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Abstract

Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for
Internet of Underwater Things (IoUT) applications remains a significant challenge due to
the inherent limitations of the underwater environment. This paper presents a Value of
Information (VoI)-based trajectory planning framework for a single Autonomous Under-
water Vehicle (AUV) operating in coordination with an Unmanned Surface Vehicle (USV)
to collect data from multiple Cluster Heads (CHs) deployed across an uneven seafloor. The
proposed approach employs a VoI model that captures both the importance and timeliness
of sensed data, guiding the AUV to collect and deliver critical information before its value
significantly degrades. A forward Dynamic Programming (DP) algorithm is used to jointly
optimize the AUV’s trajectory and the USV’s start and end positions, with the objective
of maximizing the total residual VoI upon mission completion. The trajectory design in-
corporates the AUV’s kinematic constraints into travel time estimation, enabling accurate
VoI evaluation throughout the mission. Simulation results show that the proposed strategy
consistently outperforms conventional baselines in terms of residual VoI and overall system
efficiency. These findings highlight the advantages of VoI-aware planning and AUV–USV
collaboration for effective data collection in challenging underwater environments.

Keywords: internet of underwater things (IoUT); underwater acoustic sensor network
(UASN); sensor data collection; autonomous underwater vehicle (AUV); unmanned surface
vehicle (USV); value of information (VoI); dynamic programming (DP); trajectory planning;
path planning; AUV navigation

1. Introduction
The growing demand for natural resources and the rising interest in space exploration

have intensified global attention on underwater research [1–4]. In response, the Internet of
Underwater Things (IoUT) has emerged as a transformative paradigm, enabling the explo-
ration of previously inaccessible and unexplored underwater environments. Representing
a major advancement in marine technology, IoUT facilitates intelligent, interconnected sens-
ing and communication across underwater networks, thereby expanding the possibilities
for research, monitoring, and resource management in underwater domains [1,5].

The Underwater Acoustic Sensor Network (UASN) is a fundamental component of
the IoUT framework. It consists of strategically deployed sensor nodes that provide the
essential infrastructure for underwater sensing and communication [5–8]. These nodes
gather environmental data from the underwater environment and transmit it to surface
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units or mobile data collectors [1,7,9]. UASNs are critical for various applications, includ-
ing environmental monitoring, marine resource exploration, underwater infrastructure
inspection, and national defense operations [10–12].

UASNs primarily use acoustic signals for underwater communication, as radio and
optical waves attenuate rapidly in water, severely limiting their effective range [11,13,14].
In contrast, acoustic signals can support long-range communication over several kilometers,
making them a practical and widely adopted choice for underwater wireless networks [9,14].
Despite these advantages, acoustic communication faces several challenges that limit its
efficiency under certain conditions. Most notably, it offers limited bandwidth and the slow
propagation speed of sound in water introduces considerable transmission delays [1,6,8,9].
These constraints hinder the timely and efficient transfer of large volumes of data over long
distances [6]. Moreover, underwater acoustic communication requires significantly higher
transmission power than radio-based systems, while recharging the batteries of submerged
sensors remains a difficult and energy-intensive task [8].

Autonomous Underwater Vehicles (AUVs) have become crucial for enhancing the effi-
ciency and flexibility of underwater sensor networks [6,15]. Unlike stationary sensor nodes,
AUVs can follow either predefined or adaptive trajectories, enabling them to approach
sensor nodes directly and collect data for subsequent offloading to a relay node [5–7,15,16].
This feature reduces the energy consumption of sensor nodes by eliminating the need
for energy-intensive, long-range multi-hop transmissions, thereby extending the overall
lifespan of the UASN [7,10,15,16].

Additionally, an Unmanned Surface Vehicle (USV) can serve as a relay node within a
UASN. When operating collaboratively, USVs and AUVs can significantly enhance UASN
performance in various ways [17–20]. In such a configuration, the AUV is responsible for
collecting data from sensor nodes and surfacing to transfer the information to the USV at
a pre-determined location. The USV subsequently relays the data to onshore operators
for further analysis [17]. This integration enhances the mobility and flexibility of UASNs,
effectively addressing the inherent limitations of static sensor deployments.

In underwater sensing applications, the significance of collected data varies. Fre-
quently monitored data, such as normal temperature or pressure, are generally non-urgent
and have less importance [1,7,11]. Conversely, data exhibiting anomalous values are
highly time-sensitive and may indicate impending disasters or emergencies, such as toxic
chemical spills or natural calamities, requiring prompt intervention [1,6,7,11]. As the
former data type is consistently observed, the latter is not commonly encountered but
requires rapid uploading due to its critical significance and the urgent need to mitigate
potential threats [1,6,7,11].

To quantify the importance of sensor data, considering both its value and timeliness,
the concept of the Value of Information (VoI) is introduced. High-VoI data must be delivered
to the surface promptly before its value significantly decays, thereby enabling timely
responses and informed decision-making [1,8–10]. Significant delays in delivering such
data can prevent timely intervention. Notably, the rate of VoI attenuation tends to increase
for more critical data and decrease for less important information [1,6–8]. Therefore, the
trajectory planning of the AUV responsible for data collection must consider the data
importance value and urgency as primary objectives, ensuring that critical nodes are visited
early and high-value data are retrieved before their importance diminishes.

To address the need for the timely collection of high-value data in a UASN, this study
proposes a novel VoI-based trajectory planning method for a single AUV operating in
collaboration with a USV. The AUV’s trajectory is formulated as an optimization problem
that aims to maximize the total residual VoI collected from sensor nodes by the time it
is delivered to the USV. Solving this problem yields both the AUV’s optimal path and



Future Internet 2025, 17, 293 3 of 22

the USV’s starting and ending positions, which together maximize the total residual VoI
available upon mission completion.

To address the optimization problem, the forward Dynamic Programming (DP) ap-
proach [21] is employed. This recursive method solves multistage decision problems
by decomposing a complex task into smaller, interconnected subproblems that are ad-
dressed sequentially. The DP method is selected for its ability to guarantee globally optimal
waypoint sequencing, in contrast to heuristic or greedy methods that may offer faster
convergence but lack optimality guarantees [22]. This property is essential for maximizing
residual VoI in time-critical underwater missions. In this study, the forward DP algorithm
identifies the optimal sequence for visiting the nodes, ensuring that data are collected and
delivered before their value significantly decays. The method offers both computational
efficiency and reliability, making it well-suited for missions where node positions and
information values are known in advance.

Moreover, to further enhance the method, the AUV’s energy consumption is addressed
through careful path design. Since the underwater travel distance has a significant impact
on energy usage, minimizing the path length is essential [23]. To this end, a path design that
accounts for the AUV’s kinematic constraints is integrated to determine energy-efficient
motion. This approach not only reduces energy consumption but also helps preserve
residual VoI by minimizing delays caused by inefficient movements along the trajectory.

1.1. Contribution

The primary contributions of this paper are as follows:

1. A trajectory planning method is proposed for a single AUV operating in collaboration
with a USV to support data collection in UASNs and enable IoUT. The method ensures
that essential data with important information from all sensor nodes is delivered to
the surface before it loses its value to enable timely intervention.

2. This paper utilizes the VoI concept to quantify the time-sensitive importance of data
based on its abnormality and urgency. Important data experiences rapid value decay,
whereas normal data diminishes more slowly [1]. A realistic VoI formulation, as
proposed in [1], is adopted to accurately capture this behaviour.

3. An optimization problem is formulated to maximize the total residual VoI collected
from sensor nodes by the time it is delivered to the USV. A forward DP algorithm
is used to solve this problem, providing the AUV’s optimal waypoints and their
best visiting order and the USV’s starting and ending positions. This collectively
maximizes the total residual VoI at mission completion.

4. To minimize the AUV’s energy consumption and avoid long travel distances, a path
design, as in [24], is proposed to reduce unnecessary movement. The AUV first
determines the optimal turning angle to align with the next waypoint. If align-
ment is achieved, it proceeds directly to the next position, following the shortest
feasible trajectory.

5. The communication range of sensor nodes is adjusted to facilitate data transmission
without requiring the AUV to reach the exact node location or hover for extended
periods. The AUV only needs to navigate within the communication region and
remain there just long enough to complete the transmission. This ensures successful
data delivery while minimizing travel time, hence maintaining residual VoI.

6. The proposed method is assessed using MATLAB R2022b simulations and bench-
marked against alternative approaches to validate its performance.
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1.2. Related Work

Efficient data collection strategies for UASNs in IoUT applications have attracted
increasing attention due to the challenges of the harsh underwater environment, including
limited bandwidth, high latency, and energy constraints [25,26]. A range of recent studies
has explored the use of Unmanned Aerial Vehicles (UAVs) to address these challenges.
In [27], the authors propose a hybrid collaborative data collection (HCDC) scheme using
hierarchical deep reinforcement learning, which significantly reduces UAV flight time
and data acquisition delays. Authors in [28] develop an energy-efficient UAV scheduling
strategy based on a knowledge transfer-enhanced particle swarm optimization algorithm,
achieving improved energy balance and extended network lifetime. Similarly, ref. [29]
introduces a bilevel optimization approach that jointly optimizes UAV deployment and
trajectory planning to minimize energy expenditure during data retrieval.

However, these UAV-based solutions are inherently limited to surface-level opera-
tions, constraining their ability to directly access deeply located underwater sensors. To
overcome this limitation, several studies have explored the use of AUVs as mobile data col-
lectors. AUVs can operate closer to underwater nodes, thereby enhancing data transmission
reliability, reducing communication delays, and conserving energy [30–33].

A notable advancement in AUV-based data collection is the incorporation of the VoI
framework, which quantifies both the importance and timeliness of data to guide trajec-
tory planning [34,35]. The definition and modeling of VoI vary significantly across the
literature. A common approach assigns VoI based on data importance and urgency, where
initial values are inferred from historical data distributions. Under this framework, rare or
highly irregular events, such as tsunamis, are assigned high initial VoI scores that diminish
rapidly to reflect their urgency [1]. Similarly, some studies adopt probabilistic frameworks
that relate VoI to the likelihood of event occurrence. For example, ref. [7] models the col-
lected data using a Poisson distribution, where infrequent occurrences in historical records
imply greater rarity and, hence, greater importance. Another related method applies
anomaly detection, where VoI is elevated for data that deviates significantly from known
patterns, emphasizing information novelty in heterogeneous underwater wireless sensor
networks (H-UWSNs) [10].

In contrast, a different class of VoI models focuses exclusively on time-based decay,
disregarding event rarity. These approaches embed VoI decay directly into the decision-
making process for AUVs. In [9], VoI is treated as a non-increasing function that decays
exponentially over time, with the decay rate reflecting the urgency of the observed event.
This formulation allows AUVs to prioritize visits to sensor nodes producing high-urgency
data. Similarly, ref. [6] introduces a unified metric that combines time decay and data
importance to guide sink node selection and AUV trajectory optimization. More recent
approaches, such as [11], incorporate a normalized VoI metric into the reward function
of a multi-agent reinforcement learning (MARL) framework, enabling agents to learn
routing policies that dynamically favor more valuable data. Likewise, ref. [16] proposes a
composite VoI model that integrates signal relevance, age-based exponential decay, and
expected utility. This model is embedded within a deep reinforcement learning framework
to coordinate the collaborative paths of multiple AUVs. Collectively, these approaches
highlight the dynamic and multi-dimensional role of VoI in optimizing underwater
sensing missions.

VoI-driven trajectory planning has proven to be an effective strategy for enhancing
data collection efficiency. In [8], the authors propose a dynamic path planning method that
steers AUVs to maximize accumulated VoI, prioritizing the collection of both timely and
significant data. Their approach uses fuzzy control to adaptively adjust AUV trajectories in
response to real-time VoI evaluations and energy constraints. Multi-AUV coordination has
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also demonstrated benefits in this regard. The authors in [15] introduce an integrated sens-
ing and communication model in which AUVs strategically navigate overlapping sensor
communication zones to reduce energy consumption and enhance network throughput.
Their framework incorporates dynamic path adjustments and reinforcement learning for
real-time obstacle avoidance and trajectory optimization. Similarly, ref. [11] presents a
routing protocol based on MARL, enabling nodes to make cooperative routing decisions
that consider both VoI and residual energy, thereby reducing latency and improving energy
efficiency. In [36], the authors apply a VoI-to-energy optimization model to develop dis-
tributed, adaptive path planning strategies that respond to dynamic ocean currents and
support effective coordination among multiple AUVs.

Beyond multi-AUV cooperation, recent research has explored the integration of AUVs
with USVs to enhance underwater communication and mission performance. For instance,
ref. [17] proposes a joint navigation framework in which a USV maintains acoustic connec-
tivity with a mobile AUV while avoiding collisions. The study in [19] further demonstrates
that communication performance can be improved by dynamically adjusting the USV’s
position to strengthen the acoustic link quality. In a related effort, the authors in [18] employ
optimal control techniques to plan USV trajectories that enhance network connectivity,
underscoring the advantages of integrated AUV–USV systems for reliable underwater oper-
ations. In a further development, ref. [20] introduces a localization-aware MPC-based path
planning strategy, where a USV coordinates a team of AUVs to improve energy efficiency,
exploration coverage, and localization accuracy under acoustic communication constraints.

1.3. Article Organization

The remainder of this article is organized as follows. Section 2 presents the materials
and methods, including the system model, key definitions, the problem formulation,
and the proposed solution. Section 4 reports the results and discussion, evaluating the
effectiveness of the proposed method. The final section concludes the study and outlines
potential directions for future research.

2. Materials and Methods
This section presents the models, assumptions, and algorithmic framework underlying

the proposed method. It includes a detailed description of the system components and
constraints, a formal definition of the optimization problem, and the development of a
solution designed to effectively address it.

2.1. System Model

This subsection presents the system model and outlines the core elements that form
the foundation of the problem under investigation.

2.1.1. Network Architecture

The UASN architecture used in this study is illustrated in Figure 1 [1]. In such a
network, U sensor nodes, labeled as j = 1, 2, . . . , U, are randomly distributed within
a 3D underwater area. These sensor nodes collect environmental data and forward it
via acoustic signals to neighboring nodes or directly to the AUV [1]. The sensor nodes
are generally assumed to be stationary, with their positions known using underwater
localization techniques [1,9,37]. Additionally, the seafloor on which the nodes are deployed
is uneven, leading to variations in their individual depth values.
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Figure 1. Overview of the UASN system with sensor nodes (SNs) on an uneven seafloor.

To facilitate communication, a clustering method is applied to group the sensor nodes
into M clusters. One node in each cluster is designated as a cluster head (CH), forming
a set of M CHs labelled as i = 1, 2, . . . , M [5]. The set of CHs can be reselected in each
data collection round to balance energy consumption among nodes, using methods such as
those presented in [6,7,13,38,39]. Each CH collects data from the sensor nodes within its
cluster and transmits it to the AUV. Given the focus on AUV trajectory planning, this paper
considers only CH–AUV communication and assumes that data transmission from sensor
nodes to CHs has already been completed.

The AUV navigates along a horizontal plane above the CHs to collect their aggregated
data. Upon mission completion, the AUV offloads the collected data to a USV, which serves
as the surface sink [1]. The USV then relays the data to a ground control station using radio
communication. This study specifically focuses on the data transmission process from the
underwater CHs to the USV [1].

2.1.2. AUV Kinematic Model

Consider an AUV fitted with suitable receivers and deployed to perform data collection
tasks in a UASN. The AUV begins its mission at the surface point Ss = (xUSVs , yUSVs , 0),
where the USV is initially stationed. It then descends to a predefined depth zd, navigates
along a horizontal plane to collect data from the CHs, and finally returns to the USV at
a different surface location S f =

(
xUSV f , yUSV f , 0

)
. The depth zd of the horizontal plane

must satisfy the constraint:
zd ≤ 0, (1)

to ensure the AUV remains below the sea surface. Additionally, zd must be selected such
that its vertical distance from the highest point of the seafloor, denoted by δ(t), is greater
than a safety distance δsa f e and within the allowable depth range of the AUV at:

δ(t) > δsa f e ∀t ∈ [0, T], (2)

where T denotes the total duration of the mission. This constraint in (2) ensures that the
AUV does not descend close to the seafloor, even in the most challenging terrain conditions.
The kinematic equations describing the AUV’s motion in the horizontal plane are given
by [17]:

.
x(t) = u(t) cos ψ(t)
.
y(t) = u(t)sin ψ(t)

.
z(t) = ω(t)
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.
ψ(t) = r(t). (3)

The AUV’s state at time t is defined by its position (x(t), y(t), z(t)), where z(t) = zd

and its yaw angle ψ(t) ∈ [0, 2π). Its motion is governed by three key control in-
puts: the surge speed u(t) ∈ (0, umax], the heave speed ω(t) ∈ (0, ωmax], and yaw rate
r(t) ∈ [−rmax, rmax]. When the yaw rate ω(t) is nonzero, the AUV follows a curved path
with a turning radius defined as:

κi(t) =
(

u(t)
|r(t)|

)
. (4)

2.1.3. Communication Region Model

Let the coordinates of the CHs be denoted as
(
xCHi , yCHi , zCHi

)
, for i = 1, 2, . . . , M.

These CHs are stationary; however, their depth values zCHi vary due to deployment over
an uneven seafloor. Each CH communicates using acoustic signals and can connect with
the AUV within a communication range Ri > 0 [11]. Within this communication region,
data transmission between the AUV and the corresponding CH takes place.

Although transmission time may vary due to factors such as distance, data size, and
channel quality, this study simplifies the model by assuming a fixed transmission duration
for all CHs [6,7]. Let τ > 0 denote the minimum time the AUV must remain within the
communication range of any CH i to successfully complete data transmission. A successful
connection with CH i is said to be established at time ti if, during the interval [ti − τ, ti],
the AUV remains within the communication region Ri. This means that the distance di(t)
between the AUV and CH i must satisfy di(t) ≤ Ri for all t in that period.

Given that the maximum surge speed of the AUV is umax, it cannot move more than
τumax meters in τ seconds. Therefore, if the AUV is within a distance of Ri − τumax from
CH i at time ti, it is guaranteed to remain within the full communication sphere of radius
Ri during the interval [ti − τ, ti]. The corresponding horizontal constraint on the AUV’s
position, projected onto the plane z(t) = zd, is given by:

ρi =

√
(Ri − τumax)

2 −
(
zd − zCHi

)2. (5)

If the AUV lies within a circle of radius ρi, centered at
(
xCHi , yCHi , zd

)
at time ti, its 3D

distance to node i is less than Ri − τumax. This ensures that the AUV remains within the
communication range for the entire duration τ, enabling a successful data transmission
(refer to Figure 2). This condition holds under the assumption:

Ri >
∣∣zd − zCHi

∣∣+ τumax ∀i, (6)

which guarantees that the square root is real, and the projected region is nonempty.
It is important to note that Equation (5) shows that as the vertical distance between

the CH’s altitude zCHi and the AUV’s altitude zd decreases, the radius ρi of the horizontal
communication circle increases. This increase in ρi allows the AUV to maintain a greater
horizontal distance from the CH while still successfully completing the data transmission.
In the context of an uneven seafloor, this is beneficial because a larger ρi reduces the need
for the AUV to approach the uneven terrain of the seafloor where the CH is located, hence
lowering the risk of collision. Thus, in addition to satisfying constraint (2), Equation (5)
implicitly contributes to collision avoidance by enabling communication at a safer distance
from CHs located on elevated regions of the seafloor.
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Figure 2. The design of the horizontal communication region for sensor node i.

2.2. Problem Formulation

This subsection presents the mathematical formulation of the trajectory planning
problem, establishing the foundation for the proposed solution.

2.2.1. Objective Function

This work investigates the problem of planning an optimal trajectory for a single AUV
assigned to collect data from M CHs deployed across the UASN. The AUV begins and
ends its mission at two distinct surface locations, Ss and S f , both associated with a USV.
The objective is to determine the optimal starting and ending locations, along with the
most efficient visiting sequence of CHs and corresponding waypoints, such that the total
residual VoI of the collected data is maximized. This enables the timely delivery of critical
information to the USV for rapid response to abnormal events.

Several studies [6–9,11] have proposed different VoI definitions for underwater data,
considering importance, timeliness, and rarity. In this paper, we adopt a model similar to
that in [1], which classifies data as emergency or routine and utilizes an adaptive decay
function that links value loss to data significance. It also computes the initial VoI based on
historical data, offering a practical and realistic approach [1].

To illustrate the adopted VoI concept, consider a typical underwater pipeline surveil-
lance scenario. Emergency events such as leaks are often indicated by sudden pressure
drops or abnormal chemical readings [6,9]. In contrast to routine measurements, these
events are rare and carry high importance, requiring urgent data transmission to prevent
serious consequences. In such cases, a normal distribution can be applied to historical data
to capture the rarity and significance of these events when calculating the VoI [1].

Let C denote the set of measured data, where Ckj represents the k-th reading obtained
by the j-th sensor node in cluster i. Here k = 1, 2, . . ., and j = 1, 2, . . . , U. Each sensor
node j maintains historical data characterized by a mean µj and standard deviation σj. The

abnormality of a reading is quantified using an importance score I
(

Ckj

)
, defined as [1]:

I
(

Ckj

)
=

1
σj
√

2π

∫ µj+|Ckj−µj |

−∞
e
−(c−µj)

2

2σj
2

dc, (7)

where c is the integral variable. Equation (7) captures the degree of deviation of a reading
Ckj from the historical norm. The most abnormal reading from sensor node j is determined

as I
(
Cj
)
= maxk

{
I
(

Ckj

)}
[1]. The CH then computes the cluster’s data importance as

Ii = maxj
{
I
(
Cj
)}

based on the data received from all sensor nodes, to identify the most
important data in cluster i [1].
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At this point, the initial VoI corresponding to the data from cluster i, denoted by Vinti ,
is calculated using [1]:

Vinti = 2 Ii − 1. (8)

Equation (8) highlights the relationship between data abnormality and its importance,
where a higher value of Vinti indicates higher urgency of the data [1]. To reflect how
urgency decreases over time, a decay-based VoI model is constructed. When the AUV
collects data with initial VoI Vinti from CH i and delivers it to the USV at time tc, the residual
VoI is computed as [1]:

Vri (tc) = Vinti (1 − β Ii)
tc , (9)

where β is the decay coefficient and tc is the time duration from the start of data collection to
its delivery to the USV. Equation (9) reflects that data with higher abnormality, i.e., greater
deviation from historical norms

∣∣∣Ckj − µj

∣∣∣, undergoes more rapid value decay [1]. Hence,
the objective is to plan a trajectory that preserves the maximum possible residual VoI.

To enable trajectory planning for residual VoI maximization, let Ci denote a horizontal
circle of radius ρi around each CH, centered at

(
xCHi , yCHi , zd

)
, for each i = 1, 2, . . . , M. This

circle defines the horizontal communication region within which the AUV can successfully
transmit data to CH i at the horizontal plane z = zd. Furthermore, define Bi as the
corresponding closed disk with the same center and radius. It is assumed that for any given
index i, there exists at least one index α ̸= i, with α ∈ {1, 2, . . . , M}, such that:

Bi
⋂

Bα = ϕ. (10)

Let Qi =
{

q1i , q2i , . . . , qLi

}
, where qli =

(
xqli

, yqli
, zd

)
for l = 1, 2, . . . , L, be a finite set

of L candidate waypoints uniformly distributed along the circumference of the horizontal
circle Ci. Each qli ∈ Ci lies at a horizontal distance ρi from the center. The AUV must visit
one waypoint per CH, and the sequence in which the CHs are visited significantly affects
the overall performance due to information decay over time.

Let Φ̂ denote the set of all permutations of the index set {1, 2, . . . , M}, which contains
M! elements. Each permutation Φ = (s(1), s(2), . . . , s(M)), where Φ ∈ Φ̂, represents a
unique visiting sequence of the M circles. For each permutation Φ, the set of all possible
combinations of candidate waypoints, one per CH, is defined as the Cartesian product:

QΦ = Qs(1) ×Qs(2) × · · · × Qs(M). (11)

This results in LM candidate paths. Each element P ∈ QΦ is a candidate trajectory
comprising one waypoint per CH, ordered according to the sequence Φ:

P =
(

qls(1) , qls(2) , . . . , qls(M)

)
, (12)

where qls(i) ∈ Qs(i) is the selected waypoint for CH s(i) in the sequence.
Building on the above definitions, the primary objective function is formulated

as follows:
max
Φ,P ∑M

i=1 Vri (tc) = ∑M
i=1 Vinti (1 − β Ii)

tc . (13)

The AUV trajectory planning problem is thus defined as the task of selecting the
optimal visiting sequence of CHs, along with their corresponding data collection waypoints,
in order to maximize the objective function in (13). It is assumed that the AUV has complete
knowledge of the VoI associated with each CH at the start of the mission from its initial
surface position Ss.
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2.2.2. Problem Statement

This paper addresses the problem of selecting surface points Ss and S f , and planning
a trajectory for the AUV (3) that starts at Ss, traverses a sequence of waypoints to collect
data from the M CHs, and ends at S f , such that the objective function (13) is maximized,
subject to constraints (1), (2), and (6).

2.3. Proposed Solution

This subsection outlines the proposed solution, including the AUV trajectory opti-
mization algorithm and the path design for feasible movement between waypoints.

2.3.1. AUV Trajectory Optimization Algorithm

To solve the trajectory planning problem defined in (13), this work proposes a forward
DP approach that maximizes the total residual VoI collected during the mission. The method
simultaneously determines the optimal sequence for visiting the M CHs and selects one
waypoint per CH from a candidate set located along its horizontal communication circle
of radius ρi. It systematically explores all feasible combinations of CH visiting orders and
waypoint assignments while accounting for travel time, data degradation, and AUV motion
constraints. A complete summary of the algorithm is provided in Algorithm 1.

Given each combination (Φ,P), the travel time between consecutive waypoints is
computed using the kinematic model in (3) and the path design strategy described in the
next section. In this work, the residual VoI is evaluated over the time interval beginning
with the AUV’s arrival at the first CH and ending upon its return to the USV at the end
of the mission. Accordingly, the forward DP algorithm searches for the optimal waypoint
sequence and selection that maximizes the total residual VoI over this operational window.

The core of the proposed solution is the forward DP approach that incrementally
constructs the optimal trajectory. The use of a forward DP formulation is essential in
this context, as the residual VoI associated with each CH progressively decays over time.
Since the reward collected at each waypoint directly depends on its visitation time, the
algorithm must traverse the decision space in the same direction as time progresses. This
forward traversal enables accurate tracking of elapsed time and proper application of the
corresponding VoI decay at each stage. A similar forward DP approach has also been
employed in [24].

In this paper, the aim is to evaluate the residual VoI collected from the first CH to
the USV’s final position. However, the forward DP procedure is initiated from the AUV’s
surface start location Ss and progresses through the visitation sequence, terminating at the
final CH. This modeling choice is justified by the symmetry in vertical travel time between
the descent from Ss and the ascent to S f . Specifically, these segments are represented as
vertical motions at a constant heave speed between the surface z = 0 and the operational
depth z = zd, starting from and ending at waypoints that share the same horizontal
coordinates as Ss and S f , respectively. As this vertical traversal time remains constant
across all trajectory candidates, it results in a uniform decay period for this portion of
the mission. This symmetry ensures a consistent basis for evaluating and comparing all
candidate trajectories.

Given the permutation Φ = (s(1), s(2), . . . , s(M)), which defines the order of visiting
the M CHs, the algorithm constructs a DP table J

(
i, qls(i)

)
. Here, i ∈ {1, 2, . . . , M} denotes

the current stage, and qls(i) is a candidate waypoint on Cs(i) around CH s(i). The value

J
(

i, qls(i)

)
stores the maximum cumulative residual VoI collected up to CH s(i) when the

AUV arrives at waypoint qls(i) . To keep the notation simpler, we use J(i, q) to represent

J
(

i, qls(i)

)
, where q ∈ Qs(i).
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Algorithm 1. Forward DP-based Algorithm for AUV Trajectory Optimization

Input: Candidate waypoint sets {Q1, Q2, . . . , QM}, all permutations Φ ∈ Φ̂, VoI
parameters: Vinti and Ii for each CH i, decay factor β.
Output: Optimal CH visit sequence Φopt, optimal waypoint path Popt, and maximum
total residual VoI VrtotalBestΦ .
1 Initialize VrtotalBestΦ := −∞
2 for each permutation Φ = (s(1), s(2), . . . , s(M)) ∈ Φ̂:
3 for stage i = 1
4 for each q ∈ Qs(1):
5 Compute tq = ts→q

6 Compute residual VoI: Vrs(1)

(
tq
)
= Vints(1)

(
1 − βIs(1)

)tq

7 Set J(1, q) := Vrs(1)

(
tq
)

and Prev(1, q) := Ss

8 for i = 2 to M:
9 for each q ∈ Qs(i):
10 for each q́ ∈ Qs(i−1):
11 Compute travel time: t ´q→q

12 Compute arrival time: tq = tq́ + t ´q→q

13 Compute new VoI: Vrs(i)

(
tq
)
= Vints(i)

(
1 − βIs(i)

)tq

14 Update J(i, q) := max
q́∈Qs(i−1)

[J(i − 1, q́)+Vrs(i)(tq)]

15 Store Prev(i, q) := q́
16 Compute upper bound Γup(i, q) = ∑M

a=i+1 Vints(a)

17 If J(i, q) + Γup(i, q) < VrtotalBestΦ : prune path
18 After stage M, find q ∈ Qs(M)maximizing J(M, q)
19 If a new maximum is found, update VrtotalBestΦ and record Φopt

20 Backtrack from final q using Prev(i, q) to build Popt

21 Return Φopt, Popt and VrtotalBestΦ

At stage i = 1, the residual VoI for each candidate waypoint q ∈ Qs(1) is determined

based on the travel time from the initial point Ss. Note that if q =
(

xqls(1)
, yql(1)

, zd

)
, then

the corresponding surface starting point is Ss =
(

xqls(1)
, yql(1)

, 0
)

. The arrival time at q,

denoted by tq, is computed as the time taken to travel from Ss to q, i.e., tq = ts→q. This
arrival time is then used to evaluate the residual VoI at q. The corresponding residual
VoI is:

Vrs(1)

(
tq
)
= Vints(1)

(
1 − β Is(1)

)tq
. (14)

This initializes the DP table as:

J(1, q) := Vrs(1)

(
tq
)
, (15)

and the backtracking information is initialized as Prev(1, q) := Ss.
For each subsequent stage i = 2, . . . M, and for every candidate waypoint q ∈ Qs(i),

the algorithm iteratively evaluates all possible transitions from all previous waypoints
q́ ∈ Qs(i−1). The travel time between the two waypoints is denoted by t ´q→q, indicating the
time required to move from q́ to q. The updated arrival time at q is then calculated as:

tq = tq́ + t ´q→q, (16)
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where tq́ is the stored arrival time at the previous waypoint q́. The residual VoI collected at
CH s(i) upon arriving at q is evaluated as:

Vrs(i)

(
tq
)
= Vints(i)

(
1 − β Is(i)

)tq
. (17)

The DP table is subsequently updated by selecting the transition from q́ that results in
the maximum total residual VoI:

J(i, q) := max
q́∈Qs(i−1)

[ J(i − 1, q́)+Vrs(i)(tq)]. (18)

During each step, the algorithm updates Prev(i, q) with the previous waypoint q́ that
results in the maximum value, i.e., Prev(i, q) := q́. This enables recovery of the optimal
waypoint sequence via backtracking once the process is complete.

At the final stage, the optimal value corresponding to the current permutation Φ is
determined as:

VrtotalΦ = max
q∈Qs(M)

J(M, q). (19)

Following this step, the optimal waypoint sequence is recovered by backtracking
through the stored transitions starting from the final waypoint. This procedure is repeated
for each permutation Φ ∈ Φ̂, and the optimal path is determined as:

(Φopt,Popt) = argmax
Φ∈Φ̂

VrtotalΦ . (20)

Here, Φopt denotes the optimal CH visiting sequence, and Popt represents the corre-
sponding set of selected waypoints. The AUV’s surface start and end positions, Ss and
S f , which align with the USV’s start and end positions, are determined from the first and
last waypoints in Popt, respectively. These surface positions are obtained by setting the
z-coordinates of the respective waypoints to zero, ensuring they lie on the water surface.
Consequently, the USV is positioned directly above the AUV’s initial waypoint at mission
start and above the final waypoint at mission end, thereby completing the construction of
the optimal trajectory.

It is important to note that, while the ascent segment does not influence the opti-
mization outcome, a post-processing correction may be applied if the residual VoI is to
be evaluated over the entire mission duration, from the USV’s start to end positions. The
decay incurred during this final vertical segment can then be incorporated by adjusting the
residual VoI based on the arrival time at the last waypoint and the known ascent duration.

To address the high complexity of exploring all CH visit permutations and waypoint
combinations, this paper applies a pruning approach based on an estimated upper bound of
the remaining residual VoI. The idea follows the principles presented in [40,41] and enables
the forward DP algorithm to discard unpromising solutions early in the recursion. As a
result, the computational burden is significantly reduced without compromising optimality.

At stage i, J(i, q) is defined as the total residual VoI accumulated after the AUV has
visited CHs s(1), s(2), . . . , s(i) and is currently located at waypoint q ∈ Qs(i). For each
such DP state, we introduce an upper bound function Γup(i, q), which estimates the maxi-
mum residual VoI achievable from the remaining CHs s(i + 1), s(i + 2), . . . , s(M), under
ideal travel conditions and assuming no information decay. The adopted upper bound is
given by:

Γup(i, q) = ∑M
a=i+1 Vints(a)

. (21)

Assuming instant access with no decay, this optimistic estimate in (21) safely bounds
the remaining value and avoids early pruning. Let VrtotalBestΦ denote the global lower
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bound, defined as the maximum total residual VoI from any fully evaluated trajectory. At
each DP stage, the pruning condition is applied as:

J(i, q) + Γup(i, q) < VrtotalBestΦ . (22)

If the condition in (22) holds, then, even under ideal assumptions, the current trajectory
cannot outperform the best solution identified so far. In such cases, the algorithm safely
prunes the current permutation and skips the remaining stages of its evaluation. This
strategy significantly reduces the number of trajectory branches that must be explored,
particularly during the later stages of recursion, where the computational cost of full
evaluation is highest. As a result, the algorithm achieves a substantial improvement in
runtime efficiency while preserving optimality within the reduced search space.

2.3.2. Path Design

After determining the optimal sequence of waypoints that maximizes the residual VoI
from all M CHs, the next step is to develop a trajectory design method based on the AUV’s
kinematic model. In this section, we design the path of the AUV to navigate through the
selected waypoints, starting from the initial USV position Ss and ending at the final USV
position S f and determine the control input values required for its motion. Knowing these
values enables the calculation of the travel time between waypoints, which is essential for
implementing the forward DP algorithm.

Let the optimal waypoint set be denoted as Popt =

{
qopt

lsopt(1)
, . . . , qopt

lsopt(M)

}
∈ QΦopt ,

where qopt
lsopt(i)

∈ Qsopt(i) represents the selected waypoint from the i-th CH in the op-

timal permutation Φopt = {sopt(1), . . . , sopt(M)}, and each waypoint is defined as

qopt
lsopt(i)

=

(
xopt

ql
sopt(i)

, yopt
ql

sopt(i)
, zd

)
. Accordingly, the AUV starts from the surface location

Ss =

(
xopt

ql
sopt(1)

, yopt
ql

sopt(1)
, zd

)
, descends vertically to the first waypoint qopt

lsopt(1)
, and then fol-

lows a horizontal trajectory through all waypoints in Popt. Once the final waypoint qopt
lsopt(M)

is reached, the AUV ascends vertically to the surface location S f =

(
xopt

ql
sopt(M)

, yopt
ql

sopt(M)
, zd

)
.

For simplicity, we define a new set Pf inal = {p1, . . . , pF}, representing the complete
sequence of points along the AUV’s path, where the indices are labeled by γ = 1, . . . , F and
F = M + 2. This set includes the starting point Ss, all waypoints in Popt, and the final point
S f . Since we are navigating between discrete waypoints, control inputs are determined for
each subtrajectory connecting two consecutive points. Specifically, to move from point pγ

to point pγ+1, the control inputs uγ, ωγ, and rγ are determined, enabling calculation of the
corresponding travel time and transition dynamics required for the forward DP algorithm.

The AUV follows a trajectory composed of three phases: a vertical descent from
p1 = Ss to p2; horizontal movement through the waypoints p2, . . . , pF−1 along the hori-
zontal plane at depth zd, and a vertical ascent from pF−1 to pF = S f . During the vertical
phases, the control inputs uγ and rγ are set to zero, while ωγ is set to −ωmax for descent
and ωmax for ascent.

For the horizontal movement, the AUV follows a Dubins-like trajectory design adapted
from [24], combining a single arc turn with a straight segment to meet its kinematic
constraints. The AUV rotates from its current waypoint pγ at a constant yaw rate rγ,
selecting either rmax or −rmax for γ = 2, . . . , F − 1. Rotation continues until the heading
ψγ aligns with the vector leading to the subsequent waypoint pγ+1, reaching the tangent
point ξγ (see Figure 3). At ξγ, the yaw rate rγ is set to zero, and the AUV proceeds straight
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toward pγ+1 [24]. Rotation is necessary only if the current heading ψγ is misaligned with
the direction to pγ+1; otherwise, rγ is set to zero without rotation.

Figure 3. The AUV trajectory design.

Throughout this phase, rγ is the only variable control input, which only employed
when rotation is necessary. The surge speed is maintained constant at uγ = umax throughout
the entire horizontal movement, while the heave speed ωγ is set to zero, as there is no
vertical movement.

The selection between rmax or −rmax is determined by computing the angle
ηγ ∈ [0, 2π), measured counterclockwise from the x-axis to the vector

→
pγ pγ+1. The direc-

tion of rotation is then decided by evaluating the angular difference ηγ − ψγ ∈ (−2π, 2π),
representing the counterclockwise angle between the AUV’s current heading and the vector

→
pγ pγ+1. Based on the evaluated angular difference, the appropriate rotation direction is
selected as follows [24]:

no turn, i f ηγ − ψγ = 0
turn right, i f ηγ − ψγ ∈ [−π, 0) ∪ [π, 2π)

turn le f t, i f ηγ − ψγ ∈ (−2π,−π) ∪ (0, π)

. (23)

To find the position of the tangent point ξγ where the AUV stops rotating, a unit
vector µγ perpendicular to the current heading ψγ is first defined. This vector is used to
determine the center ςγ of the AUV’s circular path, such that ςγ lies at a distance κγ from

the current position pγ along the direction of µγ [24]. Two vectors,
→

ςγ pγ and
→

ςγξγ, represent
the directions from ςγ to pγ and ξγ, respectively. The center ςγ is computed as [24]:

ςγ = pγ +
uγ

rmax
µγ. (24)

Since the tangent vector
→

ξγ pγ+1 is orthogonal to
→

ςγξγ, their dot product is zero [24].

Moreover, given that
→

ςγξγ has magnitude κγ, where κγ =
uγ

rmax
, and that the tangent

vector can be expressed as
→

ξγ pγ+1 =
→

ςγ pγ+1 −
→

ςγξγ, the orthogonality condition leads
to [24]:

→
ςγξγ ·

(
→

ςγ pγ+1 −
→

ςγξγ

)
= 0. (25)

Now, using (25) the angle between
→

ςγξγ and
→

ςγ pγ+1 is computed as:

ϑγ = arccos

( uγ

rmax∣∣pγ+1 − ςγ

∣∣
)

. (26)
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Using ϑγ from (26), the unit vector
→

ςγξγ can be derived by rotating the unit vector
→

ςγ pγ+1 counterclockwise by ϑγ, as follows [24]:

→
ςγξγ∣∣∣∣ →
ςγξγ

∣∣∣∣ =
[

cos ϑγ −sin ϑγ

sin ϑγ cos ϑγ

] →
ςγ pγ+1∣∣∣ →
ςγ pγ+1

∣∣∣ . (27)

From
→

ςγξγ = ξγ − ςγ, κγ =
→

ςγξγ =
uγ

rmax
, along with (24), the tangent point ξγ is

expressed as [24]:

ξγ = ςγ +
uγ

rmax

[
cos ϑγ −sin ϑγ

sin ϑγ cos ϑγ

]
×

pγ+1 − ςγ∣∣pγ+1 − ςγ

∣∣ . (28)

The tangent point ξγ, as given in (28), is considered feasible if the vector from ξγ to
pγ+1 aligns with the AUV’s departure direction at ξγ. If this condition is not satisfied, ϑγ is
replaced by −ϑγ, and a new ξγ is selected [24].

3. Results and Discussion
This section evaluates the performance of the proposed method through MATLAB

simulations. The results demonstrate its effectiveness in selecting optimal USV start and
end positions and in generating an AUV trajectory that enables efficient data collection in
UASNs for IoUT applications, while maximizing the total residual VoI. The AUV preserves
approximately 64–70% of the total residual VoI upon returning to the USV.

Benchmarking is essential to demonstrate the performance of the proposed method.
However, direct comparison with some related approaches is limited due to substantial
differences in platforms, assumptions, and system configurations. For instance, many
studies rely on UAVs [27–29], do not explicitly model time-decaying VoI or distinguish
between emergency and non-emergency data [27,31], depend on multi-hop routing [1,16],
or involve multi-AUV coordination [16,31].

To provide meaningful insight, the baseline methods selected in this section are
intended to highlight specific aspects of the proposed approach. We aim to demonstrate its
effectiveness by showing how incorporating kinematic constraints and waypoint flexibility
can positively impact residual VoI, and by revealing the limitations of optimizing solely for
travel efficiency while ignoring the temporal sensitivity of information value.

In this section, we benchmark the method against three baseline strategies. First,
a straight-line path strategy connects waypoints using direct Euclidean paths without
considering the AUV’s maneuvering limitations, as presented in [39]. While this approach
produces shorter paths, it overlooks the vehicle’s kinematic feasibility. In contrast, our
method generates practical trajectories using arc-plus-straight-line motion, reducing overall
travel time and improving VoI preservation by respecting the AUV’s motion constraints.

Second, we compare against a strategy in which each CH is represented by a single
fixed point located above it on the zd-plane. This approach aligns with prior studies that
consider only the node locations and optimize the visiting sequence accordingly, as shown
in [42,43]. In contrast, our approach selects from multiple candidate points along the
horizontal circle Ci of each CH, offering greater routing flexibility and reducing travel
requirements while maintaining efficient data collection performance.

Finally, we benchmark against a conventional Traveling Salesman Problem (TSP)-
based approach, which has been widely adopted in prior studies such as [39,44] for planning
AUV trajectories for data collection. This method first solves the Euclidean TSP over all
candidate waypoints and then applies the proposed Dubins-like trajectory planning. While
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this method minimizes total travel distance, it remains unaware of VoI dynamics. In
contrast, our approach integrates VoI decay, kinematic feasibility, and strategic waypoint
selection, resulting in improved mission performance.

The system parameters are set as follows: umax = 2 m/s, ωmax = 2 m/s, rmax = 2 rad/s,
zd = −15 m, Ri = 16 m, and τ = 1 s. The AUV is deployed from a USV that moves from
Ss to S f along the sea surface (z = 0). The simulation environment is a 3D underwater
region defined by x ∈ [0, 50], y ∈ [0, 50], and z < 0, with depth variations generated using
a grid combining smoothed noise and sinusoidal patterns, centered around a mean depth
of −25 m. The network consists of 100 sensor nodes divided into five clusters (M = 5),
each represented by a designated CH. The importance degree Ii for each CH is assumed to
be pre-determined based on input from neighboring sensor nodes and broadcasted to the
AUV prior to mission start.

The simulation is conducted based on the UASN model illustrated in Figure 4.
Figure 4a displays the target underwater environment, including the sensor nodes and the
uneven seafloor. These sensor nodes are clustered using the k-medoids algorithm, and a
CH is selected for each cluster, as shown in Figure 4b. Figure 4c depicts the communication
sphere of radius Ri for each CH, along with the horizontal plane at depth zd, which defines
the AUV’s operating level for data collection. In Figure 4d, each Ci is shown as a dashed
circle representing the communication boundary of CH i on the horizontal plane, centered
at
(

xCHi , yCHi , zd
)

with radius ρi. The AUV can collect data from CH i by reaching any
point along the circumference of Ci.

   

(a)  (b) 

   

(c)  (d) 

Figure 4. System overview showing: (a) sensor node distribution (black dots); (b) CH selection (white
dots); (c) CH communication spheres intersecting the AUV’s horizontal operation plane; (d) the
horizontal communication regions of each CH (dashed black circles).

The task is to determine the AUV’s start and end points, along with a trajectory that
visits exactly one point on the circumference of each Ci, ensuring complete data collection
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while maximizing the total residual VoI upon returning to the USV on the surface. With all
parameters defined, the proposed forward DP algorithm is applied to identify the optimal
set of waypoints. A Dubins-like trajectory is then constructed to connect these waypoints.

The first step involves distributing a finite set of L = 30 candidate waypoints uniformly
along the circumference of each Ci (see Figure 5a). Any waypoints that fall outside the area
of interest are excluded. The remaining waypoints constitute the state space for each CH,
and the forward DP algorithm outlined in Algorithm 1 is employed to efficiently determine
the optimal visiting sequence and associated waypoint selection, one point per Ci, denoted
by
(
Φopt,Popt

)
, as illustrated in Figure 5b. The x and y coordinates of the first point in Popt

are assigned to the USV’s starting point Ss, with its altitude set to z = 0 to ensure placement
on the sea surface. Likewise, the x and y coordinates of the final point in Popt define the
USV’s endpoint S f , with its altitude also set to z = 0. Figure 5c illustrates the complete
AUV trajectory, starting from Ss, marked with a blue dot, continuing through the selected
waypoints in the optimal order, and ending at S f , marked with a red dot, following the
Dubins-like trajectory design described in Section 2.3.2. Figure 5d shows the 2D view of
the final trajectory of the AUV.

   

(a)  (b) 

   

(c)  (d) 

Figure 5. Implementation of the proposed method showing: (a) candidate waypoints distributed on
each CH’s horizontal circle (red dots); (b) optimal waypoints selected by the forward DP algorithm
(red dots); (c) final 3D trajectories of the AUV (green solid line) and the USV (magenta solid line) from
the start point Ss (blue dot) to the end point Sf (yellow dot); (d) the final 2D trajectory of the AUV.

The proposed method demonstrated effectiveness by preserving approximately 66% of
the total residual VoI across all CHs. The results further indicate that high-importance data
decays more rapidly than medium-importance data. Nevertheless, the method retained
around 64% of the high-importance information, which is considered satisfactory (see
Table 1). This level of preservation supports the timely detection of abnormal events with
minimal information loss, enabling rapid intervention in hazardous situations. However,
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the performance declines when the AUV operates over a larger area with widely dispersed
CHs and a deeper surveillance plane, indicating that further improvements are required to
maintain performance in more demanding environments.

Table 1. Final total residual VoI and corresponding preservation ratio.

i Initial VoI V inti Residual VoI Vri Preserved VoI Ratio
Vri
V inti

1 0.8336 0.5507 66.1%
2 0.9626 0.6175 64.1%
3 0.7272 0.4921 67.7%
4 0.6432 0.4437 69%
5 0.9518 0.6121 64.3%

Total 4.1184 2.7161 65.9%

The following subsections present a performance analysis of the proposed method by
comparing it against three strategies: straight-line trajectories, single-point CH selection,
and traditional TSP-based path planning.

3.1. Straight-Line Trajectory Design Comparison

In the first comparison, we evaluate the impact of using Dubins-like trajectories
proposed in this paper versus straight-line paths between waypoints. For each method,
travel time is calculated based on the distance travelled and is used to guide the forward DP
algorithm in selecting the optimal waypoints and their sequence. The straight-line strategy
connects waypoints using Euclidean paths, assuming instantaneous heading changes. In
contrast, our approach accounts for the AUV’s turning constraints, generating feasible
trajectories that comply with its kinematic limitations.

As shown in Figure 6 and Table 2, the proposed method completes the mission
0.7% faster and preserves 0.3% more VoI, increasing the final VoI ratio from 65.75% to
65.95%. This improvement demonstrates that even small reductions in travel time can
yield measurable gains due to the exponential decay of VoI. Moreover, the proposed
trajectory avoids mismatches between planned and actual motion, enhancing overall
mission efficiency.

(a)  (b) 

Figure 6. Comparison of the proposed (green solid line) and the straight-line (red dash-dot line) path
designs: (a) 3D trajectories and USV positions; (b) 2D x–y projection.
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Table 2. Comparison of the proposed method with straight-line, single-point, and TSP-based designs.

Proposed Method Straight-Line Trajectory Single-Point Design TSP-Based Method

Total Residual VoI 2.7161 2.7080 2.0749 2.4568
Total time (s) 45.0167 45.3374 74.1794 55.8793

Preserved VoI Ratio 65.95% 65.75% 50.38% 59.65%

3.2. Single-Point Design Comparison

In this analysis, we investigate the impact of waypoint selection on overall mis-
sion performance. The proposed method selects optimal points from multiple candi-
dates distributed along each CH’s horizontal communication circle and is compared
with a simplified strategy that uses a single fixed point located directly above each CH.
Both strategies use the same forward DP and path-planning framework but differ in
waypoint flexibility.

The proposed method offers the forward DP algorithm a broader selection of candidate
points, enabling it to identify routes with shorter travel times and improved VoI retention
(see Figure 7). In contrast, the single-point approach constrains the AUV to less optimal
trajectories, resulting in longer paths and increased VoI decay. The proposed method pre-
serves 65.95% of the total VoI, while the fixed-point method retains only 50.38%, reflecting
a 15.6% gain in VoI preservation driven by enhanced routing flexibility and reduced travel
distance, which in turn leads to lower mission time and higher data preservation (refer to
Table 2).

(a)  (b) 

Figure 7. Comparison of the proposed (green solid line) and the single-point (red dash-dot line)
designs: (a) 3D trajectories and USV positions; (b) 2D x–y projection.

3.3. TSP-Based Method Comparison

In this section, we compare the proposed VoI-aware forward DP method with a con-
ventional TSP-based approach. The TSP method solves the Euclidean Traveling Salesman
Problem using the horizontal positions of CH centroids to minimize total travel distance.
Once the TSP order is determined, a single waypoint per CH is selected, specifically, the one
on its horizontal communication circle with the lowest travel time from the previous point.
Both trajectories are executed using the proposed Dubins-like path design, and mission
time and residual VoI are evaluated.

Figure 8 illustrates the resulting paths for both methods, highlighting the differences
in waypoint selection and routing behavior. As shown in Table 2, the VoI-aware method
outperforms the TSP-based approach by effectively prioritizing time-sensitive data. While
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the TSP method preserves 59.65% of the total VoI, the proposed method retains 65.95%,
representing a 6% increase in VoI preservation. This improvement results from the forward
DP method’s joint consideration of path feasibility, travel time, and data value, leading to
more efficient and information-preserving trajectories. These findings demonstrate that
distance-minimizing approaches alone do not necessarily yield the highest residual VoI.

(a)  (b) 

Figure 8. Comparison of the proposed forward DP (green solid line) and the TSP-based (red dash-dot
line) methods: (a) 3D trajectories and USV positions; (b) 2D x–y projection.

4. Conclusions
This paper introduces a VoI-based trajectory planning approach for data collection in

UASNs, where a single AUV collaborates with a USV to collect data from multiple CHs
distributed over an uneven seafloor. The approach formulates an optimization problem
aimed at maximizing the total residual VoI at mission completion, based on a VoI model
that captures both data importance and timeliness. This problem is solved using a forward
DP algorithm, which jointly optimizes the AUV’s trajectory and the USV’s start and end
positions while satisfying the AUV’s kinematic constraints. Simulation results demon-
strate promising performance in terms of total residual VoI and overall system efficiency
compared to standard baselines. However, performance declined in larger and deeper
environments with increased communication delays. These findings emphasize the need
for enhanced system adaptability and motivate future extensions involving multi-AUV
collaboration. Furthermore, accounting for sensing and transmission uncertainties is crit-
ical to accurately modeling real-world underwater conditions. Future work should also
consider benchmarking the proposed method against state-of-the-art techniques to further
validate its effectiveness.
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