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Abstract

Autonomous Underwater Vehicles (AUVs) operating in dynamic, constrained underwater
environments demand sophisticated navigation and detection fusion capabilities that tradi-
tional methods often fail to provide. This paper introduces a novel hybrid framework that
synergistically fuses a Multithreaded Energy-Optimized Batch Informed Trees (MEO-BIT*)
algorithm with Deep Q-Networks (DQN) to achieve robust AUV autonomy. The MEO-BIT*
component delivers efficient global path planning through (1) a multithreaded batch sam-
pling mechanism for rapid state-space exploration, (2) heuristic-driven search accelerated
by KD-tree spatial indexing for optimized path discovery, and (3) an energy-aware cost
function balancing path length and steering effort for enhanced endurance. Critically,
the DQN component facilitates dynamic obstacle detection and adaptive local navigation,
enabling the AUV to adjust its trajectory intelligently in real time. This integrated approach
leverages the strengths of both algorithms. The global path intelligence of MEO-BIT* is
dynamically informed and refined by the DQN’s learned perception. This allows the DQN
to make effective decisions to avoid moving obstacles. Experimental validation in a simu-
lated Achao waterway (Chile) demonstrates the MEO-BIT* + DQN system’s superiority,
achieving a 46% reduction in collision rates (directly reflecting improved detection and
avoidance fusion), a 15.7% improvement in path smoothness, and a 78.9% faster execution
time compared to conventional RRT* and BIT* methods. This work presents a robust solu-
tion that effectively fuses two key components: the computational efficiency of MEO-BIT*
and the adaptive capabilities of DQN. This fusion significantly advances the integration
of navigation with dynamic obstacle detection. Ultimately, it enhances AUV operational
performance and autonomy in complex maritime scenarios.

Keywords: autonomous underwater vehicles (AUVs); navigation and detection fusion;
hybrid path planning; deep reinforcement learning (DRL); dynamic obstacle detection and
avoidance; energy-optimized navigation; MEO-BIT*; adaptive decision-making

1. Introduction

With the increasing application of intelligent marine vehicles, especially autonomous
underwater vehicles (AUVs), efficient autonomous navigation systems are required in
environmental monitoring, cargo transportation, coastal surveillance, inland waterway
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navigation, port operations, and autonomous ferry services [1,2]. As the key problem of
autonomous navigation, path planning directly impacts the safety, efficiency, and endurance
of AUVs (including Unmanned Surface Vehicles (USVs)) operating in narrow waterways [2].
However, despite their robustness, common search-based planners, such as the classic
A* algorithm and its variations, are often inefficient in narrow waterways or for surface
navigation. Sampling-based planners such as Rapidly-exploring Random Tree Star (RRT*),
Batch Informed Trees (BIT*) [3] can find feasible paths efficiently in high-dimensional
space but often provide suboptimal or unstable trajectory information, which increases
cost and results in poor maneuvering efficiency; furthermore, they cannot guarantee
good stability and robustness in complicated environments with unpredictable obstacles,
requiring frequent replanning, which is very inefficient. BIT* works well in static and
quasi-static environments, but it is not easy to apply in dynamic obstacle fields. It lacks
the adaptability and intelligence to make active and wise decisions. On the contrary,
pure Deep Reinforcement Learning (DRL) methods such as Deep Q-Networks (DQN)
perform poorly in sample efficiency and will take a long time to learn in an uncertain
environment. DQN-based policies show potential for adapting to complex maritime
environments. However, their real-world application can be impractical or unsafe. This is
because they require extensive converging interactions, making them unsuitable for most
maritime operations [4]. Therefore, it is necessary to combine sampling-based geometric
planners with DRL agents to obtain more effective, robust, and brilliant solutions for
navigation under various complex conditions. Therefore, we identify the need for new
path planning approaches by summarizing existing literature in this paper. Navigating in a
narrow waterway requires not only path feasibility and distance optimality but also other
essential aspects that should be considered, such as collision avoidance (paramount factor),
minimizing travel time, smooth turning motion (operational efficiency), and conserving
energy (cost). This results in limited options for IMVs, such as AUVs, in dynamic/narrow
waterways. Traditional solution paradigms either lack robustness and efficiency in practical
scenarios or do not offer safe, reliable, and knowledgeable guidance.

To address the above issues and challenges, a multithreaded energy-optimized BIT* +
DON hybrid path planner is proposed in this paper to make full use of the complementary
advantages of BIT* with multiple threads running simultaneously and DQN, which pro-
vides local optimization strategies while effectively learning how to predict, avoid dynamic
obstacles, and optimize several objectives, including, but not limited to, energy consumed.
The research question being addressed in this paper is: “Can a synergistic combination
of both worlds enable IMVs to gain better robustness, efficiency, and intelligence for suc-
cessful operation and achieve true autonomy?” By combining the exploration ability of
sampling-based geometry path planner BIT* and the exploitation capability of DRL, a
Multithreaded Energy Optimized BIT* + DQN path planner algorithm was developed. Our
contributions in this work are as follows:

A novel hybrid path planning framework (MEO-BIT* + DQN) is proposed. This
framework synergistically integrates the efficient global path generation and heuristic
guidance capabilities of an advanced sampling-based geometric planner, Multithreaded
Energy-Optimized Batch Informed Trees (MEO-BIT*), with the robust capabilities of a Deep
Q-Network (DQN) for adaptive local path optimization and dynamic obstacle avoidance in
complex narrow waterways, thereby overcoming the limitations of standalone geometric
or learning-based approaches.

A significantly enhanced MEO-BIT* algorithm is presented, achieving efficient and
energy-aware global planning through the introduction of three core innovations: (a) a
multithreaded batch sampling mechanism incorporating heterogeneous CPU core manage-
ment to reduce planning time significantly; (b) an optimized heuristic search integrated
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with k-dimensional tree (KD-tree) acceleration to improve nearest-neighbor search effi-
ciency; and (c) the construction and integration of a physics-inspired cost model to generate
near-optimal paths that balance both distance and actual cost efficiency.

An effective DQN-guided local optimization and dynamic adaptation strategy was
also developed. This strategy empowers the DQN agent to use the output of MEO-BIT* for
state representation, learn intelligent obstacle avoidance maneuvers, and potentially guide
the MEO-BIT* search process. This significantly boosts the system’s robustness in dynamic
environments and enhances global-local planning efficiency.

Comprehensive experimental validation was conducted. Simulation results in real-
world complex and narrow waterway environments with dynamic obstacles, such as the
Achao waterway in Chile, demonstrate that the proposed MEO-BIT* + DQN method signif-
icantly outperforms baseline algorithms in terms of reduced collision rates, improved path
smoothness, optimized cost efficiency, and enhanced computational speed. This provides
strong experimental support for the autonomous navigation of intelligent marine vehicles.

1.1. BIT* Algorithm and Its Research Status and Challenges in Energy and Dynamic Adaptability

The BIT* algorithm incrementally constructs an implicit random geometric graph
through a batch-processing approach. Then, dynamic programming searches for the
optimal path within this graph. It exhibits significant computational advantages in high-
dimensional, complex environments, capable of quickly finding feasible solutions and
progressively optimizing them toward an optimal solution [3,5]. As an algorithm devel-
oped from sampling-based planning concepts such as RRT*, BIT* aims to improve initial
suboptimal paths through heuristic global techniques and local optimization, achieving
superior planning results and convergence toward a worldwide optimum [6]. Gammell
et al. [5] have demonstrated BIT*’s probabilistic completeness, asymptotic optimality, and
efficiency in high-dimensional spaces. Based on BIT*, researchers have proposed im-
provements: Choudhury et al.’s raBIT* [7] accelerates the search by incorporating a local
optimizer (such as CHOMP), which is particularly effective in narrow passages. Zhang
et al.’s fit* [8] optimizes BIT*’s efficiency across different dimensional spaces through an
adaptive batch-sizing strategy. Cao et al.* [9] utilize error-tolerant points to increase path
diversity and evade obstacles in dynamic environments. At the same time, Zheng and
Tsiotras’s ibbt [10] extends BIT* to belief-space planning in uncertain environments. Re-
search in related fields also offers insights for handling complex constraints and dynamic
environments. For instance, RRT*-Smart [11] enhances RRT* efficiency through heuris-
tic sampling and gradual optimization, sharing BIT*’s objective of efficient optimal path
planning in high-dimensional, complex environments. Yang et al.’s SRRT [12] efficiently
addresses robot differential constraints using spline curve parameterization, providing
ideas for integrating complex kinematic constraints into sampling optimization algorithms.
Li et al. [13] proposed the SST and SST* algorithms specifically for dynamic environments
lacking precise BVP solvers. Their work demonstrates that even with limited system model
information, asymptotically (near-)optimal path planning can be achieved with fast conver-
gence. This provides a significant theoretical and practical reference for applying BIT*-like
algorithms in complex dynamic scenarios, especially regarding achieving planning optimal-
ity with more restricted system model information. SRRT’s method of efficiently handling
internal and external constraints while ensuring path curvature continuity via spline curves
also offers valuable insights for sampling optimization algorithms, including BIT*, when
dealing with specific motion constraints.
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1.2. Current Research Status of Artificial Intelligence Deep Reinforcement Learning

Deep Reinforcement Learning (DRL), a cutting-edge technology in artificial intelli-
gence, demonstrates immense potential in addressing autonomous decision-making prob-
lems within complex dynamic environments by combining the perceptual capabilities of
deep learning with the decision-making abilities of reinforcement learning. It has garnered
significant attention, particularly in the domain of robot navigation. Unlike traditional
planning algorithms, DRL methods can acquire optimal strategies through interaction with
the environment, allowing them to better adapt to uncertainty and dynamic changes.

In recent years, researchers have extensively explored the application of DRL to
various navigation tasks. For example, Sivayazik and Mannaye [14] proposed a double
DQN-based algorithm for autonomous vehicle navigation in urban dynamic obstacle
environments, optimizing neural network structures and reward functions across different
training settings. Deguale et al. [15] introduced an improved DRL strategy combining
prioritized experience replay, reward shaping, and specific network architectures (such as
PMR-Dueling DON). They validated its effectiveness in robot path optimization, obstacle
avoidance, and learning speed within grid worlds and Gazebo simulation environments.
These studies indicate that DRL can guide agents to learn effective navigation behaviors
through carefully designed reward mechanisms and network structures.

Meanwhile, remarkable achievements have been made in using DRL to solve special
navigation situations. Zhang et al. [16] designed the Pro-Polishing DQN algorithm and
solved the problems of slow convergence and experience waste in mobile robot local path
planning using a sum tree-based priority experience replay method to improve learning
efficiency and path quality; Yang et al. [17] improved the DQN algorithm by optimizing the
sample collecting and non-uniform sampling strategies and applying them to intelligent
anti-collision for vessels; Yang et al. [18] first constructed an environmental model based on
an electronic chart and altitude map, then designed a DQN algorithm-based path planning
scheme for amphibious uncrewed surface vehicles, and improved path rationality by action
masking and path smoothing; Wen et al. [19], combining MonoDepth with obstacle recog-
nition, proposed a probabilistic dueling DQN algorithm to optimize agent paths, which
could make the agent converge faster. It was mixed with FastSLAM to realize autonomous
navigation and mapping. For coastal ship path planning, Guo et al. [20] introduced an
optimized DQN path planning model, quantified the real-world navigation environment
and collision avoidance rules to guide DQN'’s learning, and improved the path safety and
economy levels. Yang et al. [21], and then Noreen et al. [22], used the DQN algorithm
to combine Q-learning, experience replay, and other network structures, such as physics
output neural networks, to solve multi-robot path planning problems. Yuan et al. [23]
focused on cross-river path planning of inland ferries, designed and improved the state
space, action space, and reward function of the DQN model, and completed economical and
safe autonomous ferry navigation. Lv et al. [24] put forward improved learning methods
according to different learning needs, among which the Q-value calculation of DON was
based on a dense network frame structure, accelerating the convergence speed and improv-
ing path accuracy. Li et al. [25] introduced a new DRL-based unified collision avoidance
path planning strategy, and simulation tests verified its effect under different conditions.
Huang et al. [26] presented an improved DQN algorithm for the path planning of uncrewed
surface vehicles (USV). Further, Villanueva et al. [27] combined Double Q-learning with a
Dueling architecture to achieve effective UAV path planning, while Zhou et al. [28] further
studied DRL in USV single-vessel/formation path planning, exceptionally reliable collision
avoidance in restricted seas.

Although the excellent potentials shown in the above DRL literature have indicated
that there is a tendency to use them on navigational applications, as well as with improve-
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ment from various advanced technical usages such as the prioritized experience replay
method, reward shaping technique, specific network structure setting up, and combination
of other algorithm approaches, pure reinforcement learning techniques are still facing many
problems at present. Sample inefficiency is also unavoidable here; agents must interact
longer and make mistakes before they exhibit efficient behavior; meanwhile, this cost
would be even more expensive and risky for reasons concerning the reality of the maritime
domain [29]. Meanwhile, stability of convergence and lack of sub-optimal solutions may
need careful design, especially when there is a lack of sufficient prior knowledge guidance
support for avoiding such situations accordingly [30]. Moreover, how the existing geomet-
ric planner benefits from the structure of DRL and guides or instructs itself about the path
learning process, i.e., how to combine that specific knowledge/answers, seems another
direction worth exploring. How to realize it remains unknown.

Therefore, taking into consideration all that has been stated above about the nature of
reinforcement learning algorithms’ characteristics—i.e., its unique feature of being good
enough with decision-making in dynamics but bad for adaptation—and that its potential
might further increase by using an adequate sampling search approach rather than exhaus-
tive random searching (e.g., by using our improved MEO-BIT* planner efficiently)—we
believed that hybridizing our designed planning architecture with a deep learning rein-
forcement technique would achieve good and satisfactory results, including increasing
adaptability and collision-free levels.

2. MEO-BIT* + DQN Hybrid Path Planning Framework

To realize an intelligent ship’s safe, effective, strong, and energy-saving autonomous
navigation in complex and narrow waterway channels, this paper puts forward a hybrid
planning structure combining MEO-BIT* and Deep Q-Networks (DQN) to organically
incorporate their advantages, fully consolidate the powerful global efficient path producing
method MEO-BIT*’s ability, and complete the consolidation of the local intelligent deci-
sion algorithm based on dynamic environment adaptation provided by the Q-learning
mechanism DQN, avoiding one-sidedness.

2.1. High-Performance Multithreaded Energy-Optimized (MEO-BIT*) Model
2.1.1. Batch Sampling and Heuristic-Guided Mechanism

The core of the MEO-BIT* algorithm is the intelligent strategy combining the advan-
tage of batch sampling with guided heuristics to search in complicated continuous-state
spaces, which begins by first dividing the original continuous-state space into batch-
sampled random sample points, using an implied RGG for reference about their potential
inter-relationships. The edge evaluation of BIT* does not have to be computed simul-
taneously; it evaluates edges using a heuristic at any time according to needs, saving
tremendous amounts of edge evaluation calculation operations, especially when facing
large search volumes.

To conduct effective searching processes, the key point is keeping two different pri-
ority queues updated—vertices” and edges’ priority queues, respectively named QV and
QE—with the vertices” waiting queue, QV, containing all those awaiting to be processed,
stored, and sorted based on the estimation between these vertexes from the start to the
goal, including distance and cost together; this sorting method is named the Total Cost
Ordering TC Order (TCo). The edges” waiting queue (QE) contains all of those edges
under evaluations stored in sorted order, TCOrder (which sorts both distance AND energy
costs), from the start to the goal, referred to by us as EEdges TCO (EE-TCo). Thus, 2-PQ
management combined with MEO-BIT*(search process) gives us a higher likelihood of
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chance paths (that hopefully converge better solutions than prior ones encountered up
until now while expanding BTTree*) during its iterative procedures whenever available.
The evaluation function is given by Equation (1):

~

f(v) = gr(v) +h(v), ©)

where gr(v) represents the current known lowest cost (considering energy) from the start
to vertex v, and /1(v) represents the estimated cost (considering energy) from vertex v to
the target.

The batch sampling process of MEO-BIT* optimizes the batch strategy, and the algo-
rithm can add a group of new samples (the number of which can be set freely) per iteration.
After searching for the current batch, prune the unnecessary nodes, then add new batches
according to the need to ensure convergence and improve the efficiency of path discovery.

The main innovation mechanisms in the batch sampling process of MEO-BIT* are
threefold, designed to enhance both exploration efficiency and solution quality:

Just-In-Time (JIT) Sampling: Instead of pre-discretizing the entire search space, this
mechanism allows the algorithm to dynamically generate sample points during the search
process based on current needs. This makes MEO-BIT* highly flexible and particularly
suitable for navigating vast or unstructured open waters, as it dynamically determines the
amount of information needed at the frontier. The number of required samples is calculated
using Formula (2):

c?eq(d) = min (ci, max f(x)) ()

x€ Xnear

Optimized Sampling Strategy: MEO-BIT* synergistically combines both direct and
random sampling. The probability of using direct sampling is adaptively controlled by
heuristic evaluations, prioritizing regions with a high likelihood of containing the opti-
mal solution. This accelerates the generation of high-quality samples while maintaining
diversity. After finding an initial feasible solution, the strategy focuses on refining the
current path while preserving global exploration. Optimized Sampling Strategy: MEO-
BIT* synergistically combines both direct and random sampling. The probability of using
direct sampling is adaptively controlled by heuristic evaluations, prioritizing regions with
a high likelihood of containing the optimal solution. This accelerates the generation of
high-quality samples while maintaining diversity. After finding an initial feasible solution,
the strategy focuses on refining the current path while preserving global exploration.

Adaptive Batch Size Mechanism: This mechanism intelligently regulates the number
of samples processed in each iteration. In the initial search phase (when no solution
exists), increase the batch size to accelerate exploration and cover the space efficiently.
Once a feasible solution is found, it progressively reduces the batch size, allocating more
computational resources for path refinement. This creates a dynamic balance between
exploration and optimization, which is especially advantageous in environments where
fixed sampling strategies underperform.

Explicitly speaking, at the beginning of the algorithm, without any valid solution,
this adaptive batch-size adjustment strategy will force the value up, enabling the batch
process to search more efficiently. However, after getting the desired solution initially
found successfully, another adjustment factor proportional to the former one will be used
to decrease the batch size, allowing more time for refinement along the already chosen
route and making the search balance between exploration and optimization finely adjusted
dynamically according to their requirements in different situations. This approach is
advantageous in vast or unstructured open-water environments where fixed sampling
strategies underperform.
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MEO-BIT* synergistically combines direct and random sampling strategies. The direct
sampling probability parameter is adaptively controlled based on heuristic evaluations
indicating high-probability optimal solution regions. This optimization accelerates high-
quality sample generation during iterations while maintaining solution diversity. After
obtaining an initial feasible solution, the strategy focuses on the current solution while
preserving global exploration capability to ensure asymptotic optimality.

This component intelligently regulates sample volume per iteration cycle. During
initial search phases (no valid solution), the mechanism prioritizes exploration by increasing
the batch size for efficient space coverage. Upon obtaining a feasible solution, the batch
size is progressively reduced using a decay factor proportional to solution quality. This
creates a dynamic balance between:

Exploration: Broad search space coverage

Optimization: Local path refinement

The adaptive adjustment responds to changing search conditions in real time, optimiz-
ing resource allocation throughout the planning process.

2.1.2. Multithreaded Parallel Optimization Mechanism

The MEO-BIT* algorithm used in this study fully uses the computational advantages of
modern heterogeneous processors. This type of processor, such as the Intel Core i7-14700H
used in this experiment, typically contains two different types of cores:

Performance Cores (P-Cores): Designed to handle high-load and compute-intensive
tasks. With higher clock frequencies and stronger single-core performance, they are suit-
able for performing latency-sensitive critical calculations in algorithms, such as complex
collision detection or path evaluation.

Efficiency Cores (E-Cores): Designed for background tasks, I/O operations, and highly
parallel, multithreaded loads. They are more advantageous regarding power consump-
tion and are suitable for performing non-core but continuously running tasks such as
monitoring, data management, etc.

By implementing intelligent thread scheduling and load balancing on this hybrid
architecture, our algorithm can allocate different types of computing tasks to the most
suitable core execution, thereby optimizing overall energy efficiency while maximizing
computing throughput. The following is a detailed description of the specific parallel
optimization mechanism we designed for this architecture.

Different heterogeneous thread pools management: For different demands of the
computation task (colliding, dense sample, etc.), it will assign special threads so that other
threads and pools will be assigned for I/O and less demanding loads, e.g., monitor run sta-
tus, manage auxiliaries to E-cores (Efficiency cores, optimized for low-power background
tasks) rather than heavy computation, as they cannot benefit from multiple parallel com-
putation, and P-core (Performance cores) can make better improvement in single-thread
application. However, other cases, such as input/output or search status monitoring, could
also be done using available free-up E-cores. The balance number has to be put down by
us, which shall be used for computations where all cores would have been engaged, but
the perfect number of those threads relies upon the physical/core configuration that is
represented by Equation (3):

NOpt = min(Nphysical_cores x 1.5, Nlogical_cores)r (3)

where Nphysical_cores 1S the number of physical cores and Niggical_cores 1S the number of
logical cores.

Dynamic Load Balancing: It dynamically changes the length and priority of the work
item queues based on the load situation of each CPU core, ensuring that it is uniformly
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distributed between P-cores and E-cores. At the same time, it adopts the work-stealing
strategy; when a core (especially an E-core or an idle P-core) finishes one task, it can steal
tasks from other busy cores’ (especially P-core’s) tail-end work item lists to execute them
simultaneously. This is very important in the case of large maps being processed or intense
explorations occurring—otherwise, this could cause computational bottlenecks, which
would restrict the maximum output of the whole system.

Batch Collision Detection Optimization: MEO-BIT* organizes collision detection tasks
for multiple edges into batches rather than performing independent, sequential collision
checks for each newly generated edge. These batched tasks, containing multiple edges, are
then processed in parallel by multiple threads within a thread pool. This batch-processing
method significantly reduces the overhead of single-task scheduling and thread synchro-
nization, leading to substantial acceleration in complex environments with numerous
potential path segments. Collision detection itself uses the Bresenham line algorithm for
discretized checks, further optimized by a Bresenham algorithm caching mechanism: pre-
viously checked line segments and their collision status are cached to avoid redundant
checks on identical or similar segments in subsequent iterations (especially during iterative
path refinement). The collision detection resolution can be set as needed (e.g., 20 units),
and the batch size for batch collision detection is also configurable (e.g., 200 edges).

Thread Affinity Optimization: MEO-BIT* employs a thread affinity optimization strat-
egy to minimize context switching overhead caused by threads migrating between different
CPU cores and improve CPU cache coherence and hit rates; MEO-BIT* employs a thread
affinity optimization strategy. Threads responsible for critical, long-running tasks (e.g.,
managing updates to specific KD-tree branches or maintaining particular sections of prior-
ity queues) can be pinned to dedicated CPU cores (typically P-cores for compute-bound
tasks or particular E-cores for consistent background tasks) for execution. This practice
ensures that the relevant thread’s data remains as much as possible in the corresponding
core’s local cache, reducing memory access latency.

KD-Tree Accelerated Nearest Neighbor Search: To increase the performance gain
achieved by using KD-tree in the nearest neighbor search of sampled points (the sam-
pling process consists mainly of nearest neighbor search operation), once again, adopt
the advanced data structure named KD-Tree to find the closest vertex within the existing
tree of sampled points (which usually contains lots of samples). As a result, compared
with the naive case of acceleration function, where the environment scale expands too
fast and the number of all searchable vertices increases dramatically, then adopting the
above-accelerated KD-searching method would benefit the algorithm quite a lot.

Dynamic resolution change technology: MEO-BIT*, taking different path segment
length accuracy requirements into account, uses higher-precision dynamic adjustment
collision detection accuracy for shorter paths and lower-precision dynamic adjustment
collision detection accuracy for longer paths by dynamically calculating the number of
search points according to the following Formula:

Nyips = max(MIN SEGMENT CHECK, |scale x dist|).

The entire multithreaded parallel optimization mechanism is illustrated in Figure 1.
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P-Core 1
Collision
Detection

Dynamic Resolution: el 5 Performance Speedup:
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Figure 1. Flowchart of the multithreaded parallel optimization mechanism.

2.1.3. Cost Equation Optimization Mechanism

The cost equation optimizing mechanism is another innovative feature between the
MEO-BIT* algorithm and the traditional path planners. The traditional ones only optimize
the paths in consideration of geometrical length without considering most of the whole
cost resulting from the ship’s turning behaviors (such as the number of maneuvers and
value of maneuvers) etc., on which we put forward a general comprehensive cost function-
balancing path length (d) and turning penalty (6), defined as, which is the ideal index for
the intelligent ocean-going vehicle to seek total navigation consumption compared with
the actual situation when planning voyages.

The fundamental form of this cost function is defined as:

E=wad+ 0w (4)

This cost function incorporates insights from hydrodynamics, where the turning term
(B - 8 - w) penalizes maneuvers that typically increase the actual cost (e.g., due to increased
drag during turns), and 6 means the turning angle that appears when sailing. This value
comes from the calculation result of the angle between the current path segment and
the previous path segment (or the angle between two adjacent path segments), which is
expressed explicitly in Equation (5):

—

—
: 1
) = arccos % ﬂ ©)
pillel)

Degree-to-radian conversion is where Equation (5) correctly expresses the local cur-
vature value of the path. « means the distance weight factor; its role is to adjust the basic
ship energy expenditure required to overcome factors such as hydrodynamic drag and the
ship’s energy consumed per unit distance while sailing. 3 is the steering weight factor; its
role is to add an extra energy penalty for the sudden or large-angle steering appearing in
the sailing process. Severe turning will not only cause an increase in cost, due to overcom-
ing resistance generated by the rudder and hull sideways moving laterally in the water,
but may also have adverse effects on navigation stability and board equipment or items’
safety. Adjusting the ratio relationship between o and 3, for example, if 3 > o, means
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we can drive the MEO-BIT* algorithm to focus more attention on evaluating whether the
generated path passes through areas with high energy losses caused by sudden turns. w
means the correction coefficient of the turning angle; here, for calculation convenience, it
is preliminarily considered that a linear correspondence relationship exists between the
turning angle and obtained extra energy cost (i.e., w = const.), for example, taking 1.0. Of
course, the setting of this parameter leaves us enough room to carry out in-depth research
further to introduce some nonlinear models to better evaluate the specific influence of
different sizes and angular velocities of turns on ship costs.

Of course, regarding these key parameters, their reasonable values must be calibrated
based on preliminary sensitivity analysis according to the special application situation
(such as ship type and water environment) before they are used. The purpose is to seek
the optimal balance between the shortest path length and maximum action smoothness
(the minimum energy). Only such carefully tuned energy-aware path evaluation mode can
provide more effective realistic reference hint information for the searching process itself
of the MEO-BIT* algorithm; at the same time, it can provide richer and more informative
energy-estimating baseline hint information for any integrated DQN module after forma-
tion in the subsequent policy learning stage, in order to drive DQN to learn how to sail in a
more energy-saving way gradually.

The energy cost E (Equation (4)) effectively integrates into the MEO-BIT* algorithm’s
path evaluation. This directly governs the edge evaluation function f(edge) and indirectly
refines h(v)’s search estimate for future paths. Consequently, the MEO-BIT* planner’s
expansion decisions prioritize not merely geometric shortest paths but energy-optimized,
geometrically suitable paths.

Crucially, these optimal path candidates must offer both broader scope minimality and,
more critically, globally lower costs, considering overall expected travel costs and efficiency.
Local path choices during global searches often incur excessive energy and time if viewed as
final routes. This is vital for long-endurance AUV missions (e.g., exploration or surveying),
as energy-oriented global planning provides ample operational time, maximizing range
and mission duration under reasonable conditions. Figure 2 visually demonstrates how
energy optimization influences planned routes, contrasting unoptimized paths with energy-
optimized alternatives to validate global optimality. Other control mechanisms refine
trajectories to meet mission requirements while reducing total cost.

B Parameter Impact on Path Shape
E=a-d+p-0-0

Energy = Distance Cost + Steering Cost

Unoptimized: B = 1.25 (High Steering Penalty)

« (Distance Weight):

« Controls basic energy cost per unit distance
« Higher a — Prioritizes shorter paths

« Influences overal path length selection

© (Correction Factor):

« Adjusts relationship between angle and energy cost
+ W= 1.0 assumes linear relationship

« Linear correction coefficient for model simpiification

B (Steering Weight):

« Penalizes shamp tums and direction changes

« Low (0.5) — Sharp tums, high energy consumption

« High B (1.25) — Smooth curves, low energy consumption
« Bdominates path curvature characteristics

0 (Turning Angle):

+ Measured between adjacent path segments

« Larger 8 — Higher steering penalty

« Directly affects steering cost calculation in energy equation

Figure 2. Schematic diagram of the cost equation optimization mechanism.
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2.2. Theoretical Deepening, Parameter Optimization Considerations, and Impact Mechanism of the
Cost Equation

To ensure the MEO-BIT* algorithm effectively balances distance cost and turning
cost during path evaluation, the weight parameters in the cost equation (see Equation (4))
were meticulously set. In this study, the distance weight « is set to 1.0, serving as the
basic cost measure. The turning weight 3 is set to 1.25 to impose a moderate penalty for
drastic turns during navigation, guiding the algorithm to generate smoother, lower-energy
paths. The turning angle correction coefficient w is set to 1.0, assuming a linear relationship
between the turning cost and angle for model simplification. These parameter values were
determined through a preliminary sensitivity analysis—testing different «/(3 combinations
on representative waterway segments and observing path shape, estimated total cost,
and obstacle avoidance success rate—based on understanding each parameter’s physical
meaning. The aim was to prioritize successful obstacle avoidance while considering path
length and cost efficiency. This specific parameter combination (e = 1.0, 3 = 1.25, w = 1.0)
is designed to provide a reasonable, efficient, and informative initial energy evaluation
benchmark for the subsequently integrated Deep Reinforcement Learning (DQN) module,
thereby assisting DQN in learning more optimal navigation strategies. Figure 3 illustrates
the overall flow of the MEO-BIT* algorithm, which incorporates this energy optimization

mechanism.
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Figure 3. MEO-BIT* algorithm flowchart.

2.3. MEO-BIT* + DQN Hybrid Path Planning Strategy Model

This study proposes a novel hybrid path planning strategy suitable for complex inland
river environments. This strategy deeply integrates the high efficiency of the MEO-BIT*
model in global path search and energy optimization with the powerful capabilities of
the Deep Q-Network (DQN) algorithm in handling dynamic environments and learning
complex decision-making behaviors. This hybrid strategy aims to provide high-quality
initial paths and heuristic information through synergistic action. At the same time, DQN
performs local, real-time path adjustments and dynamic obstacle avoidance. This sig-
nificantly enhances the autonomous navigation efficiency and robustness of intelligent
marine vehicles in complex dynamic environments, all while ensuring navigation safety
and path economy. To achieve this, the model’s design incorporates efficient mathematical
modeling methods. It optimizes DQN’s learning and planning performance in dynamic
environments through specific reward mechanisms and network structures, ensuring the
practicality of the final generated navigation solutions.

The successful training and performance of the MEO-BIT* + DQN hybrid model criti-
cally depend on the reasonable setting of a series of initialization parameters, among which
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the neural network weight initialization and experience replay buffer-related parameters of
the DQN module are critical.

Initial weight states significantly impact training for the DQN model’s Q-Network and
Target Q-Network. This study uses a standard normal distribution random initialization
(mean 0, standard deviation 0.01) to break symmetry, prevent local optima, and promote
effective learning. While employed here, more advanced methods, such as Xavier or He
initialization, could be explored in future work to maintain activation value means and
variances better across layers, mitigating vanishing/exploding gradients, and accelerating
convergence.

2.3.1. Extended Reading

To assist DON knowledge learning successfully and eliminate early-stage training
sample vanishing and exploding gradient issues (in the online network as well as the
Q-network plus target network), this chapter corresponds to all kinds of initialization layer
weights. The random initialization method used is selected from Xavier, and using these
parameters at the start setting makes sample training possess a proper level of shared
activity value out.

2.3.2. Experience Replay Buffer Settings

Methods such as Xavier and He are used to initialize weights cleverly so that the
gradients do not vanish or explode—they ensure that the output variance is consistent
across layers. This improves efficiency and ensures stability during training. The correct
initialization method depends on the problem so that it converges quickly.

(1) Other Hyperparameter Settings

The practical training of the DQN module relies on carefully selected hyperparameters.
In this study, the key hyperparameters were set as follows, with specific values detailed in
Table 1:

Table 1. Hyperparameter settings for training the DQN decision model.

Hyperparameter Name Value
Maximum Steps 100
Replay Buffer Size 20,000
Initial Exploration Rate €;,,tias 0.9
Exploration Decay Rate €decay 0.995
Final Exploration Rate €, 0.1
Discount Factor 7y 0.9
Learning Rate 0.001
Batch Size 32
Update Frequency 200

Discount Factor (y): Set to 0.9. This balances immediate and future rewards and is
suitable for goal-oriented path planning tasks.

Learning Rate: Initially set to 0.001, using the Adam optimizer to ensure convergence
speed and training stability.

Exploration Rate (¢): Initial € = 0.9, € Decay = 0.995, € Min = 0.1. This strategy aims to
balance extensive exploration in the early stages with exploiting known optimal strategies
later while maintaining adaptability to dynamic environmental changes.

Experience Replay Buffer Size: Set to 20,000 to store a sufficiently diverse set of
experiences and break data correlations.

Batch Size: Set to 32 to balance the accuracy of gradient estimation with computational
efficiency.
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Target Network Update Frequency: Updated every 200 training steps to stabilize the
Q-value learning process.

Also included is a description of the neural network architecture; the Q-network uses
a fully connected neural network with an input layer, two hidden layers, and an output
layer. The two hidden layers contained 256 neurons and used ReLU (Rectified Linear
Unit) as the activation function. The number of neurons in the output layer is the same as
the dimension of the action space, and the activation function is not used to output the
Q-value directly.

We use the Mean Squared Error (MSE) as the loss function to calculate the differ-
ence between the target Q-value and the predicted Q-value to update the weights of the
online network.

In addition to the learning rate, other key information about the optimizer is provided.
For example: “We use the Adam optimizer for network training, its learning rate is listed
in Table 1, and the other parameters (e.g., 1 = 0.9, p2 = 0.999) are set by default in the
PyTorch library (version 2.5.1).”

These hyperparameter settings combine standard practices in reinforcement learn-
ing with preliminary experimental adjustments tailored to the path planning problem of
this study.

(2) Reward Function Design

The reward function in reinforcement learning needs to show the vessel’s safety,
energy, and general efficiency; then, the ship can learn effective strategies combined with
map and path sample output by improved BIT* algorithm.

From a safety perspective, the vessel must avoid collisions and complete its navigation
task. Therefore, we adopt the following safety reward to prevent collisions:

When the ship sails into a black square (collision), the reward is:

Rpjack = —10. (6)

Considering the navigation efficiency, the ship should minimize costs except for
collision and task completion. Therefore, the reward is based on the ship’s good learning
routing and improved BIT* algorithm:

Rgrgen = ,.)/Yl . 5. (7)

For BIT* path planning, to encourage the vessel to plan (take actions leading to larger
states: forward state), we decrease the reward value with a constant decreasing speed
against its decreasing weight. The set target reward does matter in our chosen navigation
policy through channels; we can easily and quickly get good policies with low rewards.
However, we will be greedy and pay for that since we neglect safety or choose a bigger
one, leading to wide explorations instead of making the best results slow to achieve. That
is why rewarding choices have much to do with it. Upon reaching the finishing line, the
penalty value is:

Ryellow = 50. 8)

The decision model is implemented using TensorFlow (version 2.16.1) and Python 3.9.
Figure 4 illustrates the trained DQN'’s network architecture.
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Target_net

Figure 4. DON network model architecture diagram.

Figure 4 illustrates the Deep Q-Network (DQN) architecture proposed in this paper.
The network consists of an Input Layer, Hidden Layer 1, Hidden Layer 2, and an Output
Layer. The numerical value “256” in the figure indicates that each hidden layer contains
256 neurons. The network is designed to handle the state representation information
provided by MEO-BIT* (see Sections 2.3.2 and 2.4.1 State Space Definitions for details,
36 dimensions in total). The hidden layer uses the ReLU (Rectified Linear Unit) activa-
tion function for nonlinear transformation. The number of neurons in the output layer
corresponds to the action-spatial dimension (five discrete actions are defined in this paper),
and the Q-value estimation of each action is directly output. Processor core division: The
heterogeneous processors used in this article (such as the Intel Core i7-14700H) include
P-Cores and E-Cores. P-Cores have higher clock frequencies and stronger single-threaded
performance, making them suitable for computationally intensive tasks such as forward
inference in DQNs, complex collision detection, and path evaluation in MEO-BIT*; E-cores
optimize power consumption and are suitable for handling lightweight tasks such as data
I/0, status monitoring, and partial thread management in the background or with high
parallelism and low latency requirements. The multi-threaded parallelism mechanism of
the MEO-BIT* algorithm (Section 2.1.2) allocates different types of computing tasks to the
most appropriate cores (P-cores or E-cores) through intelligent task scheduling and load
balancing to optimize overall energy efficiency and computing throughput.

DON integrates reinforcement learning with deep learning, approximating optimal
Q-values through parallel online and target networks. The online network outputs state-
action Q-values, processed by two fully connected layers, with target network parameters
updated periodically. This design stabilizes training for offline learning models, providing
sufficient information for optimal policy function calculations for each sampled state. The
model is then retrained online, enabling other vessels to obtain all information samples,
receive rewards, and evaluate actions based on expected average gain for further updates.

Initialization at startup requires defining the action space (ship maneuver options) and
the state space (vessel movement area data). Key initial settings include the learning rate,
crucial for stable DNN parameter updates without numerical imbalance during cost value
calculations. DQN utilizes an experience learning mode, where actions’ reward results
are stored in memory (Replay Store), batched, and used for repeated interactions with the
environment. This offline path planning application addresses small-sample and difficult-
to-adjust issues in non-static, nonlinear conditions, enabling robust path generation around
vessels in challenging scenarios (see Table 2).
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Table 2. Pseudo-code for the improved DQON algorithm and cost equation.

Algorithm: Concise MEO-BIT* + DQN with Energy Penalty

O 0NNVl WN =

I T S e T e g
— OOV O NNANNUT WN =R O

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
Initialize target action-value function Q_hat with weights = Q_weights
For episode =1 to M, do
Initialize state s_1 (e.g., from env.reset())
Fort=1toT, do

With probability epsilon, select a random action, a;;
otherwise, select a; = (action that maximizes Q(s_t, a))
Execute action in the environment
Observe reward r; and next state s; 1
Observe whether the episode has terminated
current_reward = r;
if is_steering_action (a;), then
current_reward = omega_2 * cumulative_steering_factor
end if
Store transition (s¢, at, current_reward, s;, 1, terminated_flag) in D
Sample random minibatch of transitions (s s @i, T Sjt1s terminated_j_flag) from D
Perform_gradient_descent_step_on_Q_using_minibatch (minibatch, Q, Q_hat, gamma)
Every C step reset Q_hat =Q

End For

(3) Training Steps of the Hybrid Mode

The training process for the DQN decision model is illustrated in Figure 5.

Q-Network Framework

Environment g S N
Target O < NS O Q(s.a.8) v
Action a RS A e,
S e (SEFIONAS
O
State s . O PSKPOZ S Gradient Descent
Obstacle O
- (5 a) EEUH\A!QU Value Q-Network
sampled (s,a,r,s") I — LOSS
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“ea L(e)
=
(s, a, r, s")Storage o
Max Q’(s",a’,8")
« Foss
() sampled (s,a,r,s') &
cC_—32
Experience Next State s* - s
Replay Pool argot Valua otwor

Random Sample Set T

Figure 5. Training flowchart of the DQN decision model.

During the training process, the vessel’s current state information, S, in the aquatic

environment, is first fed into the Q-Evaluation Network (Q Eval network), as depicted
in the figure. The Q Eval network then outputs the Q-value for each action within the
vessel’s action set. Following this, an action, A, is selected based on an e-greedy policy and
executed. After acting, the ship receives a reward, R, and its state transitions to S'. This
quadruple (s, a, 1, 8') is stored in the experience replay buffer.

The experience replay mechanism is a crucial technique in deep reinforcement learn-
ing. Random sampling from past experiences breaks the temporal correlation between
samples, significantly improving learning stability. As shown on the right side of the figure,
experiences are randomly sampled from the experience replay buffer and input into both
the Q Eval and Q Target networks. The loss function is then calculated to update the Q
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Eval parameters, while the Q Target parameters are synchronized periodically in cycle c.
This dual-network structure effectively mitigates the overestimation problem commonly
found in Q-learning,.

(4) Detailed coding about the state space

We designed a fixed-length state vector S with multiple information dimensions to
enable the DQN agent to perceive the environment and make intelligent decisions fully.
This vector is the only input to the DQN neural network. All values are normalized (e.g.,
scaled to [—1, 1] intervals) before being entered into the network to ensure the stability and
efficiency of the training.

The state vector S consists of the following components:

Ego State: Contains the position and orientation of the AUV in the global coordinate
system.

(Xauo, Yawo, Bauo): three dimensions. 0 is the heading angle of the AUV.

Goal Information: Contains the relative coordinates and distance of the final target
point relative to the current position of the AUV.

(dxtarggt, dYtarget, distmrget): three dimensions. This helps the agent perceive the direc-
tion and distance of the target.

Global Path Guidance: From the global path information of MEO-BIT* planning, we
select the coordinates of the following five closest waypoints relative to the AUV. This
provides short- and medium-term heading guidance for DQN so its decision-making is
consistent with the globally optimal path.

[(dXwp1, AYwp1), (@xwpa, AYwp2), v (dXwps, dYwps)]: 5 points x 2 dimensions/point
=10 dimensions. If less than five waypoints remain, they are filled with zero vectors.

Dynamic Obstacle Information: The information of the three nearest dynamic obstacles
near the AUV sensed by the sensor. Each obstacle’s information includes its position and
speed relative to the AUV.

[ (dXobs;s AYops;» VXobs;r VYobs,) | fori=1to 3: 3 obstacles x 4 dimensions/Obstacles =
12 dimensions. This allows the Agent to predict collision risk. If there are less than three
perceived obstacles, they are also filled with zero vectors.

Static Environment Perception: We use a lidar-like “tentacle” model to perceive static
obstacles such as land. Virtual rays are emitted from the center of the AUV in eight fixed
directions (front, front —45°, right, rear —45°, rear, rear +45°, left, front +45°), with the
distance of each ray to a static obstacle included in the state.

[dmyl, dray2s s dmyg} : eight dimensions. This provides the agent with intuitive infor-
mation about the distribution of free space around it. If there is no obstacle in one direction,
it is set to the maximum perceived distance.

In summary, the total dimension of the state vector S is 3 (self) + 3 (target) + 10
(global path) + 12 (dynamic obstacles) + 8 (static environment) = 36 dimensions. Such a
structured representation of the state provides a sufficiently rich and fixed information
input to the DQN.

2.3.3. Modeling and Training Mechanism of Dynamic Obstacles

During DON training, dynamic barriers are modeled in the following ways:

1. Each dynamic obstacle adopts a linear motion model, and its state update formula is:
Xp41 = Xt + Uy - At 4 €4 ©)
Y1 = Yr +oy - At +e€y,

where (vx, vy) is the preset velocity vector, and €x€y are Gaussian noise terms with standard
deviation ¢ = 0.1), simulating water flow disturbances and uncertainties.
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2. Interaction mechanism

The state vector S for the DQN'’s perceptual input consists of the relative position and
velocity of the three nearest dynamic obstacles with respect to the AUV. Specifically, for
each obstacle i, we include (dx,ps,, dYops;r VXops;s VYops;), resulting in a total of 3 x 4 =12
dimensions.

Reward function (Equations (6)—(8)):

Collision penalty Ry, = —10 (trigger condition: Euclidean distance between AUV
and obstacle < safe radius).

Safe navigation rewards Rgreen = 7" - 5 (v is the discount factor, n is the number of
steps) to encourage efficient obstacle avoidance.

3. Training environment generation

Ten randomly generated dynamic obstacles are superimposed on the Achao waterway
map, their initial positions and speed directions are evenly and randomly distributed, and
the speed amplitude is fixed at 1.5 pixels/second (about 0.3 times the actual speed). Reset
the obstacle trajectory every 5 s to ensure that the training covers a variety of dynamic
scenarios (see Section 3.3.1).

4. Collaborative obstacle avoidance decision-making

DQN realizes active obstacle avoidance instead of passive replanning by predicting the
obstacle motion trend (based on the velocity information in the state vector) and outputting
the steering action in real time (such as the heading angle adjustment in Equation (5)).

2.4. Detailed Explanation of the Multithreaded Energy-Optimized Bit* and DQN
Fusion Mechanism

The MEO-BIT* + DQN hybrid path planning algorithm offers significant value by
effectively merging MEO-BIT*’s efficiency in global path searching and energy optimization
with DQN’s robust adaptive decision-making in intricate, dynamic environments. This
integration creates a path planning system that combines their strengths, enhancing overall
performance. This section will detail the precise fusion mechanism between these two
algorithms, their crucial information exchange processes, and the theoretical benefits of
this synergy. For a visual representation of the complete architecture and interaction flow,
please refer to Figure 6.
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Figure 6. MEO-BIT* and DQN hybrid algorithm architecture.
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2.4.1. MEO-BIT* Provides Rich State Representation and Prior Knowledge to DON

The MEO-BIT* algorithm furnishes the DQN agent with crucial state information

and prior knowledge essential for effective learning and decision-making, primarily in

three aspects:

1.

Environment Representation and Initial Optimal Path Generation: MEO-BIT* first
generates a globally near-optimal energy path, represented as a set of waypoints
P = p1, p2, ..., pn, within a grid-based or discretized environment model. This is
achieved through its efficient batch sampling and heuristic search (combined with
implicit random geometric graph techniques). This path not only encapsulates the spa-
tial distribution characteristics of static obstacles and preferred navigation corridors
within the environment, but each waypoint p; also includes its position coordinates
(x,y) and a heuristic evaluation value f(p;) = g(p;) + h(p;) calculated during the
MEO-BIT* search process. This structured path and environmental data are then
encoded, forming a significant component of the DQN'’s state space, providing DQN
with a high-quality initial navigation reference and an understanding of the environ-
ment’s static features.

Real-time transmission of local search heuristic evaluation information: When a vessel
considers changing course near its current position, MEO-BIT* calculates heuristic
evaluations for potential future states/waypoints. These real-time heuristics are
mapped into DON’s state representation, providing a specialized feature. During
training, the DQN agent learns MEO-BIT*’s behavioral preferences, allowing it to
leverage valid heuristic search knowledge for guided exploration rather than relying
on purely random action trials.

Path energy cost data: MEO-BIT*’s cost equation provides energy cost informa-
tion between nodes, which is fed into DQN’s state. These consumption details aid
DON in learning effective sailing and maneuvering skills, particularly for optimizing
trade-offs between direct distance and turning movements (energy costs). The final
energy-motivated Q-value learning and updates occur entirely within the Q-network’s
internal circuitry, similar to standard reinforcement learning processes.

2.4.2. Dynamic Impact and Collaborative Optimization of DQN on MEO-BIT* Path
Planning Decisions

DQN agent constantly learns by interacting with the environment, and DQN’s learning

results can dynamically affect MEO-BIT*’s path planning decision-making process in real

time. Especially when faced with some complex dynamic situations, these effects are

mainly realized through the following three ways:

1.

Dynamic adjustment of weight value (adaptive heuristics): DQN'’s learned Q-values
or policies dynamically adjust MEO-BIT*'s weighting elements. For example, if DQN
detects a high-risk dynamic obstacle, it can prompt MEO-BIT* to increase the turn
weight penalty in the cost equation for smoother, safer paths. Conversely, DON might
signal MEO-BIT* to prioritize shorter paths in open environments.

Pruning of search space (attention mechanism-based guidance): Based on the envi-
ronment learned from previous data and its understanding of the task goal, DQN
generates a “knowledge map” showing the relative importance of different regions to
MEO-BIT*. Specifically, DON calculates an attention score indicating how vital each
state in the current environmental area is to the task. In other words, this attention
map tells us which areas are most useful and/or safest to visit, while others should
be avoided if possible due to the presence of dynamic obstacles and other threats.
The value of the attention map represents the priority given to the states/regions
searched for MEO-BIT*. When MEO-BIT* continues expanding the search tree nodes,
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more nodes tend to grow in those regions marked as high priority, thus reducing
unnecessary expansion costs in those marked low-value regions by DON. Through
this intelligent guidance provided by DQN, MEO-BIT* saves precious computing
resources and reduces its search scope, significantly improving search efficiency in
huge environments.

3.  Intelligent trigger of replanning: DQN intelligently triggers MEO-BIT*’s replanning
by real-time evaluation of the current route against mission objectives based on its
Q-values. Upon determining that replanning is necessary, DQN sends an instruction
to MEO-BIT* to initiate a new iteration, calculating an improved path that leverages
the latest environmental data, including DQN’s ongoing risk estimations, for optimal
cost and risk control. This constitutes the DQN-based path replanning mechanism.

4. It should be emphasized that in the MEO-BIT + DQN framework, the local real-time
path adjustment of DQN is a normalized obstacle avoidance method. Its decision-
making is completed in milliseconds based on the current state information. It does
not involve interrupting the execution of the current path or recalculating the global
path, so it is not regarded as “replanning”. The MEO-BIT + DQN mentioned in this
article “does not require replanning,” explicitly referring to the fact that it rarely
needs to trigger global path replanning as traditional geometric planners do. The
number of very low replanning (0.8 = 0.3) for MEO-BIT + DQN, as will be reported
later in the table of global replanning statistics, only indicates that the system acts
as a standby security mechanism when the local policy of DQN cannot guarantee
security in extremely complex or unexpected scenarios (safety fallback) triggered by
the average number of global replanning (i.e., calling the MEO-BIT module to replay).
This fully demonstrates the core role and effectiveness of the DQN module in dynamic
obstacle avoidance.

3. Experimental Setup, Results, and Discussion

3.1. Experimental Environment and Parameter Settings
3.1.1. Experimental Platform and Environment Construction

This research utilized a meticulously configured experimental environment to ensure
the accuracy and reliability of the algorithm’s evaluation. The experimental platform
is built upon an Intel Core i7-14700H heterogeneous processor (Intel, Santa Clara, CA,
USA), featuring a hybrid architecture with performance cores (P-Cores) and efficiency
cores (E-Cores), providing an ideal hardware foundation for multithreaded computation.
The software environment used for the experiments was developed with Python 3.12. It
integrates OpenCV 4.8 for map processing and obstacle recognition, NumPy for efficient
numerical computations, and a self-developed multithreaded parallel processing frame-
work. This framework was optimized explicitly for heterogeneous multi-core processor
architectures, enabling intelligent distribution of computational tasks between P-cores and
E-cores. For the implementation and training of the DQN model, PyTorch 2.6.0 was chosen
as the deep learning framework, with CUDA 12.6 acceleration support leveraged to utilize
GPU parallel computing capabilities fully.

In the environment setup phase, this study utilizes a real satellite map of the Achao Sea
area in Chile as the experimental scenario. This region was chosen due to its complex island
distribution and waterway structure, which can fully validate the algorithm’s performance
in a realistic marine environment. The satellite map is converted into a binary black-and-
white image through image processing techniques: white regions represent navigable
waters (value 1), and black regions denote land obstacles (value 0).

Figure 7 displays the experimental map of the Achao Sea area in Chile, illustrating
the region’s intricate island distribution. Figure 8 shows the processed binary black-and-
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white map, where white areas represent navigable waters and black areas denote land
obstacles. This map accurately reflects the complexity of narrow waterways, featuring
multiple islands, constricted channels, and open sea areas.

Figure 7. Shows the original satellite map of Achao, Chile.

Figure 8. Presents the binarized experimental map, where white areas represent navigable space and
black areas denote land obstacles.

Setting the value of black regions to 0 and white areas to 1, the two-dimensional vector
mathematical model is defined as follows:

0, No obstacles

flxy) = (10)

1, There are obstacles’

where x corresponds to the horizontal coordinate of the grid center, and y corresponds to
the vertical coordinate of the grid center.

We define the AUV’s length as the grid width d, and the AUV’s training area is defined
as the following set:

(11)

AUV (Feasible region)Sopen = {(x,y) | f(x,y) = 0}
AUV (Forbidden area)S 5. = {(x,v) | f(x,y) =1} ’

where Sy, represents the set of feasible regions and S, represents the forbidden (ob-
stacle) regions. By leveraging Formula (10) to model the training map mathematically,
the actual map is transformed into a computer-readable two-dimensional vector function,
achieving the simulation’s objective.

3.1.2. Algorithm Parameter Configuration

To fairly and strictly test the search algorithm proposed in this paper (MEO-BIT* +
DQN) against baselines and incrementally updated algorithms (RRT*, Original BIT*, MEO-
BIT*), the experimental conditions were kept identical: the same map environment around
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the town of Achao, Chile; start coordinates [100, 400], target coordinates [1000, 1300]; and
key shared parameters for RRT*, Original BIT*, and MEO-BIT* sampling-based planning
algorithms: connection radius is 100; safe inflation distance is 7; maximum timeout limit is
1200 s.

To determine the optimal values for «, 3, and w, we conducted a sensitivity analysis
by varying each parameter within a predefined range (e.g., ot in [0.5, 1.5],  in [0.5, 2.0], w
in [0.5, 1.5]) while keeping others fixed or using a grid search approach. The performance
was evaluated on a subset of representative scenarios based on path length, cost, and
obstacle avoidance success rate metrics. The chosen values (x = 1.0, f = 1.25, w = 1.0)
represent a trade-off that prioritizes successful obstacle avoidance while maintaining good
cost efficiency and path optimality for MEO-BIT* and MEO-BIT* + DQN. As previously
discussed, RRT*, original BIT*, and MEO-BIT* all involve event-driven replanning when
traversing dynamic obstacles. To match our setup described above for testing in Section 4
concerning their optimum values under similar control inputs, an experimentally balanced
trigger value was selected: a planned collision be predicted for any dynamic obstacle
within 2.5 s or less from now (and then replanned). The MEO-BIT* + DQN does not need
such repetition since its decision policy predicts the next-best action(s) using local data
measurements directly without first predefining potential actions. This differentiates it
from other competing incremental updates and can be considered an advantage in practice
since the planner learns directly from locally collected sensor observations; in contrast,
other planners make decisions based on knowledge generated by other means.

All performance statistics reported below are averaged across five independent iter-
ations each run, and the optimum value obtained counteracts randomness in results for
greater reproducibility. Shared basic setting parameters are listed in Table 3.

Table 3. Shared basic parameter configurations for algorithms.

Parameter Name Value
Map Resolution 1093 x 1557
Start Coordinates [100, 400]
Target Coordinates [1000, 1300]
Connection Radius 100
Safety Expansion Distance 7 pixels
Distance Weight (x) 1.0
Turning Weight (3) 1.25
Angular Correction Factor (w) 1.0

3.1.3. AUV Kinematic and Dynamic Model

To simulate the motion of the AUV in a simulation environment, we used a second-
order nonholonomic kinematic model, which is widely used in underwater robot research.
Although the model simplifies complex hydrodynamic effects (e.g., water flow, additional
mass, etc.), it can effectively capture the basic motion characteristics of the AUV when
sailing at low speeds, such as the limitations of speed, acceleration, and steering ability.
This allows us to focus on evaluating the path planning and decision-making algorithm’s
core performance in dynamic obstacle avoidance.

The state of an AUV is defined by its position in the two-dimensional plane (x, y), the
heading angle 6, the forward velocity v, and the angular velocity w. Its state of motion
update follows the following dynamical equations:

x=1v -cos(0);, y=v - sin(f); 0 = w.
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In our simulation, to reflect the physical limitations of the real AUV, we set the dynamic
parameters of the AUV as follows:

Max Forward Speed: vyax = 2.0 m/s. This value is based on the typical performance of
small and medium-sized observational AUVs.

Max Acceleration: a,.x = 0.5 m/s?. This limits the time it takes for the AUV to go from
a standstill to maximum speed, avoiding unrealistic instantaneous speed changes.

Max Angular Velocity: wmax = 30°/s (71/6 rad/s). This defines the AUV’s maximum
steering rate, directly affecting its maneuverability in confined spaces or emergencies.

Max Angular Acceleration: &yqy = 15°/ s2. This ensures that the steering process of the
AUV is smooth and not instantaneous.

The discrete actions output by the DON agent (e.g., turning left or right by 15° or 30°)
are first converted into target angular velocity commands (wtarget). The control system then
smoothly adjusts the AUV’s actual angular velocity toward wiarget, respecting the physical
dynamic constraints such as maximum angular acceleration. This setup ensures that the
paths generated by the planning algorithm are dynamically feasible, as the DQN’s steering
decisions are directly aligned with the AUV’s real-world maneuvering capabilities.

3.1.4. Dynamic Obstacle and Environment Modeling

To create a dynamic environment that is challenging and close to reality, we modeled
the dynamic obstacles and experimental waters as follows:

Dynamic obstacle model: Each dynamic obstacle is modeled as an entity with a
constant velocity. In our experiment, 10 dynamic challenges were set up, as described on
page 16. Their motion models are as follows:

Motion mode: A linear motion model is used, and its state is updated, as shown in
Equation (9). The velocity vector (vx, vy) of each obstacle is randomly generated at the
beginning of each experimental cycle and reset after a specific interval (e.g., 5 s) to simulate
unpredictable motion trajectories.

Speed setting: The speed of the obstacle is set to 1.5 pixels/second, which is about
0.3 times the maximum speed of the AUV, which simulates the relative velocity of other
ships or large sea creatures in the marine environment.

Dimensions and Safety Radius: Each dynamic obstacle is given a larger collision radius
than the AUV (e.g., five times the AUV radius) to simulate the safety distance requirements
in the collision avoidance rules, increasing the difficulty of the obstacle avoidance task.

Simulation Environment Settings:

Modeling of waters: Our experimental scenario is based on a real satellite map
of the Achao Sea in Chile. As described on page 19, the map was processed into a
1093 x 1557 pixel binary grid map. The white area represents navigable waters (1), and the
black area represents a land or static obstacle (a value of 0). This rasterized representation
is a standard method for modeling the underwater environment, especially for the input of
the path planning algorithm.

Emulator: The entire simulation environment is based on Python, utilizing the
OpenCV library for map processing and visualization, and the NumPy library for ef-
ficient numerical calculations. The emulator runs in a discrete time step, e.g., At = 0.1s. At
each time step, the simulator updates the position of the AUV and all dynamic obstacles,
detects collisions, and provides the DON agent with a new observation of the state of
the environment.

Based on the above-detailed modeling, we built a simulation platform that can ef-
fectively test and verify the performance and robustness of our proposed hybrid path
planning algorithm in dynamic and constrained environments.
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3.2. Algorithms for Comparison

This study selected RRT* and the original BIT* algorithm as primary baseline meth-
ods for performance comparison. These algorithms represent foundational and widely
recognized benchmarks in sampling-based path planning. RRT* is a classic asymptotically
optimal planner extensively used for evaluating novel path planning techniques due to its
well-understood properties and numerous variants. Similarly, BIT* is a direct and crucial
precursor to our proposed MEO-BIT*, making it an essential baseline to demonstrate the
specific performance gains attributable to our multithreaded and energy-optimization
enhancements. By comparing against these established methods, we can provide a trans-
parent and interpretable assessment of our framework’s advancements in path quality,
computational efficiency, and energy-aware navigation within the context of established
best practices.

To comprehensively evaluate the performance of the proposed MEO-BIT + DON
algorithm, we selected the following three representative algorithms as benchmarks:

RRT*: A widely used sampling-based optimal path planning algorithm. RRT con-
structs a search tree through random sampling and progressively optimizes the path using
rewiring operations. It is a classic benchmark for assessing new algorithms regarding path
quality, convergence, and ability to handle high-dimensional complex environments.

Original BIT*: The Batch Informed Trees algorithm proposed by Gammell et al. [3]
leverages dynamic programming and heuristic searches on an implicit random geometric
graph to find optimal paths and improves planning efficiency in high-dimensional spaces
through its “informed set”. Compared with the original BIT*, it aims to demonstrate the
performance gains brought by the multithreaded parallelization and integrated cost model
in this study.

Multithreaded Energy-Optimized BIT* (MEO-BIT*): This is the profoundly improved
geometric planner based on the original BIT* in this study, and it is also a critical component
of the hybrid algorithm. Its core innovations include an advanced multithreaded parallel
computing mechanism that incorporates heterogeneous thread pool management, dynamic
load balancing, batch parallel collision detection, and thread affinity optimization. Its
goal is to maximize the utilization of multi-core CPU resources, significantly reducing
planning time.

Integrated cost model (E = a-d + B-0-w): This model is used for planning paths that
balance geometric feasibility with cost efficiency. The detailed parameter configuration
for MEO-BIT* and the rationale behind these choices are provided in Table 4. These
configurations are designed to balance parallel efficiency with system overhead, ensuring
the algorithm’s comprehensive performance in efficiency, path quality, and robustness.

Table 4. MEO-BIT* algorithm-specific parameter configuration and selection basis.

Parameter Name

Value Description Selection Basis

Set to a high core count (e.g.,

Controls the total number of 20 threads) to fully utilize

threads for parallel tasks (e.g.,

Maximum Worker Threads 20 .. . multi-core resources and avoid
collision detection, sample )
. excessive scheduler overhead due
generation).
to too many threads.
. . . Performance cores (P-core).
Assigns compute-intensive tasks Prioritize CPU P-cores for
P-Core Threads 12 to high-performance cores

high-performance key

(P-core). computational tasks.
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Table 4. Cont.

Parameter Name Value Description Selection Basis
. . . Optimizes power consumption
E-Core Threads 8 Assigns 1/0 o lightweight tasks ratio while improving overall
to energy-efficient cores (E-core).
throughput.
Binds threads to specific CPU Enables thread affinity to improve
Thread Affinity Enabled cores, reducing context switching cache hit rates, especially for
overhead. long-running parallel tasks.
Number of random samples Drieizgrilrlgid ez)?oesﬁﬁlgrlﬁz ’i)\rough
Samples per Batch 200 generated in batches per single P yexp ;
¢ : balance search exploration and
iteration. .
real-time performance.
Adaptive sampling of feasible
regions avoids redundant
Adaptive Sampling Enabled Dynamically adjusts sampling ex.ploratlor} in the forbidden areas,
strategy. with experimental results
showing a 15-20% reduction in
iteration count.
Uses a KD-tree data structure to
KD-Tree Acceleration Enabled optimize nearest nelghl?or search, KD-tree s1gn1f1cantly a.ccelerates
reducing time complexity (from  nearest-neighbor queries.
O(N) to O(logN)).
Step length for discretized line
Collision Detection segment collision checks Balances detection efficiency on
20 . - . . .
Frequency determines collision detection the premise of ensuring safety.
precision.
Batches multiple collision . .
Collision Detection Batch detection tasks for edges, Reduces smglg—task scheduling
. 200 . . overhead and improves parallel
Size processed in parallel by multiple
throughput.
threads.
Improves path discovery
efficiency through biased
sampling. A 0.8 probability
Direct Sampling Cpncept qf generatlng . pr1(?r1t1zes .samphng in h?urlstl(Jc
1 0.8 high-quality samples in regions regions, with the remaining 20%
Probability . . o .
that may contain optimal paths. maintaining randomness to avoid
local optima. Experiments show
that this can reduce ineffective
sampling by 30%.
Caches the status of checked line ~ Reduces repeated collision
Bresenham Cache Enabled segments to avoid redundant detection computation by about
computation. 40% for iterative optimization.
Minimum Line Seement Forcibly performs collision Prevents missed detections due to
& 3 detection for short paths down to  insufficient resolution of short

Detection Points

at least 3 points, ensuring safety.

line segments.

Notes: Heterogeneous thread management: Assign different for the P-cores and E-cores, respectively, using the
heterogeneous architecture of Intel to play a full multi-core usage; Dynamical load balancing: A work-stealing
policy is used such that the idle threads can steal jobs directly from busy threads” queues when needed instead of
being choked on computing.

3.2.1. Path Quality Evaluation

When an obstacle positioned on the map does not move, it is called a static environ-

ment. Path length, cost quantity, path smoothness, and energy-saving comprehensive
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score summarize how economical and manageable they are and how energy-saving their
algorithms’ paths are. A more profound understanding of the algorithm characteristics and
advantages/disadvantages comes from a quantitative comparison between indicators from
various perspectives of path optimization. When RRT*, bit*, MEO-BIT*, and MEO-BIT* +
DQN were compared specifically, their quantified values of path length, energy consuming
amount, smoothing indicator value, and energy comprehensive scores were listed respec-
tively; thus, there is enough supporting data for further discussion, as shown in Table 5’s
average value and standard deviation.

Table 5. Comparison of path quality metrics in static environment.

Path Length . Total Steering Avg. Steering Cost Efficiency
. Cost (Units) o - 1o ,
Algorithm (Units) (Mean + Std. Angle (°) per Unit (°/Unit)  (Length/Energy)
(Mean =+ Std. Dev) (Mean =+ Std. (Mean =+ Std. (Mean + Std.
Dev.) ’ Dev.) Dev.) * Dev.) *
" 516.05 £ 0.371 + 0.683 +
RRT 1392.11 + 4823  2037.17 4 132.45 S_RRT Angle  S_RRT_AvgSteer S_RRT_Eff
. " 111.62 + 0.0778 + 0.956 +
Original BIT 1434.21 £22.15  1499.35 + 85.67 S_OBIT_Angle ~ S_OBIT_AvgSteer S_OBIT_Eff
" 81.61 + 0.0575 + 0.987 +
MEO-BIT 1390.11 £18.76  1407.06 + 63.82 S_MEO_Angle S MEO_AvgSteer S_MEO_Eff
MEO-BIT* + 78.34 + 0.0563 + 0.996 +
DON 1390.11 +£15.34  1395.25 £ 45.91 S_DQN_Angle  S_DQN_AvgSteer S_DON_Eff

Note: The asterisks (*) in Table 5 indicate that these metrics are derived values rather than directly measured data.

Based on the data presented in Table 5, we can conduct a detailed analysis of the path
quality generated by each algorithm.

In terms of path length, MEO-BIT* (1390.11 £ 18.76 units) and MEO-BIT* + DQN
(1390.11 =+ 15.34 units) generate almost identical path lengths, which are also comparable
to RRT* (1392.11 =+ 48.23 units), all closely approaching optimality. The MEO-BIT* frame-
work’s global sampling strategy effectively finds geometrically short paths. Notably, the
original BIT* (1434.21 £ 22.15 units) generates significantly longer paths, highlighting the
improvements of the MEO-BIT* variants in path length optimization. MEO-BIT* + DQN’s
slightly lower standard deviation in path length suggests greater consistency in the path
lengths generated across different runs.

Regarding cost, MEO-BIT*-based methods demonstrate a significant advantage. MEO-
BIT* (1407.06 + 63.82 units) and MEO-BIT* + DQN (1395.25 4 45.91 units) have significantly
lower costs than RRT* (2037.17 + 132.45 units). This substantial cost reduction is primarily
attributed to their integrated energy-aware cost function, which penalizes sharp turns.
MEO-BIT* + DQN shows a slight improvement in cost compared to MEO-BIT*, likely due
to subtle local path adjustments made by the DQN module, even in static scenarios. The
original BIT* (1499.35 £ 85.67 units) performs better than RRT* regarding cost, but is less
efficient than the MEO-BIT* series algorithms.

Path smoothness, measured by total steering angle and average steering angle per
unit, further confirms the effectiveness of energy optimization. MEO-BIT + DQN ex-
hibits the lowest total steering angle (78.34 & S_DQN_Angle degrees) and the lowest
average steering angle per unit (0.0563 = S_DQN_AvgSteer degrees/unit), closely fol-
lowed by MEO-BIT (81.61 &= S_MEO_Angle degrees and 0.0575 = S_MEO_AvgSteer de-
grees/unit). These values are significantly lower than RRT* (516.05 & S_RRT_Angle
degrees and 0.371 & S_RRT_AvgSteer degrees/unit), as RRT* typically produces jerky
paths with frequent, large turns. The original BIT* (111.62 & S_OBIT_Angle degrees
and 0.0778 & S_OBIT_AvgSteer degrees/unit) generates smoother paths than RRT*, but
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not as soft as the energy-optimized MEO-BIT* series algorithms. Smoother paths directly
translate into reduced control difficulty and a more stable navigation process.

Consequently, in terms of cost efficiency, MEO-BIT + DQN achieved the highest cost
efficiency (0.996 + S_DQN_Eff), slightly outperforming MEO-BIT (0.987 + S_ MEO_Eff).
Both are significantly superior to the original BIT* (0.956 4= S_OBIT_Eff) and vastly better
than RRT* (0.683 + S_RRT_Eff), which has the lowest efficiency due to its high cost for a
given path length. This metric underscores the MEO-BIT* framework’s ability to balance
path length and price.

To more intuitively see the different paths generated by the three algorithms,
Figures 9-11 show typical MEO-BIT*, RRT*, and original BIT* paths in a static environ-
ment. From the path shape, we can easily find that compared with the other two, the
MEO-BIT* path (as shown in Figure 9) is smooth along the obstacle side and has a narrow
gap and gentle curves to avoid sharp angles, while the RRT* path (as shown in Figure 10)
looks very rough and jagged, and we can analyze this observation from the data: i.e.,
larger total steering angle. Compared with the RRT* path, although the BIT* path looks
relatively smooth, it may be somewhat rigid when turning (especially near an obstacle
vertex), similar to RRT*, but better than the latter in terms of cost control, which can be
qualitatively described from Table 5. This is highly consistent with the quantitative analysis
results of Table 5. Compared with traditional methods (RRT* or original BIT*- as shown in
Figure 11), applying MEOBIT*’s energy-aware model and sampling optimization strategy
generally contributes positively to increasing path quality, especially path smoothness and
energy saving.

Start Position

Goal Position

Start Position

Final Path
Path Nodes

Figure 10. RRT* algorithm path.
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Start Position

Goal Position

RRT Exploration Tree

Final Path

Path Nodes

Figure 11. Original BIT* algorithm path.

In static environments, the MEO-BIT* algorithm significantly outperforms RRT* and
the original BIT*, particularly in path energy and smoothness, due to its energy-aware
model and sampling optimization. Furthermore, MEO-BIT* + DQN leverages DQN’s local
optimization for minor enhancements in path cost and smoothness, paving the way for
improved performance in dynamic scenarios.

The search tree density and distribution (orange lines in Figure 9) reveal distinct char-
acteristics. MEO-BIT* exhibits a denser, more cohesive search tree than RRT*, indicating a
thorough solution for space exploration, especially in dense obstacle fields. While RRT*
may perform a similar number of searches, its sparse distribution can lead to incomplete
exploration and uneven point selection. The original BIT*, in contrast to both, demon-
strates moderate initial density, becoming denser with further exploration, suggesting a
balanced search strategy. These variations in search tree characteristics directly impact each
algorithm’s final path quality and convergence speed.

3.2.2. Computational Performance Evaluation

Following path quality evaluation, this section assesses the computational perfor-
mance of each algorithm in a static environment, a critical aspect of real-time applications.
We analyze total planning time, number of iterations, number of expanded nodes, and
peak memory occupation. These metrics, summarized in Table 6, facilitate a comprehen-
sive comparison of resource consumption and planning efficiency, forming the basis for
subsequent analysis.

Table 6. Comparison of computational performance metrics for various algorithms in a static

environment.
Indicator RRT* Original BIT* MEO-BIT* MEO-BIT* + DQN
Total Planning Time (s) 46.43 845.59 178.34 188.72
Iterations 3797 24 9 9
Expanded Nodes - 3518 3494 3494
Nodes per second 0.06 0.0284 0.115 0.110
Peak Memory Usage (MB) 2142.80 994.19 2142.80 2250.50
Thread Utilization (%) Single Thread (100%) Single Thread (100%) 95% 90%

3.2.3. Analysis and Discussion—Static Environment

Here is an in-depth analysis and discussion based on the computational performance
data in Table 6:

1. Parallel acceleration effect of MEO-BIT*: Leveraging a new multi-thread parallel
computing framework, the MEO-BIT* algorithm dramatically accelerates calculation speed,
reducing total planning time from the original BIT*'s 845.59 s to just 178.34 s—an astonishing
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78.9% reduction. This leap stems from intelligently allocating 20 workers and dynamically
balancing loads across heterogeneous CPUs, enabling computationally intensive tasks (e.g.,
collision searching and large-scale random sampling) to complete calculations quickly
and efficiently via shared core resources. A 95% thread usage rate demonstrates MEO-
BIT*’s full utilization of modern parallel computing capabilities. Experimental data reveal
an intriguing finding: their expanded node counts are nearly equal despite MEO-BIT*
completing fewer iterations than the original BIT* (9 vs. 24). MEO-BIT* performs over
10 times more global optimal path searches per second (0.115/s) than the original algorithm
(0.0284/s). This indicates that MEO-BIT* explores the search space significantly deeper
and broader in fewer iterations, finding similar quality solutions much faster than the
original BIT*.

2. Computational overhead of MEO-BIT* + DQN: While MEO-BIT* + DQN aims for
faster overall computation by incorporating DQN, its total planning time slightly increased
compared to pure MEO-BIT*. This is due to the approximately 10-s overhead from DQN’s
forward inference in static environments. MEO-BIT* + DQN maintains MEO-BIT*’s core
search parameters, including iterations and expanded nodes. This indicates that the DQN
module complements, rather than alters, MEO-BIT*’s central search paradigm. Instead,
DQON focuses on local path optimization, refining MEO-BIT*’s globally optimal or near-
optimal paths. Consequently, the combined CPU burden rises due to DQN’s inference,
reducing total thread usage from 95% to 90%, though it remains exceptionally high.

3. Cross-algorithm comparison: From the cross-comparison test results of planning
time, RRT* gets the best rank in execution time, 46.43 s. At the same time, its fast planning
speed comes with the price of losing the quality of the path and falling into the single-
line computing design of itself. With the increasing complexity and size of real-world
working environments, realizing effective parallel scheduling or scaling is the bottleneck
problem facing this kind of algorithm. The original BIT* completely lacks the optimiza-
tion mechanism of multi-threading parallelism, so its calculation speed is slow among
all algorithms.

Compared with pure MEO-BIT*, after adopting DON lightweight inference methods,
MEO-BIT* + DON can not only fully inherit most of the high-efficiency characteristics of
MEO-BIT* in the overall search process but also make full use of the advantage of DON'’s
incremental online learning agent to realize local path optimization decision-making. This
“global calculation + local optimization” plan formation strategy has developed a perfect
technical concept foundation for realizing real-time motion trajectory planning research
needs under complex, dynamic, changing environments.

4. Algorithm memory occupation analysis: While MEO-BIT* excels in global path
planning due to its search optimization, its combination with DQN (MEO-BIT* + DQN)
increases peak memory consumption. This additional memory stores DQN’s network mod-
els, weights, and auxiliary variables. I suspect MEO-BIT* uses more memory than standard
MEO-BIT* to maintain its complex solution set data structures and multiple work queues
for sub-search trees. This memory trade-off, however, is justified by the enhanced efficiency,
coverage, and search depth achieved, particularly for complex exploration scenarios.

5. Parameter sensitivity analysis and future research prospects of MEO-BIT* + DQN
framework: Regarding the parametric sensitivity of the proposed MEO-BIT* + DQN frame-
work, the preliminary analyses conducted for key parameters, such as the cost equation
weights and DQN learning rate, suggest a degree of robustness within a reasonable op-
erational range. For example, variations of £10-15% in the 3 Value for the cost equation
did not lead to catastrophic failures in path planning. However, as expected, they did
influence the trade-off between path smoothness and length. Similarly, the DQN train-
ing proved relatively stable for learning rates between 0.0005 and 0.002. However, we
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acknowledge that a more exhaustive, multi-parameter sensitivity analysis and advanced
hyperparameter optimization techniques would provide a deeper understanding of the
algorithm’s performance landscape and robustness to a broader array of parameter configu-
rations and environmental variations. Such comprehensive studies, potentially employing
automated tuning methods, are identified as a significant avenue for further research to
enhance the proposed system’s practical applicability and reliability, especially when tran-
sitioning towards real-world AUV deployment, where precise parameter calibration can
be challenging.

3.3. Performance Evaluation in Dynamic Environments
3.3.1. Dynamic Environment Setup

To realistically assess path planning algorithms, we emphasize evaluation in dy-
namic environments, as static scenes fail to reflect an algorithm’s adaptability to
changing conditions.

Our dynamic environment experiments involved several key elements. First, we
randomly generated ten distinct dynamic moving obstacles across the map, each following
a predefined, randomly generated route. Only the movement paths from start to destination
were presented, comprising 1856 coordinate rows for analysis. Second, to enhance realism
and test flexibility, dynamic object trajectories were not fixed; their programmed paths
were modified every 5 s, continuously altering their movement patterns. Third, we set
dynamic obstacle sizes to five times that of a simple node, significantly increasing the
danger level. This allowed for a more robust evaluation of algorithms” ability to quickly
escape dangerous situations and avoid obstacles while efficiently reaching target objectives.

3.3.2. Collision Avoidance and Success Rate Evaluation

In the dynamic environment, an essential criterion for judging whether the algorithm
is excellent or poor performance mainly includes two indicators: the first one is a collision,
which means what percentage of all rounds tested results show a case of colliding obstacle
when planning paths; it also indicates the direct parameter used to measure the safe degree
of the algorithm; another one is called task success rate. Task success rate means how many
percent our proposed algorithms guide the intelligent body to complete walking to reach
the aim points within the experiment’s prescribed time; there has not been a collision while
doing so, which indicates a better indirect degree, which can be a more effective measure
of the execution index of search algorithms’ good level, reliability as well and efficiency in
solving problems. The third is the successful landing path’s average consumed arriving
moment, computed by averaging statistics over times finally walked out to the aim point
in the experiment process. We selected a uniform event-driven replanning strategy, which
means that once the planned route is estimated, any obstacle threat will come up within
the next 2.5 s; according to the information given, it will be and will start immediately,
prompting a replanned action generated from our programs. Table 7 lists comparisons
between different kinds of algorithms in terms of their main obstacle avoiding and success
rate metrics, respectively; concerning these, the mentioned three basic standards (collision
number in different rounds test, success numbers of completion, reaching goal aiming
points inside limitation experiment period without having collisions occurred along ways
of paths guiding) achieved through tests executed dynamically meanwhile analyzed them
in detail.
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Table 7. Comparison of obstacle avoidance and success rate metrics for various algorithms in dynamic

environments.

. . . o Task Success Rate  Average Arrival Replanning
Algorithm Collision Rate (%) (%) Time (s) Trigger Count
RRT* (with replanning) 25.6 + 3.2 70.4 + 4.1 320.7 4 45.2 123425
Original BIT* (with 20.1+2.8 75.2 4+ 3.8 298.4 + 38.7 87419
replanning)

MEO-BIT* (with 15.8 + 2.1 823 +3.2 230.5 + 25.6 52412
replanning)
MEOQ-BIT* + DQN 52+ 1.1 95.6 + 1.8 210.3 4+ 18.4 0.8+ 0.3

Note: MEO-BIT + DQON refers to the average number of times the standby global replanning mechanism is
triggered. Its regular obstacle avoidance is completed by DQN local adjustment and is not included in this column.

A deep analysis of the data in Table 7 highlights the significant advantages of the
MEO-BIT* + DON algorithm.

The lower the collision rate, only 5.2% =+ 1.1%. It is much lower than MEO-BIT*
(replanning) at 15.8% £ 2.1%, BIT* (replanning) at 20.1% =+ 2.8%, and RRT* (replanning)
at 25.6% =+ 3.2%. These data prove that DON’s dynamic obstacle avoidance capability
is excellent.

Therefore, the task success rate of MEO-BIT* + DQN can reach 95.6% = 1.8%. Com-
pared with the original MEO-BIT*, which replans once after arriving at the destination and
then sets out again (the task success rate is 82.3% =+ 3.2%), it improves the task success rate
by 13.3 percentage points. These results fully illustrate that DON is powerful in adaptability
and decision intelligence in a dynamic environment.

Regarding real-time performance and work efficiency, the average arrival time of
MEO-BIT* + DQN is 210.3 & 18.4 s, which is about 8.8% faster than MEO-BIT* (replanning)
at 230.5 £ 25.6 s; this result is also obtained because MEO-BIT* + DQN avoids explicit
replanning frequently (the average number of replannings is only 0.8 & 0.3, which is less
than others); therefore, compared with the single-replanning method, its computation delay
during path updates is significantly reduced, and its path execution interruption time due
to replanning is shortened accordingly.

Finally, traditional algorithms generally perform poorly when facing the dynamic
environment challenge. For example, although RRT*’s collision rate is only 25.6% and
its successful task accomplishment ratio is as high as 70.4%, these indicators are too low.
The reason is simple: such an algorithm cannot avoid or predict dangerous collisions by
planning a replan according to reaction, but instead, it replans after a crash occurs, even
though there is no guarantee that a safe task will be accomplished in the end. Due to its
superior ability to plan paths quickly in static environments, RRT* does not consider re-
planning when dealing with obstacles dynamically. This means it needs fewer replannings
(only 12.3 £ 2.5 times on average), so we should consider why its total failure rate remains
abnormally high (it fails about 15% of tasks).

Original BIT* also fails miserably for reasons similar to those described above for
RRT*. In addition, despite having eight times as many replannings as RRT* (averaging only
8.7 £ 1.9 times per episode), the original BIT* also suffers from one significant flaw: the
duration of each replanning session lasts almost twice as long as that of RRT* (from Table 6's
static analysis, about 845 s). Such a serious problem makes the new path generated by a
replanning update unable to reflect the changing status of its surrounding environmental
space in time, resulting in poor adaptation and handling of dynamic situations; hence, its
successful task accomplishment rate is not very satisfactory (about 85%). However, fortu-
nately, MEO-BIT* + DQN benefits from the shorter time needed for a single replacement
brought about by multi-thread parallelization in static environments (about 178 s), so it
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works well enough in dynamic environments. However, unfortunately, it cannot avoid
danger ahead without prior risk assessments since a subsequent corrective replanning is
implemented (on average, five times); therefore, the unsuccessful collision rate and failed
rate remain relatively low (see Tables 3 and 4 for details).

The core contribution of DON lies in its proactive obstacle avoidance capability and
path continuity. By real-time prediction of obstacle movement trends (such as speed
and direction), DQN can adjust the path in advance rather than passively waiting for
collision threats to become imminent before triggering replanning. Furthermore, MEO-BIT*
+ DQN’s extremely low average number of replannings (0.8 times) indicates that it can
achieve smooth local path optimization on top of the global path, significantly reducing
path interruptions and unnecessary computational overhead.

3.3.3. Dynamic Path Quality and Efficiency Evaluation

Following the evaluation of the algorithm’s obstacle avoidance capabilities and task
success rates, this section will further analyze the specific performance regarding path qual-
ity and efficiency for tasks completed in dynamic environments. This includes examining
metrics such as average path length, average cost, average number of replannings, and
single replanning time for non-learning methods. These data help us gain a more compre-
hensive understanding of the characteristics of paths generated by different algorithms in
dynamic environments and the costs associated with adapting to dynamic changes. Table 8
provides detailed metrics related to path quality and efficiency for successful execution
instances of each algorithm in dynamic environments.

Table 8. Path quality and efficiency metrics for successful runs in a dynamic environment.

MEO-BIT* (with

Indicator Replanning) MEO-BIT* + DQN
Average Path Length (units) 1450.2 + 35.6 1420.8 + 28.4
Average Cost (units) 1650.7 £+ 40.2 1520.3 + 32.7
Average Replanning Count 52+1.2 0.8+0.3
Single Replanning Time (s) 178.34 + 15.2 -
DQN Inference Time (s) - 105+ 2.1

Note: The ‘average number of replans’ for MEO-BIT* + DOQN refers to the average number of triggers for standby
global reprogramming.

Firstly, see the energy comparison. From Table 8, among successful dynamic tasks
execution, MEO-BIT* + DQN's average consumption is 1520.3 + 32.7, only less than MEO-
BIT* (replanning)’s (1650.7 £ 40.2) by 7.9%. The main reasons are as follows: (1) Because
DON can adjust the actual path locally based on real-time position and predicting trajectory
information of moving obstacles in real time, it will not consume additional energy by
choosing unnecessary roundabout paths by passing through sharp angles; contrary to MEO-
BIT*’s (orange) replanned segment having long detouring distance; (2) Because it avoids
frequent replanning. Compared with MEO-BIT*, whose average consumes more energy
due to lots of interruption caused by multiple replannings (averaging about 5.2), owing to
a minimal average number of replanning (averaging only 0.8, having a significant influence
on consumed energy), MEO-BIT* + DQN no longer needs to spend much consumed by
MEO-BIT* (with replacing). Replanning may cost much effort because every replanning
means the vessel must start a new accelerating mode after deceleration or halting.

RRT* (Figure 12a): The main problem of this planner is that it replans very frequently
(12.3 times), so its resulting path includes many sharp turns inside the blue path segments;
when a dynamic obstacle (red) moves, it reacts replacing sometimes produces jagged
orange path segments, which will increase the path length and cost.
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Figure 12. Obstacle avoidance trajectory examples of each algorithm in specific dynamic scenarios.

Original BIT* (Figure 12b): This one’s global heuristic search significantly decreases
the number of replanning (8.7 times), but its lethal weakness in dynamic environments
is that a single planning lasts too long (as referred to Table 6 static analysis, about 845 s),
may result in significant delays for the update process of paths frequently, so the planned
orange path segment may conflict severely or fail to evade obstacles actually because of the
obstacle motion trajectory.

MEO-BIT*(Figure 12c): Multi-threading acceleration will decrease the single-replanning
by 8 s. Instead, paths will be much better connected than before, but MEO-BIT* remains,
in fact, reactive replanning (5.2 times), so at the dense, dynamic obstacle area, it probably
generates unnecessary detours caused by later reactions or conservative policies to escape
dangers, so that more path lengths and higher costs will occur inevitably.

MEO-BIT* + DQN (Figure 12d): Proactive optimization is an advantage: DQN can
anticipate the moving situation of the next obstacle ahead of schedule based on all known
information about the obstacle motions such as the current locations, velocities, sizes, etc.,
to avoid conflicts, etc., so it has already taken local actions (indicated by purple dotted line)
around the danger zones, which may cause conflicts in advance according to predicting
values provided by trained Q-values with the future directions from Red Arrows, etc.
Therefore, paths can be both globally smooth (in blue) and locally fine-tuned (purple),
with no interruption in between being made safely, without any sudden directional change
(sharp corners). It makes short paths and low costs possible in practice.

Further on in the path planning quality of the dynamical environment caused by its
optimizing mode about energy mechanism, the good smoothness and fluency of curved
changes around moving obstacles, and the narrow situations will also be kept by MEO-
BIT*. Maybe those just under dynamic changing situations would be based on a constant
retreating plan to lead out possible sudden turning phenomena, causing some suboptimal
courses and even lost tracking of potential dangers; compared with RRT*, led in lots of high-
frequency turns. Producing many abrupt adjustments towards turn-speed at low angles
frequently may cost some quantity of power, making it somewhat complicated artistry or



J. Mar. Sci. Eng. 2025, 13,1294

33 of 42

liable for hitting. How excellent an algorithm’s response must be in dynamically-changing
situations, when we observe this visually, is highly parallelized with the quantitative
conclusion in Table 9: further foresight must be taken seriously regarding how excellent an
algorithm’s response must be in dynamically-changing situations.

Table 9. Comparison of path quality and cost metrics in dynamic environments.

. Avg. Path
Algorithm Length (m) Std. Dev. Avg. Energy (J) Std. Dev.
RRT* 1458.32 72.45 2245.63 185.27
Original BIT* 1475.14 45.89 1680.42 120.55
MEO-BIT* 1450.20 35.67 1650.70 98.34
MEO-BIT* +
DON 1420.80 28.44 1520.30 67.15

Table 9’s primary data on path length reveals that MEO-BIT* + DQN yields the shortest
mean path (1420.80 m) and most minor standard deviation (28.44 m), indicating superior
path brevity and stability due to proactive obstacle avoidance. Its cost standard deviation
(67.15]) is significantly lower than RRT*’s (185.27 J), demonstrating superior cost efficiency.
While the standard deviation range is slightly larger in dynamic environments (3-8%
vs. 1-5% in static), this fluctuation is expected given the increased uncertainty, perfectly
aligning with predictions. Regarding energy correlation, akin to Figure 16, the path length
correlation is negative. However, both algorithms exhibit favorable energy increase rates,
yet MEO-BIT* + DQN shows a minor rate difference due to DQN'’s turning-point energy
optimization (Table 2), signifying enhanced energy utilization effectiveness. Although
frequent replanning in dynamic scenarios can lead to lower quality paths with single-
threaded planning, MEO-BIT*'s multi-threaded parallelism ensures high-speed multi-
planning, ideal for dynamic replanning. Despite similar node searches, MEO-BIT* + DQN,
as shown in Table 9, better utilizes CPU power for reduced turning energy and more stable
paths in dynamic environments, confirming the efficacy of our research approach.

3.4. In-Depth Analysis of MEO-BIT* + DQN Hybrid Algorithm

To further understand its working mode inside and the performance superior source
of the MEO-BIT* + DQN hybrid algorithm, this part focuses on analyzing the inherent
characteristics of DQN. First, we explore its learning process and then analyze how it guides
MEO-BIT*’s global search task. This is to fully reveal the feasibility or dilemma between
deep reinforcement learning and traditional path planning algorithms in combination with
these two aspects.

3.4.1. DON Training Process Analysis

We first tested the standard DQN system in a single-grid environment to validate its
fundamental learning and convergence. Results confirmed its successful training for obsta-
cle avoidance, demonstrating stable average gain and continuous training loss reduction.
This provides a solid foundation for larger-scale tests involving real obstacles, dynamic
areas, and static obstacle arrays. For the subsequent hybrid application of our improved
algorithm (MEO-BIT* with DQN), the trained DQN must possess robust pathfinding guid-
ance; an inadequately trained DQN, or one with excessive parameters hindering optimal
value transformation, would render it ineffective. Figures 13-15 illustrate three typical
interactions between DQN and the test environment during training. These include suc-
cessful wall collisions after turning and verifying the hybrid DQN module’s functionality
within the overall algorithm.



J. Mar. Sci. Eng. 2025, 13,1294

34 of 42

400

\

200

100

Cumulative Reward

=100

o
Convergence Point: 8000 steps

—200

= Average Cumulative Reward
Standard Deviation Range
'

=300

0 2,000 4,000 6,000 8,000 10,000
Training Steps

Figure 13. Cumulative reward during DON training.
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Figure 14. Collision rate during DON training.
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Figure 15. Loss function changes during DQN training.

Analysis of the Training Curves:

Let us break down what the training curves reveal:

Comparative experimental validation under the same training resource conditions
showed that without DQN, the collision rate was approximately 15.8% (data referenced
from Table 7). This demonstrates that introducing DQN contributed to a 67.7% improve-
ment in obstacle avoidance performance ((15.8 — 5.1)/15.8 ~ 0.677). The key conclusion
is that MEO-BIT\* + DQN successfully reduced the collision rate from an initial 40.2%
to a remarkable 5.1% in complex scenarios such as dynamic narrow waterways through
the progressive policy optimization of deep reinforcement learning. The monotonically
decreasing trend and low standard deviation (£1.2%) shown in Figure 15 fully validate the
algorithm’s stability and learning effectiveness, providing reliable theoretical and practical
support for autonomous vessel navigation.



J. Mar. Sci. Eng. 2025, 13,1294

35 of 42

(a) Without DQN Guidance
— : e

3.4.2. Analysis of DON’s Guiding Effect on MEO-BIT*

This study designed a specific control experiment to investigate how the DQN module
guides the global search process of MEO-BIT* in depth. In identical scenarios featuring
dynamic obstacles, we ran MEO-BIT* without DQN guidance (relying solely on its inherent
heuristic search and cost model) and MEO-BIT* integrated with DQN (MEO-BIT* + DQN).
By recording and comparing the differences in their search tree expansion directions, as
well as the dynamic changes in key parameters within the cost equation (e.g., turning
weight (3), the experimental results revealed the indirect but effective guidance mechanism
that DQN imposes on MEO-BIT*’s global path generation.

Experimental Setup and Observations: The scenario was set in an environment con-
taining dynamic obstacles, specifically two moving obstacles invading the path planning
area from the right side at a 1.5 pixels/second speed. One of the core functionalities of
the DON module is to predict the areas that dynamic obstacles will cover within a future
period (set to 2 s in this experiment); this area is defined as a high-risk zone.

Regarding the guidance of search tree expansion direction: When there was no DON
guidance, MEO-BIT*’s search tree (shown as the blue area in Figure 16a) would relatively
uniformly cover all feasible regions, including those high-risk areas about to be occupied
by dynamic obstacles. Its search primarily relied on predefined heuristic functions and a
static cost model, lacking the ability to anticipate dynamic threats. However, when DQN
guidance was introduced, MEO-BIT*’s search tree (shown as the green area in Figure 16b)
showed a significant tendency to avoid the high-risk zones marked by DQN. Quantitative
data (as shown in Table 10) indicates that the node density within high-risk areas for MEO-
BIT* with DQN guidance was reduced by approximately 62% compared to without DQN
guidance (decreasing from 0.015 nodes/pixel? to 0.0057 nodes /pixel? for a high-risk area of
32,000 pixels?). This demonstrates that DQN successfully conveyed dynamic environmental
risk information to MEO-BIT* and influenced its sampling and node expansion strategies.

Table 10. Comparison of node distribution in high-risk areas.

Aleorithm Number of Nodes in Node Density

8 High-Risk Areas (Nodes/Pixel?)
MEO-BIT* (No DQN) 482 + 45 0.015
MEO-BIT* + DOQN 183 4 32 0.0057

(b) DQN-Guided Risk Area Avoidance
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Figure 16. Comparison of search tree expansion directions.

When DON does not suggest, the distance weight o = 1.0 and turning weight § = 1.25
of cost equation parameters inside MEO-BIT* are non-changeable. Therefore, MEO-BIT*
finds a path using a fixed-parameter cost equation.
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However, when guided by DQN signals, DON can modify the value of {3 in the cost
equation according to its judgment on the dynamic obstacle’s position and movement
trend at any time point (see Figure 17). Specifically speaking, when sensing an object about
to attack or cut off the current desired flying route, DQN gives instructions indicating
MEO-BIT* should gradually increase the (3. After being adjusted, if increasing the value of
3 makes the parameter greater, then MEO-BIT* itself and, thus, all obtainable MEO paths
during planning would find safer-to-pass-through paths, having smoother but slightly
longer in-flight time turns below other possible flying plans, while being judged based

on weights.
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Figure 17. DQN dynamically adjusting § value.

Explanation and Discussion: Guidance on MEO-BIT* through DQN works at two lev-
els: one is avoiding risk areas—after estimating the future risks using its Q-network, DQN
transfers this high-risk area information to MEO-BIT*, which then reduces the sampling
probability in these regions (for example, reducing DIRECT_SAMPLING_PROB by 80%).
Thus, BIT* proactively avoids collisions; the other level is linked with cost equation pa-
rameters based on threatening surroundings; DON advises adjusting the cost equation
turning weight 3 (Ap). The BIT* agent adjusts the current parameter (3 according to the
given suggestion and obstacle-avoiding urgency (for example, sigmoid(tabs)) so that the
E-Equation can quickly change along with changes in environment risk when searching.

Present Problems and Further Research: There is a weak coupling between DQN and
MEO-BIT*, and we use transfer information only. Therefore, it might be difficult for us to
escape from a local minimum. A good further direction will explore closer interweaving
architectures that fully incorporate DQN values directly into MEO-BIT*’s h(v) value or
end-to-end learning. We could also let our reinforcement-learning agents learn to adjust o
and 3 by themselves and introduce DQN belief state-long-term risk prediction models to
guide MEO-BIT’s global sampling.

Performance improvement and verification of MEO-BIT* based on a theoretical
perspective:

From a theoretical standpoint, the enhancements in MEO-BIT*, such as multithreaded
batch processing and the energy-aware cost function, are built upon the solid foundation
of BIT*. The probabilistic completeness is preserved, ensuring the existence of a solution.
The asymptotic optimality is now geared towards minimizing the defined energy-based
Cost, which is more pertinent for real-world AUV endurance missions than pure geometric
optimality. While a formal mathematical proof that MEO-BIT specifically achieves this
asymptotic optimality under the new energy-aware cost function and parallelized exe-
cution model is a complex undertaking considered beyond the immediate scope of this
application-focused work, the extensive experimental results consistently demonstrating
superior and convergent performance towards energy-optimized paths provide strong
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empirical support for this claim. Furthermore, our architectural modifications, especially
the parallel processing, significantly accelerate the practical convergence to these energy-
optimal solutions. Our architectural modifications, particularly the parallel processing,
significantly accelerate the practical attainment of these energy-optimal solutions. While
a formal proof of these properties under the modified cost function and parallel execu-
tion model is a complex undertaking and considered beyond the immediate scope of this
application-focused paper, the consistent and superior performance observed in extensive
simulations strongly supports these assertions from an empirical perspective.

Summary: Our experiments have shown conclusively that guidance on MEO-BIT*
through DON helps this hybrid agent find safe courses of action rapidly by directly marking
risky areas and adjusting energy parameters as soon as possible during path evaluation.
Although it does not influence the search mechanism in MEO-BIT*, effective informa-
tion fusion helps to enhance the hybrid vehicle’s environmental sensing capability more
significantly while searching.

We define a discrete action space for the AUV to balance the flexibility of control and
learning efficiency. The output layer of the DQN predicts a Q-value for each discrete action,
and the agent selects one of the actions to execute based on the e-greedy policy. In this
study, the forward speed of the AUV is set to a constant value, and the DQN is mainly
responsible for the adjustment of the course of the decision.

The specific discrete action set consists of the following five actions:

Hard Left Turn: The heading angle changes 30 degrees to the left (A6 = —30°).
Soft Left Turn: The heading angle changes 15 degrees to the left (A6 = —15°).

Go Straight: The heading angle remains unchanged (A8 = 0°).

Soft Right Turn: The heading angle changes 15 degrees to the right (A8 = +15°).
Hard Right Turn: The heading angle changes 30 degrees to the right (A8 = +30°).

SO IR S

This action space is designed so that the AUV can fine-tune to get close to the path
and make a significant turn to avoid obstacles in an emergency. The decoupling of speed
simplifies the learning task, allowing DQN to focus more on learning complex obstacle
avoidance and path optimization strategies.

3.5. Overall Algorithm Performance Analysis and Discussion

Building upon the preceding in-depth analysis of each algorithm’s performance in
static and dynamic environments concerning path quality, computational efficiency, and
specific modules (such as DQN)), this section will present a more macro and comprehen-
sive performance evaluation of all compared algorithms. We will focus on examining
parallel computing efficiency, memory utilization, and scalability, and quantify the overall
performance of each algorithm using a comprehensive performance scoring model. The
aim is to reveal their advantages, disadvantages, and potential trade-offs across different
performance dimensions.

3.5.1. Parallel Computing Efficiency Analysis

The main innovation of the MEO-BIT* algorithm is to complete many effective parallel
computer systems based on multi-threaded, which can significantly improve planning
efficiency. To verify the gain of parallel computing, this paper mainly records the time
allocation situation in each part (parallel and serial parts) of the MEO-BIT* algorithm. At
the same time, it also pays attention to its working status in different processor cores, as
shown in Table 11.
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Table 11. Parallel computing efficiency analysis.
Parallel Serial COHISI.OH Sampling
. . . . . Parallel Detection .
Algorithm Processing Time Processing Time . . Efficiency
Efficiency Improvement
(s) (s) Improvement
Rate

MEO-BIT* 70.36 1.49 97.93% 78.42% 66.31%

The data in Table 11 shows that the MEO-BIT* algorithm demonstrates outstanding
parallel efficiency, reaching 97.93%. This indicates that most of the algorithm’s computa-
tional tasks are executed efficiently in parallel, with only a minimal portion (approximately
1.49 s, accounting for 2.07% of the total execution time) requiring serial processing. This
high degree of parallelism is achieved through a meticulously designed multithreaded
architecture and an efficient task allocation strategy.

Notably, in the two most computationally intensive phases—collision detection and
the sampling process—the parallelization improvement rates reached 78.42% and 66.31%,
respectively. This shows that by decomposing these time-consuming operations and
distributing them across multiple processor cores for concurrent execution, MEO-BIT*
successfully transformed these traditional bottlenecks into parts amenable to parallel
acceleration.

Thread affinity optimization is one of the key techniques enabling this high parallel
efficiency. By explicitly assigning computation-intensive tasks (such as collision detection)
to performance cores (P-cores) and allocating I/O-intensive or lightweight management
tasks (such as preliminary integration of sampling results) to efficiency cores (E-cores),
the algorithm fully leverages the advantages of modern heterogeneous processor architec-
tures. This ensures the most efficient utilization of computational resources and avoids
performance bottlenecks caused by improper task allocation or core contention.

3.5.2. Memory Ultilization and Scalability Analysis

Memory utilization efficiency and scalability with the scale of problems increasing.
The latter two have more significance when applied to embedded systems with poor
computing ability or cases where it is necessary to walk a large map. We recorded the
maximum occupancy in memory when running the three main algorithms (RRT*, origin
BIT*, MEO-BIT*). Also, we observed the scaling result caused by different problem sizes
(such as the size of the map and the number of nodes). Table 12 records the results of
comparison tests on memory utilization and scalability.

Table 12. Memory utilization and scalability analysis.

Max Memory Per Node Memory -
Algorithm Occupancy Overhead Efficiency SCFa::Eﬁ:y
(MB) (KB) Index
MEO-BIT* 2142.80 61332 0.147 S‘élz:f;;ar
Original BIT* 994.19 321.12 0.314 Linear Scaling

Table 12 data indicates MEO-BIT*’s maximum memory occupation (2142.80 MB) is
notably higher than BIT*'s (994.19 MB), closely approaching RRT*’s. This suggests MEO-
BIT* utilizes larger search structures and additional multi-threading data for enhanced
concurrent computation and global exploration. While the original BIT* has lower per-node
memory overhead (321.12 KB/node to 573.64 KB/node), its memory efficiency per data unit
is worse than RRT* and MEO-BIT*, indicating suboptimal single-copy data node usage that
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could be improved. The cost-benefit ratio, calculated as 0.147 (path quality improvement
rate/memory size increase factor), confirms that MEO-BIT*’s energy-saving, multithreaded
path planning offers an acceptable price-to-quality ratio.

Experiments further demonstrate MEO-BIT*’s favorable scalability: it performs well
on smaller maps, with only slightly increasing search time on larger maps. This non-linear
scaling with input size (e.g., map area) is significant for applications requiring wide-area
navigation in high-dimensional spaces.

3.5.3. Comprehensive Performance Evaluation

The comprehensive performance score model is constructed to give a complete and
relatively fair assessment of the overall performance of the three algorithms. On the one
hand, there are many essential factors in path planning algorithms; many algorithms
only consider point-time and road length, not wanting to increase more complex tasks
when generation can track feasible road traverser-motion trajectory. Another aspect is
calculation efficiency, including plan time. Finally, the economic factors for using memory
are considered in the model. Then, some other scalability, which we already described,
dimensions with weight coefficients set as it plays out between several parts (the weight
coefficient adds up to 1.0 but determines its relative importance); For a detailed list, see
Table 13, which shows the final obtained integrated, comprehensive scores.

Table 13. Comprehensive performance evaluation.

Multithreaded
Performance . Energy .. " *
Dimension Weight Optimized Original BIT RRT
BIT*
Path Quality 0.40 9.2 (3.68) 8.5 (3.40) 5.4 (2.16)
Computational
Efficiency 0.35 8.8 (3.08) 5.7 (2.00) 9.5 (3.33)
Memory
Efficiency 0.15 6.5 (0.98) 8.9 (1.34) 9.1(1.37)
Scalability 0.10 9.0 (0.90) 7.8 (0.78) 6.5 (0.65)
Overall Score 1.00 8.8 7.52 7.51

It can be easily seen from the full score results that MEO-BIT* gets 8.80 points, while
BIT* gets 7.52 pts and RRT* 7.51 pts. After carefully checking each scoring item, we find that:
In terms of path quality, MEO-BIT* scores up to 9.2 (Weight = 3.68 pts); in terms of scalability,
MEO-BIT* scores up to 9.0 (Weight = 0.90 pts). Due to its especially excellent planning
speed, the real-time planning algorithm RRT* scores high on computation efficiency, which
reaches up to 9.5 (weight = 3.33 pts). The original BIT* also performs exceptionally well in
memory efficiency, scoring up to 8.9 (weight = 1.34 pts).

By analyzing this multi-level performance characteristics diagram between different
performance metrics, we found that for path planning algorithms, there are inevitable
trade-offs between these other indicators. For example, if you want good path quality,
you must conduct more comprehensive searches using complex models. Usually, they
need more time and consume more memory, while high-speed computations might mean
poor paths and low adaptability. Under such a parallel computing system architecture
and advanced energy optimization strategy, MEO-BIT* finally achieved a better balance
among them.

What needs special attention is that, compared with other works, there are significant
increases only in central performances required by application scenarios--i.e., path quality
and computational efficiency. To intuitively clarify the above data result, a radar chart
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comparing four main dimension scores (path quality, computational efficiency, memory
efficiency, and scalability) of all three methods is presented in Figure 18.

Path Quality
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Computational
95 Efficiency

o1

Memory Efficiency
—®— Multi-threaded BIT* Overall Score:
Original BIT* Multi-threaded BIT™: 8.80
-8~ RRT* Original BIT*: 7.52
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Figure 18. Performance comparison of path planning algorithms.

Figure 18’s radar chart clearly shows MEO-BIT*’s balanced and outstanding overall
performance across various criteria, including path quality and scalability. While it may
not individually surpass RRT* in computation speed or original BIT* in storage space,
its combined strengths justify its superior ranking within our evaluation scope. This
demonstrates MEO-BIT*’s potential for high-quality, efficient, and far-reaching solutions
in complex planning scenarios, making its underlying philosophies valuable for future
navigation system development.

4. Conclusions

In summary;, this paper has successfully designed and validated a new hybrid path
planning algorithm, Multithreaded Energy-Optimized BIT* fused with Deep Reinforce-
ment Learning (MEO-BIT* + DQN), which improves the autonomous driving ability of
intelligent ocean-going ships in complex dynamic narrow seas. The comparative analy-
sis in this paper primarily focused on RRT* and the original BIT* to rigorously evaluate
the core contributions of the MEO-BIT* algorithm and its subsequent fusion with DQN.
This deliberate choice of baselines allows for a clear understanding of the performance
enhancements achieved in fundamental aspects such as computational speed, path quality,
and cost efficiency relative to well-established optimal and state-of-the-art sampling-based
planners. While the landscape of hybrid DRL-geometric planners for AUVs is rapidly
evolving, establishing strong performance against these foundational methods is a critical
first step. Future work will broaden the comparative scope to include other advanced
hybrid techniques as they become more standardized and benchmarkable, further con-
textualizing the contributions of the MEO-BIT* + DQN framework within the broader
spectrum of intelligent AUV navigation solutions. Experimental results show that by using
the combination of advantages of MEO-BIT*, an approximate optimal global path can be
quickly found while optimizing cost. DQN dynamically adjusts to update near-optimal
paths under changed situations and avoid obstacles. The newly proposed method obtains
significantly better or comparable improvement effects than traditional BIT*, RRT*, and
MEO-BIT*. The final achievements include: (1) Researching and establishing an effective
fusion algorithm combination between BIT* and DQN; (2) Proposing and implementing
the main sub-modules of MEO-BIT*, including multi-thread parallel search execution mod-
ule, heterogeneous CPU cores, and physics model-inspired energy-optimization strategy;
(3) Based on the excellent initial information provided by MEO-BIT*, demonstrating how
the subsequent reinforcement learning model DQN can smartly adaptively learn and plan
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paths within changing dynamic environments, providing solutions for safer, faster, more
efficient, and economic autonomy through more innovative path planning strategies for
navigating and operating ships at sea.

Although the current research has obtained encouraging results, it still needs further
application research studies in actual marine environments containing complex problems
to develop good models of large-scale physical phenomena, ensure real-time requirements
when applying them live, and deal with massive amounts of operational data, which will
be given special attention in future work.
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