amplitude information is the
result of the matched filter. When using Doppler-sensitive signals, as shown in Figure 6,
the target Doppler information can be obtained through signal replication [31]. Specifically,
Doppler-sensitive signals and different matched filters are first used to estimate the Doppler
shift. Subsequently, a two-dimensional interpolation is applied to interpolate and compen-
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sate for the received signals. Thereby, the Doppler information of the target is acquired.
During the interval between adjacent data snapshots, the Doppler frequency of the target
does not change a lot, which represents a relatively stable characteristic. Additionally,
different targets possess distinct Doppler frequencies, which are different from those of
other targets and clutters.
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Figure 5. Comparison between the position with the highest amplitude and the true position.

Figure 6. Ambiguity function of a Doppler-sensitive signal.

3. Methods
This section first introduces the traditional PDA algorithm and analyzes the various

parameters within the PDA algorithm. Based on this, a multi-information-assisted PDA
algorithm for bistatic active sonar target tracking is proposed. First, we explore the feasi-
bility of using amplitude and Doppler information from active sonar echo signals in the
tracking process. Then, this paper presents the calculation algorithm for the association
probability of the multi-information-assisted PDA algorithm and provides a complete
algorithm framework.

3.1. Probabilistic Data Association

The traditional nearest-neighbor association algorithm follows the principle that the
target should consider only one measurement point within the gating region of the target
to be generated by the target. However, the PDA algorithm holds that all measurement
points within the gating region cannot be ruled out as potentially generated by the target,
although the probability originating from the target varies. Therefore, this algorithm
comprehensively considers all measurement points within the gating region, calculates
the association probability between each measurement point and the target, and then
obtains the weighted sum of the measurements to update the position of the target at the
current time.
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There are amounts of mk measurements at time k that fall within the correlation
gate of the target. The association probability βi(k) is the ith measurement that falls
within the correlation gate of the target. The association probability generated by the true
measurement of the target is as follows:

βi = P
{

θi(k) | Zk
}
=

{
θi(k) | Z(k), mk, Zk−1

}
(7)

where Z(k) is the complete set of measurements at time k, θi(k) indicates the event that
the measurement points were generated by the target. The sequence of measurement
sets accumulated up to time (k − 1) is described as Zk−1. βi(k) also satisfy the following
conditions:

mk

∑
i=0

βi(k) = 1 (8)

In active sonar tracking, the following assumptions are made for the PDA algorithm:
(1) The detection probability of the target is PD, where PD represents the probability of

detecting at least one measurement originating from the target;
(2) Multiple measurements are generated within the target range in each scan cycle;
(3) A measurement may originate from the target or noise;
(4) Measurements are uniformly distributed within the detection range.
Therefore, the motion state of the target can be obtained using the following equation:

X̂(k|k) =
mk

∑
i=0

βiX̂ i(k|k) = X̂(k|k − 1) + K(k)
mk

∑
i=0

βivi(k) = X̂(k|k − 1) + K(k)v(k) (9)

where X̂(k|k − 1) represents the predicted motion state of the target at time k based on the
motion state of the target at time (k − 1), which is the target motion state update value
corresponding to event θi(k). Additionally, K(k) is the kalman gain, vi(k) represents the
innovation associated with the ith measurement track, and v(k) represents the combined
innovation. Therefore, the core of the PDA algorithm lies in calculating the combined
innovation to estimate the motion state.

According to the Bayes theorem, Equation (7) can be transformed into:

βi(k) = P{θi | Z(k), mk, Zk−1} =
P{Z(k) | θi(k), mk, Zk−1}P{θi(k) | mk, Zk−1}

∑mk
i=0 P{Z(k) | θi(k), mk, Zk−1}P{θi(k) | mk, Zk−1}

(10)

where P{Z(k)|θi(k), mk, Zk−1} represents the likelihood function of event θi(k), and
P{θi(k)|mk, Zk−1} represents the conditional probability of event θi(k). Let zi(k) be the ith
measurement point trace of Z(k). According to the assumption (3), the probability density
function of the measurement traces associated with the target can be derived as shown:

P
{

zi(k) | θi(k), mk, Zk−1
}
= P−1

G N[zi(k); ẑ(k | k − 1), S(k)]

= P−1
G N[vi(k); 0, S(k)]

(11)

where PG denotes the probability that the real measurement point trace generated by the
target to be tracked falls into the relevant wavegate of the target at the current moment,
which is generally taken as 1. S(k) denotes the new interest covariance matrix. Additionally,
N[vi(k); 0, S(k)] is the assumption that the positions of the measurement follow a normal
distribution.

N[vi(k); 0, S(k)] = |2πS(k)|−
1
2 exp(−1

2
vT

i (k)S
−1(k)vi(k)) (12)
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According to the assumption (4), the probability density function of all false point
traces can be obtained. Finally, the expression in Equation (11) is derived using Equation (13)
and the probability density function of false point traces.

P
{

Z(k) | θi(k), mk, Zk−1
}
=

{
V−mk+1

k P−1
G N[vi(k); 0, S(k)] i = 1, 2, . . . , mk

V−mk
k i = 0

(13)

where λ denotes the number of false measurement traces appearing in the unit area, Vk

indicates the associated gate, and λVk denotes the number of false measurement traces
appearing in the relevant wavegate. When the false measurement points follow a Poisson
distribution, the conditional probability of event θi(k) is:

P
{

θi(k) | mk, Zk−1
}
=

{ PD PG
PD PGmk+(1−PD PG)λVk

i = 1, 2, . . . , mk
(1−PD PG)λVk

PD PGmk+(1−PD PG)λVk
i = 0

(14)

The association probability with a Poisson distribution is given by:

βi(k) =
N[vi(k); 0, S(k)]

λ(1 − PDPG)/PD + ∑mk
i=1 N[vi(k); 0, S(k)]

(15)

A further expansion of Equation (15) yields the following:

βi(k) =
exp(− 1

2 vT
i (k)S

−1(k)vi(k))

λ|2πS(k)|
1
2 (1 − PDPG)/PD + ∑mk

i=1 exp(− 1
2 vT

i (k)S
−1(k)vi(k))

(16)

The probability that there are no measurement tracks generated by the target at time
k is:

β0(k) =
λ|2πS(k)|

1
2 (1 − PDPG)/PD

λ|2πS(k)|
1
2 (1 − PDPG)/PD + ∑mk

i=1 exp(− 1
2 vT

i (k)S
−1(k)vi(k))

(17)

The PDA algorithm calculates the combined innovation using all measurements that
fall within the correlation gate and the probability that each measurement is generated by
the target. The formula for calculating the combined innovation is the following:

v(k) =
mk

∑
i=0

βi(k)vi(k) (18)

Kalman filter (KF) is an optimal estimation algorithm widely used for state estimation
in dynamic systems, and it estimates the system state in a recursive manner with incomplete
and noisy data. The main steps of KF include prediction and update. According to the
calculation process of the KF, we need to compute the combined innovation and update the
motion state of the target. The covariance matrix of the motion state error of the target is:

P(k | k) = P(k | k − 1)β0(k) + [1 − β0(k)]Pc(k | k) + P̃(k) (19)

where Pc(k | k) and P̃(k) are:

Pc(k | k) = [I − K(k)H(k)]P(k | k − 1) (20)

P̃(k) = K(k)[
mk

∑
i=1

βi(k)vi(k)vT
i (k)− v(k)vT(k)]KT(k) (21)
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3.2. Multi-Information-Assisted Probabilistic Data Association

The traditional PDA algorithm only uses the position information of the measurement
points to calculate the association probability between each measurement point and the
target. To comprehensively consider the association probability under AUV-deployed
bistatic sonar constraints, this paper proposes incorporating features such as the target
echo amplitude and Doppler frequency measured during the tracking process into the
calculation of the association probability. The specific process is shown in Figure 7. When
tracking multiple targets in complex environments, if the tracking gates of multiple targets
do not intersect, or if there are no measurements in the overlapping region of the tracking
gates, we can consider multi-target data association as single-target data association to
solve the issue. This simplification aligns with the computational limitations of embedded
AUV processors. However, if measurements fall into the overlapping region of target
tracking gates, the PDA algorithm has limitations.

Active sonar 
echo data

Matched filter 
detection

Tracking displayTracking filter

Data 
association

Targets’ 
information 
assistance

Wave gate’s 
threshold 

adjustment

Tracking results

Target estimated position 
and covariance matrix

Figure 7. Main framework of the proposed tracking algorithm.

Traditional association gates only use target position information to predict the range
of possible observations, leading to computational complexity and potential false tracks,
especially in low-amplitude situations or densely cluttered regions. In addition, when the
trajectories of multiple targets are close or intersect, the association gates of adjacent targets
may overlap. If measurement points enter the overlapping area, track merging or tracking
errors may occur. This paper incorporates target position, echo amplitude, and Doppler
frequency into the observation vector of target, constructing a multi-information-assisted
algorithm. Using multiple information can filter measurement points in overlapping re-
gions effectively. As shown in Figure 8, the target position and echo amplitude information
are used to estimate the target position, while the Doppler information constrains valid
measurements. With the assistance of multi-information, measurement points that were
originally in overlapping regions of two association gates can be associated correctly.

X-coordinate

Y-coordinate

Doppler

Figure 8. Data association under different Doppler frequencies. The blue points in the figure
represent the predicted observation values of the target, and the black points represent other mea-
surement points.
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From Equation (10), we can obtain the probability βi(k) that the i(1 ≤ i ≤ mk)th mea-
surement track that falls within the correlation gate is generated by the true measurement
track of the target, which is mainly composed of two parameters: (1) the likelihood function
P{Z(k)|θi(k), mk , Zk−1} of event θi(k); (2) the conditional probability P{θi(k)|mk, Zk−1} of
event θi(k). Among them, only the likelihood function P{Z(k)|θi(k), mk, Zk−1} is related to
the association probability between the measurement track and the target to be tracked.
Therefore, the likelihood function of event θi(k) is:

P{Z(k) | θi(k), mk, Zk−1} = V−mk+1
k P−1

G N[vi(k); 0, S(k)] (22)

In Equation (22), N[vi(k); 0, S(k)] reflects the assumption that the positions of the
measurement tracks follow a normal distribution, which can assume that the conditions for
the PDA algorithm hold true. However, this likelihood function only utilizes position infor-
mation from the measurement tracks. As V−mk+1

κ̇ P−1
G is a constant, only N[vi(k); 0, S(k)] in-

fluences the final value of P{Z(k)|θi(k), mk, Zk−1}. Therefore, the value of N[vi(k); 0, S(k)]
can be understood as the correlation coefficient between the nth measurement track and
the target being tracked. Then, we can denote this value as qi(k):

qi(k) =
1√

|2πS(k)|
exp(−1

2
vT

i (k)S
−1(k)vi(k)) (23)

Based on the previous derivation, we know that the parameters vi(k) and S(k) are
determined solely by position. To simultaneously utilize position and feature information
to correct the correlation coefficient between the ith measurement track and the target being
tracked, it is necessary to compute the correlation coefficient between the amplitude and
Doppler frequency contained in the ith measurement track and the expected amplitude and
Doppler frequency of the target at time k. Then, we can calculate the corrected correlation
coefficient between the ith measurement track and the target being tracked by integrating
all the information.

The PDA algorithm assumes that the correctly measured tracks follow a normal
distribution in the position space. From experimental observations and theoretical analysis,
the expected values a(k) and f (k) of the amplitude and Doppler frequency estimated for
the target at time k are obtained. A Gaussian probability density function is established to
obtain the correlation coefficient between the Doppler frequency and the amplitude for the
ith measurement track. So we can obtain the correlation coefficient of the amplitude qa

i (k)

and the Doppler frequency q f
i (k) for the ith measurement track:

qa
i (k) =

1√
2πσa

exp{− [ai − a(k)]2

2σ2
a

} (24)

q f
i (k) =

1√
2πσf

exp{− [ fi − f (k)]2

2σ2
f

} (25)

where σa and σf represent the standard deviations of a and f . Suitable values for σa and
σf are set based on the weights of the amplitude and Doppler frequency in the process of
calculating the relative combined correlation coefficient between the measurement track
and the target to obtain more accurate results. By adjusting the variance and mean, we can
obtain three correlation coefficients with different parameters. Since tracking is required
in multi-target scenarios, the Doppler-related frequency will have a larger weight, while
amplitude and position information will have smaller weights. After calculating the
correlation coefficients of the amplitude and Doppler frequency for the nth measurement
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track, the relative combined correlation coefficient between the nth measurement track and
the target can be obtained using:

qext
i (k) = n

√
qi(k)qa

i (k)q
f
i (k) (26)

mk

∑
i=1

qi(k) = s (27)

mk

∑
i=1

qext
i (k) = sext (28)

From Equation (26), we can conclude that n = 3 in general, when the Doppler
frequency cannot be obtained, the filter degenerates into an amplitude information-assisted
PDA filter, where n = 2; when both fail, it degenerates into a PDA filter, where n = 1.

From Equation (22), it is evident that the relative probability of the target not generated
by the measurement tracks at time k is obtained solely based on position information. There-
fore, when calculating the relative probabilities that each measurement track is associated
with the target at time k, it is necessary to adjust the magnitude of qext

i (k). Let the adjusted
relative combined correlation coefficient be qext

i (k). Then, qext
i (k) needs to satisfy that the

relative magnitudes among all qext
i (k), i = 1, 2, . . . , mk remain unchanged and also satisfy:

mk

∑
i=1

qext
i (k) = s (29)

Therefore, we need to correct qext
i (k):

qext
i (k) = qext

i (k)× s
sext (30)

By replacing N[vi(k); 0, S(k)] with qext
i (k), we obtain the new P{Z(k) | θi(k), mk, Zk−1}.

Then, we determine the association probability that the ith measurement track at time k is
generated by the target being tracked, integrating both positional and feature information:

β′
i(k) =

qext
i (k)

λ(1 − PDPG)/PD + ∑mk
i=1 qext

i (k)
(31)

Similarly, after integrating positional and feature information, β′
0(k) change to:

β′
0(k) =

λ(1 − PDPG)/PD

λ(1 − PDPG)/PD + ∑mk
i=1 qext

i (k)
(32)

Using the newly obtained association probabilities, we calculate a new combined
innovation, which is then used to update the improved state estimate and state the co-
variance matrix of the target. This process incorporates the latest association information
at each step, making the state estimation more accurate. Additionally, as the association
probabilities are updated, the system becomes better equipped to handle uncertainties in
dynamic environments and reduce estimation errors. This multi-information state update
method enhances the robustness of the algorithm, addressing complex motion patterns,
and ensuring tracking stability and accuracy in practical applications.

4. Experiments
This section validates the performance of the algorithm through simulation experi-

ments. First, the performance of the algorithm is verified under different measurement
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densities. Additionally, experiments are conducted in two scenarios with multiple targets
to verify the effectiveness of the algorithm. The first is that the three targets have straight
paths and intersect, and the second is that the three targets converge from the far end
and then separate. These two scenarios are the most common scenarios when AUVs track
targets. Finally, the effectiveness of the algorithm is verified in sea trial data.

4.1. Simulation Results Under Different Measurement Densities

We assume that a series of target measurements have been acquired through the
bistatic active sonar system in AUV, including positional coordinates (bearing, range),
echo amplitude, and Doppler shift. This system enables efficient data collection in shal-
low water, providing multidimensional inputs for subsequent multi-information-assisted
tracking algorithms.

Firstly, the performance of the multi-information-assisted PDA algorithm in tracking
was simulated under different measurement densities. The measurement densities λ were
100/km2, 500/km2, and 1000/km2. In addition, the target detection probability PD is 1,
and the gate probability PG is 0.99. Considering the uniform linear motion of the target in
the plane, the motion equation can be expressed as:

X(k) = HX(k − 1) + U (33)

where X(k) represents the target state vector at time k, H is the state transition matrix,
and U represents the process noise. The performance metric used for comparison is the
root mean square error (RMSE).

RMSE(k) =

√√√√ 1
N

N

∑
c=1

[
Xc(k | k)− X̂c(k | k)

]2 (34)

where N is the number of Monte Carlo (MC) simulations.
The data modeling is depicted in Figure 9, where the measurement positions of the

target follow a uniform distribution. The amplitude and Doppler observations of different
measurements follow Gaussian distributions. The orange points represent the estimated
Doppler frequency closest to the true Doppler frequency, indicating proximity to the true
value (the yellow points). The red points represent the highest amplitude points, set at
distances far from the true position. The blue points represent the remaining measurement
points. Finally, the green points represent the predicted results within this ping.

1nX −

nX

Doppler closest

highest amplitude

measurements

predicted position

true position

Figure 9. The spatial position of measurements.

The tracking results and the RMSE are shown in Figure 10. It shows that the position
errors of the algorithm reach a stable state shortly after the start of tracking. The RMSE
generated by the multi-information-assisted PDA algorithm converges to a smaller stable
value. With an increase in measurement density, the change trend of RMSE produced by
the multi-information-assisted PDA algorithm with the increase in tracking steps does not
show significant changes, eventually converging to a smaller value. Moreover, the multi-



Remote Sens. 2025, 17, 2250 14 of 25

information-assisted PDA algorithm continues to exhibit good tracking performance, even
in environments with higher measurement density.
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Figure 10. Results of different measurement densities. Red points are measurements, the line is the
true trajectory of target, and the black circles are the estimated positions of the algorithm. Besides,
the dotted line in the RMSE results represents the average RMSE of these algorithms.

4.2. Multi-Target Simulation Scenario 1

IMM is a filtering algorithm based on multiple models, used to track the state of the
target under different motion modes. It combines various motion models (such as constant
velocity (CV), coordinated turn (CT), etc.) and fuses the outputs of different models through
interactive weights to improve tracking accuracy. However, its computational complexity
is relatively high, as parallel computation of multiple models increases the burden.

During multi-target tracking, it is easy to encounter association biases at trajectory
intersections, resulting in the misassociation of measurements from target A to target B (or
vice versa), causing the RMSE to fail to converge. Taking three uniformly moving targets
with intersecting trajectories in a two-dimensional scenario as tracking objects, the following
algorithms are compared in terms of performance: KF, conventional target tracking (only
using the highest amplitude point for tracking), PDA algorithm (utilizing only positional
information for data association in the PDA algorithm), AI-PDA algorithm (assisted data
association using amplitude information), and MI-PDA algorithm (assisted data association
using both amplitude and Doppler information). Since the target positions obtained from
active sonar have been converted into X and Y coordinates, these coordinates are used
as observations and translated into a linear problem. Therefore, CV-KF is employed for
filtering in all four algorithms.

The experimental ground truth for tracking three intersecting targets is illustrated in
Figure 11. Three targets experience trajectory intersections at different times. Then, targets
A and B coincide in the 15th ping of data, while targets B and C coincide in the 35th ping
of data. The targets move at constant velocity, and the measured positions of the targets
follow a uniform distribution. We assume that we can harvest the amplitude and Doppler
information for each measurement point. Based on the experience of previous sea trials, this
paper selected the measurement density to be 50/km2, and the amplitude and Doppler ob-
servations of different measurements follow Gaussian distributions. Additionally, different
targets have different expected values of amplitude and Doppler information.
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Figure 11. True target trajectories of scenario 1.

As shown in Figure 12, the filtering results of the multi-information-assisted PDA
algorithm are very smooth, and no association errors occurred. With the assistance of
Doppler, the multi-information-assisted PDA algorithm performs better in multi-target
tracking tasks in complex clutter scenarios. Figure 13 analyzes the RMSE of the tracking
results for three targets. The performances are obtained from 200 MC trials. To make
the comparisons more meaningful for all algorithms, the same random measurement
streams are used in each MC trial. It can be seen that compared with the traditional PDA
algorithm, the multi-information-assisted PDA algorithm shows significant performance
improvement. Specifically, the RMSE of the CV-KF, PDA-CV-KF, AI-PDA-CV-KF, and MI-
PDA-CV-KF algorithms are 145.4413 m, 56.0817 m, 48.8768 m, and 28.8060 m. Additionally,
significant improvements are observed even with single-amplitude assistance, and further
enhancements are achieved with the addition of Doppler information. This indicates that
additional information constraints can reduce the bias caused by considering only position
information, demonstrating the effectiveness of the improvements to the PDA algorithm.
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Figure 12. Estimated target trajectories (MI-PDA-CV-KF) of scenario 1. Different color points are
measurements of different targets, the lines are the true trajectories of targets, and the black circles
are the estimated positions.
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Figure 13. The RMSE results of the tracking algorithms. Besides, the dotted line in the RMSE results
represents the average RMSE of these algorithms.

4.3. Multi-Target Simulation Scenario 2

Then, we simulate the scenario in which multiple target trajectories converge.
Figure 14 shows the trajectories of targets in scenario 2, three targets experience an am-
biguous mixture simultaneously. The measured positions of the targets follow a uniform
distribution, with a measurement density of 50/km2. The amplitude and Doppler observa-
tions of different measurements follow Gaussian distributions. In this scenario, the three
targets move along determined trajectories. Initially, the targets approach each other, then
they move parallel at close range, and finally, they move away from each other. Addition-
ally, the main parameters used in scenario 2 are the same as in scenario 1. There are 200 MC
trials in the simulation. The three motion models are used in this section: Model 1 is the CV
model, and Model 2 and Model 3 are the CT models. The corresponding state transition
matrices are as follows:

H1 =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , H i =


1 sin ωiT

ωi
0 cos ωiT−1

ωi

0 cos ωiT 0 − sin ωiT
0 1−cos ωiT

ωi
1 sin ωiT

ωi

0 sin ωiT 0 cos ωiT

, i = 2, 3 (35)

where the angular frequency of turning is ω = 1.5, and T is the sampling interval. Initial
transfer probability π0 =

[
0.5 0.25 0.25

]
. The Markov transition matrices between the

models are as follows:

µij =

 0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9

 (36)
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Figure 14. True target trajectories of scenario 2.

The RMSE of position tracking for targets A, B, and C was compared between tradi-
tional algorithms and the algorithm proposed in this paper during the track maintenance
phase. The target position estimates from one MC run of the MI-PDA-IMM-KF algorithm
and the PDA-IMM-KF algorithm are shown in Figure 15. It can be observed that the
target position estimates from MI-PDA-IMM-KF are consistently close to the true values.
However, because of track merging, the performance of PDA-IMM-KF is not ideal. The
uncertainty association of track measurement occurs when the targets are close in distance,
leading to the track coalescence problem in PDA-IMM-KF. Moreover, it is difficult for the
filter to track the targets even when they are away from each other.
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Figure 15. Estimated target trajectories of scenario 2: (a) MI-PDA-IMM-KF; (b) PDA-IMM-KF.
Different color points are measurements of different targets, the lines are the true trajectories of
targets, and the black circles are the estimated positions.

Figure 16 shows the RMSE for the four algorithms. During the parallel moving
stage, due to the influence of each other, the position error of the PDA-IMM-KF algorithm
becomes higher. At the same time, the IMM-KF and AI-PDA-IMM-KF algorithms have
a smaller error in position estimation, but the MI-PDA-IMM-KF algorithm is lower. The
reason for this is that the amplitude and Doppler information play a role, and different
Doppler frequencies of different targets have enhanced the tracking accuracy. Thus, once
no tracking loss occurs, it has better performance in position estimates. The PDA-IMM-KF
algorithm has failed to track and filter, and the RMSE of the IMM-KF, AI-PDA-IMM-KF,
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and MI-PDA-IMM-KF algorithms are 149.0429 m, 68.0819 m, and 43.8129 m. It can be seen
that the proposed algorithm is more efficient than others.
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Figure 16. The RMSE results of the tracking algorithms. Besides, the dotted line in the RMSE results
represents the average RMSE of these algorithms.

4.4. Sea Trial Results

In October 2022, a bistatic active sonar experiment was conducted in the South China
Sea. The experimental setup and sound velocity profile are shown in the following
Figure 17. The experimental environment of this paper is shallow water with a water
depth of 90 m. In the experiment, a large research vessel served as the target, while another
vessel used a towed acoustic source to transmit signals. The towed acoustic source was
deployed at a depth of 50 m and emulated an AUV that transmitted signals in shallow
water during the experiments. The receiver, a horizontal array fixed on the seabed, was
configured to simulate the towed array of an AUV operating in shallow water. In addition,
the two-way propagation distance between the transmitter, target, and receiver ranged
from 15 km to 18 km. The transmitted signal was a linear frequency modulation (LFM)
signal with a bandwidth of 100 Hz. Additionally, the duration of the transmitted signal was
20 s and was transmitted every 2 min. During the experiment, the target moved in a straight
line, but due to factors such as waves, there were errors in the heading, and the movement
was not entirely linear. The bearing–time result of one echo is shown in Figure 18. The
results obtained from the figure are consistent with the description in Section 2.2, the main
lobe formed by the beamforming algorithm, and the multipath can be observed.

The shallow water environment leads to a significant spatial spread of target echoes
and increased noise interference in bearing–time figures. The LFM signals are insensitive
to Doppler shifts, which means that Doppler information cannot be utilized in the sea trial
data. The long return interval introduces uncertainties in the motion of the target and
challenges in data update. The medium to long ranges amplify the effects of propagation
loss, reverberation, and the geometric dilution of precision in bistatic localization, further
increasing the difficulty of tracking. These factors highlight the necessity of integrating the
multi-information algorithm to better accommodate the practical scenarios of AUVs.
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Figure 17. Bistatic active sonar experiment in October 2022: (a) experiment positions; (b) sound
speed profile.

Figure 18. Bistatic active sonar detection result.

Since the signal used in the experiment was an LFM signal, which is insensitive to
Doppler effects, only the amplitude information could be obtained from the target mea-
surement data. Thus, the AI-PDA-IMM-KF algorithm, the PDA-IMM-KF algorithm, and
the traditional positioning IMM-KF algorithm were compared and analyzed. In addition,
we added the AI-PDA-KF algorithm to measure whether the IMM is effective. The track-
ing trajectories and RMSE are shown below: From Figure 19, it can be observed that the
curve of the AI-PDA-IMM-KF algorithm is the smoothest and closest to the true values.
Within the highlighted region, it aligns more closely with the GPS trajectory compared to
other algorithms. In contrast, the trajectory of traditional positioning algorithms deviates
significantly from the actual trajectory, demonstrating poorer performance. The RMSE
curves shown in Figure 20 indicate that the proposed AI-PDA-IMM-KF algorithm achieves
the lowest positioning error among the compared methods, followed by the AI-PDA-KF,
PDA-IMM-KF, and traditional IMM-KF algorithms. As shown in Table 1, the traditional
IMM-KF algorithm yields an average RMSE of 136.8948 m, while the PDA-IMM-KF al-
gorithm reduces this error to 104.1703 m, representing an improvement of 32.7245 m or
approximately 23.90%. The AI-PDA-KF algorithm, which integrates the amplitude infor-
mation but excludes the IMM framework, achieves an RMSE of 92.0889 m. This result
demonstrates the effectiveness of incorporating amplitude information into the measure-
ment process. In particular, the proposed AI-PDA-IMM-KF algorithm further reduces
the RMSE to 79.2145 m, outperforming the AI-PDA-KF algorithm by 12.8744 m (a 13.99%
improvement) and the PDA-IMM-KF algorithm by 24.9558 m (a 23.95% improvement).
Compared to the traditional IMM-KF algorithm, the total improvement reaches 57.6803 m
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or 42.13%. These results collectively highlight the benefit of integrating amplitude informa-
tion, probabilistic data association, and the IMM framework to achieve substantial gains in
tracking accuracy.

Table 1. The average RMSEs of different algorithms.

Algorithm AI-PDA-IMM-KF PDA-IMM-KF IMM-KF AI-PDA-KF

RMSE (m) 79.2145 104.1703 136.8948 92.0889
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Figure 19. Estimated target trajectories. Red points are measurements of the target, the blue lines are
the true trajectories of targets from GPS, and the black circles are the estimated positions. The arrows
in the figures indicate the direction of movement of the target, and the gray frames are the end of the
trajectories, where the tracking results of each algorithm differ the most.
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Figure 20. The RMSE results of different algorithms on the sea trial data.

In Figure 20, we observe that the RMSE of the 12th ping data is relatively low after
applying the IMM-KF algorithm. Figure 21 illustrates that the point with the highest
amplitude is very close to the true position, resulting in a better tracking performance
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of the IMM-KF algorithm. However, the PDA-IMM-KF, AI-PDA-KF, and AI-PDA-IMM-
KF algorithms utilize measurement bearings from 120° to 140° and estimate positions
further from the true location. For the 13th ping data in Figure 22, the RMSE increases
with the IMM-KF algorithm because the highest amplitude point is approximately 10°
away from the true position. After data association with the PDA-IMM-KF, AI-PDA-
KF, and AI-PDA-IMM-KF algorithms, the estimated position lies between two regions,
demonstrating the effectiveness of the PDA method. From Figure 23, we can see that after
incorporating amplitude information, the AI-PDA-IMM-KF and AI-PDA-KF algorithms
calculate association probabilities that are constrained by amplitude, making them more
aligned with the true positions. In contrast, the results of the PDA-IMM-KF algorithm
rely solely on position information, making them more susceptible to the influence of
other factors.

(a) (b)

Figure 21. The 12th ping data: (a) bearing–time–amplitude result; (b) bearing–time result.

(a) (b)

Figure 22. The 13th ping data: (a) bearing–time–amplitude result; (b) bearing–time result.

The RMSE in the 14th ping data remains high with the IMM-KF algorithm in Figure 24
although the target with the highest amplitude is already very close to the true position
because it is influenced by the 13th ping data and cannot be tracked in the right way.
Consequently, the tracking position estimated after the 13th ping deviates significantly
from the true position, leading to further tracking errors. The analysis of sea trial data
validates the simulation results, while the proposed algorithm exhibits strong robustness,
enabling accurate and stable tracking of maneuvering targets.
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(a) (b)

Figure 23. The 13th ping data: (a) AI-PDA-IMM-KF result; (b) PDA-IMM-KF result. The energy
values in the background of the figure represent the magnitude of the association probabilities.

(a) (b)

Figure 24. The 14th ping data: (a) bearing–time–amplitude result; (b) bearing–time result.

The computational efficiency was evaluated by average processing time per ping on an
Intel i5-13500HX CPU. As shown in Table 2, the IMM-KF algorithm is the most efficient at
0.09 ms/ping, benefiting from its simple structure, followed by the AI-PDA-KF algorithm
(0.18 ms), the PDA-IMM-KF algorithm (0.33 ms), and the proposed AI-PDA-IMM-KF
algorithm (0.47 ms). The increased cost of the AI-PDA-IMM-KF algorithm is mainly due to
the IMM framework and amplitude information fusion. Despite this, the overall runtime
remains well within real time constraints, making the proposed algorithm suitable for
AUV-based tracking applications.

Table 2. Average running time of different algorithms.

Algorithm AI-PDA-IMM-KF PDA-IMM-KF IMM-KF AI-PDA-KF

Running time (ms) 0.47 0.33 0.09 0.18

5. Discussion
From the simulation experiments that involve multiple targets, the amplitude informa-

tion performs well when there are no complex scenarios between targets. However, once
the targets converge, the amplitude information may lead to tracking errors. It can also
be seen that Doppler information helps prevent tracking errors in multi-target scenarios
and significantly improves tracking accuracy. The sea trial data used LFM signals, whose
inherent insensitivity to Doppler shifts limited the validation of Doppler information under
real ocean conditions. However, the sea trial results clearly demonstrate the core value
of the multi-information-assisted framework: even under the constraint of relying solely
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on amplitude information, the proposed algorithm significantly outperforms traditional
algorithms in tracking accuracy. This strongly validates the effectiveness of leveraging
auxiliary feature information to enhance tracking performance in active sonar. The ad-
vantages of Doppler information are fully reflected in the simulation experiments, and its
comprehensive validation in real-world systems will be a key focus of future work. In
future work, we will conduct experiments and tests using Doppler-sensitive waveforms to
make full use of Doppler information and further improve tracking performance.

6. Conclusions
This paper proposes a multi-information-assisted PDA algorithm based on the PDA

framework, considering the integration of amplitude and Doppler information to address
the challenges of target tracking for AUVs in shallow water. The algorithm combines differ-
ent information to improve measurement association and target state estimation, enhancing
the robustness of AUVs in dynamic underwater surveillance. By further integrating the
IMM algorithm to adapt to diverse marine target motion patterns, the proposed algorithm
demonstrates superior data association efficiency and tracking accuracy compared to tradi-
tional PDA algorithms. These advances are particularly critical for AUV-based operations.
Simulation experiments of two multi-target scenarios demonstrate the effectiveness of
amplitude information and Doppler information on the algorithm, and the accuracy is
greatly improved. When applied to sea trial data collected from simulated AUV-deployed
bistatic sonar systems, the algorithm achieves a 23.95% improvement in tracking accuracy
using only amplitude information compared to traditional PDA algorithms. These results
demonstrate the effectiveness and robustness of the algorithm proposed in this paper. The
algorithm proposed in this paper is currently applied in shallow water. Future extensions
are needed for deep water. Although the fusion of amplitude information and Doppler
information can be retained, adaptations such as incorporating more appropriate acoustic
propagation models and enhancing the weighting of Doppler information will be required
to accommodate the physical characteristics of deep water. Currently, Doppler information
utilization remains elementary. It will be more important to use Doppler information to
track highly maneuverable targets, which is also the focus of our future research. Imple-
menting these algorithms on embedded AUV processors for real-time tracking, coupled
with multi-AUV collaborative sonar networks, will further advance robust underwater
perception capabilities for ocean engineering.
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AUV Autonomous underwater vehicle
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MC Monte Carlo
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CT Coordinated turn
AI Amplitude information
MI Multi-information
KF Kalman filter
LFM Linear frequency modulation
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