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Abstract: Recent advances in multiple autonomous underwater vehicles (AUVs) have high-
lighted formation control as a critical challenge for underwater collaborative operations. To
address the inherent coupling between formation coordination and individual control in
conventional approaches, this paper proposes a novel hierarchical framework of adaptive
fixed-time formation control for multiple underactuated AUVs. This framework decouples
AUVs’ formation requirements and individual control challenges into two distinct layers:
the Collision-free Formation Trajectories Generation (CFTG) Layer and the Adaptive Trajec-
tories Tracking (ATT) Layer. In the CFTG Layer, a consensus-based controller is developed
to generate the desired trajectories for the AUVs to meet the requirements of complex
formation tasks. And an improved artificial potential field method is proposed to ensure
AUVs can reach the target point when the target is close to obstacles. In the ATT Layer,
an auxiliary compensation system is designed to address the issue of input saturation.
Furthermore, the adaptive fixed-time controllers are proposed to handle the uncertain
parameters in the model, enabling underactuated AUVs to track the desired trajectory
precisely. Both layers guarantee fixed-time convergence to increase the convergence speed.
Simulations are conducted to demonstrate the effectiveness and better performance of the
proposed method.

Keywords: underactuated AUVs; formation control; hierarchical framework design; fixed-time
control; input saturation

1. Introduction
As underwater technology advances, AUVs (autonomous underwater vehicles) have

become crucial in various underwater operations. Despite their low cost and low-risk
benefits, single AUVs’ payload limits restrict their efficiency and flexibility. Multi-AUV
cooperation, however, offers more possibilities. In fields like ocean exploration, multi-
AUV systems can efficiently cover large areas for tasks such as seafloor mapping and
resource survey. In marine rescue operations, they can quickly locate and assist in rescuing
distressed vessels or crew members [1]. They are also applicable in marine environmental
monitoring for data collection on water quality and ecosystem health [2]. Nowadays, AUV
formation control, a key technology in multi-AUV collaboration, has drawn considerable
attention. Existing methods include leader–follower, behavioral-based, bearing-based,
dynamic surface control, graph theory, and artificial potential field approaches [3–8].
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In the problem of AUV formation control, the collective behavior of the swarm is
inherently influenced by the dynamics of individual units, while the missions undertaken
are often complex and varied. Consequently, effective formation control strategies must
integrate both the requirements of the overall task and the motion dynamics of individ-
ual AUVs. Existing studies commonly adopt approaches that directly link cooperative
behaviors with the individual motion constraints of each AUV. For example, a formation
consensus constraint control algorithm for a discrete-time leaderless multi-AUV system
with dual-independent communication topology was proposed by incorporating constraint
operators [9]. A fault tolerance method of formation based on reconfiguration was pro-
posed to deal with the fault occurrence of AUV formation members [10]. To solve the
time-varying formation-control problem, consensus-based methods were used [11]. By
mixing the stress matrix, a 3D affine formation maneuver strategy was proposed to maneu-
ver the multi-AUV to achieve the formation pattern [12]. Considering long time-varying
delays and clock errors, a predictor-based control protocol was introduced to complete
formation task [13]. These design strategies typically depend on the modeling of cooper-
ation errors and the dynamic characteristics of individual AUVs, which lead to several
challenges. First, the direct coupling with system models restricts design flexibility. Second,
the complexity of modeling increases substantially when dealing with intricate individual
dynamics or sophisticated cooperative tasks, thereby diminishing the feasibility of practical
implementation. Third, adapting to varying task requirements often necessitates controller
redesigns, resulting in additional overhead and limiting the design’s scalability and gen-
eral applicability. Consequently, there is a pressing demand for a design paradigm that
separates cooperative behavior mechanisms from individual dynamic models.

Except the hierarchical framework for formation tasks, the unknown environments
and limits of AUVs’ structure and actuator also add challenges to the formation control.
Few scholars have considered obstacle avoidance in the formation control problem. Among
the existing articles considering obstacle avoidance issues, artificial potential field methods
are widely used due to their simple algorithms, fast operation, high safety performance, and
greater suitability for multi-AUVs. An auxiliary potential field was designed to handle the
issue that the traditional APF method can easily fall into local minima [14]. A constrained
artificial potential field with the twin delayed deep deterministic policy gradient algorithm
was proposed to enhance the robustness of AUVs’ obstacle avoidance [15]. A time-varying
formation obstacle avoidance control algorithm was designed to avoid static and dynamic
obstacles [16]. However, few works have considered the issue of the target being very
close to obstacles. Based on the APF, the repulsive force will push AUVs away from the
target. Additionally, the input torque limitation of the actuator leads to input saturation.
It is important to note that certain control schemes operate under the assumption that
actuators are capable of delivering any torque computed by the control law. But many
previous works, such as [17,18], ignore this. However, when the required torque exceeds the
actuator’s physical limits, the system may fail to achieve the desired tracking performance
or experience a significant decline in control effectiveness. To deal with the input saturation,
disturbance observers are used as the overshoot compensation of the actuator [19,20].
However, these methods increase the difficulty of controller design and further weaken
flexibility and availability in the coupling of AUV self-control and formation control.

Moreover, the aforementioned studies primarily emphasize asymptotic convergence.
While effective in theory, asymptotic convergence often fails to meet the time-sensitive
requirements of many practical systems, particularly in the context of complex cooperative
missions that demand faster convergence rates. To address this, finite-time consensus
control has been explored from various angles in prior works. For instance, event-triggered
finite-time consensus [21], consensus strategies under partial observability and intermittent
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communications [22], and adaptive consensus methods tailored for uncertain nonlinear
dynamics [23] have all contributed to improving the convergence speed. Despite these
advancements, finite-time convergence remains dependent on initial conditions, which
poses limitations for real-world implementation. To resolve these issues, the concept of
fixed-time stability was introduced [24], offering convergence within a pre-specified time
regardless of the system’s initial state. This advancement has inspired a range of studies on
fixed-time consensus. For example, a fixed-time adaptive fuzzy control approach utilizing
auxiliary variables was proposed [25], and a fixed-time cooperative formation control
method for multi-AUV systems using a timing observer to handle dynamic uncertainties
was developed [26]. In addition, pinning control techniques were integrated to address the
fixed-time group consensus problem [27]. Despite these promising developments, signifi-
cant challenges remain in effectively applying fixed-time control strategies to hierarchical
formation control frameworks.

To address the above issues, we proposed a hierarchical adaptive fixed-time formation
control method for multiple underactuated AUVs subject to uncertain disturbances and
input saturation. The contributions of this work are as follows:

1. A hierarchical framework, which consists of the Collision-free Trajectories Generation
(CFTG) Layer and the Adaptive Trajectories Tracking (ATT) Layer, is designed to
decouple the formation requirements and individual control challenges, thereby
enhancing the flexibility and practicality of the system.

2. In the CFTG Layer, we propose a fixed-time consensus controller to generate the
desired trajectories. Meanwhile, an improved artificial potential field method is
introduced to resolve the issue where AUVs fail to reach the target point when it is in
close proximity to obstacles.

3. In the ATT Layer, we construct an auxiliary compensation system (ACS) to overcome
the saturated inputs. Based on the ACS, the adaptive fixed-time controllers are de-
signed to handle the uncertain parameters in the model and environment disturbances,
enabling underactuated AUVs to track the desired trajectories precisely.

4. All controllers designed in the CFTG Layer and the ATT Layer can reach convergence
within a fixed time, which significantly accelerates the convergence speed of the system.

In addition, numerical simulations illustrate the effectiveness of the proposed method.
Comparisons with different methods are conducted to demonstrate the superiority of the
designed method.

2. Problem Formulation and Preliminaries
2.1. Problem Formulation

This study investigates the five-degree-of-freedom dynamic model of autonomous un-
derwater vehicles in an inertial reference frame. The main symbols of this article are listed
in the Table A1 which can be found in Appendix A. To enhance the practical relevance of
the proposed control framework and directly address platform applicability, we based our
analysis on a representative underactuated AUV with specifications comparable to widely
used models such as the REMUS-100. The vehicle was equipped with a 1080p HD camera
operating at 30 frames per second, enabling effective medium-resolution underwater imaging
and object recognition. It supported operational depths of up to 100 m, consistent with
common mission scenarios such as seabed mapping and underwater infrastructure inspection.
Furthermore, the platform was capable of operating in sea conditions up to Sea State 3 (wave
height of 0.5–1.25 m). Figure 1 depicts the three-dimensional configuration of AUVs.
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Figure 1. Three-dimensional configuration of AUVs.

The kinematic and dynamic equations are formulated as:

.
η = J(η)ν
M

.
ν + C(ν)ν + D(ν)ν + G(η) = τ + vdis

(1)

where η = [η1, η2]
T , and the position vector η1 = [x, y, z]T and attitude vector η2 = [θ, ψ]T ,

respectively, describe the spatial coordinates and orientation in the earth-fixed frame. The
body-fixed frame velocities ν = [ν1, ν2]

T are represented by the linear velocity vector
ν1 = [u, v, w]T and angular velocity vector ν2 = [q, r]T . The coordinate transformation
matrix J(η) = [J1, 03×2; 02×3, J2] ∈ R5×5 facilitates parameter conversion between reference
frames. The system inertia matrix M ∈ R5×5 incorporates mass and hydrodynamic added-
mass effects, while the Coriolis-centripetal matrix C(ν) ∈ R5×5 accounts for frame rotation
dynamics. The hydrodynamic damping matrix D(ν) ∈ R5×5 characterizes viscous drag
forces, and the restoring force vector G(η) ∈ R5 comprises buoyancy and gravitational ef-
fects. The control input vector τ and environmental disturbance vector vdis ∈ R5 represent
actuator forces/moments and exogenous perturbations, respectively.

Through actuation analysis, the system can be decoupled into fully actuated and
underactuated subsystems. Following the underactuated modeling framework [28], the
subsystem dynamics are expressed as:

Mud
.
νud + Cudνud + Dudνud + Gud = τud + τdis (2)

where Mud ∈ R3×3, Cud ∈ R3×3, Dud ∈ R3×3, Gud ∈ R3, τdis ∈ R3, νud = [u, q, r]T , and
τud = [τu, τq, τr]

T . When the initial deviation of the system state is large, the computed
control torque may exceed the normal operating range of the actuator and enter the
saturation zone, which can degrade the control performance. Input saturation arises from
two primary factors: the inherent saturation limit of the actuator itself and the presence of
the integral term in the control architecture. To address this problem, the saturated input is
defined as follows:

τud = sat(τc) =

{
A · sign(τc) , |τc| > A
τc , |τc| ≤ A

(3)

where sat(τc) represents the saturated input nonlinearity function related to the control
input τc, and A is the bound of τc.

Subsequently, it can be deduced that

∆τ = τud − τc (4)
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Furthermore, the underactuated AUVs based on above model have the following
relevant properties [28].

Property 1: The time derivative of J1 can be expressed by a skew-symmetric matrix P:

.
J1 = J1P (5)

where P =

 0 −r q
r 0 0
−q 0 0

. Hence, for any vector m ∈ R3, it satisfies mT Pm = 0.

Property 2: In the underactuated AUV model, the norms of matrices Mud, Cud, Dud,
Gud, and τdis satisfy the following inequalities:

m1 ≤ ‖Mud‖ ≤ m2, ‖Cud‖ ≤ c‖νud‖, ‖Dud‖ ≤ d1 + d2‖νud‖, ‖Gud‖ ≤ g, ‖τdis‖ ≤ τ̂ (6)

where m1, m2, c, d1, d2, g, and τ̂ are unknown positive constants.
The objective is to construct the hierarchical architecture to solve the multiple under-

actuated AUV formation problem and design corresponding control protocols at each layer
to ensure that each layer achieves its respective goals. Then, the multi-AUV can achieve
formation within a fixed time, i.e.,

lim
t→Tmax

‖ηi − η0 + δi‖ = 0 (7)

where η0 denotes the state of the leader and δi is the desired formation vector.

2.2. Graph Theory

Within the leader–follower network system architecture, the multiagent communica-
tion topology among follower agents can be modeled as an undirected graph G = {υ, ϕ, A},
where υ = {ν1, ν2, . . . , νN} denotes the node set and ϕ ⊆ {{m, n}|m, n ∈ υ, m 6= n} repre-
sents the bidirectional edge set. An edge emn ∈ ϕ exists if and only if mutual information
exchange occurs between follower m and follower n. The topological structure is mathe-
matically encoded through an adjacency matrix A = (amn) ∈ RN×N , where amn = 1 for
emn ∈ ϕ and amn = 0 otherwise. Notably, self-connections are excluded from the topology
(amm = 0). The Laplacian matrix L = (lmn) ∈ RN×N is constructed with diagonal entries
lmn = ∑N

m=1,m 6=n amn and off-diagonal elements lmn = −amn, m 6= n. Furthermore, the
leader–follower interaction topology is characterized by matrix B = diag{b1, b2, . . . , bN},
where bm = 1 indicates direct state transmission from leaders to follower m, while bm = 0
signifies the absence of immediate leader-to-follower communication channels.

2.3. Lemmas

Lemma 1 [29]. Suppose x ∈ Rn and V(·) : Rn → R+ ∪ {0} is a continuous, positive definite,
and radially unbounded function; then, the two following conditions hold:

(1) V(x(t)) = 0⇔ x(t) = 0 .
(2) The function V(x(t)) satisfies
.

V(x(t)) ≤ −a1Vα(x(t))− a2Vβ(x(t))− a3V(x(t))

where a1, a2, a3 > 0, 0 <α < 1 and β > 1 are all constants. Then, x(t) = 0 is a fixed-time
stable equilibrium point, and the settling time is calculated as:

T ≤ Tmax =
1

a3(1− α)
ln(1 +

a3

a1
) +

1
a3(β− 1)

ln(1 +
a3

a2
) (8)
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Lemma 2 [30]. Assume that γ1, γ2, . . . γN ≥ 0. Then,

N
∑

i=1
γd

i ≥ (
N
∑

i=1
γi)

d

, d ∈ (0, 1]

N
∑

i=1
γd

i ≥ N1−d(
N
∑

i=1
γi)

d

, d ∈ (1, ∞)

(9)

Lemma 3 [31]. Let x ∈ Rn and definesig(x)γ =
[
sign(x1)|x1|γ, . . . , sign(xn)|xn|γ

]T . Then, for
each component, we have

d
dx |x|

γ+1 = (γ + 1)sig(x)γ

d
dx sig(x)γ+1 = (γ + 1)|x|γ

(10)

3. Hierarchical Architecture of Formation Control for Multiple
Underactuated AUVs

This section described the hierarchical control architecture specifically designed for the
formation regulation of multiple underactuated autonomous underwater vehicles. Under
the proposed architecture, the trajectories generation and trajectories tracking controllers
are designed separately, which significantly improves the flexibility and practicality of
the system. Furthermore, it provides a possibility that a new AUV or other autonomous
intelligent platform can join into the formation tasks without changing their origin control
strategy, which significantly improves the adaptability and expandability of the system.

The architecture of the hierarchical framework for multiple underactuated AUVs’
formation control is depicted in Figure 2. Compared with the current AUVs’ formation
control methods, the hierarchical framework does not calculate formation errors and
send it to AUVs’ individual controller directly as a swarm reference signal. Instead, the
proposed architecture systematically decouples the formation maintenance objectives and
individual AUV dynamics control through a dual-layer structure comprising: the Collision-
free Formation Trajectories Generation Layer (CFTG Layer) and the Adaptive Trajectories
Tracking Layer (ATT Layer).

Figure 2. Block diagram for the hierarchical underactuated AUVs’ formation control framework.
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The CFTG Layer acts as virtual AUV nodes, generating desired trajectories for AUVs
that meet the requirement of complex formation tasks. The ATT Layer tracks the desired
trajectories using the control protocols designed based on the kinematic and dynamic
models of AUV. Both the desired trajectory and the sensors’ signals are the input of the
trajectory tracking controller, which guarantee AUVs can track the desired trajectories
precisely and complete the tasks.

The formation control strategy for each AUV is divided into two components: trajec-
tory generation and trajectory tracking. The reference trajectory, generated by a fixed-time
consensus controller combined with an enhanced artificial potential field (APF) method,
serves as an input to the fixed-time trajectory tracking controller. By integrating this refer-
ence trajectory with real-time sensor data, the AUV can accurately follow the prescribed
trajectory under the guidance of the tracking controller, thereby fulfilling its designated
role in the formation. While both control layers rely on signals detected and processed by
the AUV, their interaction does not involve direct communication but rather shared signal
utilization across the hierarchical framework.

Compared to existing AUV formation control strategies, the hierarchical framework
offers several advantages: (1) Decoupled Design: By separating swarm-level coordina-
tion (e.g., consensus or formation shape maintenance) from individual-level trajectory
tracking, controllers at each layer can be independently optimized for specific objectives.
This modularity enhances flexibility and simplifies integration into diverse operational
scenarios. (2) Reduced Interdependence: Swarm behaviors and individual AUV dynamics
are decoupled, eliminating mutual constraints. Consequently, new AUVs or even heteroge-
neous autonomous platforms can join the formation without modifying their native control
architectures, improving adaptability and scalability.

4. Collision-Free Formation Trajectories Generation Layer Design
In this section, the design of the CFTG Layer is introduced. After obtaining the

initial states by sensors, virtual AUVs communicate over a distributed network. A fixed-
time consensus-based controller is proposed to meet the desired formation requirements.
Meanwhile, an enhanced artificial potential field methodology is developed to achieve
obstacle avoidance. The systems generate reference states, which are then used to form the
desired trajectories for the ATT Layer.

In the CFTG Layer, the system of virtual AUV is considered as a second-order model
for the following reasons:

(1) To mitigate the impact of underactuated AUVs’ complex dynamic and kinematic
characteristics on trajectory generation controller design for formation missions.

(2) To ensure the generated trajectories can be tracked by actual underactuated AUVs.
The virtual leader’s model in the CFTG Layer is defined as:

.
x0 = v0
.
v0 = u0 + f0(x0, v0)

(11)

where x0 = η0, v0 = ν0, and ‖ f0(x0, v0)‖ ≤ F0, F0 is a positive constant.
The virtual follower’s model in the CFTG Layer is defined as:

.
xi = vi
.
vi = ui + fi(xi, vi)

(12)

where xi = ηi, vi = νi, ‖ fi(xi, vi)‖ ≤ Fi, and Fi is a positive constant.
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4.1. Backstepping-Based Fixed-Time Consensus Control Protocol Design

Based on backstepping control methods, the design of fixed-time consensus control
protocols in the CFTG Layer can be divided into two steps:

(1) Design the virtual velocity vo
i to let xi reach consensus and maintain formation

within a fixed time.
(2) Design the input ui to let the true velocity vi track the virtual velocity vo

i within a
fixed time.

To express the formation characteristic, define x̂i = xi + δi, x̃i = x̂i − x0.
The virtual velocity vo

i is designed as follows:

vo
i = −k1sig(

N
∑

j=1
aij(x̂i − x̂j) + bi x̃i)

α

− k2sig(
N
∑

j=1
aij(x̂i − x̂j) + bi x̃i)

β

−k3sig(
N
∑

j=1
aij(x̂i − x̂j) + bi x̃i)

(13)

where k1, k2, and k3 are positive constants and α ∈ (0, 1), β ∈ (1, ∞).
Then, define the error ei between true velocity vi and virtual velocity vo

i for each AUV:

ei = vi − vo
i (14)

Thus, one has that

.
ei = ui + fi(xi + vi) + k1α

∣∣∣∣∣ N
∑

j=1
aij(x̂i − x̂j) + bi x̃i

∣∣∣∣∣
α−1

(
N
∑

j=1
aij(vi − vj) + bi ṽi)

+k2β

∣∣∣∣∣ N
∑

j=1
aij(x̂i − x̂j) + bi x̃i

∣∣∣∣∣
β−1

(
N
∑

j=1
aij(vi − vj) + bi ṽi) + k3(

N
∑

j=1
aij(vi − vj) + bi ṽi)

(15)
The control input ui is designed as:

ui = −k1α

∣∣∣∣∣ N
∑

j=1
aij(x̂i − x̂j) + bi x̃i

∣∣∣∣∣
α−1

(
N
∑

j=1
aij(vi − vj + bi ṽi)

−k2β

∣∣∣∣∣ N
∑

j=1
aij(x̂i − x̂j) + bi x̃i

∣∣∣∣∣
β−1

(
N
∑

j=1
aij(vi − vj) + bi v̂i)

−k3(
N
∑

j=1
aij(vi − vj) + bi ṽi)− k4sig(ei)

γ − k5sig(ei)
ς − k6sig(ei)− Fisign(ei)

(16)
where k4, k5, and k6 are positive constants and γ ∈ (0, 1),ς ∈ (1, ∞).

Theorem 1. Consider the leader–follower multiple virtual AUVs (12) under controller (16). The
virtual AUVs (12) can reach consensus and maintain formation within a fixed time. Thus, the
CFTG Layer is capable of calculating virtual states and generating reference trajectories for AUVs
within a fixed time.

Proof. (1) To verify that the true velocity can track the virtual velocity within a fixed time,
we chose the Lyapunov function as follows:

V1 =
1
2

N

∑
i=1

e2
i (17)
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Then, the derivative of V1 can be calculated as:

.
V1 =

N
∑

i=1
ei

.
ei

=
N
∑

i=1
(−k4eisig(ei)

γ − k5eisig(ei)
ς − k6eisig(ei) + ei fi(xi, vi)− eiFisign(ei))

≤ −k4
N
∑

i=1
|ei|γ+1 − k5

N
∑

i=1
|ei|ς+1 − k6

N
∑

i=1
|ei|2

(18)

According to Lemma 2, one has that

.
V1 ≤ −k42

γ + 1
2

N
∑

i=1
(e2

i )

γ + 1
2 − k52

ς + 1
2 N

1− ς

2
N
∑

i=1
(e2

i )

ς + 1
2 − k6

N
∑

i=1
(e2

i )

≤ −k42
γ + 1

2 V

γ + 1
2

1 − k52
ς + 1

2 N
1− ς

2 V

ς + 1
2

1 − 2k6V1

(19)

Based on Lemma 1, the settling time can be calculated as:

T1 ≤ T1max =
1

p3(1− γ)
ln(1 +

p3

p1
) +

1
p3(ς− 1)

ln(1 +
p3

p2
) (20)

where p1 = k42
γ+1

2 , p2 = k52
ς+1

2 N
1−ς

2 , and p3 = 2k6.
Thus, for virtual AUVs in the CFTG Layer, the true velocity can track the virtual

velocity within a fixed time.

Remark 1. It is worth noting that the range of the parameters in the convergence time formula have
been specified when they are first introduced. And these parameters are typically treated as design
constants and can be adjusted or tuned based on specific system requirements and performance
objectives. This flexibility allows the method to be adapted to a variety of scenarios while preserving
the theoretical guarantees.

(2) To verify that the system can reach consensus and meet the desired formation
requirements within a fixed time, we chose the Lyapunov function as follows:

V2 =
1
2

x̃T(L + B)x̃ (21)

where L is the Laplacian matrix that describe the topology between followers and B is
the matrix that indicate the leader–follower interaction. Based on the definition at the
beginning of this part, it can be deduced that x̃i = xi + δi − x0. To simplify the notation,

define ŷi =
N
∑

j=1
aij(x̂i − x̂j) + bi x̃i
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Then, the derivative of V2 can be calculated as:

.
V2 = x̃T(L + B)

.
x̃

=
N
∑

j=1
ŷi(vi − v0)

=
N
∑

j=1
ŷi(ei + vo

i − v0)

=
N
∑

j=1
ŷi(−k1sig(ŷi)

γ − k2sig(ŷi)
ς − k3sig(ŷi))

≤ −k1
N
∑

j=1
(ŷ2

i )

γ + 1
2 − k2

N
∑

j=1
(ŷ2

i )

ς + 1
2 − k3

N
∑

j=1
ŷ2

i

≤ −k12
γ + 1

2 V

γ + 1
2

2 − k22
ς + 1

2 N
1− ς

2 V

ς + 1
2

2 − 2k3V2

(22)

The settling time can be calculated as:

T2 ≤ T2max =
1

p6(1− γ)
ln(1 +

p6

p4
) +

1
p6(ς− 1)

ln(1 +
p6

p5
) (23)

where p4 = k12
γ+1

2 , p5 = k22
ς+1

2 N
1−ς

2 , and p6 = 2k3.

Remark 2. It is worth noting that Equation (22) holds for t > T1, where the tracking error ei = 0,
indicating that the system has entered the convergence phase.

To prove the global stability of virtual AUVs, we chose the Lyapunov function as follows:

V = V1 + V2 (24)

Based on the above analysis, the derivative of V can be calculated as:

.
V ≤ −k42

γ + 1
2

N
∑

i=1
(e2

i )

γ + 1
2 − k52

ς + 1
2 N

1− ς

2
N
∑

i=1
(e2

i )

ς + 1
2 − k6

N
∑

i=1
(e2

i )

−k1
N
∑

j=1
(ŷ2

i )

γ + 1
2 − k2

N
∑

j=1
(ŷ2

i )

ς + 1
2 − k3

N
∑

j=1
ŷ2

i

≤ −k42
γ + 1

2 V

γ + 1
2

1 − k52
ς + 1

2 N
1− ς

2 V

ς + 1
2

1 − 2k6V1

−k12
γ + 1

2 V

γ + 1
2

2 − k22
ς + 1

2 N
1− ς

2 V

ς + 1
2

2 − 2k3V2

≤ −min{k1, k4}2
γ + 1

2 V
γ + 1

2 −min{k2, k5}2
ς + 1

2 N
1− ς

2 V
ς + 1

2 −min{k3, k6}V

(25)

Remark 3. The proposed backstepping-based control design ensures that the closed-loop system
is forward-complete and free from finite-time escape. This property follows from the recursive
construction of Lyapunov functions in each step of the backstepping procedure, where the control
inputs are continuously designed and the error dynamics are stabilized incrementally.

Hence, in the CFTG Layer, both the system’s velocity and positions can achieve
convergence and the reference trajectories composed of virtual states can be generated
within settling time TCFTG = T1max + T2max. The proof is complete. �
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4.2. Improved Artificial Potential Field Method Design

While the precomputed formation trajectory provides nominal navigation paths for the
multi AUVs, real-world marine environments often contain static and dynamic obstacles
requiring reactive collision avoidance. The artificial potential field method can solve this
problem by dynamically modifying the planned trajectories through the superposition of
virtual force fields.

However, a fundamental limitation in conventional artificial potential field methods
arises when targets are positioned near obstacles, creating conflicting gradient interactions.
The attractive potential drives the AUV toward the target, while proximity to obstacles
induces repulsive forces. When the magnitude of repulsion surpasses attraction, the AUV
cannot reach the target. Thus, we introduced an improved artificial potential field method
to address the problem of the target being unreachable. The distance between the AUV and
its target is added to the repulsive potential function, which is used to change the repulsive
force influence of obstacles near the target point.

In the CFTG Layer, the calculated position state at the next moment can be regarded
as the target point. Let xg represent the position of the target point. Then, the attractive
potential function is:

Uatt(x) =
k
2

d2(x, xg) (26)

where k is the gain coefficient and d(x, xg) represents the distance between the AUV and
the target.

The gravity of the corresponding attractive force is:

Fatt = −∇Uatt = kd(x, xg) (27)

Let xo represent the position of the center of the obstacle. Then, the improved repulsive
potential function can be expressed as:

Urep(x) =


µ

e
d(x,xo)

c −e
dmin(x,xo)

c
· d2(x,xg)

g , d(x, xo) ≤ R

0 , else
(28)

where µ, c, and g are gain coefficients; R represents the influence radius of obstacles;
dmin(x, xo) is the minimum value of d(x, xo); d(x, xo) represents the distance between the
AUV and obstacles; and d(x, xg) is the distance between the AUV and the target.

The corresponding repulsive force is:

Frep =


µ
c ·

e
d(x,xo)

c

(e
d(x,xo)

c −e
dmin(x,xo)

c )
2 ·

d2(x,xg)
g

_ µ
g ·

d(x,xg)

e
d(x,xo)

c −e
dmin(x,xo)

c
, d(x, xo) ≤ R

0 , else

(29)

Thus, the resultant force acting on the AUV is:

Fres = Fatt + Frep (30)

When the obstacles are near the precomputed formation trajectory (d(x, xo) ≤ R), the
AUV is influenced by resultant force Fres. With this force, the AUV dynamically avoids
obstacles while simultaneously progressing toward the target configuration. When the
AUV comes closer to target, d(x, xg) converges to zero, which means Frep also converges
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to zero. Thus, the problem in conventional AFD methods that the AUV cannot reach the
target when the target is close to obstacles can be solved.

Remark 4. The improved artificial potential field method in our framework plays a modular role in
enhancing obstacle avoidance without interfering with the stability guarantees of the control system.
In the first layer of the control architecture, a desired trajectory xi is generated based on formation
and task objectives, without considering obstacle information. This trajectory may intersect with
static obstacles in the environment. To address this, the APF method is applied as a trajectory
modification module that locally adjusts xi to produce a new, collision-free reference trajectory
ηCL. This updated trajectory serves as the desired trajectory for the actual AUVs. The relationship
between the virtual state xi and the collision-free reference trajectory ηCL is summarized by the
following equation: ηCL(t) = xi(t) + ∆t · Fres, where ∆t is the step size and Fres is the resultant
force. In the second layer, the controller is designed to ensure that the AUV tracks ηCL within a fixed
time. Since this layer treats ηCL as a known and continuously updated reference, the control design
remains independent of the internal workings of the APF. As a result, the Lyapunov-based stability
and fixed-time convergence analyses are still valid, as they are performed relative to the updated
reference trajectory. This layered structure enables safe and flexible operation without compromising
theoretical rigor.

5. Adaptive Trajectories Tracking Layer Design
In this section, the design of ATT Layer is presented. In the ATT Layer, each AUV

can precisely track the trajectories generated by the CFTG Layer. Based on the auxiliary
compensation system, we propose an adaptive fixed-time trajectories tracking method for
underactuated AUVs subject to uncertain disturbances and saturated inputs.

Figure 3 shows the block diagram of Adaptive Trajectories Tracking Layer. Based
on the backstepping method, the trajectory tracking controller takes both the desired tra-
jectory and sensor signals as inputs. The error between them is defined as the tracking
error, which serves as the input to the fixed-time virtual velocity control law. An adaptive
fixed-time control law is proposed to overcome the unknown parameters in underactuated
AUVs’ models and external disturbances. Moreover, a fixed-time auxiliary compensation
system is constructed to address the influence of saturated inputs. Under designed con-
trollers, each AUV can track the desired trajectories generated by the CFTG Layer within
a fixed time.

 

Tracking
error

Adaptive fixed-time
controller

Adaptive 
gain

Dynamic of the 
underactuated AUV

Fixed-time 
virtual velocity

controller

Fixed-time error-based control Adaptive fixed-time control

Adaptive trajectories
tracking layer

Fixed-time auxiliary 
compensation system

Figure 3. Block diagram of the adaptive trajectories tracking layer.
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For a single underactuated AUV, let ηCL be the desired trajectory. Then, the tracking
error can be represented as follows:

ηe = η1 − ηCL (31)

Subsequently, the trajectory tracking error in body-fixed frame is deduced as:

eη = JT
1 ηe (32)

If eη = 0, then ηe = 0. Hence, the trajectory tracking problem is transformed into how
can eη achieve convergence within a fixed time.

Based on Equations (5) and (32), the derivative of eη is

.
eη =

.
J

T
1 ηe + JT

1 (J1ν1 −
.
ηCL)

= PT JT
1 ηe + JT

1 J1ν1 − JT
1

.
ηCL

= −Peη + νud + [0, v− q, w− r]T − JT
1

.
ηCL

(33)

Define the virtual velocity control protocol as ν∗ = [u∗, q∗, r∗]T and the velocity error
as ev = νud − ν∗. Thus, the derivative of eη can be rewritten as:

.
eη = −Peη + ν∗ + ev + [0, v− q, w− r]T − JT

1
.
ηCL (34)

Similar to the CFTG Layer, based on backstepping method, the virtual velocity control
protocol is designed as:

ν∗ = JT
1

.
ηCL − h1sig(eη)

θ − h2sig(eη)
σ − h3sig(eη)− [0, v− q, w− r]T (35)

where h1, h2, and h3 are positive constants and θ ∈ (0, 1),σ ∈ (1, ∞).
To address the saturated inputs, we propose a fixed-time auxiliary compensation

system as follows:

.
ϕ =

−l1sig(ϕ + ∆τ)ξ − l2sig(ϕ + ∆τ)ζ − l3sig(ϕ + ∆τ)− ∆
.
τ , ‖ϕ‖2 ≥ ϕ0

0 , else
(36)

where ϕ0 is chosen according to the saturation limits of the actuator, while l1, l2, and l3 are
positive constants;ξ ∈ (0, 1) and ζ ∈ (1, ∞).

Remark 5. In our implementation, we defined ∆τ = τud − τc, where τc is the ideal control input
computed from the controller and τud = sat(τc) is the actual bound input applied to the vehicle
after considering input saturation. Since both τc and τud are available in real time, where τc is
directly computed from the control law and τud is the output of the saturation function, the value of
∆τ can be determined accordingly. Therefore, its derivative ∆

.
τ can be approximated numerically

using discrete-time methods (e.g., forward difference) without requiring knowledge of the vehicle’s
velocity derivatives or system parameters.

Thus, combining with the adaptive control methods, the control input is designed as:

τc = m(τad + ϕ) = m(−h4sig(ev)
θ − h5sig(ev)

σ − h6sig(ev)− Γsig(ev) + ϕ) (37)
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where m > m2; h4, h5, and h6 are positive constants; Γ = g̃0 + g̃1‖ν‖ + g̃2‖ν‖2 is the
adaptive gain;, and g̃i is calculated by the following adaptive equation:

.
g̃i = −sig(g̃i)

θ − sig(g̃i)
σ − sig(g̃i) (38)

Theorem 2. Consider the underactuated AUV subject to input saturation (2), under controller
(37), eη can converge to zero within a fixed time. Thus, in the ATT Layer, each AUV can track the
desired trajectories generated by the CFTG Layer, i.e., under the designed hierarchical controllers,
multi-AUVs can complete the formation task within a fixed time.

Proof. (1) To verify that the velocity error ev can converge to zero within a fixed time,
consider the Lyapunov function as:

V3 =
1

2m
eT

v Mudev (39)

Subsequently, the derivative of V3 is deduced as:

.
V3 = 1

m eT
v Mud

.
ev

= 1
m eT

v (Mud
.
νud −Mud

.
ν
∗
)

= 1
m eT

v (τud − Cudνud − Dudνud − Gud + τdis −Mud
.
ν
∗
)

(40)

Let G = m−1(−Cudνud − Dudνud − Gud + τdis − Mud
.
ν
∗
). Based on property 2,

G satisfies the following inequality:

‖G‖ ≤ m−1(c‖νud‖2 + d1‖νud‖+ d2‖νud‖2 + g + τ̂ + m2‖ν∗‖)
≤ g0 + g1‖νud‖+ g2‖νud‖2 (41)

where g0, g1, and g2 are unknown positive constants related to the parameters of the
underactuated AUV models.

Thus, the derivative of V3 can be rewritten as:

.
V3 = eT

v (
τud
m

+ G)

= eT
v (

τc + ∆τ

m
+ G)

= eT
v (−h4sig(ev)

θ − h5sig(ev)
σ − h6sig(ev))− eT

v Γ + eT
v G + eT

v (
ϕ + ∆τ

m
)

≤ eT
v (−h4sig(ev)

θ − h5sig(ev)
σ − h6sig(ev))− eT

v (‖ev‖
2
∑

i=0
(g̃i − gi)‖νud‖i) + eT

v (
ϕ + ∆τ

m
)

(42)

To verify that the designed adaptive control protocols can address the uncertain parameters
in the underactuated AUV model and environment disturbances, we chose the Lyapunov
function as follows:

V4 =
1
2

2

∑
i=0

ĝi (43)
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where ĝi = g̃i − gi denotes the error between the adaptive parameters and the model
parameters. The derivative of V4 is

.
V4 =

2
∑

i=0
(g̃i − gi)

.
g̃i

= −
2
∑

i=0
(g̃i − gi)(sig(g̃i)

θ + sig(g̃i)
σ + sig(g̃i))

≤ −
2
∑

i=0
(g̃i − gi)

θ+1 −
2
∑

i=0
(g̃i

i − gi)
σ+1 −

2
∑

i=0
(g̃i − gi)

2

≤ −2
θ + 1

2 V

θ + 1
2

4 − 3
1− σ

2 2
σ + 1

2 V

σ + 1
2

4 − 2V4

(44)

Based on Lemma 1, ĝi can converge to zero within the fixed time, i.e., the unknown
parameters can be overcome by designed adaptive control law, and the settling time can be
calculated as:

T3 ≤ T3max =
1

q3(1− θ)
ln(1 +

q3

q1
) +

1
q3(σ− 1)

ln(1 +
q3

q2
) (45)

where q1 = 2
θ+1

2 , q2 = 3
1−σ

2 2
σ+1

2 , and p3 = 2.
Similarly, to verify the effectiveness of proposed auxiliary compensation system, we

chose the Lyapunov function as follows:

V5 =
1
2

ϕ̂T ϕ̂ (46)

where ϕ̂ = ϕ + ∆τ. The derivative of V5 is

.
V5 = ϕ̂T

.
ϕ̂

= ϕ̂T(
.
ϕ + ∆

.
τ)

= ϕ̂T(−l1sig(ϕ + ∆τ)ξ − l2sig(ϕ + ∆τ)ζ − l3sig(ϕ + ∆τ))

≤ −l12
ξ+1

2 V
ξ+1

2
5 − l23

1−ζ
2 2

ζ+1
2 V

ζ+1
2

5 − 2l3V5

(47)

Based on Lemma 1, ϕ̂ can converge to zero within the fixed time, i.e., the input
saturation can be address by designed auxiliary compensation system, and the settling
time can be calculated as:

T4 ≤ T4max =
1

q4(1− ξ)
ln(1 +

q6

q4
) +

1
q6(ζ − 1)

ln(1 +
q6

q5
) (48)

where q4 = l12
ξ+1

2 , q5 = l23
1−ζ

2 2
ζ+1

2 , and q6 = 2l3.

Remark 6. It should be noted that the fixed-time stability results presented in this paper are derived
under the assumption that the system’s initial states lie within a bound domain and that the designed
control gains do not induce actuator saturation beyond permissible limits. In the presence of input
saturation, the global fixed-time convergence from arbitrary initial conditions is not guaranteed, and
the theoretical results hold only within the region of attraction defined by the actuator capabilities.
Future work may consider integrating other mechanisms to further address this limitation.

Since ĝi and ϕ̂ can converge to zero within the fixed time, based on (42), the derivative
of V3 can be rewritten as:
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.
V3 ≤ eT

v (−h4sig(ev)
θ − h5sig(ev)

σ − h6sig(ev))− eT
v (‖ev‖

2
∑

i=0
(g̃i − gi)‖ν‖i) + eT

v (
ϕ + ∆τ

m
)

≤ eT
v (−h4sig(ev)

θ − h5sig(ev)
σ − h6sig(ev))

≤ −h42
θ + 1

2 V

θ + 1
2

3 − h53
1− σ

2 2
σ + 1

2 V

σ + 1
2

3 − 2h6V3

(49)

Thus, the velocity error ev can converge to zero within a fixed time, and the settling
time is

T5 ≤ T5max =
1

q7(1− θ)
ln(1 +

q9

q7
) +

1
q8(σ− 1)

ln(1 +
q9

q8
) (50)

where q7 = h42
θ+1

2 , q8 = h53
1−σ

2 2
σ+1

2 , and q9 = 2h6.
(2) To verify that the position error eη can converge to zero within a fixed time, we

considered the Lyapunov function as:

V6 =
1
2

eT
η eη (51)

Then, the derivative of V6 can be calculated as:

.
V6 = eT

η
.
eη

= eT
p1(−Peη + ν∗ + ev + [0, v− q, w− r]T − JT

1
.
ηCL)

(52)

Since ev can converge to zero within a fixed time, based on property 1, one has that

.
V6 = eT

η (−h1sig(eη)
θ − h2sig(eη)

σ − h3sig(eη))

≤ −h1(2V6)
θ+1

2 − h23
1−σ

2 (2V6)
σ+1

2 − h32V6

≤ −h12
θ+1

2 V
θ+1

2
6 − h23

1−σ
2 2

σ+1
2 V

σ+1
2

6 − 2h3V6

(53)

The settling time can be calculated as:

T6 ≤ T6max =
1

q10(1− θ)
ln(1 +

q12

q10
) +

1
q12(σ− 1)

ln(1 +
q12

q11
) (54)

where q10 = h12
θ+1

2 , q11 = h23
1−σ

2 2
σ+1

2 , and q12 = 2h3.
Hence, based on backstepping methods, by constructing an auxiliary compensation

system and designing adaptive fixed-time control protocols, each AUV in the ATT Layer
can track the desired trajectory precisely within the fixed time, and the settling time is
TATT = T3max + T4max + T5max + T6max

The proof is complete. �

6. Numerical Simulations
In this section, numerical simulations are conducted to verify the effectiveness of the

hierarchical framework for the formation control of multiple underactuated AUVs subject
to uncertain disturbances and input saturation.

Figure 4 illustrates the distributed communication topology of six AUVs, consist-
ing of one leader and five followers. The leader can communicate directly with follow-
ers 1 and 2. In this simulation, the five followers were required to follow the leader
and achieve the desired formation according to the formation vector, which was set as
δ = [0,−10, 2; 0, 10, 2; 0, 15, 0; 0, 0,−2, 0,−15, 0]T . The leader’s trajectory in this simulation
was set as x0(t) = [60 sin(0.025t), 60 cos(0.025t),−5− 0.17t]T . As shown in Table 1, the
parameters of the underactuated AUV model were selected based on a previous work [32].
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Figure 4. Communication topology of AUVs.

Table 1. Parameters of the underactuated AUV model.

Symbol Value Symbol Value Symbol Value

M 183 Ixx 3 Iyy 95
Izz 95 Xu −49 Yv −243
Zw −230 Mq −140 Nr −160
X .

u −13 Y .
ν −257 Z .

w −257
N.

r −86 M .
q −86 Xu|u| −16

Yν|v| −542 Zw|w| −422 Mq|q| −62
Nr|r| −78

Considering three-dimensional underwater environments, the initial positions of
the leader and five followers were randomly set as follows: x0(0) = [0, 60,−5]T ,
x1(0) = [−6, 48,−5]T , x2(0) = [12, 35,−6]T , x3(0) = [−22, 42,−2]T , x4(0) = [−16, 30,−9]T ,
and x5(0) = [−20, 45,−8]T . The parameters of the controller designed for the CFTG Layer
were selected as k1 = k2 = k6 = 2, k3 = k5 = 3, k4 = 0.25, α = 0.5, β = 1.5, γ = 0.9,
and ς = 1.1. In the part of improved APF, let k = 0.04, µ = 2, and c = 1. We chose the
parameters of the controller in the ATT Layer as follows: h4 = 0.25, h3 = h5 = l3 = 3,
h1 = h2 = h6 = l1 = l2 = 2, θ = 0.5, σ = 1.5, ξ = 0.9, ζ = 1.1, and ϕ0 = 500.

6.1. Contrast of Scenarios with Obstacles and Without Obstacles

First, we considered a scenario where no obstacles were present in the vicinity of the AUVs.
Based on Lemma 1 and the parameters mentioned above, one can easily calculate that

the settling time of the formation task is T = TCFGT + TATT = 12.84s, which means all the
followers can generate the desired trajectories according to the formation vector and track
their desired trajectories within the settling time T. Figure 5 depicts the three-dimensional
time-varying trajectories of six AUVs without obstacles. The five blue circles surrounding
by the red pentagon denote the positions of the followers at settling time T. The red star
represents the final position of the leader AUV and five bule squares represent the final
positions of five follower AUVs. As shown in Figure 4, the formation is completed before
T = 12.84s, and the formation can be maintained till the end of the mission. The result
shows that, under the hierarchical framework and designed controllers, AUVs can complete
the formation task well within a fixed time.
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Figure 5. The three-dimensional trajectories of six AUVs without obstacles.

Figure 6 illustrates the deviation between the trajectories generated by the CFGT Layer
and the formation task requirements under obstacle-free conditions. This error metric
serves as a critical indicator of the layer’s trajectory planning accuracy, where lower values
signify a closer alignment with the prescribed formation objectives. The simulation result
shows that all the errors along the x-, y-, and z-axes converge to zero within the settling
time TCFTG = 6.09s. The CFGT Layer generates accurate trajectories for AUVs within a
fixed time.

Figure 6. Formation position errors relative to the leader and formation vector of five follower AUVs
without obstacles.

Second, an analysis was conducted for the case involving obstacles in proximity to
the AUVs’ trajectories. Define state vector Obi = [xobi, yobi, zobi, Robi] to express the three-
dimensional positions and radius of the obstacle. Assume there exit three obstacles, and their
state vector were set as Ob = [10.42, 69.08,−4.18, 2 ; 52.9, 38.29,−10.34, 3 ; 17.41, 42.41,−7, 3].

Figure 7 depicts the three-dimensional time-varying trajectories of six AUVs with
obstacles. Three obstacles are represented by gray spheres. In Figure 7, follower 2, follower
3, and follower 5 are influenced by the three obstacles. Under the improved artificial
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potential field methods, it ensures that the AUVs will not collide with obstacles near them
and can immediately return to the formation after exiting the danger zone. The result
shows that, based on our proposed methods, AUVs can achieve collision-free formation.

Figure 7. The three-dimensional trajectories of six AUVs with obstacles.

In Figure 8, the obstacle avoidance situation of AUVs is more evident when encounter-
ing obstacles. The three fluctuations in Figure 8 represent the follower 2, follower 3, and
follower 5 are sailing near obstacles. At this point, under the improved APF algorithm,
these AUVs temporarily deviate from the formation to avoid obstacles. After these AUVs
move away from the obstacles, the formation error decreases to zero rapidly, indicating
that the formation is reconstructed quickly.
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Figure 8. Formation position errors relative to the leader and formation vector of five follower AUVs
with obstacles.
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6.2. Comparison of Designed Trajectories Tracking Algorithm and Current Results

In this section, the simulation studies focus on a single trajectory that generated in the
CFTG Layer to analyze the performance of trajectories tracking controller. The comparison
of the designed trajectories tracking algorithm and the current results (AF-DSC [33] and
MPC [34]) was conducted to verify the efficiency and superiority of our proposed adaptive
fixed-time trajectories tracking controller.

Aiming at a single AUV, Figure 9 presents the three-dimensional trajectory tracking
results, while Figure 10 displays the desired and actual trajectories along the three axes.
Compared to AF-DSC and MPC, the ATT has a faster response speed and reduced overshoot
in trajectory tracking. In addition, the tracking accuracy has also been improved. In practical
underwater environments, by utilizing the adaptive fixed-time trajectory tracking methods,
system speed and stability can be enhanced, which will contribute to improved trajectories
tracking performance.

Figure 9. The three-dimensional trajectory tracking results of a single AUV.

Figure 10. Desired and actual trajectories of a single AUV in three axes.
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Figure 11 depicts the control input of the underactuated AUV. As shown in Figure 10,
compared with AF-DSC and MPC, the control inputs in the ATT Layer can be limited
to within the prescribed ranges because of the designed auxiliary compensation system
when suffering from the issue of input saturation. Based on the above analysis, it can be
concluded the proposed hierarchical adaptive fixed-time controllers are reliable and can
achieve a better formation performance.
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Figure 11. Control input of the underactuated AUV.

7. Conclusions
In this article, we designed a hierarchical adaptive fixed-time formation control method

for multiple underactuated AUVs subject to uncertain parameters, external disturbances,
and input saturation. This hierarchical framework decouples AUVs’ formation require-
ments and individual control challenges into two distinct layers: the CFGT Layer and
the ATT Layer. Specifically, the CFGT Layer functions as virtual AUVs, and a fixed-time
consensus-based controller is developed to generate desired trajectories for the AUVs,
meeting the demands of complex formation tasks. Meanwhile, considering the obstacles in
the underwater environments, an improved APF methods is proposed to address the issue
of the target point being too close to obstacles. In the ATT Layer, an auxiliary compensa-
tion system is constructed to overcome the saturated inputs. Furthermore, we design the
adaptive fixed-time controllers to handle the uncertain parameters in the model, enabling
underactuated AUVs to track the desired trajectory precisely. To increase the convergence
speed, both layers can converge within a fixed time under the designed controllers. The
numerical simulations conclusively validate that all hierarchical layers successfully attain
their designated objectives, with AUVs achieving precise fixed-time formation control. And
the comparative analysis with other methods substantiates the better performance of the
hierarchical formation control method.
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Appendix A.
The table below summarizes the main symbols used throughout the paper, along with

their definitions for ease of reference.

Table A1. Main symbols of this article.

Symbol Definition Symbol Definition

Mud The inertia matrix of underactuated AUVs Cud
The Coriolis-centripetal matrix of

underactuated AUVs

Dud
The hydrodynamic damping matrix of

underactuated AUVs Gud
The restoring force vector of underactuated

AUVs

τud The input of underactuated AUVs τdis The disturbances of underactuated AUVs

δi The desired formation vector x0 The position of virtual leader AUVs

v0 The velocity of virtual leader AUVs xi The position of virtual follower AUVs

vi The velocity of virtual follower AUVs vo
i

The virtual velocity of virtual follower
AUVs

ei The error between vi and vo
i k1, . . . , k6

The parameters to be designed in the CFTG
Layer controllers

α, β, γ, ς
The parameters to be designed in the CFTG

Layer controllers µ, g, c The parameters to be designed in the APF
method

ηCL The desired trajectory of actual AUVs η1 The position of actual AUVs

νud The velocity of actual AUVs ν∗ The virtual velocity of actual AUVs

ev The error between νud and ν∗ h1, . . . , h6
The parameters to be designed in the ATT

Layer controllers

θ, σ, ξ, ζ
The parameters to be designed in the ATT

Layer controllers
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