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1. Introduction
Autonomous underwater vehicles (AUVs) have been widely deployed in numerous

underwater applications, such as biological monitoring, oceanographic surveys, and mili-
tary underwater surveillance [1–4]. The localization of AUVs has usually been a challenge
because of rapid attenuation of the radio frequency, such as global positioning system
(GPS) signals. The high-precision accelerometer- and gyroscope-based inertial navigation
system (INS) is the most common method of AUV navigation. Nevertheless, the navigation
errors of AUVs accumulate over time because of the inertial sensors’ drifts [5–8], which
may cause unlimited increases in the localization error. The increase in localization errors
can be corrected and updated by the GPS signal after surfacing, but it is impractical to
surface when AUVs are working during a deep-water mission [9–11].

In the navigation of AUVs, a significant problem is determining the positions of
AUVs by using a nonlinear filter. Nonlinear filtering is an effective method for inferring
the unknown state of a nonlinear system and has been widely employed in a number of
applications involving the navigation of AUVs, signal processing, communications, target
tracking, and control [12–19]. A few nonlinear filters for underwater navigation have also
been presented to improve the estimation accuracy, such as the extended Kalman filter
(EKF), unscented Kalman filter (UKF), and cubature Kalman filter (CKF) [20–25].

The performance of the above filtering algorithms depends largely on a priori knowl-
edge of the noise covariance matrix, and the use of an inaccurate noise covariance matrix
can result in substantial estimation errors or even filtering divergence. However, in the
navigation of AUVs, an accurate noise covariance matrix is very difficult to establish and
may be time-varying, because the performance of sensors may vary with changes in the
environment, which will degrade the navigation accuracy [26–29]. The adaptive algorithm
is an effective method for solving the inherent problem of unknown noise covariance
matrices in the underwater navigation of AUVs [30–35].

In contrast to fully actuated AUVs, underactuated AUVs are equipped with fewer
propellers. This configuration offers distinct advantages and unique characteristics. The
primary benefit of underactuated AUVs lies in their ability to perform intricate motions
and maneuvers using fewer control inputs or actuators. As a result, underactuated AUVs
offer simpler and more cost-effective design solutions [36–38]. However, due to their
complicated interactions with the underwater environment, underactuated AUVs exhibit
inherently nonlinear dynamics. Consequently, controlling such systems requires advanced
control techniques to handle nonlinearities and ensure the stability of system.
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From the above analysis, it can be seen that it is easy to be influenced by external
disturbances to the nonlinearity characteristics, which brings obvious challenges to the
controller design process [39–41]. To ensure the reliable operation of an AUV, it is crucial to
model disturbances accurately and account for their effects. DO has gained widespread
popularity in the field of control due to its superior performance in estimating uncertain-
ties [42,43]. A DO was developed in [44] to assess the influence of disturbances while
optimizing communication resource consumption, and intermittent measurement-based
uncertainty was also considered, while the converge speed of estimation errors was ignored.
In [45], a novel finite-time DO was proposed, but the upper bound of the convergence time
is unknown. In [46], a fixed-time DO was proposed to determine the disturbance, and it
was shown that the estimation errors can reach the zero domain within the settling time.
An observer-based fixed-time sliding mode control (SMC) was proposed in [47], where a
weak chattering DO was designed to estimate uncertainties within a fixed time. However,
in most previous works, the upper bound of the disturbance is assumed to be known [48],
which is not reasonable under specific conditions. By integrating the DO with the formation
controller, this paper proposes a novel approach for underactuated AUV formation control.

Formation control strategies play a pivotal role in the field of unmanned systems,
providing theoretical and practical frameworks for coordination and collaboration among
multiple unmanned vehicles. Presently, most existing formation control strategies can be
roughly categorized into leader–follower, behavior-based, virtual structure, graph theory-
based, artificial potential function, and visually based strategies [49]. Among these, the
“leader–follower” strategy stands out as one of the most often used and fundamental
approaches in formation control. Under this strategy, one or more unmanned vehicles are
designated as the leader, whose trajectory serves as a reference for other followers. The
leader’s movements determine the overall shape and behavior of the formation. Communi-
cation and mutual perception between the leader and followers are crucial in maintaining
tight coordination within the formation.

The primary challenges associated with controlling underactuated AUV systems can
be broadly categorized into three groups [50]. Firstly, in the existing literature [51,52], to
simplify the process of controller design, the mass and damping matrices in underactuated
AUV models are assumed to be diagonal, while this kind of model cannot reflect the actual
conditions due to the inherent lack of symmetry between the bow and stern of the AUV.
To overcome this limitation, ref. [53] introduced a coordinate transformation of the design
controller. This conventional control design for such models often involves introducing
a coordinate transformation which can transform ship dynamics to a “diagonal form”
before addressing the coupling effects between the position and velocity variables, which
can be cumbersome and time-consuming. Secondly, it is observed that the majority of
existing formation control schemes, employing the leader–follower method, rely on velocity
information from the leader [54,55]. However, in practical scenarios, measuring the velocity
of the leader is challenging for followers due to noise contamination and communication
delays. As a result, a more practical and constructive approach for formation control is to
rely solely on measurements of positions and orientations, eliminating the need for velocity
information [56,57]. Thirdly, an essential performance criterion for formation control is
the converge speed. The fixed-time stability technique [58–60] has emerged as a valuable
approach for designing a controller which can ensure a guaranteed converging time for the
system, irrespective of the initial conditions of the agents. While the concept of fixed-time
formation control holds promise, current research efforts have predominantly focused on
addressing the consensus problem in general multi-agent systems and fully actuated AUVs,
leaving room for further investigation and development in this specific area.
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2. An Overview of the Published Articles
This section presents a comprehensive overview of the Special Issue title “Navigation

Control and Signal Processing Methods for Multiple Autonomous Unmanned Systems”,
summarizing the key contributions of the published articles.

Multi-robot task assignment is one of the main processes in an intelligent warehouse.
One of the papers models multi-robot task assignment in an intelligent warehouse as
an open-path multi-depot asymmetric traveling salesman problem (OP-MATSP). A two-
objective integer linear programming (ILP) model for solving OP-MDTSP is proposed.
The theoretical bound on the computational time complexity of this model is O(n!). We
can solve the small multi-robot task assignment problem by solving the two-objective ILP
model using the Gurobi solver. The multi-chromosome coding-based genetic algorithm has
a smaller search space, so we use it to solve large-scale problems. The experimental results
reveal that the two-objective ILP model is very good at solving small-scale problems. For
large-scale problems, both the EGA and NSGA3 genetic algorithms can efficiently obtain
suboptimal solutions. This demonstrates that the paper’s multi-robot work assignment
methods are helpful in an intelligent warehouse [61].

Additionally, a localization system is one of the basic requirements for coal mines.
Ultra-wideband (UWB), as a technology with broad application prospects, is considered to
have great potential in the absence of satellite signals, especially in an underground mine
environment, as it can provide rescue assistance. However, state-of-the-art UWB position
systems in coal mines cannot efficiently differ the line of sight from all communication
links, which results in the deterioration of the localization accuracy. In another paper in
this Special Issue, the authors propose an LOS/NLOS classification method based on a
deep learning algorithm. Specifically, they utilize the Generative Adversarial Network
(GAN) to generate diagnostic data for frame transmission under non-line-of-sight (NLOS)
conditions. Then, a Convolutional Neural Network (CNN) is adopted to identify NLOS
communication. Finally, the trilateral centroid positioning algorithm (TCPA), based on
ranging data, is used to verify the effect of our method for a localization system in coal
mines [62].

Another recent study, included in this Special Issue, proposes an improved in-motion
coarse alignment method for a strapdown inertial navigation system (SINS) using position
loci obtained from the Global Positioning System (GPS). The difference from the popular
coarse alignment methods is that the proposed algorithm uses GPS position loci information
to form the vector observation and does not need velocity information, which expands
the application range of in-motion coarse alignment. In addition, this paper utilizes the
Optimal-REQUEST algorithm to reduce the influence of random errors contained in the
vector observation. The Optimal-REQUEST algorithm is an adaptive iterative updating
algorithm, which can adaptively adjust the gain of the filter according to the loss function.
The simulation results confirmed that the proposed algorithm can suppress the impact
of random errors effectively. The pitch, roll, and yaw angles calculated by the proposed
algorithm were improved by 51.95%, 53.80%, and 63.03% compared with the comparison
algorithms [63].

There are various types of autonomous unmanned systems, covering different areas
of sea, land, and air and exhibiting significance in multiple fields of national security
and social life. Due to the development of technology, the scale of unmanned systems is
becoming increasingly large, the number of components in the system is increasing, and
the operating environment of the system is becoming increasingly complex. Therefore, the
probability of failure of the components of the system will also be significantly increased.
In order to eliminate the impact of a fault in time, the fault diagnosis method is significant.
Considering the differences in components in autonomous unmanned systems, if a specific
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fault diagnosis algorithm is designed for each type of component, it will lead to difficulties
in the coordinated control of the system. Therefore, another paper analyzes the data
characteristics of unmanned autonomous system devices (such as sensors) and finds that
these data have time series. Therefore, the data for different devices can be converted
into time series, and a general fault diagnosis algorithm that is suitable for most devices
can be developed. The fault diagnosis algorithm is based on the clustering algorithm. In
order to improve the clustering effect, the time series of different devices are represented
by Gaussian mixture clustering to reduce the computational complexity of the clustering
calculation. Then, a time series similarity measurement method based on the improved
Markov chain is proposed. This method can distinguish normal samples from abnormal
samples more successfully in order to classify and identify faults effectively [64].

The wave parameter is an important environmental input condition. Traditional con-
tact wave measurement methods are unable to meet the requirements of high precision,
non-contact, and enabling ship wave field assessment. Alternatively, stereo vision technol-
ogy can realize a non-contact and mobile form of measurement. However, this technology
suffers from poor efficiency and adaptability. Another paper in this Special Issue proposes
a comprehensive wave measurement method that is based on stereo vision, wherein the
gridding of siftGPU is used to achieve the fast matching of large images. The whole algo-
rithm can be run within 6 s and guarantees more than 20,000 feature-matching logarithms.
Furthermore, by utilizing the least squares method and sea surface wave surface theory, the
sea surface base level can be calculated without control points, along with the inversion of
the sea wave parameters (wave height, period, and wave direction) and error point fitting.
The rationality and superiority of the algorithm were verified through multiple comparison
experiments [65].

Another study addresses the distributed optimal decoupling synchronous control
of multiple autonomous unmanned linear systems (MAUSs) that are subject to complex
network dynamic coupling. The leader–follower mechanism based on neighborhood
error dynamics is established, and the network coupling term is regarded as the external
disturbance to realize the decoupling cooperative control of each agent. The Bounded
L2-Gain problem for the network coupling term is formulated into a multi-player zero-sum
differential game. It is shown that the solution to the multi-player zero-sum differential
game requires the solution to the coupled Hamilton–Jacobi (HJ) equations. The coupled HJ
equations are transformed into an algebraic Riccati equation (ARE), which can be solved
to obtain the Nash equilibrium of a multi-player zero-sum game. It is shown that the
bounded L2-Gain for coupling attenuation can be realized by applying the zero-sum game
solution as the control protocol, and the ultimately uniform boundedness (UUB) of a local
neighborhood error vector under conservative conditions is proved. A simulation example
is provided to show the effectiveness of the proposed method [66].

The unmanned operation of agriculture machinery in a full farmland field is an
important part of unmanned farm and smart agriculture. Although the autonomous
navigation of agricultural robots has been widely studied in the literature, research on the
full-field path tracking problem of agriculture machinery is rare. In a paper in this Special
Issue, in order to enhance the adaptivity of the path tracking algorithm, an improved fuzzy
Stanley model (SM) is proposed based on particle swarm optimization (PSO), where the
control gain is modified adaptively according to the tracking error, velocity, and steering
actuator saturation. The PSO-enhanced fuzzy SM (PSO-FSM) is verified by experiments
on numerical simulation and the self-driving of a mobile vehicle. The simulation results
indicate that the PSO-FSM achieves a better result than SM and FSM, where the PSO-FSM
changes the control gain adaptively under different velocities and actuator saturation
conditions, and the maximum lateral errors of the SM and PSO-FSM for mobile vehicle
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autonomous turning are 0.32 m and 0.03 m, respectively. When the location of the mobile
vehicle deviates from the expected path at 4 m in a lateral direction, the distance of the
guided trajectory for the mobile vehicle to reach the expected path is no more than 5 m [67].

In another study, to solve the problems of measurement information abnormal error
and nonlinear filtering in UWB navigation and positioning, an ultra-wideband position
algorithm based on a maximum cross-correlation entropy unscented Kalman filter is
proposed. The algorithm first obtains the predictive state estimate and the covariance
matrix through traceless transformation. Then, it reconstructs observation information
using the nonlinear regression method based on the maximum cross-correlation entropy
criterion, which enhances the robustness of the unscented Kalman filter algorithm for
heavy-tailed noise. The simulation and actual test results show that this algorithm has
better positioning accuracy and stability than the traditional filter algorithm in a non-
Gaussian noise environment. This algorithm effectively solves the problem that the UWB
indoor location is easily affected by indoor environments, resulting in fixed deviation for
that location [68].

These studies collectively highlight the future of navigation control and signal pro-
cessing methods for autonomous unmanned systems. Given the breadth of this topic, this
Special Issue includes papers from focused research to broad overviews. It is clear that
many factors, from cost-effectiveness and the role of people to the importance of different
models, will influence the future of this field.

3. Conclusions
Navigation, guidance, control, and signal processing are important for a number of

autonomous unmanned systems in ocean exploring, surveying, and so on. However, there
are some challenges for autonomous unmanned systems due to the complex underwater
environment. The articles published in this Special Issue mainly introduce and discuss how
to solve the problems of navigation, control, and signal processing.

Future research should focus on the improvement of navigation, control, and position-
ing for multiple autonomous unmanned vehicles. Moreover, more state-of-the-art methods
such as artificial intelligence, deep learning, and machine learning should be introduced
and integrated with traditional navigation and control methods.
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