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Abstract

This paper presents an energy-optimized path planning approach for fully actuated au-
tonomous underwater vehicles (AUVs) in three-dimensional ocean environments to en-
hance their operational range and endurance. A fully actuated AUV is characterized by its
high degrees of freedom and precise controllability. Using real terrain data, we construct
environmental models incorporating a Lamb vortex and random obstacles. We develop a
mathematical model of the AUV’s total energy consumption, accounting for constraints
imposed by its fully actuated design and extensive maneuverability. To minimize energy
usage, we propose an energy-optimized path planning algorithm that combines energy-
optimized particle swarm optimization (EOPSO) and sequential quadratic programming
(SQP). The proposed method identifies the optimal path for energy consumption and
the corresponding optimal surge speed. The efficacy of the algorithm in optimizing the
total energy consumption of the AUV is demonstrated through the simulation of various
scenarios. In comparison to other algorithms, paths planned by this algorithm are shown
to have superior robustness and optimized energy consumption.

Keywords: autonomous underwater vehicle; complex environments; energy-optimized;
path planning

1. Introduction
With the exploration of the marine environment and the exploitation of underwa-

ter resources, autonomous underwater observation technology is constantly advancing.
Autonomous underwater vehicles (AUVs) have been widely used in the fields of marine
pipeline detection [1], environmental monitoring [2], and ecosystem data collection [3], as
well as for military purposes [4]. Due to the complexity of the marine environment, the
effective utilization of the marine environmental elements and the avoidance of various
obstacles in the ocean are the keys to achieving autonomous navigation; thus, path planning
is becoming an important aspect of the underwater missions performed by AUVs.

Due to the limited energy capacity of the AUV, it must return to an underwater
base station for recharging or to be recovered for energy replenishment after operations.
Consequently, the implementation of a low-energy trajectory can prolong the mission
endurance and expand the operational range of the AUV, thereby enhancing the efficiency
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of energy utilization. This is of paramount importance for long-duration, wide-ranging
AUV missions, which are the primary focus of the research presented in this paper.

To develop energy-efficient navigation strategies, it is essential to understand the
influence of ocean currents. Scholars have proposed numerous path-planning methods
that integrate ocean currents as a key environmental factor. Garau used an A* algorithm
to search for a navigation path with minimum energy consumption in a large-scale non-
uniform current environment [5]. Yao proposed a continuous-direction path planning
method for AUVs based on an edge search algorithm [6]. The proposed method does not
fix path waypoints exactly but instead uses currents to reduce energy consumption. Yao
and Wang constructed a cost function in terms of running time and consumed energy by
modeling the eddy field and the current field. They regarded a strong current field as an
obstacle and then evaluated the total running time of the path [7]. Subramani proposed a
dynamic orthogonal (DO) level set optimization method for calculating the energy-optimal
path from the time-optimal paths of an AUV traveling in a dynamic flow field [8]. Yang
proposed an energy-optimal path planning method that incorporates active flow sensing.
This method employs a proper orthogonal decomposition (POD) approach to construct a
parametric model of ocean currents. The objective of this approach is to minimize energy
consumption and reduce flow prediction uncertainty [9].

In recent years, based on the development of deep learning and neural networks,
related methods have been introduced into the path planning of AUVs. Currently, most
of the studies are based on the Q-learning algorithm and the deep Q network (DQN)
algorithm [10,11]. For example, Xi proposed an AUV path planning scheme using com-
prehensive ocean information (COID) and reinforcement learning (RL) [12]. Nevertheless,
reinforcement learning is beset by several challenges, including the potential for dimen-
sionality explosion, high experimental costs, and the inherent uncertainty of mathematical
models [13].

At present, numerous path planning methodologies based on biological intelligence
are employed for AUVs, including the genetic algorithm (GA) [14], the Ant Colony Op-
timization (ACO) algorithm [15], neural networks (NN) [16], the particle swarm opti-
mization (PSO) algorithm [17], and others [18]. Ma proposed a dynamically augmented
multi-objective particle swarm algorithm for generating energy-efficient paths by taking
into account multiple objectives and constraints in the flow field [19]. Yao implemented a
QPSO-based algorithm to propose an interval optimization (IO) scheme, which establishes
an interval flow model to bind the uncertainty of the predicted currents and uses an IO
scheme to search for time-optimal paths in the interval flow field [20]. Li proposed an
improved compression factor particle swarm optimization (ICFPSO) algorithm to achieve
path planning in a three-dimensional flow field environment [21].

The aforementioned studies pertain to planning the paths of traditional torpedo-
shaped AUVs. The under-actuated AUV models that are considered exhibit low degrees
of freedom of motion and simplified models of energy consumption. There are notable
distinctions between fully actuated AUVs and torpedo-shaped AUVs, particularly in terms
of the number of degrees of freedom and trajectory-tracking capabilities. Fully actuated
AUVs have better path-tracking capabilities and can handle environmental disturbances
more robustly [22–24], while conventional torpedo-type AUVs often face the challenge of
underpowered maneuvers [25,26]. However, there is a paucity of research investigating
path planning for fully actuated AUVs.

In this paper, based on the above-mentioned research work, an accurate energy con-
sumption model for a fully actuated AUV is derived, new constraints are determined
for the fully actuated characteristics, and an energy-optimal particle swarm optimization
(EOPSO) algorithm is proposed.
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This paper presents a mathematical model for the path planning of AUVs that takes
into account the effects of ocean currents, seabed topography, and obstacles. It also examines
the impact of varying navigation speeds on energy consumption. In this paper, an SQP
algorithm is used to determine the optimal travel speed of the AUV within a maximum
allowable travel time constraint. In the final sections of this paper, we compare the proposed
approach with other algorithms, including the genetic algorithm and the PSO algorithm, to
demonstrate its efficacy in reducing the energy consumption of the AUV.

The rest of this paper is organized as follows: Section 2 presents the model of the fully
actuated AUV and the constraints and introduces a complex three-dimensional marine
environment model. In Section 3, the energy consumption model of the AUV and the
improved path planning algorithm are presented. The results of the simulations and
subsequent analysis are presented in Section 4. Finally, Section 5 provides a summary of
the work presented in this paper and outlines potential avenues for future research.

2. System and Environmental Context
AUV three-dimensional path planning is the process of determining and planning an

optimal path from the start point to the endpoint in a three-dimensional marine environ-
ment, R3, taking into account multiple factors related to the marine environment, such as
currents, obstacles, and seafloor topography, and satisfying the constraints of the AUV.

2.1. Introduction of the Stingray II AUV

The research in this paper is based on the Stingray II AUV, which is a fully actuated
AUV that can survive for a long time on the seafloor. Its primary functions are oriented
toward seafloor high-stability and low-speed navigation, and it can be used for the con-
tinuous observation of seafloor targets, autonomous identification, and the acquisition of
high-definition images of the seafloor in medium- and large-scale scenarios. In contrast to
traditional torpedo-type AUVs, the Stingray II employs a stingray-inspired design, featur-
ing a flat, rounded shape that is optimally streamlined and an elliptical or nearly elliptical
cross-section with a width that exceeds its height. This configuration effectively reduces its
navigational resistance.

Although its resistance is small, the flat, round shape of the intelligent AUV renders it
susceptible to external perturbations, such as ocean currents. To enhance the stability and
disturbance-rejection capability of the AUV, while also minimizing the effect on the overall
center of gravity, horizontal and vertical fins are designed into the tail of the AUV.

Figure 1 shows a schematic diagram of the three-dimensional model of the AUV, which
is equipped with six thrusters: two forward thrusters, three vertical thrusters, and one
lateral thruster. Three of the thruster drive axes are parallel to the horizontal plane, which
enables independent movements in three degrees of freedom during the horizontal straight
flight of the submersible, panning, and a combination of three-degrees-of-freedom motions.
The other three thruster drive axes are perpendicular to the horizontal plane, which allows
for the control of the AUV’s movements. The following movements are observed: vertical
lifting and sinking, transverse rotation, and longitudinal rocking.

This propulsion distribution pattern allows for a higher degree of freedom of motion
than conventional torpedo-shaped AUVs, thus enabling the vehicle to move freely in the
ocean and effectively reducing the impact of lateral or vertical currents on the vehicle.
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Figure 1. Three-dimensional model of the Stingray II AUV; 1 and 2 are forward thrusters, 3, 5, and 6
are vertical thrusters, and 4 is a lateral thruster.

2.2. Complex Environment Model

In practice, AUVs often navigate in a complex three-dimensional oceanic space. In
this study, in order to enhance the realism and reliability of the simulation, the complex
environment in which the AUV operates will be replicated as closely as possible. This
includes seafloor topography and geomorphology, static obstacles, and ocean currents.

In this study, the seabed topography setting does not utilize the three-dimensional
seabed environment model established by QI [27], but introduces the real data from the
ETOPO1 [28] dataset to bridge the gap between the simulation environment and actual
application scenarios, thereby enhancing the reliability of the simulation environment and
providing real data support for the path planning algorithm. In this paper, we take part
of the South China Sea as the research object (112◦ E to 114◦ E, 16◦ N to 18◦ N), as shown
in Figure 2.

The ocean current exerts the most significant influence on the optimal path planning
for AUV energy consumption. In an ocean current environment, countercurrents directly
reduce the navigation speed of AUVs, increase navigation time, increase energy consump-
tion, and potentially threaten navigation safety. Conversely, favorable currents can enhance
the velocity of AUVs and conserve a considerable quantity of energy.

The ocean current model in this study is based on the assumption made by Garau
that the currents surrounding the AUV are the result of Lamb eddies of unknown position,
radius, and strength [29]. He constructed the Navier–Stokes Equations, which describe
ocean dynamics, as a combination of single-point Lamb eddies, called viscous Lamb eddies.
These equations are designated as follows:

Vx(r) = −λ · y−y0
2π(r−r0)

·
[

1 − e−(
r−r0

ξ )
2]

Vy(r) = λ · x−x0
2π(r−r0)

·
[

1 − e−(
r−r0

ξ )
2]

ω(r) = λ
πξ2 e−(

r−r0
ξ )

2

(1)

where Vx(r), Vy(r), ω(r) are the eddy velocity components in the horizontal transverse,
horizontal longitudinal, and vertical directions, respectively, and λ, ξ, and r0 are the
coordinates of eddy strength, eddy radius, and eddy center position, respectively.
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Figure 2. Topographic map of the South China Sea. The blue boxed area in the figure shows the area
simulated in this paper.

In this paper, based on the data in the SODA [30] dataset, the current field at different
depths at a certain moment in the South China Sea region is obtained, as shown in Figure 3.
In this study, the parameters of the eddy field will be set according to the data in the dataset
in order to simulate the actual ocean currents.

Figure 3. Schematic diagram of the current field at different depths in the South China Sea.

Due to the low velocity of the current in the vertical direction, the effect of the vertical
component of the current is disregarded in this paper. Instead, the current is considered to
be stratified and stabilized in three-dimensional space as the AUV performs its mission.

In the environment model established in this paper, randomly distributed spherical
obstacles are also introduced to increase the realism of the simulation scenario. The size,
distributed number, and specific location of these obstacles are randomly generated to
simulate various potential obstacles in the ocean, in addition to the terrain. This ensures
that the AUV can operate stably in the complex and changing ocean environment. We
construct the following mathematical model to describe the randomly distributed obstacles:
let the ocean environment be represented by a three-dimensional spatial region Ω ⊆ R3,
and let us consider a set of spherical obstacles, {Oi}N

i=1, distributed in this environment,
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where N denotes the total number of obstacles. Each obstacle, Oi, is defined as a sphere
as follows:

Oi :=
{

O ∈ R3 : ∥O − ci∥2 ≤ Ri

}
(2)

where ci =
(
oix, oiy, oiz

)
represents the center position of the obstacle and Ri denotes its

radius. The overall underwater three-dimensional environment model is shown in Figure 4.
In the figure, the blue spheres represent the obstacles.

Figure 4. Visualization of the complex 3D environmental model.

2.3. Constraints

The feasibility of a path is determined by the constraints imposed on the AUV. These
constraints include several performance constraints, environmental constraints, and syn-
ergy constraints. The following constraints are the primary focus of this study.

Terrain and obstacle limitations. The premise of path planning is to find a safe
and collision-free path. In this study, the following restrictions are imposed on particle
positions, and the corresponding penalty functions are established, which will be presented
in Section 4. {

Dis(pi, ci) > Ri + dsa f e

zi > Zseabed + Zsa f e
(3)

AUV speed limitation. The localization system of the Stingray II AUV is based on a
Kalman filter, with the localization error of the basic localization mode being no greater
than 5% at an AUV surge speed of 0.3~2 m/s. Due to the limitations of the stability control
system, this paper proposes the following speed limitations for the AUV:

v ≥ vmin = 0.3 m/s (4)

Ocean current constraints: In this paper, ocean currents are utilized or circumvented
by decomposing the vector flow field. Currents that flow outside the designated range are
treated as obstacles, and AUVs navigate only within the following current fields:{

−0.5 m/s ≤ νc cos θ ≤ 0.5 m/s
|νc sin θ| ≤ 1 m/s

(5)

Other limitations: In this study, the speed of the AUV in different path segments is
determined according to the travel time, current distribution, and ascent angle. To ensure
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the safety of the AUV, the vertical thruster is programmed to limit both the ascent and
descent speed of the AUV, as follows:

|vh|≤ 0.5 m/s (6)

On this basis, a B-spline curve is used to curve-fit the paths to ensure the smoothness
of the path transitions.

3. Methodology
3.1. Path Planning Problem Description

The optimal path, Path = {p1, p2, . . . , pn}, can be the shortest path in terms of
distance traveled, the shortest path in terms of navigation time, or the optimal path in
terms of energy consumption. The coordinates of each path waypoint are as follows:
pi = (xi, yi, zi). Path planning can be described as follows:

Path = minJ (7)

s.t.


p1 = pstart

pn = pend

pi /∈ {O} , ∀i ∈ [1, n]
zi > Zseabed , ∀i ∈ [1, n]

(8)

where J is the objective function, which represents the goal of path planning, {O} is a
set of obstacles, and Zseabed represents the depth of the seabed that corresponds to pi. The
process of path optimization is the process of finding the minimum value of the objective
function. In order to facilitate the calculation, this study employs a simplified strategy by
considering the AUV as a prime model, representing its motion by position changes in
three-dimensional space.

To facilitate an understanding of the technical content in this section, a nomenclature
table is provided below to define key symbols and terms used in the description of the
energy-optimized particle swarm optimization (EOPSO) algorithm and the associated
path planning optimization problem. The nomenclature used in this study is summarized
in Table 1.

Table 1. Nomenclature.

Name Description Name Description

A, v, ρ
Parameters for the calculation

of resistance Tmax Maximum time limit for travel

c1c2 Learning factor of PSO algorithm O(Xi), H(Xi) Threat functions of terrain and obstacles

Cd
Resistance (drag) coefficient of

the AUV Oi Spherical obstacles in R3

dsa f e Safe distance from obstacles pn Coordinate of the nth waypoint
Etotal Total energy consumption of AUV Pi Power of the ith set of thrusters

F Fitness function pbest Individual best of the particle swarm

f Calculation factor for inertia weights R3 Three-dimensional space for
path planning

gbest Global best of the particle swarm Ri Radius of the ith obstacles
ki Thruster power calculation factor Vi Velocity of the ith particle in the swarm
L Length of a segment of a path vg Vehicle speed to ground

λ, ξ, r0 Parameters of the Lamb vortex model ω, ωmax, ωmin Inertia weights of PSO algorithm
m, d Population size of the particle swarm Xi Position of the ith particle in the swarm
α, β Factors of the threat function Zsa f e Safe height from the seabed
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3.2. PSO Algorithm

The particle swarm optimization (PSO) algorithm is a population-based heuristic
optimization algorithm [31]. In the PSO algorithm, each particle represents a potential
solution, and by iterating continuously, the particles keep searching in the solution space.
The particle has two main parameters, position Xi = [xi1, xi2 , . . . , xid] and velocity Vi =

[vi1, vi2, . . . , vid]. During the iteration process, the particle adjusts its velocity and position
by the best position in its personal experience (individual cognitive part pbest) and the best
position in the whole group (social cognitive part gbest), which is described as follows in
Equation (9):{

vi(t + 1) = wvi(t) + c1r1(pbesti
(t)− xi(t)) + c2r2(gbest(t)− xi(t))

xi(t + 1) = xi(t) + νi(t + 1)
(9)

where ω is the inertia weight, which describes the extent of inheritance of the particle
velocity from the previous moment, c1, c2 are learning factors, pbesti (t) and gbest(t) are
the individual optimal position and the global optimal position at the time of t iterations,
respectively, and r1, r2 are the random numbers.

The velocity update formula consists of three parts, the first part is the inertia part,
that is, the tendency of the particle to continue to move in the direction of the previous
velocity, the second part is the individual cognition, which causes the particle to move in
the direction of the optimal position that occurs in the iterative process of the particle, that
is, it guides the particle to the individual cognitively optimal solution, and the third part
is the social cognition, which causes the particle to move toward the optimal position of
the group.

After each position update, the fitness value of each particle is recalculated and
compared with the value that corresponds to the previous iteration, and pbest and gbest are
determined based on the fitness of the particle, F(xi), and its previous best fitness, F

(
pbesti

)
,

as follows:

pbesti
(t + 1) =

{
pbesti

(t), F
(

pbesti
(t)
)
≤ F(xi(t + 1))

xi(t + 1), F
(

pbesti
(t)
)
> F(xi(t + 1))

(10)

gbest(t + 1) =

{
gbest(t), F(gbest(t)) ≤ F(pbesti

(t + 1))
pbesti

(t + 1), F(gbest(t)) > F(pbesti
(t + 1))

(11)

In the particle swarm optimization algorithm path planning, m is the number of
particles, which represents the total number of path solutions, and d is the dimension of
each particle, which represents the number of intermediate path points on each path. In
PSO algorithms, these parameters, as well as the inertia coefficient, ω, and the learning rate,
c1, c2, are usually fixed values, but this will result in the range of particles explored being
kept constant throughout the algorithm iterations, which could lead to the path planning
becoming trapped at a local minimum or result in the convergence of the path planning at
a later stage that is not sufficiently rapid.

3.3. AUV Energy-Consumption Modeling

In the study of energy-optimal path planning for AUVs, the construction of an energy
model is a key factor in evaluating and optimizing the efficiency of the path, and this
section describes the mathematical model used to compute the energy consumption of an
AUV through the identified path.

The energy consumption of an AUV is mainly determined by its propulsion system,
in this study, the energy consumption of on-board sensors will be ignored, and only the
energy consumption model of the six propellers of the AUV will be considered. The drag
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force acting on the AUV is balanced with the thrust generated by the propellers in the
case of uniform speed motion. In this study, the six thrusters of the AUV are categorized
into three groups, including the two main thrusters, which provide forward and steering
power, with a total power of P1, the lateral thruster, which provides resistance to the lateral
currents, with a power of P2, and the three drogue thrusters, which control the lifting and
sinking motions, with a total power of P3. The total global energy consumption is defined
as follows:

Etotal =
3

∑
i=1

∫ t f

t0

Pi(t)dt (12)

Based on the formula for the resistance to motion of an underwater robot, the power
of the thruster can be deduced as follows [32]:

Pi(v) =
1
η
(

1
2

ρCd Av3) (13)

where η is the efficiency of the propulsion system, Cd is the drag coefficient, which depends
on the shape and surface properties of the AUV, A is the AUV cross-sectional area, v is the
surge speed of the AUV, and ρ is the fluid density.

The Stingray II AUV is calculated according to the length of 2 m, width of 1 m, and
height of 0.5 m for its area, which faces the current in all directions. In this study, the
main thrusters are the main source of energy consumption for the AUV. Experiments on
the relationship between main thrusters’ power and surge speed were conducted in a
hydrostatic environment, and since the thruster power is cubically related to the speed, this
paper fits the experimental results with a cubic curve. A comparison of the actual power
of the AUV main thruster obtained and the theoretical power in the ideal case is shown
in Figure 5.

Figure 5. Experimental results and fitted curves of main thruster energy consumption.

In addition, we experimentally tested the power–velocity model for the lateral and
vertical thrusters. The results are shown in Figure 6.
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(a) 

(b) 

Figure 6. Experimental results and fitted curves of main thruster energy consumption: (a) power
curve of the lateral thruster, (b) power curve of the vertical thruster.

In this study, by default, the bow direction of the AUV is aligned with the direction
of the path segment, and the pitch angle is kept at 0. In this kind of motion, the lateral
thrusters are solely used to resist the lateral component of the ocean currents on the AUV,
while the vertical thrusters are solely used to control the rising and sinking motions of the
AUV, and the effect of coupling between the thrusters on the motion of the AUV is not
taken into account.

In addition, the component of the ocean current in the vertical direction is considered
to be negligible and is therefore not included in the analysis. The actual speed at which an
AUV navigates a section of its path under the influence of currents is not the surge speed.
The actual velocity of AUV is denoted as vg, which represents the velocity of AUV to the
ground and can be calculated as follows:

vg = v +
vc· −−−→pι pι+1∥∥∥∥−−−→pι pι+1

∥∥∥∥ (14)
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where v represents the surge speed of the AUV and vc represents the velocity of the
ocean current, whose component in the direction of the velocity of AUV affects the actual
travel speed.

3.4. Optimal Speed Calculation with the Tmax Limit

When an AUV performs a certain task, it is often subject to a maximum time limit,
which makes it necessary to consider the travel time constraint when considering energy-
optimal path planning, rather than just considering energy consumption without consider-
ing the final elapsed time. However, existing three-dimensional path planning for AUVs
that considers a travel time constraint is limited to path planning at fixed speeds [33,34]. In
this paper, we argue that for a given path, assigning and optimizing AUV travel speeds for
different path segments within Tmax constraints can help save a lot of energy.

In this regard, this paper assumes a maximum travel time Tmax for the mission and
thereby simplifies the problem to an AUV energy consumption optimization problem
under the influence of a two-dimensional current field. In this paper, the speed at which
the AUV consumes the least energy per unit of distance traveled is defined as the optimal
speed, vb, of the path segment, and the optimal speed of the AUV that passes through a
segment of the same path is different in different ocean current fields.

vb = argminvEtotal (15)

Assume that for a section of path of length L, the AUV passes through this section
of path with a certain surge velocity, v. The distribution within this section of path is a
constant flow field, the velocity of the current is vc, and the velocity of the AUV makes an
angle with the velocity of the current of θ. Then, the velocity of the AUV relative to the
ground at this point, vg, and the sideways velocity, vside, which the AUV must resist, are
expressed as follows: {

vg = v + vc cos θ

vside = vc sin θ
(16)

The time required to pass along this path segment is expressed as follows:

t =
L

v + vc cos θ
(17)

The power of the AUV thrusters is simplified as follows:{
P1 = k1v3

P2 = k2(vc sin θ)3 (18)

where k1 and k2 are the power calculation coefficients for the main and lateral thrusters,
respectively, which are kept constant in a stable environment. Then, the total energy
consumption of the AUV can be derived as follows:

Etotal =
∫
(P1 + P2)dt =

∫
(k1v3 + k2(vc sin θ)3)dt (19)

The ocean current model is decomposed into forward and lateral components, both of
which are relative to the AUV’s velocity. We analyzed the optimal AUV speed for forward
current components ranging from −1 m/s to 2 m/s and lateral components ranging from
0 to 1 m/s. The resulting optimal AUV speeds under varying current conditions are
presented in Figure 7.
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The subsequent analysis considers the optimal speed of the AUV under the influence
of three-dimensional stratified ocean currents. In three-dimensional path planning, the
partial velocity, vh, of the AUV in the vertical direction is determined by vg, as follows:

vh =
∆h
t

=
∆h(v + vc cos θ)

L
(20)

where ∆h is the projection of
→

pi pi+1 onto the Z axis. If the derived vh exceeds the limit, the
path cannot be generated. This study ignores changes in seawater density within a certain
range. Additionally, the AUV is assumed to be neutrally buoyant in the water, and the
energy consumption generated by the vertical thruster for its motion in a constant depth
state is neglected. Similarly, the energy consumption of the AUV vertical thruster can be
obtained as follows:

P3 = k3(
∆h(v + vc cos θ)

L
)

3

(21)

where k3 is the power coefficient of the vertical thruster. Then, the total energy consumption
of the AUV at this point is shown below:

Etotal =
∫ (

k1v3 + k2(vc sin θ)3 + k3(
∆h(v + vc cos θ)

L
)

3
)

dt (22)

The qualification, Tmax, is added as follows:

L
v + vc cos θ

≤ Tmax (23)

Figure 7. Optimal velocity distribution of AUV in a two-dimensional current field.

In this study, the Sequential Quadratic Programming (SQP) algorithm is used to solve
this nonlinear optimization problem. The SQP algorithm solves the nonlinear optimization
problem by converting it into a series of quadratic programming subproblems, each of
which approximates the original problem but is easier to solve [35]. In this paper, we place
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the computation of fitness value in the SQP algorithm, which will be used to find the optimal
speed of each path segment with minimal energy consumption, as shown in Algorithm 1.

Algorithm 1 EOPSO Algorithm for AUV Path Planning

STEP 1: Create a 3D environmental model that includes seafloor topography, static obstacles, and ocean currents.
STEP 2: Initial particle paths {p1, p2, . . . , pn}, maximum iterations I, learning factors, inertia weight, and other
parameters.
STEP 3: Initial parameters of the SQP algorithm, including the velocity, vj, tolerance, tol, step size, α0, maximum
iterations N, and Tmax.

STEP 4: Repeat
for each i

Compute the value of the energy function according to Equation (22) at vj.
Compute the gradient of Etotal at vj.
Update the particle velocities and positions and avoid collisions using Equation (9).
Repeat

Compute the Hessian according to HEtotal at vj.

HEtotal

(
vj
)
=



∂2Etotal
∂v2

j1

∂2Etotal
∂vj1∂vj2

. . . ∂2Etotal
∂vj1∂vjN

∂2Etotal
∂vj2∂vj1

∂2Etotal
∂v2

j2
. . . ∂2Etotal

∂vj2∂vjN

...
...

. . .
...

∂2Etotal
∂vjN ∂vj1

∂2Etotal
∂vjN ∂vj2

. . . ∂2Etotal
∂v2

jN


(24)

Solve the QP subproblem to find the search direction as follows:
min

∆v

[
∇ f (vj)

T∆v + 1
2 ∆vTHj∆v

]
(25)

Apply the constraints according to Equation (23).
Conduct a line search to determine step size αi

Update vj+1 = vj + αi∆v

Until ∥ ∇Etotal

(
ν(i)
)
∥ < tol or i ≥ N (26)

vb = vj

Determine if re-planning is required.
Until iter ≥ I

STEP 5: Output path and optimal velocity: vb and Etotal.

For a specific path, {p1, p2, . . . , pn}, the abovementioned algorithm calculates the
optimal speed of each path segment. Thereafter, the energy consumption of each segment
of the path is calculated, and the results are summed to obtain the total energy consumption
of the entire path, where f (vj) is the energy consumption function of the AUV, and αi is
the step size of the SQP algorithm.

3.5. Fitness Function

The fitness function represents the fundamental element of the PSO algorithm. In
path planning problems, the fitness function is typically formulated as the objective of
optimization.

The objective of this research is to identify the optimal energy consumption path in a
complex three-dimensional environment. The focus of this paper is to optimize the total
energy consumption of through-path planning. The fitness function of the PSO algorithm
in this paper is constructed based on the energy consumption model established in the
previous section, considering other constraints.

The optimal travel speed of the AUV in the current field environment is determined
by the energy consumption model of the AUV, which is established in this paper. This
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model considers the effects of ocean currents, the travel time of the AUV, and the travel
distance. The fitness function not only considers the energy consumption of the AUV but
also needs to consider the threat of the seabed topography and obstacles to the AUV. In
this paper, the fitness function is defined as follows:

F(Xi) = E(Xi) + αO(Xi) + βH(Xi) (27)

where E(Xi) is the total energy consumption of the AUV, O(Xi) denotes the penalty
function that corresponds to the minimum safe distance between the path point and the
obstacle, α is the weighting coefficient of the safe distance function, H(Xi) denotes the
penalty function that corresponds to the minimum safe distance between the path point
and the undersea terrain, and β is its weighting coefficient, which controls the degree of
influence of the safe distance of the obstacle in the fitness function. For a specific solution,
Xi, the function, O(Xi), of the obstacle threat to the AUV takes the following form:

O(Xi) =
N

∑
j=1

n

∑
i=1

O(pi) (28)

O(pi) =


1

dist(pi ,{0j})+ε
, dist(pi,

{
0j

}
) < dsa f e

0, dist(pi,
{

0j

}
) ≥ dsa f e

(29)

The form of the function H(Xi) of the seafloor topography on the AUV threat is
as follows:

H(Xi) =
d

∑
j=1

H(xij) (30)

H(xij) =

{
1

zj−Z(xj ,yj)
, zj < Z

(
xj, yj

)
+ Zsa f e

0, zj ≥ Z
(
xj, yj

)
+ Zsa f e

(31)

where n is the number of path segments, d is the number of intermediate path points, and
n = d + 1.

3.6. Improved EOPSO Algorithm

In the particle swarm algorithm, the learning factors, c1 and c2, and the inertia co-
efficients, ω, in the particle velocity update formula play a crucial role in maintaining a
balance between global exploration and the local exploitation of particles.

If the inertia weight, ω, is large, it indicates that the particle has a strong detection
ability and is suitable for a large-scale search of the whole planning space. If it is small, it is
suitable for small-scale searches of the localized area.

We propose a new method that combines particle positions and randomness to adjust
ω, intending to enhance the search capacity of the algorithm while reducing the probability
of falling into local minima.

When a particle explores the boundaries of the map, it is possible for the fitness value
at the map edge to be less than that within the map, which may result in the velocity of
the particle being the same as that which causes the particle to leave the map, thus falling
into a local minimum. In this context, during each iteration, we evaluate the location of the
optimal particle. If the particle is near the map boundary and the expected next-generation
position is beyond it, the inertia weights are inverted, and their absolute value is increased
to drive the particle back into the search space.

ωnew = f ω, f =

{
−a, if any xt+1

ij /∈ R3

1, otherwise
(32)
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Here, f is an inertia coefficient computation factor, and a is a constant used to increase the
absolute value of the inertia weights so that particles are assisted in leaving the map range
to enhance particle exploration.

In the typical scenario, the inertia weights exhibit a linear decline as the number of
iterations increases. This approach has been demonstrated to enhance the fine-tuning
characteristics of the PSO [36], and in agreement with this strategy, the inertia weights are
expressed as follows:

ω = f × (ωmax − (ωmax − ωmin)×
iter

maxiter
), f =

{
−a, if any xt+1

ij /∈ R3

1, otherwise
(33)

Furthermore, during the process of particle iteration, local minima frequently occur,
despite the restriction on the position of the particles. Given the constraints imposed by
the learning factor and inertia coefficients on the region explored by the algorithm, it is
necessary to introduce a re-planning mechanism during iteration. This mechanism must
overcome the limitations of the current global and local optimal solutions and facilitate
the acquisition of a new population of particles. When the algorithm does not observe a
significant improvement in the global optimal solution for several consecutive iteration
cycles and the fitness value of the current global optimal solution exceeds the theoretical
minimum energy consumption value based on the shortest path computation, a complete
re-planning is triggered. At this point, all particles are reset to new random locations within
the search space.

The re-planning strategy is shown to be effective if the new global optimal solution
shows lower energy consumption than before. The specific steps are represented in Figure 8.

Figure 8. Flowchart of the re-planning mechanism.
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In order to ascertain the efficacy of the proposed re-planning strategy, a series of
simulation experiments were conducted in a two-dimensional environment. As depicted
in Figure 9, the scenario was set within a 200 m × 200 m plane, where ocean currents and
obstacles were distributed. To validate the effectiveness of the re-planning strategy, we
designed experiments using two distinct sets of starting and ending points.
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Figure 9. Schematic diagram of the re-planning validation scenario.

The results of these experiments, presented in Figure 10, demonstrate that the incorpo-
ration of a re-planning strategy into a path planning algorithm can effectively reduce the
likelihood of the algorithm reaching a local minimum, accelerate the rate of convergence,
and enhance the algorithm’s resilience.

 

Figure 10. Boxplot of energy cost in two scenarios.

4. Results and Discussion
To assess the efficacy of the energy-optimal path planning algorithm proposed in

this paper, the simulation results of path planning in different cases are presented and
analyzed in this section. The flow field and obstacles are randomly generated, the seafloor
topography is derived from real data from a portion of the South China Sea (112◦ E to
114◦ E, 16◦ N to 18◦ N), and the underwater vehicle is regarded as a mass point.

Simulation experiments were conducted for different starting and ending points to
compare the path planning effect of the EOPSO algorithm with the PSO algorithm, GA
algorithm, and other algorithms. The computer simulation platform is MATLAB 2020b, the
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processor is an Intel(R) Core (TM) I7-8700U CPU @ 1.80 GHz 2.00 GHz with 16 GB of RAM,
and the operating system is Windows 10, 64-bit.

4.1. Simulation Setup

In this study, three sets of experiments were conducted. A three-dimensional seabed
environment model described by an exponential function was used in the first set of
experiments. In addition, complex stratified current fields, as well as static obstacles, were
incorporated. The parameters that define these components are presented in Table 2.

Table 2. Simulation conditions for re-planning validation experiments.

Parameter Value

number of obstacles, N, in Case I 3
number of obstacles, N, in Case II and Case III 2

Parameters of the current field in Case I λ = 1.2, ξ = 500 m, n = 10
Parameters of the current field in Case II and Case III λ = 1.2, ξ = 100 km, n = 5

total number of particles 50
number of control points, d 4

maximum number of iterations 200
Parameters of inertia weight ωmax = 0.9, ωmin = 0.4

learning rate, c1, c2 c1 = 2.05, c2 = 2.05

In order to facilitate a comparison of the performance gap between the algorithms, the
following constraints were implemented:

The PSO and GA algorithms are classical shortest-path algorithms. The optimization
goal is the length of the path. In this paper, the SQP optimal speed algorithm is combined
with these algorithms to find the total energy consumption for comparison. The PSO-TO
and GA-TO algorithms are time-optimal path planning algorithms with fixed AUV speeds.
In the experiment, the AUV speed was fixed at 0.5 m/s, and the optimization goal was
the total travel time. The algorithms utilize favorable currents and avoid unfavorable
currents to a certain extent, but their consideration of lateral currents is lacking. This study
also implemented the aforementioned enhancements to the QPSO algorithm [37], thereby
substantiating the efficacy of the algorithmic improvements.

In addition, we mainly used the following metrics to evaluate the planned paths:
Travel time: AUVs are often time-bound to accomplish their mission, so travel time is

an important indicator.
Route length: In this paper, we use uniform gridded coordinates to compare the sum

of the lengths of each route.
Time: The time required to generate paths using different algorithms is an important

evaluation criterion.
Total energy consumption: The focus of this study is on planning the energy-optimized

three-dimensional paths, and this paper will focus on comparing the total energy consump-
tion consumed by AUVs under different conditions with different algorithms.

4.2. CASE I

In the first set of experiments, we focus on testing the performance of the algorithms
improved in this paper in a small environment that contains complex currents, static
obstacles, and undersea terrain. The results of the simulation are shown in Figure 11. In
this set of simulations, we deliberately included an obstacle between the start and end
points to avoid generating overly simple paths. Due to the complexity of ocean currents,
there is a large difference between the optimal and shortest paths. It is worth noting that
in this simulation, the paths generated by the EOPSO and EOQPSO algorithms are not
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similar. The EOPSO algorithm, combined with the re-planning strategy, is able to explore
more areas and search well even in small areas.

 
(a) 

(b) 

Figure 11. Three-dimensional path planned by GA, PSO, EOPSO, and EOQPSO in CASE I: (a) the
three-dimensional diagram paths, (b) top view of the paths. The asterisk (*) in EOPSO* and EOQPSO*
denotes paths generated under a maximum time limit Tmax.

Table 3 illustrates the sailing speeds achieved by the various algorithms across the
different segments of the path. EOPSO* and EOQPSO* denote the result of path planning
using the travel time of the PSO-TO algorithm as the maximum time limit, Tmax, parameter
of the EOPSO and EOQPSO algorithms, respectively. The AUV demonstrates the greatest
energy efficiency by maintaining the lowest constrained speed in situations in which
currents have minimal impact on navigation. In contrast, the EOPSO* and EOQPSO*
algorithms are capable of assigning optimal speeds to path segments, thereby optimizing
the total energy consumed by the AUV when there is a maximum time constraint.
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Table 3. AUV speeds for different path segments.

Algorithm
AUV Travel Speeds(m/s)

−−→
p1p2

−−→
p2p3

−−→
p3p4

−−→
p4p5

−−→
p5p6

1⃝ GA 0.30 0.30 0.30 0.33 0.30
2⃝ PSO 0.30 0.30 0.30 0.30 0.30

3⃝ EOPSO 0.30 0.30 0.30 0.30 0.30
4⃝ EOQPSO 0.30 0.30 0.30 0.30 0.30

5⃝ GA-TO 0.50 0.50 0.50 0.50 0.50
6⃝ PSO-TO 0.50 0.50 0.50 0.50 0.50
7⃝ EOPSO* 0.56 0.45 0.46 0.48 0.56

8⃝ EOQPSO* 0.58 0.45 0.51 0.56 0.57
The asterisk (*) in EOPSO* and EOQPSO* denotes paths generated under a maximum time limit Tmax .

In this study, 30 repetitive experiments were conducted for this case. Table 4 lists
the path performance metrics for different algorithms in the 30 experiments. The EOPSO
algorithm is able to save almost half of the energy consumption relative to the GA algorithm
combined with the optimal speed algorithm and the PSO without considering the sailing
time constraints. A comparison of EOPSO and EOQPSO reveals that the QPSO algorithm
does not demonstrate a superior convergence capability or computational speed when used
in conjunction with the SQP algorithm to determine the optimal speed. A comparison of the
last four sets of results reveals that following the introduction of a maximum sailing time
limit, EOPSO is capable of further optimizing energy consumption through the application
of the PSO-TO algorithm. However, a notable decline in energy efficiency is observed in
EOQPSO relative to PSO-TO.

Table 4. Comparison of performance metrics of different algorithms in CASE I.

Algorithm
Length of Path (m) Travel Time (s) Energy Consumption (kJ)

Time (s)
Mean Std. Mean Std. Mean Std.

1⃝ GA 1217.5 10.0 3122.5 462.5 257.6 58.6 46.3
2⃝ PSO 1191.5 0.5 3071.6 103.2 254.4 10.8 14.5

3⃝ EOPSO 1449.1 59.1 2468.2 148.1 134.0 11.9 347.7
4⃝ EOQPSO 1404.5 74.6 2577.0 172.3 152.0 18.5 366.7

5⃝ GA-TO 1245.5 26.7 1858.8 53.4 238.2 9.3 194.6
6⃝ PSO-TO 1351.7 76.1 1604.9 57.4 208.7 12.6 416.5
7⃝ EOPSO* 1365.2 67.0 1604.9 0.0 191.7 17.4 626.3

8⃝ EOQPSO* 1294.6 58.5 1604.9 0.0 229.4 18.7 658.3
The asterisk (*) in EOPSO* and EOQPSO* denotes paths generated under a maximum time limit Tmax .

The objective of this experimental investigation was to ascertain the efficacy of the
EOPSO algorithm in a simulation environment. The findings indicate that the algorithm is
capable of identifying a more energy-efficient path through a complex ocean current field,
while also reducing the computation time relative to the QPSO algorithm. This is due to
the fact that the incorporation of the SQP algorithm effectively increases the constraints of
the problem, which, in turn, significantly reduces the feasible solution space of the problem.
The QPSO is more inclined toward global search, whereas the SQP is a local optimization
process. The addition of sailing time constraints makes it more challenging for the QPSO to
be confined to a limited feasible solution space. In the case of the PSO, the velocity update
serves to guide the particles toward a gradual convergence, and in a smaller solution space,
it may be more efficient to tune to solutions that satisfy the time constraints.
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4.3. CASE II

For the second set of experiments, the results are shown in Figure 12. From the top
view, it can be observed that the paths planned by the GA and PSO algorithms exhibit
minimal influence of the ocean current on the AUV travel speed. However, the AUV is more
susceptible to the lateral component of the ocean current. In contrast, the path planned by
the EOPSO algorithm predominantly follows the downstream direction, aligning closely
with the direction of the ocean current. This configuration enhances the surge speed and
conserves energy, while the lateral component of the ocean current is comparatively smaller,
providing the AUV with a certain degree of stability. The lateral component of the current
is smaller in this path, which has the effect of improving the controllability and safety of
the AUV to a certain extent.

 
(a) 

 
(b) 

Figure 12. Three-dimensional path planned by GA, PSO, EOPSO, and EOQPSO in CASE II: (a) three-
dimensional diagram paths, (b) top view of the paths. The asterisk (*) in EOPSO* and EOQPSO*
denotes paths generated under a maximum time limit Tmax.
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Table 5 shows the surge speeds of different algorithms for each segment of the path.
Comparing algorithms 1⃝, 2⃝, 3⃝, and 4⃝, it can be seen that the optimal speed of AUV,
calculated by the SQP algorithm, is mostly equal to the minimum speed, vmin, without
time constraints, which is because, in the case of non-countercurrent and small lateral
components of the ocean current, the energy consumption per unit length to maintain the
minimum speed is minimized. Compared with algorithms 5⃝, 6⃝, 7⃝, and 8⃝, the optimal
speed of each section of the path solved by the SQP algorithm is not the same after taking
the time calculated by the PSO-TO algorithm as a constraint, Tmax, which is the result of
the combination of several factors. In this scenario, the results of EOPSO and EOQPSO are
similar in all aspects, including the generated paths and the computed optimal speeds.

Table 5. AUV speeds for different path segments.

Algorithm
AUV Travel Speeds (m/s)

−−→
p1p2

−−→
p2p3

−−→
p3p4

−−→
p4p5

−−→
p5p6

1⃝ GA 0.30 0.30 0.30 0.33 0.30
2⃝ PSO 0.30 0.30 0.30 0.30 0.30

3⃝ EOPSO 0.30 0.30 0.30 0.30 0.30
4⃝ EOQPSO 0.30 0.30 0.30 0.30 0.30

5⃝ GA-TO 0.50 0.50 0.50 0.50 0.50
6⃝ PSO-TO 0.50 0.50 0.50 0.50 0.50
7⃝ EOPSO* 0.41 0.39 0.39 0.69 0.66

8⃝ EOQPSO* 0.40 0.39 0.40 0.69 0.65
The asterisk (*) in EOPSO* and EOQPSO* denotes paths generated under a maximum time limit Tmax .

In this study, 30 repetitive experiments were conducted for this case. Table 6 lists the
path performance metrics for different algorithms in the 30 experiments. Firstly, a com-
parison of the EOPSO algorithm proposed in this paper with the GA and PSO algorithms,
which combine the optimal speed algorithm without considering travel time constraints,
reveals that the EOPSO algorithm can save 30% and 16% of energy consumption relative
to the GA and PSO algorithms, respectively. Furthermore, they save more than 15% of
energy consumption, even though the planned paths are slightly longer than those of
the remaining two algorithms. This is due to the utilization of favorable ocean currents.
Under the Tmax limitation, the paths planned by EOPSO can save 10% energy consumption
compared to the PSO-TO algorithm. This is achieved while maintaining the same travel
time or even reducing it. Furthermore, the improved EOPSO algorithm demonstrates
enhanced robustness. It is noteworthy that the energy optimization and robustness of the
EOPSO algorithm are, on average, slightly superior to those of the EOQPSO algorithm.

Table 6. Comparison of performance metrics of different algorithms in CASE II.

Algorithm
Length of Path (km) Travel Time (h) Energy Consumption (kJ)

Time (s)
Mean Std. Mean Std. Mean Std.

1⃝ GA 215.5 7.4 186.6 6.2 57,209.7 4432.0 107.4
2⃝ PSO 203.4 0.4 181.5 1.2 46,086.9 550.6 17.1

3⃝ EOPSO 274.6 4.0 153.1 5.7 38,489.6 203.5 368.9
4⃝ EOQPSO 270.5 2.9 150.3 2.0 38,850.4 433.2 372.3

5⃝ GA-TO 232.7 11.5 109.5 3.9 58,815.9 3825.4 240.8
6⃝ PSO-TO 267.2 2.0 100.4 0.2 48,776.8 572.1 371.2
7⃝ EOPSO* 271.8 3.6 100.4 0.0 44,801.2 134.7 743.4

8⃝ EOQPSO* 265.6 1.8 100.4 0.0 45,063.6 359.4 738.3
The asterisk (*) in EOPSO* and EOQPSO* denotes paths generated under a maximum time limit Tmax .
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This experiment also better verifies that ocean currents play an important role in AUV
path planning, and the rational use of ocean currents can effectively shorten missions and
save energy.

4.4. CASE III

To further validate the utility of the EOPSO algorithm, we interchanged the starting
and ending points and conducted another set of experiments.

A comparison of the path planning results from each algorithm is shown in Figure 13.
As illustrated by the three-dimensional graphs, a portion of the path segments planned
for the AUV by the GA and PSO algorithms are in opposition to the current, resulting in a
slight increase in the overall travel time and energy consumption of CASE II compared to
CASE I. The improved EOPSO algorithm demonstrates efficacy in identifying optimal paths
that traverse the middle of the complex seabed topography. Furthermore, the planned
paths align with the downstream current, providing compelling evidence of the algorithm’s
effectiveness. This substantiates the practicality of the algorithm. Given that the optimal
path traverses a region with complex terrain, the traditional PSO and GA algorithms
are prone to premature convergence or local minima. In contrast, the improved EOPSO
algorithm in this paper employs a re-planning mechanism that enhances the avoidance of
local minima and facilitates the exploration of a more extensive range of potential regions
on the map.

Similarly, Table 7 shows the surge speeds of different algorithms for each segment of
the path, the optimal speed of each path segment solved by the SQP algorithm is different
after taking the time calculated by the PSO-TO algorithm as the constraint, Tmax.

(a) 

Figure 13. Cont.
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(b) 

Figure 13. Three-dimensional path planned by GA, PSO, EOPSO, and EOQPSO in CASE III: (a) three-
dimensional diagram paths, (b) top view of the paths. The asterisk (*) in EOPSO* and EOQPSO*
denotes paths generated under a maximum time limit Tmax.

Table 7. AUV speeds for different path segments in CASE III.

Algorithm
AUV Travel Speeds (m/s)

−−→
p1p2

−−→
p2p3

−−→
p3p4

−−→
p4p5

−−→
p5p6

1⃝ GA 0.30 0.30 0.30 0.30 0.31
2⃝ PSO 0.30 0.30 0.30 0.30 0.30

3⃝ EOPSO 0.30 0.30 0.30 0.30 0.30
4⃝ EOQPSO 0.30 0.30 0.30 0.30 0.30

5⃝ GA-TO 0.50 0.50 0.50 0.50 0.50
6⃝ PSO-TO 0.50 0.50 0.50 0.50 0.50
7⃝ EOPSO* 0.55 0.35 0.38 0.41 0.32

8⃝ EOQPSO* 0.57 0.35 0.49 0.42 0.30
The asterisk (*) in EOPSO* and EOQPSO* denotes paths generated under a maximum time limit Tmax .

To provide a comprehensive analysis, 30 repeated experiments were conducted, and
the results are presented in Table 8, which lists the path performance indexes of different al-
gorithms. A comparison of algorithms 1⃝, 2⃝, 3⃝, and 4⃝ reveals that the EOPSO algorithm,
which was developed in this study, is more effective than the GA algorithm combined
with the optimal speed algorithm and the PSO algorithm in avoiding local minima. This
results in a reduction of 37% and 24% in energy consumption for planned paths compared
to the GA algorithm and the PSO algorithm combined with the SQP algorithm, respectively.
Furthermore, the total travel time can be reduced by more than 20%. A comparison of
algorithms 5⃝, 6⃝, 7⃝, and 8⃝ reveals that under the Tmax limit, the path planned by EOPSO
can save 20% of energy consumption in comparison to the PSO-TO algorithm, which ex-
hibits superior performance. In this scenario, the EOPSO algorithm demonstrates superior
energy consumption compared to EOQPSO, with an improvement of approximately 7%.
Additionally, the computation time is slightly reduced in comparison to the latter.



J. Mar. Sci. Eng. 2025, 13, 1269 24 of 26

Table 8. Comparison of performance metrics of different algorithms in CASE III.

Algorithm
Length of Path (km) Travel Time (h) Energy Consumption (kJ)

Time (s)
Mean Std. Mean Std. Mean Std.

1⃝ GA 211.6 5.5 201.6 13.4 59,878.3 7005.6 113.3
2⃝ PSO 203.5 0.4 195.8 1.4 49,599.9 649.6 18.6

3⃝ EOPSO 229.7 2.6 154.7 3.5 37,389.1 421.5 253.3
4⃝ EOQPSO 223.1 2.8 154.0 2.9 39,858.4 684.5 287.9

5⃝ GA-TO 209.1 6.0 112.8 5.7 55,030.5 3392.1 238.6
6⃝ PSO-TO 222.1 3.5 105.9 7.5 50,375 3346.3 320.6
7⃝ EOPSO* 223.9 1.2 105.9 0.0 40,114.3 331.0 530.5

8⃝ EOQPSO* 220.8 1.4 105.9 0.0 43,409.2 353.2 612.1
The asterisk (*) in EOPSO* and EOQPSO* denotes paths generated under a maximum time limit Tmax .

According to the different algorithmic path planning performance indices in the three
cases, the EOPSO algorithm meets the path planning requirements for AUVs in terms of
energy consumption, travel time, algorithm stability, and whether the paths satisfy the
kinematic characteristics of AUVs. In fully actuated AUV path planning, the algorithm
can accurately plan the path with optimal energy consumption, effectively avoid falling
into local minima, explore more areas, and reasonably calculate the optimal speed of each
section of the path.

5. Conclusions and Future Work
In this paper, we propose the EOPSO algorithm and establish an energy consumption

model for a fully actuated AUV. Based on this, we optimize the energy consumption of its
path planning to make use of favorable currents as much as possible and avoid unfavorable
currents, thus reducing the energy consumption of travel. Finally, we use the SQP algorithm
to optimize the travel speed of the AUV to obtain the optimal speed along each path section.
In this paper, the marine environment is modeled based on real data. Different mission
scenarios are considered in the simulation cases. Compared to traditional algorithms, our
method achieves over 15% energy savings and demonstrates higher robustness and more
than 5% energy savings compared to the high-performing QPSO algorithm. The simulation
results show that the method can find a path that satisfies the requirements of path planning
with lower energy consumption and safety under a maximum travel time limit, showcasing
its effectiveness and stability.

However, this study has limitations. The assumption of a static three-dimensional
current field does not account for time-varying currents encountered in real-world marine
environments. Additionally, due to experimental constraints, the method’s effectiveness
has not been validated through practical marine experiments.

In our future research, we will conduct practical experiments in the marine envi-
ronment to verify the effectiveness of the method. An active disturbance rejection con-
troller [38,39] will be designed to adapt to the current disturbance. Additionally, we will
focus on the real-time acquisition of environmental information and the construction of
dynamic seafloor environment models to enhance the ability of AUV local path planning.
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