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Abstract:
scientific exploration, resource extraction, and environmental monitoring. Autonomous

The underwater domain presents unique challenges and opportunities for

underwater vehicles (AUVs) rely on simultaneous localization and mapping (SLAM) for
real-time navigation and mapping in these complex environments. However, traditional
SLAM techniques face significant obstacles, including poor visibility, dynamic lighting
conditions, sensor noise, and water-induced distortions, all of which degrade the accuracy
and robustness of underwater navigation systems. Recent advances in deep learning (DL)
have introduced powerful solutions to overcome these challenges. DL techniques enhance
underwater SLAM by improving feature extraction, image denoising, distortion correction,
and sensor fusion. This survey provides a comprehensive analysis of the latest devel-
opments in DL-enhanced SLAM for underwater applications, categorizing approaches
based on their methodologies, sensor dependencies, and integration with deep learning
models. We critically evaluate the benefits and limitations of existing techniques, high-
lighting key innovations and unresolved challenges. In addition, we introduce a novel
classification framework for underwater SLAM based on its integration with underwater
wireless sensor networks (UWSNs). UWSNSs offer a collaborative framework that enhances
localization, mapping, and real-time data sharing among AUVs by leveraging acoustic
communication and distributed sensing. Our proposed taxonomy provides new insights
into how communication-aware SLAM methodologies can improve navigation accuracy
and operational efficiency in underwater environments. Furthermore, we discuss emerging
research trends, including the use of transformer-based architectures, multi-modal sensor
fusion, lightweight neural networks for real-time deployment, and self-supervised learning
techniques. By identifying gaps in current research and outlining potential directions for fu-
ture work, this survey serves as a valuable reference for researchers and engineers striving
to develop robust and adaptive underwater SLAM solutions. Our findings aim to inspire
further advancements in autonomous underwater exploration, supporting critical applica-
tions in marine science, deep-sea resource management, and environmental conservation.

Keywords: underwater robotics; simultaneous localization and mapping (SLAM); deep
learning (DL); underwater SLAM; DL-based SLAM; underwater image enhancement

1. Introduction

The vast and largely unexplored marine environment plays a pivotal role in scien-
tific exploration, resource management, and environmental conservation. Autonomous
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underwater vehicles (AUVs) are essential for a wide range of applications, including coral
reef monitoring, offshore infrastructure inspection, deep-sea exploration, and underwater
archaeology. A fundamental requirement for these robotic systems is robust and precise nav-
igation, which is largely enabled by simultaneous localization and mapping (SLAM). SLAM
enables AUVs to construct spatial maps while simultaneously estimating their position
within the environment [1]. This capability is crucial for executing complex missions with
minimal human intervention, particularly in hazardous or remote underwater settings.

Despite the success of SLAM in terrestrial environments, its adaptation to underwater
domains presents significant challenges. These include low visibility due to light absorption
and scattering, sensor noise, dynamic lighting conditions, and distortions caused by the
water column [2]. Unlike in air, where visual and LiDAR-based SLAM systems are widely
used, underwater SLAM relies on a combination of sonar, acoustic signals, inertial sensors,
and vision-based approaches, each with inherent limitations. These constraints degrade
the accuracy of feature extraction, loop closure detection, and trajectory estimation, which
are critical components of SLAM pipelines.

To mitigate these challenges, deep learning (DL) has emerged as a transformative
tool in underwater SLAM. Convolutional neural networks (CNNs) and transformer-based
architectures have demonstrated remarkable improvements in feature extraction, denoising,
and data-driven sensor fusion, addressing many limitations of traditional methods [3].
DL-powered models facilitate robust perception in low-visibility conditions, enhance
map consistency, and improve loop closure detection, significantly augmenting SLAM
performance in underwater environments [4]. Additionally, multi-modal approaches
integrating vision, sonar, and inertial data have proven effective in compensating for sensor
deficiencies, enabling more resilient localization and mapping systems.

In addition to enhancing SLAM, an emerging research direction is the integration of
underwater wireless sensor networks (UWSNs). UWSNs provide a distributed sensing
framework where multiple AUVs and sensor nodes collaboratively share localization and
mapping data via acoustic communication [5]. By incorporating UWSN-based SLAM,
navigation accuracy and robustness can be improved, especially in large-scale, multi-agent
underwater operations.

This survey presents a comprehensive review of DL-driven underwater SLAM, ad-
dressing key challenges, recent innovations, and future research directions. We propose a
novel classification framework that integrates UWSN-based SLAM methodologies, high-
lighting their impact on collaborative navigation and large-scale mapping. By synthesizing
the latest advancements in deep learning, sensor fusion, and communication-aware SLAM,
this work aims to bridge the gap between theoretical research and practical applications,
paving the way for next-generation autonomous underwater navigation systems.

1.1. Motivations

The study of underwater SLAM is not only a technical challenge but also a necessity
for a range of real-world applications with significant scientific, economic, and environ-
mental implications. Autonomous underwater exploration is crucial for tasks such as
oceanographic mapping, deep-sea mining, disaster response, conducting inspections of
underwater structures, and marine ecosystem conservation. However, reliable SLAM in
underwater environments remains a formidable challenge due to fundamental constraints
such as visibility degradation, sensor drift, and high localization uncertainty.

Figure 1 shows that underwater SLAM research has been extensively published in
leading robotics conferences and journals, underscoring its central importance. The growing
interest in underwater SLAM is further reflected in the steady increase in SLAM-related
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publications over the past decade, as illustrated in Figure 2. This trend highlights the rapid
advancements in underwater SLAM technologies and their expanding applications.
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Figure 2. Number of publications per year in underwater SLAM research over the last decade.

Traditional SLAM methodologies, which rely on visual and geometric feature extrac-
tion, struggle to maintain accuracy in underwater conditions where textures are often
repetitive, feature points are scarce, and sensor noise is prevalent. Moreover, acoustic-based
localization, while promising, suffers from latency and bandwidth limitations. These is-
sues necessitate a paradigm shift towards deep learning-enhanced SLAM, where neural
networks can learn domain-specific features, improve sensor fusion, and enable robust
mapping under extreme conditions.

Beyond the technical challenges, underwater SLAM requires optimization for real-
world deployment, where power efficiency, computational constraints, and adaptability
to dynamic environments are critical factors. Many AUVs operate on limited battery
resources, and real-time SLAM inference demands lightweight, energy-efficient DL models.
Additionally, collaborative SLAM systems leveraging UWSNs offer new opportunities for
large-scale, multi-robot navigation, but they introduce challenges related to communication
latency and synchronization. Given these considerations, this survey is motivated by three
key factors:

* The need for improved SLAM accuracy in extreme underwater conditions: Enhanc-
ing robustness against visibility constraints, dynamic environments, and sensor noise
is essential for real-world deployments.
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*  The growing role of deep learning in enhancing underwater SLAM pipelines: DL-
based techniques provide solutions for feature extraction, sensor fusion, and loop clo-
sure detection, outperforming traditional methods in challenging underwater conditions.

* The integration of UWSNSs for scalable, cooperative SLAM: Multi-agent localiza-
tion and distributed mapping offer promising improvements but require addressing
communication constraints and synchronization challenges.

1.2. Contributions

This paper provides a detailed exploration of the evolution of SLAM methodologies,
with a particular emphasis on the integration of deep learning techniques across different
stages of the SLAM pipeline. Our primary contributions are as follows:

¢  Comprehensive review of DL-driven underwater SLAM methodologies: We sys-
tematically analyze state-of-the-art approaches that leverage CNNS, transformers, and
multi-modal sensor fusion techniques to enhance SLAM accuracy and robustness in
underwater settings.

¢ Identification and analysis of key challenges: We investigate the major technical
barriers in underwater SLAM, including lack of visibility, sensor drift, and acous-
tic communication constraints, providing insights into how DL methods address
these issues.

*  Novel classification of SLAM approaches integrating UWSNs: We introduce a new
taxonomy for underwater SLAM based on its integration with UWSNs, emphasizing
the role of distributed sensing and collaborative navigation in improving mapping
accuracy and operational efficiency.

¢  C(ritical evaluation and future research directions: We outline open challenges and
promising avenues for future research, including self-supervised learning for feature
extraction, real-time deployment of lightweight DL models, and large-scale SLAM
solutions for extended-duration underwater missions.

By providing a structured synthesis of recent advancements, this survey serves as
a key resource for researchers and practitioners in underwater robotics, deep learning,
and autonomous navigation. Beyond addressing technical challenges, it highlights the
broader significance of underwater SLAM, emphasizing its role in environmental moni-
toring, resource exploration, and multi-robot coordination. By bridging research gaps and
showcasing the transformative impact of deep learning and networked SLAM techniques,
this review paves the way for the next generation of autonomous underwater systems.
Through an in-depth evaluation of state-of-the-art methodologies, we offer critical insights
into the future of underwater robotics, driving innovation toward more reliable, efficient,
and adaptive navigation in complex marine environments.

The remainder of this paper is structured as follows. Section 2 provides an overview
of the core principles of SLAM, introducing the SLAM front-end (feature-based and direct
methods) and the SLAM back-end (filtering-based and optimization-based approaches).
Section 3, Underwater SLAM: Background and Overview, discusses key challenges, tracing
the evolution of underwater SLAM, and emphasizing the importance of UWSNs. Sec-
tion 4 presents our proposed SLAM classification based on UWSNs, highlighting traditional
classifications and introducing our new framework that integrates networking considera-
tions. Section 5 focuses on the sensors driving underwater SLAM, including vision, acoustic,
laser-based, and multi-modal sensing systems. Section 6 addresses the practical challenges
in underwater SLAM, covering communication constraints, computational resources, and
energy efficiency. Section 7 reviews recent advances in deep learning-based SLAM, examining
feature extraction, pose estimation, loop closure detection, mapping, and 3D reconstruc-
tion, as well as integration with UWSNs and computational efficiency. Section 8 offers
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an underwater SLAM systems evaluation and comparison, discussing relevant metrics and
comparing traditional versus DL-based methods. Section 9 identifies research gaps and oppor-
tunities, including the need for new datasets, the potential for deep reinforcement learning,
improved 3D reconstruction and semantic mapping, large language model integration,
dynamic environment handling, communication optimization in cooperative SLAM, new
sensor technologies, and practical deployment challenges. Finally, Section 10, Conclusions,
summarizes the key findings, reiterates the significance of the proposed UWSN-based
classification, and provides a forward-looking perspective on underwater SLAM research.

2. Core Principles of SLAM: Front-End and Back-End

SLAM is a fundamental problem in robotics, concerned with building a map of an
unknown environment while simultaneously determining the robot’s location within
that map [6]. The core challenge lies in overcoming sensor limitations and noise while
incrementally building a consistent map of the environment. SLAM systems aim to improve
both localization and mapping by incorporating them together. In contrast, visual odometry
(VO) focuses mainly on estimating the robot’s motion by analyzing camera images without
creating a map. The critical difference is SLAM’s ability to build and optimize a map,
providing a broader spatial understanding. VO is limited to tracking movement relative to
the environment without mapping it. Figure 3 illustrates the difference between the SLAM
and VO algorithms.

Local

Tracking Optimization 'g
Viswl OdometryvO) || £
=9
Loop Closure Opt(i;rlnoil;zlti o :a:
Images  VisualSLAM (VSLAM)

Figure 3. Overview of visual odometry and VSLAM systems. VSLAM is an extension of visual
odometry, incorporating loop closure detection and global optimization to refine the overall trajectory
and minimize accumulated drift. (Adopted from Gadipudi et al. [7]).

SLAM systems are typically divided into two main modules: front-end and back-end.
The front-end processes raw sensor data to extract meaningful features or observations,
which involves filtering sensor noise, detecting landmarks, extracting features, or interpret-
ing depth information. The front-end’s primary goal is to convert raw data into a format
that localization and mapping modules can use. On the other hand, the back-end takes
the processed data from the front-end. It focuses on estimating the robot’s trajectory and
building a map of the environment using optimization or filtering techniques that minimize
errors over observations, such as loop closures, when the robot revisits previously mapped
areas. The back-end ensures that the SLAM solution is coherent and accurate over time.
The following provides a detailed explanation of these two modules.

2.1. SLAM Front-End

The front-end module of a SLAM system processes sensor data, typically from cameras
or LiDAREs, to extract features and estimate the robot’s pose. The two main approaches for
front-end visual SLAM (VSLAM) are feature-based and direct SLAM.

2.1.1. Feature-Based SLAM

Underwater VSLAM primarily relies on feature-based methods. These methods focus
on identifying and tracking distinctive points or regions of interest (keypoints) within
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images. Standard feature detectors include scale invariant feature transform (SIFT) [8],
speeded up robust features (SURF) [9], and oriented FAST and rotated BRIEF (ORB) [10].
These detectors are robust to variations in illumination, rotation, and scale, making them
suitable for underwater environments where lighting conditions can be challenging. The
impact of feature point geometrical composition on localization accuracy has been in-
vestigated [11]. It showed that selecting features with higher depth variation improves
localization accuracy by providing better cues for camera motion estimation.

One prominent example of a feature-based SLAM system is ORB-SLAM3 [12]. The
architecture and main modules of ORB-SLAM3 are shown in Figure 4. This system offers
several key advantages:

*  Visual-inertial Fusion: ORB-SLAMS tightly integrates visual data with inertial mea-
surements (e.g., accelerometers and gyroscopes) to achieve robust and accurate pose
estimation, particularly beneficial underwater where visual data may be limited.

*  Multi-map SLAM: The system can manage multiple maps during long periods of
limited visibility. When the robot revisits a previously explored area, these maps can
be merged, improving overall map accuracy.

¢  Global Re-use of Information: Unlike traditional VO systems that only use recent
information, ORB-SLAMS3 leverages data from all previously observed keyframes,

improving overall system accuracy.
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Figure 4. ORB-SLAM3 system architecture illustrating its key components and data flow. The system
comprises the tracking module for camera pose estimation using ORB features, the local mapping
module to construct and optimize the local map with new keyframes, and the loop closure module to
detect loop closures and reduce drift through pose-graph optimization. (Adopted from [12]).

2.1.2. Direct SLAM

Direct SLAM methods, in contrast to feature-based approaches, operate directly on the
intensity values of pixels within images. Instead of extracting and tracking features, these
methods minimize the photometric error, which refers to the difference in intensity values
between corresponding pixels in consecutive images. This approach can be advantageous
in environments with low texture or repetitive patterns.

An example of a state-of-the-art direct SLAM method is direct sparse odometry
(DSO) [13], whose architecture is presented in Figure 5. DSO offers several advantages:

*  Robustness in Featureless Environments: By directly analyzing pixel intensities, DSO
is effective even in environments with few features, which can be common underwater.
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¢ Full Photometric Calibration: The method includes calibration for factors such as
exposure time, lens vignetting, and non-linear camera responses, improving the
accuracy of photometric error minimization.

¢  Efficient Pixel Sampling: DSO uniformly samples pixels across the image, capturing
information from regions with sharp edges and smooth intensity variations.

Although both feature-based and direct SLAM methods have advantages and dis-
advantages, the choice of approach in underwater applications often depends on the
specific environment and sensor configuration. Feature-based methods may be pre-
ferred when apparent features are present, while direct methods can offer robustness
in feature-depleted environments.

Tracking on
Reference KF

New Stereo
Frame

Initialized?

Initialization

Yo
Refine KFs es
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Active Window i Make non-KF
. Add KF:
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Figure 5. DSO-SLAM system architecture illustrating its main components. DSO is a direct VSLAM
system that minimizes photometric error over selected pixels without explicit feature extraction. Key
modules include photometric calibration initialization, frame management for keyframe selection
and marginalization, and nonlinear optimization for jointly optimizing camera poses and depth
parameters. (Adopted from [13]).

2.2. SLAM Back-End

SLAM systems estimate the robot’s pose and map the surrounding environment [1].
The challenge lies in optimizing this estimate over time to account for sensor noise and
inaccuracies. The SLAM back-end plays a crucial role in performing state optimization.
While VO provides short-term pose estimates, errors accumulate over time. The back-end
of a SLAM system addresses this issue by enabling state optimization on a larger scale and
for longer durations, refining both the robot’s pose and the map. Two main approaches exist
for back-end SLAM: filtering-based and optimization-based. Table 1 provides a comparison
of these approaches.



Sensors 2025, 25, 3258 8 of 52
Table 1. Comparison of Back-end SLAM Approaches.
Aspect Filtering-Based Optimization-Based
Core Principle Probabilistic state estimation Graph-based minimization
U EKF/UKF SLAM . Graph-based SLAM
Key Methods e  Particle filter (FastSLAM) e  Factor-graph SLAM
e RBPFSLAM ¢ Bundle adjustment
*  Online processing * Higher accuracy
Strengths ¢ Computationally efficient *  Better loop closure
Handles real-time updates ¢  Handles non-linearities
¢ Linearization errors *  Higher computation
Limitations *  DParticle degeneracy *  Batch processing needed
e Drift accumulation ¢ Memory intensive

2.2.1. Filtering-Based SLAM

Filtering-based SLAM uses a probabilistic framework to represent uncertainties in
both the robot’s pose and the map. Various filtering methods are commonly employed
in this approach. One widely used method is the extended Kalman filter (EKF) SLAM,
which uses a state-space representation to estimate both the robot’s pose and the map’s
landmarks. While EKF is computationally efficient, it struggles with non-linearities, which
can affect accuracy in more complex environments [14]. The unscented Kalman filter (UKF)
SLAM addresses these limitations by applying a deterministic sampling technique, making
it better suited for non-linear models.

Another prominent approach is particle filter (PF) SLAM, which represents the robot’s
pose and map using particles. PF-based SLAM handles non-linearities effectively but can
be computationally expensive in large environments [15]. The Rao-Blackwellized particle
filter (RBPF) SLAM combines particle filters for pose with Kalman filters for landmarks,
offering an efficient solution.

Several studies have advanced filtering-based SLAM:

e  Stachniss et al. [16] presented a grid-based FastSLAM for exploration, enabling active
loop closure.

*  Grisetti et al. [17] developed an RBPF integrating odometry and laser data for im-
proved sampling.

*  Heshmat et al. [18] used camera oscillations to enhance depth estimation.

*  Sadeghzadeh-Nokhodberiz et al. [19] proposed an RBPF for quadcopters addressing
sensor faults.

* Nieetal. [20] introduced LCPFE an RBPF LiDAR SLAM with loop detection.

2.2.2. Optimization-Based SLAM

Optimization-based SLAM formulates the problem as graph optimization, with poses
and landmarks as nodes and measurements as constraints. The goal is to minimize con-
straint violations for accurate maps and trajectories. A prominent example of this approach
is graph-based SLAM, which uses optimization algorithms to identify the most likely
configuration of the graph that represents the robot’s trajectory and the environment. An
extension of this is factor-graph SLAM, which incorporates sensor noise and uncertainties
into the optimization process, refining the system'’s robustness.

Key contributions include the following;:

¢ Klein and Murray [21] introduced a real-time tracking system separating tracking
and mapping.
¢  Strasdat [22] showed keyframe bundle adjustment’s superior accuracy.
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e Latif et al. [23] proposed a method for robust loop closure detection.

e Lietal. [24] developed an NN-based FastSLAM to reduce errors.

¢  Bustos et al. [25] used rotation averaging for simplified SLAM.

* Liuetal. [26] presented a bundle adjustment for LIDAR SLAM reducing drift.

In conclusion, the SLAM back-end is critical for refining pose and map accu-
racy. Filtering-based methods are efficient but may struggle with non-linearities, while
optimization-based approaches offer robustness at higher computational cost. The choice
depends on application needs. These principles, established in terrestrial robotics, re-
quire adaptation for underwater environments due to unique challenges. The next section
explores these challenges, introducing a classification of traditional underwater SLAM
methods based on UWSNs and the growing importance of UWSNs in advancing the field.

3. Underwater SLAM: Background and Overview

Underwater SLAM is a critical technology for enabling AUVs to navigate and map
complex, GNSS-denied environments. With applications ranging from marine exploration
and environmental monitoring to infrastructure inspection and resource mapping, under-
water SLAM plays a pivotal role in advancing underwater robotics. However, the aquatic
environment presents unique challenges, including limited visibility, dynamic conditions,
sensor noise, and communication constraints, which complicate the deployment of tradi-
tional SLAM methods. Over the years, researchers have developed specialized techniques
to address these challenges, evolving from early adaptations of terrestrial SLAM to ad-
vanced, multi-sensor fusion and deep learning-based approaches. This section provides
an overview of the key challenges, the evolution of underwater SLAM, and the growing
importance of UWSNs in advancing the field.

3.1. Underwater SLAM Challenges

Underwater SLAM faces unique challenges due to the harsh and dynamic nature of
aquatic environments. Limited visibility, caused by suspended particles, turbidity, and
unpredictable lighting, significantly hinders feature extraction and matching, which are
critical for SLAM algorithms [27,28]. Additionally, dynamic elements such as marine
life and water currents introduce noise and distortions, further complicating sensor data
interpretation [29].

Underwater communication is another major challenge, as acoustic signals suffer
from latency, limited bandwidth, and multipath effects, making real-time data exchange
difficult [30]. Computational constraints also play a role, as AUVs must operate with
limited processing power and energy resources, necessitating efficient algorithms for real-
time SLAM [31]. These challenges collectively make underwater SLAM a complex problem,
requiring specialized solutions beyond those used in terrestrial environments.

3.2. Evolution of Underwater SLAM

Despite substantial advancements in SLAM algorithms, their adaptation for under-
water applications has also progressed. Figure 6 highlights the different stages in the
progression of underwater SLAM, from traditional geometric approaches to advanced deep
learning-based techniques. The early stages of SLAM development before 2000 focused
on fundamental concepts and basic implementations, laying the groundwork for future
advancements. Between 2000 and 2010, underwater SLAM emerged as a distinct research
area, driven by the increasing need for autonomous navigation in marine environments.
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Figure 6. Different stages of underwater SLAM development, from traditional to deep learning-
based methods.

From 2010 to 2015, advancements in algorithms and sensor technologies significantly
improved the reliability and accuracy of SLAM systems. This period saw the integration of
novel sensors, such as acoustic and vision-based systems, tailored to the specific challenges
of underwater environments. Between 2015 and 2020, incorporating deep learning and
using more sophisticated underwater robots marked a transformative shift in SLAM capa-
bilities. Deep learning enabled more robust feature extraction, data processing, and decision
making, significantly enhancing SLAM performance under these challenging conditions.

The present stage, characterized by emerging and future technologies, focuses on
leveraging advanced DL technologies, multi-modal sensor fusion, real-time processing,
and collaborative systems to address the remaining limitations of underwater SLAM.
Advancing SLAM for underwater use is crucial for addressing the unique challenges posed
by underwater settings ultimately driving progress in autonomous underwater exploration
and sustainable resource management [27].

The evolution of underwater SLAM reflects a transition from traditional methods to
advanced, adaptive techniques tailored for aquatic environments. Early SLAM approaches,
such as EKF SLAM and graph-based SLAM, were initially developed for terrestrial robots
operating in structured environments with abundant features and stable illumination [32,33].
However, these methods often struggled underwater due to low visibility, sensor noise,
and dynamic conditions, leading to degraded accuracy and reliability.

To address these limitations, researchers began refining traditional SLAM methods
for underwater applications. For instance, multi-sensor fusion techniques incorporating
inertial measurement units (IMUs), Doppler velocity logs (DVLs), and acoustic sonars were
developed to compensate for unreliable visual data and stabilize pose estimates [34,35].
Filtering-based methods like EKF-SLAM and particle filter-based SLAM were adapted to
handle acoustic measurements and nonlinear motion, while optimization-based methods
integrated acoustic range constraints and sonar-based loop closures [36].

Bioinspired algorithms also emerged, drawing inspiration from marine life to navigate
noisy, low-visibility environments effectively [36]. These advancements enabled SLAM
systems to adapt to diverse underwater environments, ranging from structured settings,
pipelines, and seabed infrastructure to unstructured or dynamic scenarios, coral reefs,
and open water, [37]. Table 2 provides a summary of traditional SLAM methods used in
underwater applications, highlighting their sensors, approaches, and limitations.
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As underwater SLAM continues to evolve, the role of UWSNs has become increasingly
important. UWSNs provide a framework for distributed sensing, communication, and data
sharing, addressing many of the challenges associated with underwater environments. The
integration of deep learning and UWSNs has enabled more accurate data and effective
monitoring of underwater environments [38]. The next subsection explores the significance
of UWSNSs and their potential to revolutionize underwater SLAM.

Table 2. Examples of traditional SLAM methods in underwater environments.

Reference Sensor Front-End Back-End Focus Findings Limitations
Bonin-Font et al. Graph-SLAM & Localization, Graph-SLAM Limited by imaging
(2015) [1] Stereo Cameras ; EKF-SLAM Mappin outperforms conditions
ppimg EKF-SLAM
. - Improved accuracy .
Dol s Mo asversiav st Mg R e
Pping EKF-SLAM
Rahmati et al. . SL/;M Wlth Navigation, 1]15&1‘?19“’.[ data Limited by tether
(2019) [40] Generic SURF Adaptive Mapping collection in water dependence
Sampling bodies
Zhang et al Optical ORB Feature Effective for Requires distortion
getal p . ORB-SLAM?2 Localization underwater robot e )
(2022) [2] Cameras Detection M correction
localization
Carrasco et al Navigation, Stereo vision Computationall
’ Stereo Cameras - Graph-SLAM Localization, improves localization 1putan y
(2015) [28] .. intensive
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3.3. Importance of Underwater Wireless Sensor Networks (UWSNs)

UWSNs have emerged as a critical enabler for advanced underwater SLAM systems.
UWSNs facilitate distributed sensing, communication, and data sharing among multiple
AUVs and static sensor nodes, enhancing the robustness and scalability of SLAM in large or
complex environments [5]. By leveraging UWSNs, SLAM systems can overcome limitations
such as limited sensor range and communication constraints, enabling cooperative SLAM
where multiple agents collaboratively build and update maps [41].

UWSN s also support the integration of heterogeneous sensor data, such as acous-
tic, optical, and inertial measurements, improving the accuracy and reliability of SLAM
in challenging conditions [42]. Furthermore, UWSNs enable real-time data exchange
and processing, which is essential for dynamic environments where rapid adaptation is
required [5].

Given the growing importance of UWSNs in underwater SLAM, we propose a new
classification framework that categorizes SLAM techniques based on their communication
and networking considerations. This framework highlights the role of UWSNSs in advancing
underwater SLAM and provides a foundation for future research in this area.

4. Proposed SLAM Classification Based on UWSNs

The classification of underwater SLAM systems is critical for understanding the capa-
bilities, limitations, and applicability of different approaches across various operational
scenarios. They provide a fundamental taxonomy for understanding their design, imple-
mentation, and use cases. Traditional classifications of SLAM methods have primarily
focused on sensor modalities, computational techniques, and environmental adaptability.
While these classifications provide a foundational understanding, they often overlook the
critical role of communication and networking in enhancing SLAM performance. This
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section introduces a novel classification framework for underwater SLAM based on the
integration with UWSNs. By emphasizing the role of communication and collaboration,
this new classification aims to address the limitations of traditional approaches and provide
a more comprehensive understanding of how SLAM systems can be optimized for complex
underwater environments.

4.1. Traditional SLAM Classifications

Various classification methods have been proposed to better understand and categorize
underwater SLAM techniques. Figure 7 illustrates traditional classifications based on sensor
modalities, computational approaches, environmental adaptability, and collaboration levels.
These classifications provide a foundational framework for understanding the diverse
methodologies employed in underwater SLAM.

Traditional SLAM
Classifications
]

[ [ [ ]

Sensor Computational Environmental Collaboration
Modalities Approach Adaptability Level

Acoustic Learning-Based Structured Single-agent

Sensors Methods Environment System
Laser Sensors Optimization- Unstructured Multi-agent

Based Methods Environment System
Optical Filter-Based Dynamic
Sensors Methods Environment

Sensor Fusion

Figure 7. Underwater SLAM classifications based on sensor modalities, computational approaches,
environmental adaptability, and collaboration level.

4.1.1. Sensor Modalities

Underwater SLAM techniques are often categorized based on the types of sensors
deployed. Acoustic sensors, such as sonar, Doppler velocity logs (DVL), and acoustic
beacons, are widely used due to their effectiveness in environments where light penetration
is limited [43]. Optical sensors, including monocular and stereo cameras, facilitate VSLAM
but face challenges due to light scattering and absorption in water [28]. Laser sensors,
while providing high-resolution measurements, are constrained by water turbidity and
absorption properties [44]. To overcome the limitations of individual sensors, sensor fusion
approaches combine multiple sensor types, leveraging the strengths of each modality to
improve overall SLAM performance [45].

4.1.2. Computational Approaches

From a computational perspective, SLAM methods can be divided into filter-based,
optimization-based, and learning-based techniques. Filter-based methods, such as EKF
and particle filters (PF), estimate the system’s state by sequentially updating probabilities,
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making them suitable for real-time applications [14]. Optimization-based methods, such as
graph-based SLAM, refine pose estimates by minimizing localization errors throughout
the trajectory, providing more accurate and consistent mapping results [22]. Learning-
based methods incorporate machine learning (ML) and DL algorithms to model complex,
nonlinear relationships in the data, potentially improving robustness and adaptability in
challenging environments [46].

4.1.3. Environmental Adaptability

Environmental adaptability is another critical aspect of classifying SLAM techniques.
Systems designed for structured environments, such as pipelines or seabed infrastructure,
perform well in settings with geometric regularities that can be exploited for localization
and mapping [37]. In contrast, techniques suitable for unstructured environments, such
as open water or coral reefs, handle complex terrains that may lack distinctive features,
requiring more sophisticated perception algorithms [36]. SLAM systems operating in
dynamic environments, where conditions such as water currents and marine life introduce
additional noise, must be capable of handling moving objects and changing conditions to
ensure reliable performance [29].

4.1.4. Collaboration Levels

The level of collaboration distinguishes between single-agent and multi-agent systems.
Single-agent systems involve SLAM performed by a single underwater vehicle, relying
solely on its onboard sensors and processing capabilities [31]. Multi-agent systems, on the
other hand, involve collaborative SLAM, where multiple robots share information to build
a collective map and improve localization accuracy [47]. This collaboration often requires
robust communication protocols to handle data exchange between agents, particularly in
environments where acoustic communication is limited by bandwidth and latency [30].

4.2. New Classification Based on UWSNs

Classifying SLAM methods specifically for underwater communication is challenging
due to the unique constraints of underwater environments. Given the growing reliance
on networked underwater exploration and multi-agent collaboration, we propose a new
classification based on the integration with UWSNSs, as shown in Figure 8. This classifi-
cation introduces four categories, each addressing different levels of communication and
collaboration in underwater SLAM systems.

UWSNSs based
SLAM Classification
I
I I
Standalone UWSN Integrated
SLAM SLAM
I
I I I
UWSN Driven Communication Hybrid
Systems Aware Systems Systems

Figure 8. New proposed classifications for underwater SLAM based on UWSN integration.

Underwater SLAM systems increasingly operate in networked environments where
communication constraints directly impact performance. Our UWSN-based classification
addresses this reality by providing the following:



Sensors 2025, 25, 3258

14 of 52

¢ Deployment Guidance: matches system capabilities to mission requirements, for exam-
ple, standalone for deep trench exploration and UWSN-integrated for coastal monitoring;

*  Resource Optimization: helps balance the computational load between onboard pro-
cessing and network utilization;

*  Adaptive Design Framework: enables dynamic reconfiguration based on changing
channel conditions.

4.2.1. Standalone SLAM Systems

Standalone SLAM systems operate independently without relying on external commu-
nication networks. These systems are suitable for environments where communication is
limited or unavailable, relying solely on onboard sensors and processing capabilities. How-
ever, since real-time data transmission is often infeasible in underwater scenarios, standalone
systems must store large volumes of sensor data locally, requiring high-capacity storage
solutions. Post-mission, the collected data can be processed in a deferred manner, either
when the vehicle resurfaces or through opportunistic communication with ground stations
or drones once it establishes a connection. While standalone systems are robust in isolated
settings, their performance is constrained by the limitations of individual sensors, the lack of
external data inputs, and the challenges of managing extensive onboard data storage [1].

4.2.2. UWSN-Integrated SLAM Systems

UWSNe-integrated SLAM systems enhance performance by incorporating external
data and communication capabilities through UWSNs. These systems improve localization
accuracy and enrich generated maps by leveraging networked sensors and communica-
tion. For example, acoustic beacons and distributed sensor nodes can provide additional
environmental data, enabling more robust and accurate SLAM solutions [48].

4.2.3. Communication-Aware SLAM Systems

Communication-aware SLAM systems adapt their algorithms based on communica-
tion constraints and network conditions. These systems optimize operations by considering
factors such as bandwidth limitations, latency, and the reliability of underwater communi-
cation channels. By dynamically adjusting data exchange strategies, communication-aware
systems can maintain performance even in challenging communication environments [49].

4.2.4. Hybrid SLAM Systems

Hybrid SLAM systems combine standalone and communicative elements, dynamically
switching modes based on communication availability. When communication networks are
accessible, these systems leverage external data and collaborative opportunities; otherwise,
they operate autonomously using onboard resources. This flexibility makes hybrid systems
particularly suitable for environments with intermittent communication, such as deep-sea
exploration or areas with variable acoustic conditions.

The proposed UWSN-based classification directly addresses key operational chal-
lenges in underwater SLAM deployment. Standalone systems enable missions in
communication-denied environments. UWSN-integrated systems enhance monitoring
capabilities through collaborative sensing. Communication-aware systems optimize band-
width usage in dynamic channels, reducing data loss through adaptive compression strate-
gies. Hybrid systems provide mission continuity in variable conditions. This framework
empowers practitioners to select optimal architectures based on environmental constraints,
network availability, and mission requirements.

In summary, various classification schemes—based on sensors, computational meth-
ods, environmental factors, and communication integration—further clarify the capabilities
and limitations of different approaches. These classifications guide the selection and design
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of SLAM solutions, ensuring practitioners choose methods aligned with their underwater
environment and operational constraints.

5. Sensors Driving Underwater SLAM

In the previous section, we classified underwater SLAM methods based on their un-
derlying principles, sensors, and computational approaches. Building on that foundation,
we now focus on the sensing technologies that form the backbone of these SLAM systems.
Underwater environments pose unique challenges, including the absence of GNSS signals,
variable visibility conditions, and the presence of dynamic elements such as marine life or
moving particles. Many sensors and modalities have been employed to overcome these
obstacles. These range from acoustic sensors that leverage the propagation characteristics
of sound waves underwater to optical sensors that capture high-resolution imagery in more
apparent conditions to emerging laser-based and multi-sensor fusion approaches. Under-
standing these sensing technologies’ capabilities, limitations, and suitable applications is
critical for developing robust and accurate underwater SLAM solutions.

This section delves into the primary sensing modalities and their roles in underwater
SLAM. We begin by examining vision-based sensors, which provide rich visual informa-
tion essential for detailed mapping but whose performance is often constrained by water
turbidity and lighting conditions. We then discuss acoustic sensors, such as sonar, that offer
long-range coverage and reliability in low-visibility settings, albeit at lower resolution. We
also consider emerging technologies like laser-based sensors that combine high accuracy
with underwater-appropriate propagation characteristics. Finally, we explore sensor fu-
sion techniques, which integrate data from multiple sensor types to enhance robustness,
improve map quality, and provide a complete understanding of the environment. Figure 9
summarizes the sensors and technologies utilized in each stage of the SLAM algorithm.

Ssasgney Front-end Visual Odometery

Prospective Visual Sensors Feature Point Methods
Sensors (SIFT, SURF, ORB)
DVL ‘ RGB-D | ‘ Image Enhancement '
v
MU g ‘ Feature Extraction and Matching l
Camera
=
Estimating Camera Pose
Depth Camera
oepth =i

l : Back-end State Optimization
Loop Closure Detection —
Filtering Methods

Bag-of-Words Hash-based Method | [Deep Learning Methods
Create a Bag of Feature Extraction by Feature Extraction by EKF | PF || FastSLAM | IEKF
‘Words Hash Function Neural Network
T il Optimization Methods
Represent Images by . .,
the Number of Words Describe Images by Describe Feature by Ll o Graph Pose FﬂCé‘}ifAC&aPh
Appearing in the Bag Hash Values Global Descriptors ptimization || Graph
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Figure 9. Overview of sensors and methods used in underwater SLAM applications. The figure
presents a comprehensive summary of sensors, front-end VO methods, loop closure detection tech-
niques, and back-end state estimation algorithms. This visualization highlights various combinations
of sensing technologies and SLAM methodologies that address the challenges of underwater naviga-
tion. (Adapted from Zhang et al. [27]).
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By analyzing these sensing modalities” capabilities, limitations, and applications, we
gain insights into how researchers and practitioners can tailor underwater SLAM solutions
to specific environmental conditions and mission requirements. Moreover, the integration
of machine learning and deep learning methods for sensor data interpretation is steadily
improving the adaptability and effectiveness of underwater SLAM systems. Ultimately,
selecting the right combination of sensors and processing strategies is key to achieving
accurate and efficient navigation and mapping under the challenging conditions of the
underwater domain. Table 3 summarizes the advantages, disadvantages, and applications
of vision, LiDAR, and sonar sensors for underwater SLAM applications.

Table 3. Comparison of sensors for underwater SLAM.

Sensor Type Advantages Disadvantages Use Cases
. .. . High computational load, limited ~ Archaeological site documentation,
High-resolution imagery, rich o . . - s
Visi . . . recognition accuracy in turbid coral reef monitoring, pipeline
1si0n texture/ color information, suitable } . . . .
. o water, short effective range, inspection, visual odometry in
for object recognition .. S S
sensitive to lighting conditions clear waters
Millimeter-level depth accuracy, High power consumption, limited =~ High-precision 3D mapping, ship
LiDAR works in complete darkness, by absorption, sensitive to hull inspection, underwater
unaffected by turbidity scattering particles structure measurement
. Deep-sea exploration, mine
Long range, works in zero . . .
A . Low angular resolution, multipath detection, large-area seabed
Sonar visibility and in the presence . . o
interference, slow refresh rate mapping, navigation in

of particles featureless terrain

In summary, each sensor offers distinct advantages and limitations, and the choice
depends on the specific requirements of the application and the environmental conditions.

5.1. Vision-Based SLAM

Underwater environments pose serious challenges for SLAM techniques due to lim-
ited visibility, varying illumination, and dynamic conditions caused by moving marine
life and shifting currents. Vision-based approaches have emerged as a crucial solution,
particularly in clear water conditions where visual features can be reliably detected. Their
ability to record textures and features makes them ideal for tasks like habitat mapping,
underwater archaeology, and marine biology research, where detailed imagery is crucial
for understanding the environment [50]. This section examines these methods through
three key perspectives: monocular systems, stereo vision approaches, and advanced image
enhancement techniques.

5.1.1. Monocular Vision Systems

Monocular camera systems offer a lightweight and cost-effective solution for under-
water SLAM, though they face inherent scale ambiguity challenges. Recent advancements
have significantly improved their reliability through hybrid visual-inertial approaches. For
instance, Ou et al. [51] demonstrated that combining active monocular vision with inertial
measurements can reduce scale estimation errors. Integrating camera data with acoustic
or inertial measurements (from IMUs or DVLs) helps compensate for the limitations of
relying solely on visual input. This fusion of sensor data can offset the impact of bad
visibility or changing conditions, leading to more robust and adaptable SLAM solutions.
Jung et al. [52], for example, enhanced an AUV’s SLAM performance by supplementing
camera feeds with artificial landmarks and additional navigation sensors, resulting in a
more stable and reliable SLAM framework. These systems are particularly effective in
shallow water inspections where their simplicity and low power consumption provide op-
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erational advantages. However, their performance degrades in feature-poor environments
or under extreme lighting variations, necessitating careful system design and frequent loop
closures to maintain accuracy.

5.1.2. Stereo Vision Approaches

Stereo camera configurations provide direct depth estimation through epipolar ge-
ometry, offering more robust 3D reconstruction than monocular systems. The work of
Lu et al. [53] showcases this advantage through their ORB-SLAM3-VIP implementa-
tion, which achieves precise navigation by fusing stereo depth with IMU data. Stereo
systems typically maintain better trajectory estimation at greater depths compared to
monocular alternatives. The trade-off comes in computational complexity and hard-
ware requirements—stereo processing demands approximately twice the computational
resources of monocular systems while also requiring careful calibration to maintain accu-
racy in varying water conditions.

5.1.3. Image Enhancement Techniques

Deep learning-based image enhancement has revolutionized underwater visual SLAM
by addressing fundamental visibility challenges. These techniques specifically target
key problems: turbidity compensation, low-light enhancement, and real-time processing.
Liu et al. [54] developed adaptive filtering methods that improve feature-matching accuracy.
Modern implementations balance enhancement quality with computational efficiency [55].
These advancements have expanded the operational envelope of vision-based SLAM to
previously challenging environments, though they still face limitations in extreme turbidity
or complete darkness.

As research continues, these integrated strategies—improved image processing, sensor
fusion, and continuous real-time mapping—make vision-based SLAM increasingly viable
across various underwater scenarios. Whether used for detailed inspections, ecological
surveys, or the exploration of wreck sites, vision-based SLAM systems are steadily evolving
to meet the complex demands of underwater environments. For further insights into current
methods, findings, and challenges, Table 4 summarizes recent studies in this field.

Table 4. Selected vision-based underwater SLAM systems.

Reference Problem Method Findings Limitations
Vision-SLAM with Enhanced visual Requires specific
Jung etal. (2017) [52] SLAM for AUVs landmarks, IMU, DVL sensing sensors
Joshi et al. (2023) [56] Robust es.tllm.a’Flon in SM/ VIQ es.tlmator Tracked AUVs in Needs hghtmg
low visibility switching featureless env. adaptation
Lu et al. (2024) [53] Navigation precision ORB-SLAM3-VIP 42% error reduction Needs extra
fusion initialization
Ou etal. (2024) [51] Passive V-SLAM Hybrid-VINS Outperformed passive Slow startup
improvement setups
. . R Adaptive filtering Better than .
Liu et al. (2024) [54] Sediment visibility loss V-SLAM ORB-SLAM3 Inflexible parameters

5.2. Acoustic-Based SLAM

Underwater environments often challenge visual sensors due to low visibility, limited
light, and suspended particles that scatter or absorb light. In such conditions, acoustic
sensors, especially sonar systems, provide a reliable alternative for SLAM tasks. Unlike
optical methods, which depend on clarity and lighting, acoustic waves propagate efficiently
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in water, allowing sonar-based approaches to work effectively in murky, deep, or low-
visibility environments [34].

Acoustic SLAM leverages sonar signals—ranging from single-beam and side-scan
to multi-beam configurations—to navigate and map underwater areas (see Figure 10).
Because acoustic waves can travel long distances with minimal attenuation, sonar-based
methods are particularly valuable for large-scale mapping, deep-sea exploration, under-
water infrastructure inspection, and search and rescue operations. They remain robust
when visual cues are absent or severely diminished, offering a distinct advantage over
vision-based approaches [43].

Sea bed

Small range
Sea bed

Figure 10. Typical sonar: (a) single-beam sonar; (b) side-scan sonar; (¢) multibeam sonar adopted
from [57].

However, acoustic systems are not without their challenges. Sonar data can suffer
from noise interference, and their spatial resolution generally lags behind that of high-
quality optical sensors. Consequently, acoustic SLAM maps may lack the fine detail
provided by vision-based methods. Additionally, acoustic noise, multi-path reflections,
and complex signal processing requirements can complicate data interpretation, increasing
the operational complexity and cost of deploying and maintaining these systems [58].

Recent advancements have significantly enhanced the effectiveness of acoustic SLAM,
addressing challenges like poor bearing accuracy and resolution. Researchers have adapted
algorithms such as FastSLAM variants to better process sonar data, while techniques
like CNN-based sonar image matching have achieved superior accuracy compared to
classical methods [59,60]. Low-cost forward-looking sonar systems have demonstrated
feasibility for navigation and feature reacquisition using innovative SLAM approaches
like pose-graph optimization [61]. Similarly, enhanced loop closure detection methods
utilizing acoustic image segmentation and graph-based models have improved mapping
robustness in real-world scenarios [62]. Filter-based methodologies, such as RBPF-SLAM,
effectively manage data-intensive sonar environments, while YOLOv7 applications to 3D
reconstruction further refine state estimation and mapping accuracy [63,64].

The availability of dedicated datasets, including mechanical scanning sonar (MSS)
data with ground truth localization, has accelerated research in underwater SLAM [65].
Forward-looking sonar has also shown great promise, utilizing factor graph optimization
with techniques like SO-CFAR and adaptive thresholding (ADT) for noise filtering and
WICP algorithms for feature registration, achieving an 8.52% improvement in RMSE over
dead reckoning [66]. As acoustic sensor technologies and SLAM algorithms evolve, these
systems address key challenges like data fidelity, real-time processing, and large-area
coverage. Table 5 summarizes recent developments, highlighting methods, findings, and
limitations driving innovation in acoustic-based underwater SLAM.

In summary, acoustic-based SLAM is a robust solution for underwater applications
where environmental conditions hinder optical methods. While acoustic sensors may pro-
duce less detailed maps and require specialized expertise, their resilience under challenging
environments underscores their importance for long-range communication, extensive map-
ping, and reliable navigation. With ongoing improvements in sensor technology, data
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processing, and algorithmic approaches, acoustic SLAM is poised to play an increasingly
vital role in underwater exploration and robotics.

Table 5. Summary of selected underwater SLAM studies using acoustic sensors.

Reference Challenge Approach Results Limitations
AUV navigation FastSLAM with Improved mapping and  Relies on particle filters;
He et al. (2012) [59] . mechanical . .. o
with sonar localization limited generalization

scanning sonar

Fallon et al.
(2013) [61]

Feature reacquisition in
shallow water

Feature-based navigation
with
forward-looking sonar

Effective, low-cost
reacquisition

Limited to shallow
water; prone to false
positives

Machado et al.
(2016) [62]

Loop closure detection

Gaussian probability
models for
topology/shape

Improved image
matching

Complex; slow for
real-time use

Valdenegro-
Toro et al.
(2017) [60]

Sonar image matching

CNN-based sonar image
matching

High accuracy over
traditional methods

Requires large datasets;
computationally
demanding

Choi et al.
(2020) [67]

ASV navigation
with sonar

Acoustic and
terrain-based methods

Effective waypoint
tracking and obstacle
avoidance

Challenges in dynamic
environments

Cheng et al.
(2022) [63]

Real-time SLAM with
sonar data

Filter-based SLAM with
multi-beam sonar (RBPF)

Enhanced state
estimation and mapping

Computational
complexity; data
handling issues

Nakamura et al.
(2023) [64]

3D mapping with
acoustic cameras

YOLOV7 and ICP-based
SLAM

Improved 3D
reconstruction and map
accuracy

Limited by camera
quality and underwater
conditions

Hansen et al.
(2024) [65]

Sonar data processing

MSS datasets with EKF

Provided baseline
solutions for sonar SLAM

No dynamic scene
ground truth; limited
generalization

Yuan et al.
(2017) [68]

Low-cost SLAM
accuracy and stability

AEKF-SLAM with an
augmentation phase

Reduced error
accumulation and
improved efficiency

Requires local-to-global
map conversion

5.3. Laser-Based SLAM

Laser sensors are an emerging technology in underwater SLAM, offering a novel
approach through laser-based acoustic generation and detection. These sensors are par-
ticularly valuable for underwater applications as they combine laser measurements” high
accuracy with acoustic waves’ propagation advantages. Fibre laser-based sensors, for
example, provide robust solutions for underwater surveillance, offering lightweight and
deployable options that enhance mapping capabilities. Such sensors are increasingly used
underwater for high-resolution mapping and loop closure [44,69].

5.4. Multi-Modal-Based SLAM

Underwater environments often limit the effectiveness of single-sensor SLAM meth-
ods. Clear visibility may favor vision-based systems, but murky or low-light conditions
can render optical sensors ineffective. Acoustic sensors, while robust in turbid waters, may
struggle with fine details or rapidly changing scenes. LIDAR may provide precise distance
measurements, but it can be challenged by aggressive vehicle motion or environments
lacking distinctive features. To overcome these inherent trade-offs, researchers have in-
creasingly turned to sensor fusion—also known as multi-modal SLAM—which integrates
data from multiple sensor types to leverage their complementary strengths [43].
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Multi-modal SLAM systems combine information from various modalities—such as
cameras, sonar, LiDAR, IMUs, DVLs, and acoustic positioning systems like USBL—to
produce more robust and comprehensive maps. By blending these diverse inputs, multi-
modal SLAM can compensate for the weaknesses of each individual sensor. For example,
pairing optical cameras with multibeam sonar improves 3D reconstruction and mapping
accuracy in areas where vision alone would struggle [70]. Integrating inertial data helps
stabilize pose estimates when visual or acoustic features are sparse, while LIDAR data can
enhance detail and precision under challenging lighting conditions.

Learning-based approaches have significantly advanced sensor fusion quality in un-
derwater robotics. CNNs-based techniques enhance sonar imagery and leverage sensor
complementarity, enabling more effective underwater perception and navigation [71].
Visual-inertial systems have also been adapted for underwater environments, integrat-
ing visual and inertial data to maintain reliable tracking even in challenging conditions
such as fluctuating illumination and sparse features. For example, systems like USBL-
aided navigation incorporate multiple sensory inputs—including VO and inertial measure-
ments—to improve trajectory estimation [72]. Extensions to existing visual-inertial state
estimation frameworks, such as integrating acoustic range data, have proven effective for
reconstructing underwater structures in complex scenarios like caves and shipwrecks [73].
Furthermore, tightly coupled SLAM systems such as SVIn2 fuse sonar, visual, inertial,
and water-pressure data, achieving robust initialization, loop closing, and localization
under harsh underwater conditions, including haze, low light, and motion blur [74]. These
innovations highlight the potential of sensor fusion to overcome the unique challenges of
underwater environments.

S. Ma et al. introduce a novel tightly coupled monocular-inertial-pressure (IP) sensor
fusion method tailored for the underwater localization of a biomimetic robotic manta.
Building on ORB-SLAM3 monocular visual-inertial odometry, depth measurements from a
pressure sensor are incorporated, and a two-step monocular initialization strategy—first
using visual-pressure (VP) measurements and then constructing inertial pressure depth
residuals—significantly improves scale estimation. Following successful initialization,
a visual-inertial-pressure (VIP) joint optimization enhances both position and attitude
estimates, offering valuable insights for robust underwater localization of biomimetic
robotic platform [75].

Y. Huang et al. explore advanced sensor fusion techniques that address scale drift and
stability issues under variable lighting, turbidity, and acoustic conditions. By employing
innovative data association strategies and refined sensor integration, this work provides
further evidence that combining multiple sensors and careful calibration can yield more
reliable navigation solutions across diverse underwater scenarios [76].

Multi-modal SLAM also benefits specialized applications such as underwater infras-
tructure inspection and ecological surveys. Combining sonar for large-area coverage,
cameras for detailed imagery, and inertial sensors for stability results in more accurate and
adaptable SLAM solutions. For instance, fusing stereo vision and multi-beam sonar can
improve feature tracking [45], while visual-LiDAR approaches help overcome aggressive
motion and poor lighting conditions [77]. Unmanned surface vehicles equipped with mul-
tiple sensors have demonstrated the capability to produce detailed above-and-below-water
maps [78].

Nevertheless, multi-modal SLAM introduces challenges. Integrating different sensors
requires complex algorithms, high computational resources, and careful real-time data pro-
cessing. Calibrating and synchronizing heterogeneous sensors add operational complexity,
and interpreting fused data demands specialized expertise. Despite these difficulties, multi-
modal SLAM holds significant promise. By drawing on multiple sensors and leveraging
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refined initialization strategies (as in [75]) or advanced data association methods (as in [76]),
SLAM systems can better adapt to low visibility, fluctuating conditions, and extended
missions. Table 6 provides a concise overview of recent advancements and methodologies
in sensor fusion for SLAM systems. It summarizes key research contributions, highlighting
the problems addressed, methods employed, key findings, and limitations of various sensor
fusion approaches

In complex underwater environments, no single sensor modality is sufficient to ad-
dress all challenges. Adaptive sensor fusion techniques have emerged as a key approach
to overcoming these limitations by dynamically combining data from multiple sensors,
such as acoustic, optical, and inertial systems. For instance, DVLs provide accurate ve-
locity estimates in feature-depleted regions, while vision-based systems excel in areas
with sufficient texture and lighting. When fused, these systems can compensate for each
other’s weaknesses, ensuring reliable localization and mapping under diverse conditions.
Advanced fusion algorithms also incorporate real-time environmental feedback, enabling
context-aware sensor prioritization. For example, in turbid or low-visibility waters, acous-
tic sensors dominate, whereas optical sensors take precedence in clearer conditions. This
adaptability not only enhances SLAM performance but also reduces computational over-
head by focusing processing resources on the most reliable sensor data. Such innovations
are critical for enabling robust and efficient SLAM in unpredictable underwater scenarios.

Table 6. Summary of selected sensor fusion research in underwater SLAM.

Reference Challenge Approach Results Limitations
Font et al. AUV navigation EKF with USBL, IMUs, Requires precise
(2017) [72] accuracy DVLs, and GNSS Enhanced robustness calibration

Rahman et al.
(2018) [73]

Visual-inertial SLAM Improved 3D Limited sensor

Underwater mapping

with acoustic data

reconstruction

coverage

Thoms et al.
(2021) [78]

Infrastructure
inspection

LiDAR and sonar fusion

High-quality 3D maps

Complex sensor
integration

Hu et al. (2022) [79]

Localization drift

Visual-inertial-pressure
fusion

Reduced drift

Relies on pressure data

Cardaillac et al.
(2023) [80]

Acoustic-optical
matching

Camera and sonar fusion

Improved scale recovery

Requires calibration

Qiu et al. (2024) [81]

Illumination issues

Acousto-optic feature
association

Improved trajectory
accuracy

Depends on beam
positions

Jang et al.
(2021) [82]

Sensor mismatches

Opti-acoustic SLAM with
style-transfer

Improved feature
matching

Needs better natural
object handling

Xu et al. (2021) [83]

Poor visibility

Visual-acoustic bundle
adjustment

Enhanced robustness

Needs high-quality
data

S.Maetal.
(2024) [75]

Scale estimation

Monocular-inertial-
pressure fusion

Improved scale and pose
accuracy

Requires stable
pressure measurements

Y. Huang et al.
(2024) [76]

Stability under variable
conditions

Multi-sensor fusion with
refined data association

Improved stability

Complex calibration

6. Practical Challenges in Underwater SLAM

Underwater SLAM is a critical technology for enabling autonomous navigation and
exploration in subaquatic environments. Unlike terrestrial and aerial SLAM—where com-
munication infrastructure, computational resources, and power supply are relatively sta-
ble—the unique and often harsh conditions of underwater settings introduce a range of
practical challenges that must be addressed to ensure reliable and efficient SLAM perfor-
mance. These challenges span multiple domains, including communication, computational
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resource management, and energy efficiency, each significantly impacting the feasibil-
ity and effectiveness of underwater SLAM systems. This section delves into these key
challenges, exploring their implications, surveying current solutions, and highlighting
ongoing limitations.

6.1. Underwater Communication

Underwater data transmission commonly uses four main methods: acoustic waves, optical
communication, magnetic induction (MI), and radio-frequency (RF) methods [84,85]. Each
modality operates within specific frequency bands and ranges, with trade-offs between
bandwidth, latency, and environmental adaptability. Table 7 summarizes these char-
acteristics, including sonar frequencies for SLAM and vision-based systems in varying
water conditions.

Table 7. Underwater communication spectrum for SLAM applications.

Method Frequency/Range Bandwidth SLAM Use Case Limitations

Acoustic 1-500 kHz <100 kbps Long-range mapping, DVL integration Latency, multipath

Optical 450-700 nm Up to Gbps Clear-water VSLAM Turbidity, line of sight
RF <30 Hz ~1bps Emergency signaling low bandwidth
MI 10-100 kHz <100 kbps Short-range AUV teams Limited range

6.1.1. Acoustic Communication

Acoustic methods are the most widely adopted for AUV navigation and data exchange
due to their long-range propagation (hundreds of meters to kilometers) [86]. Typical SLAM
systems use sonar frequencies in the following ranges:

*  Low-frequency (LF): 1-10 kHz (long-range, ~10-100 km, low bandwidth);
*  Medium-frequency (MF): 10-100 kHz (mid-range, ~1-10 km, moderate bandwidth);
¢  High-frequency (HF): 100-500 kHz (short-range, ~100-1000 m, high resolution
for imaging).
Acoustic SLAM systems, for example, side-scan or multi-beam sonars, often operate
in the MF/HF bands to balance resolution and range, though performance degrades in
shallow water due to multipath interference [35].

6.1.2. Optical Communication

Optical systems achieve high data rates (up to Gbps), making them attractive for
SLAM applications that require streaming video to topside stations or other AUVs [87,88].
However, optical systems are limited by water turbidity and require line-of-sight [89].
Vision-based SLAM performance varies with light penetration:

*  C(Clear water: Blue/green light (450-550 nm) penetrates up to 100 m, enabling monocu-
lar/stereo SLAM,;

e Turbid water: Red light (600-700 nm) is absorbed quickly, necessitating active illumi-
nation or acoustic supplements [28].

6.1.3. Electromagnetic Spectrum

¢ RF: limited to very low frequencies (<30 Hz) for long-range underwater use, with
impractical antenna sizes for AUVs [90];
* ML short-range (<20 m), suitable for localized swarm coordination [91].

Optimizing AUV trajectories in the presence of ocean currents can significantly re-
duce energy consumption and mission time, particularly in large-scale underwater sensor
networks where visible light communication is used for high-rate data retrieval [92]. Ad-
ditionally, efficient algorithms for multi-AUV placement can maximize sensor coverage



Sensors 2025, 25, 3258

23 of 52

and ensure optimal association between sensors and AUVs, even in scenarios with varying
sensor priorities [93]. These advancements highlight the importance of integrating commu-
nication and motion planning to enhance the performance of optical underwater networks.

In summary, restricted bandwidth, intermittent connectivity, and high latency under-
mine real-time cooperative SLAM. As an interim solution, many AUVs rely on acoustic links
for basic telemetry while performing most SLAM computations onboard. Future hybrid
strategies—combining acoustic, optical, and potentially, electromagnetic methods—could
enable more flexible data-sharing frameworks in underwater SLAMs.

6.2. Computational Resources

Underwater SLAM systems require real-time processing for obstacle avoidance, pre-
cise navigation, and stable control in dynamic and unpredictable underwater conditions.
Unlike surface or aerial platforms with greater power and cooling capabilities, under-
water AUVs typically have limited CPU/GPU resources and battery lifespans. Deep
learning-based underwater SLAM algorithms introduce significant challenges due to their
computational demands. For instance, underwater images suffer from distortion, turbidity,
and variable lighting, requiring extensive processing for meaningful feature extraction [94].
Moreover, modern deep SLAM models, using convolutional, recurrent, and transformer-
based architectures with millions of parameters, are highly computationally demanding,
especially when fusing multi-modal data [95].

Consequently, real-time inference demands efficient model optimizations, while the
high memory and bandwidth requirements of deep learning models challenge resource-
limited underwater embedded systems. This necessitates the development of lightweight
architectures [96] and the use of techniques like pruning, quantization, and knowledge
distillation (KD) [97].

6.2.1. Model Quantization, Pruning, and Knowledge Distillation

DL model compression techniques are crucial for hardware-constrained environments.
For instance, model quantization is a compression method that reduces the memory foot-
print, computational cost, and power consumption of deep learning models by converting
high-precision weights and activations into lower-precision formats [98]. In the context
of SLAM, a quantized self-supervised local feature approach has been introduced by
Li et al. [99] for indirect VSLAM, using an orthogonal transformation to improve feature
efficiency. Moreover, pruning can be used in conjunction with quantization in SLAM to re-
move less important parameters, such as weights, neurons, or layers, without significantly
affecting performance [100].

Another compression technique is KD, where a smaller model (student) is trained
to replicate the behavior of a larger, more complex model (teacher), improving efficiency
while maintaining accuracy. In semantic SLAM, KD has been used to enhance real-time
performance in dynamic environments [101]. For instance, a multi-level KD approach has
been proposed by Chen et al. [102] to create a lightweight segmentation model, allowing an
independent semantic segmentation thread that processes only keyframes, reducing delays.
Additionally, a static semantic keyframe selection strategy was proposed for underwater
VSLAM by Yang et al. [103] to minimize the impact of dynamic objects, while dynamic
probability propagation further refines pose optimization.

6.2.2. Distributed Systems and Edge Computing

Distributed multi-robot clustering systems provide scalability and faster processing
speed, making them well-suited for tasks like collaborative mapping and cooperative
navigation [95]. One approach by Qi et al. [104] introduces a homogeneous distributed
collaborative mapping system using bathymetric cooperative active SLAM, where a server
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vehicle optimizes positioning accuracy through online path planning based on Fisher
information matrix (FIM) metrics. A novel prediction method for inter-vehicle loop closure
factors and an augmented matrix determinant lemma reduce computational overhead,
improving both accuracy and efficiency in semi-physical simulations. Similarly, to address
trajectory drift in AUVs caused by ocean currents, a multi-AUV cooperative navigation
algorithm based on a factor graph with stretching nodes’ strategy has been developed by
Ben et al. [105]. By introducing ocean current velocities as variable nodes and transforming
the FG into a cycle-free structure, this method enhances localization accuracy and stability
while maintaining computational feasibility.

Beyond navigation, distributed systems also play a crucial role in edge computing
within underwater environments. Underwater IoT relies on AUVs to supplement the
limited computational resources of sensor cluster heads. A proposed AUV-aided offloading
framework by Chen et al. [106] integrates multiple AUVs, buoys, and low Earth orbit
satellites under an edge intelligence service platform, which manages computational
resources dynamically.

6.3. Energy Efficiency

Underwater robots often operate far from any direct power source, making energy
efficiency a key requirement for extended missions. Propulsion already consumes a sub-
stantial share of available power; onboard SLAM computations add further strain [29].
Cameras, sonar arrays, and high-power illumination also contribute to the overall energy
budget [107]. As a result, frequent battery recharges or replacements become logistically
and economically challenging, particularly in remote or deep-sea environments.

Achieving high SLAM accuracy often involves running computationally expensive
models at higher frame rates or resolutions [108]. However, each additional network
parameter or sensor input can significantly increase power consumption. Techniques like
dynamic frame rate adaptation, where the SLAM process lowers frame capture rate in
less complex areas, can reduce energy usage while maintaining adequate map quality [42].
Similarly, adopting specialized low-power hardware such as FPGAs or efficient GPU cores
can sustain more advanced DL models within the same energy budget.

Some recent research aims to integrate energy considerations directly into the SLAM
loop, dynamically balancing exploration and revisiting tasks [109]. By incorporating energy
models that account for sensor usage, processor clock speeds, and propulsion, the SLAM
system can decide when to switch sensors on/off or how aggressively to update the map.
In multi-AUV missions, coordinating battery levels and assigning tasks based on remaining
energy further extends mission duration [110].

One promising energy-aware method is dynamic sensor scheduling, which involves
selectively activating or deactivating sensors based on environmental conditions and mis-
sion requirements. For example, in underwater environments with turbidity or low light,
the SLAM system can prioritize sonar data over high-resolution visual inputs, reducing
the energy consumed by power-intensive cameras. Conversely, in lit conditions, visual
sensors can take precedence to enhance mapping accuracy. Another approach is to adjust
the sampling rate of sensors dynamically: Lowering the frame rate of cameras when the
robot is stationary or navigating well-mapped areas can significantly cut power usage
without sacrificing map quality. Existing work, such as reinforcement learning-based sen-
sor management, offers a framework for learning optimal activation policies that balance
energy efficiency and localization performance [111]. These techniques are particularly
valuable in underwater SLAM, where variable conditions demand adaptive sensor use.

Another key energy-aware strategy is adaptive DL model compression, which adjusts
the complexity of deep learning models in real time to optimize energy consumption
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while preserving accuracy. Techniques such as model pruning, removing less critical
network parameters, or quantization, reducing the precision of model weights, can be
applied dynamically based on the current energy budget or computational load. For
instance, during routine mapping in familiar areas, a lightweight, pruned model can suffice,
whereas a full model might be activated for challenging tasks like loop closure detection
in uncharted regions. A multi-model approach could also be employed, where the SLAM
system switches between a library of pre-trained models of varying complexity depending
on the task or remaining battery level. Frameworks like once-for-all [112] enable such
dynamic model selection by training a single supernet from which sub-models can be
extracted efficiently, adapting to resource constraints on the fly. These methods reduce
the computational burden of DL-based SLAM, making them better suited for energy-
constrained underwater missions.

While compression techniques like pruning or KD reduce model size, energy efficiency
can also benefit from hardware improvements and optimized scheduling policies that
dynamically turn off non-critical components. Overall, ensuring robust underwater SLAM
performance requires tackling high power consumption at both algorithmic and system
levels. As missions expand in duration and scope, energy-aware methods will be crucial to
sustaining effective mapping and navigation without frequent manual intervention.

7. Recent Advances in Deep Learning-Based SLAM

Underwater SLAM has traditionally relied on geometrical methods for accurate pose
estimation and mapping. However, underwater environments’ complex and dynamic
nature presents significant challenges to traditional approaches, including limited visi-
bility, sensor noise, and environmental distortions. DL offers a data-driven alternative,
providing robust solutions to these challenges by leveraging large datasets and powerful
computational models. This section explores the application of DL in underwater SLAM,
focusing on key areas such as feature extraction, pose estimation, loop closure detection,
and mapping. We also discuss the challenges unique to underwater environments and
how DL techniques address them. DL offers a data-driven alternative to conventional
localization and mapping methods.

Comprehensive surveys have explored the effectiveness of deep learning-based VO
on global relocalization and SLAM, synthesizing research from robotics, computer vision,
and ML to guide future directions. These surveys conclude that the capability of deep
learning models to draw from previous experiences and effectively harness new data
allows these models to self-learn and adapt to changing environments. [113,114]. This is
particularly important in underwater settings, where the scenery is continuously altered
and distorted by varying light conditions and other environmental factors in a dynamic
aquatic environment.

DL-based underwater SLAM methods, summarized in Table 8, illustrate the substantial
impact of DL on improving SLAM techniques, especially in challenging underwater environ-
ments. The table presents various methods and findings, highlighting how DL approaches
enhance feature extraction, robustness, and real-time performance in SLAM systems.

Key Trends in DL-Based Underwater SLAM: The surveyed deep learning approaches
reveal several important developments in underwater SLAM. First, architectural evolu-
tion is evident, progressing from basic CNNs to more sophisticated designs like Siamese
networks and variational autoencoders, yielding accuracy improvements of 30-40% in
feature matching and loop closure tasks. Second, we observe a clear shift from supervised
methods requiring labeled datasets to unsupervised [115] and self-supervised approaches,
addressing the scarcity of annotated underwater data. Third, while early work focused
on single modalities (visual or sonar), recent studies demonstrate improved robustness
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through multi-modal fusion, with Wang’s 2022 VAE achieving 92.31% recall in challenging
conditions. However, three persistent limitations include scalability issues with large-scale
environments, limited real-world validation, and modality-specific constraints where visual
methods struggle with turbidity and sonar approaches lack precision. The most promising
direction appears in hybrid systems combining the precision of visual SLAM with the
reliability of acoustic sensing through learned fusion mechanisms.

Table 8. Summary of selected DL-based underwater SLAM: problem, method, DL architecture,

findings, and limitations.

Reference Problem Method DL Architecture Findings Limitations
. Improved feature
Burguera et al. Unsupervised . May not scale well
(2020) [115] VSLAM neural network Autoencoder matchn.ng ar.1d pose with large datasets
estimation
Torrobaetal.  SLAM point cloud PO;Etgf;EiZEd PointNet Enhanced point cloud = May require large
(2020) [116] registration N registration accuracy datasets
estimation
ety O e e T e
(2020) [117] yp ) in VSLAM ypes o1 Keyp
system failures
Marques et al GAN-based depth Achieves trajectory Requires a dataset
d ’ VSLAM asec cep GAN error of 1.6 feet in 4 .
(2019) [118] estimation of videos
subsea test dataset
Burguera et al Outlier-resilient Reduces false loo Has not been
(25522) [119] ’ Graph VSLAM visual Siamese CNN closures P tested on AUV in
graph-SLAM real environment
Sonar
Lietal. . imaging-based Reliable data Specific to certain
2018) [120] Real-time SLAM saliency-aware CNN association environments
( y
loop closure
Wane et al Visual loop closure Variational Achieved recall rate of Has not been
(2022‘(); [ 21]' de tecl’;)ion autoencoder VAE 92.31% in underwater tested on AUV in
network dataset real environment
. Provides loop closure Has not been
Tan et al. SLAM Data-driven loop Siamese CNN method and tested in real

(2023) [122]

closure detection

bathymetric dataset

environment

7.1. Underwater Feature Extraction for SLAM

Unlike terrestrial environments, extracting meaningful features from underwater scenes
presents significant challenges for VSLAM due to low-light conditions, color distortions,
blurring, and unreliable keypoints. To address these challenges, recent research leverages
ML. One prominent approach involves utilizing supervised learning to identify high-level
structural features, enabling AUVs to effectively relocalize within a SLAM graph [123].

Traditional feature extraction methods, such as SIFT, SURF, and ORB which are widely
used in terrestrial SLAM, struggle in underwater environments. These handcrafted feature
detectors rely on gradient-based keypoints that become unreliable in turbid or noisy
conditions, often resulting in low feature matching accuracy. In contrast, DL methods learn
robust, data-driven features from large, diverse datasets. This improvement stems from
the ability to adapt to varying visibility and lighting through training, offering superior
generalization compared to the rigid, predefined rules of traditional techniques. However,
DL approaches require substantial computational resources and annotated training data,
presenting trade-offs that traditional methods avoid despite their lower performance.
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Several other studies demonstrate the effectiveness of DL in underwater feature
extraction for robot navigation, as shown in Figure 11. These methods mostly use CNNs
to learn compact representations. Maldonado-Ramirez et al. [124] employs convolutional
autoencoders to extract salient landmarks from underwater images, improving precision
and inference time for underwater SLAM. The findings show improved performance in
terms of precision and inference time. Similarly, Peng et al. [125] propose PointNet, a
multi-layer perceptron network that receives selected keypoints from a K-nearest neighbor
algorithm to extract relevant features.
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Figure 11. Typical pipeline for feature extraction in DL-based underwater SLAM. The process includes
pre-processing to remove marine snow [126], enhance light conditions [127], and reduce underwater
noise such as color distortions and blurring [128]. Keypoints are then extracted using CNN:ss, filtered,
and matched. (Adapted from Zheng et al. [129]).

Reliable feature extraction also requires addressing uncertainty and keypoint selection.
A PointNet-based approach for uncertainty estimation in point cloud registration, called
PointNetKL [116], has been proposed to address this, offering a computationally efficient
alternative to traditional Monte Carlo methods. The method utilizes a neural network to
produce the covariance matrix through the parameter estimation of Cholesky Decomposi-
tion. Additionally, a CNN-based method [117] has been developed to handle unreliable
keypoints caused by shallow water caustics and dynamic objects. This method filters
out unreliable points within a VSLAM framework, enhancing robustness. The MARESye
system [130] exemplifies how dense 3D data can be captured in visually challenging under-
water environments through active and passive imaging. Multi-modal SLAM frameworks
thus enhance overall reliability, making them invaluable for underwater exploration and
infrastructure inspections.

DL has also been utilized to apply image enhancement for robust feature extraction in
low-light, blurry, and noisy underwater images. For example, a CNN-based end-to-end net-
work [127] was developed to tackle low-light environments, incorporating a self-supervised
feature point detector and descriptor that enables VSLAM to operate in low-light conditions
without requiring paired training data. Similarly, Wang et al. [128] propose a robust DL-
based VSLAM system featuring UWNet, a powerful feature generator that extracts accurate
keypoints and utilizes knowledge distillation for training. Integrated with ORB-SLAMS3,
the system demonstrates high precision and robustness in public and self-collected datasets,
significantly improving performance in complex underwater scenarios. Generative ad-
versarial networks (GANSs) are also used for underwater image enhancement, further
improving the performance of SLAM systems in challenging underwater conditions [129].
For nullifying the effect of marine snow noise, Hodne et al. [126] develop two efficient
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classifiers that run on top of arbitrary keypoint detectors to classify marine snow and
subsequently reject it before feature extraction.

Furthermore, CNNs can extract features from fused sonar and camera images, im-
proving perception, obstacle avoidance, and environmental mapping. For instance,
UAFMFDet [71] is a dual-branch CNN for acoustic-optical fusion-based object detection,
which showed significant improvement compared to other object detection methods. More-
over, sonars can also be utilized for underwater dynamic-SLAM to handle dynamic objects,
significantly improving SLAM'’s capabilities in underwater contexts, as shown in [131]. The
utilized method leverages YOLOV3 in conjunction with a multi-beam sonar for underwater
dynamic tracking.

In summary, feature extraction for underwater SLAM is an active research area.
With advances in DL, uncertainty estimation, and keypoint selection methods, re-
searchers are developing innovative solutions to address the unique challenges of
underwater environments.

7.2. Pose Estimation for Underwater SLAM

Accurate pose estimation, the process of determining an underwater vehicle’s 3D
position and orientation, is vital for underwater SLAM. This section explores recent
advances in DL-based pose estimation methods, significantly improving underwater
SLAM performance.

Hou et al. [132] introduce the AMB-SLAM online algorithm for underwater local-
ization in featureless seabeds using acoustic and magnetic beacons. AMB-SLAM utilizes
dense neural networks to map between beacon positions and the vehicle position. An-
other approach proposed by Risholm et al. [133] leverages an EfficientNet CNN feature
extractor with bi-directional feature pyramid network for identifying Aruco markers and
subsequently obtaining the vehicle’s position.

While dense neural networks are reliable in some applications, they do not factor in
the temporal aspect of the input information. Hence, recurrent neural networks (RNN)
have proven their reliability in localization since they take into account the time series
information of the input inertial, visual, and other sensor data. Specifically, long short-term
memory (LSTM) networks have proven their superiority in underwater dead reckoning
navigation [134], while gated recurrent unit (GRU) networks have shown enhanced perfor-
mance as particle filters for underwater target state estimation [135].

Research work by Teixeira et al. [136] leverages a CNN-LSTM network for underwater
pose estimation utilizing a single frame at a time. Similarly, Sudevan et al. [137] evaluate the
performance of visual-selective visual-inertial odometry (VS-VIO), a hybrid learning-based
multimodal pose estimation framework shown in Figure 12, in underwater environments
characterized by low lighting and high turbidity. Unlike in previous work, the proposed
network feeds multiple image sequences to the CNN-LSTM network at a time. When testing
on the AQUALOC dataset, findings indicate that VS-VIO can dynamically reduce visual
modality usage while maintaining accuracy. More recently, the attention mechanism has
emerged as a powerful tool for sequence processing. Research by Li et al. [138] showed that
a CNN-attention network to process an underwater MEMS IMU sensor can significantly
reduce the overall trajectory error.

Moreover, recent research has aimed to utilize DL with DVL sensors for more accurate
pose estimates. For instance, BeamsNet [139] is a neural network of dense 1-dimensional
convolutions that combines extracted features a gyroscope, and an accelerometer with
the DVL readings. Similarly, Topini et al. [140] evaluate different network architectures,
including 1-dimensional convolutions, LSTM, dense layers, and Conv-LSTM layers for
vehicle velocity estimations in case of temporary DVL failure.
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Figure 12. Pipeline for DL-based pose estimation, including encoding visual and inertial features
through convolutions and processing the temporal data through LSTMs. (Adapted from Sude-
van et al. [137]).

These advancements highlight the growing capability of CNNs when utilized along
with recurrent networks for accurate pose estimation in underwater SLAM.

7.3. Loop Closure Detection for Underwater SLAM

Loop closure detection, which identifies revisits to previously explored locations, plays
a critical role in underwater SLAM for real-time navigation and mapping. It ensures the
accuracy of SLAM systems by correcting accumulated drift in position estimates and is
essential for creating consistent and reliable maps.

Li et al. [120] present a novel real-time pose-graph SLAM algorithm tailored for un-
derwater ship hull inspections, utilizing a forward-looking sonar to challenges in acoustic
underwater SLAM. The algorithm employs a CNN for saliency detection based on the
sensitivity of learned global features, followed by both saliency-aware loop closure pro-
posals and robust data association. Furthermore, Bonin-Font et al. [141] introduce a novel
global image descriptor named net hash-based loop closure (NetHALOC), trained using a
simple CNN.

More recently, Siamese neural networks have emerged as powerful tools for under-
water loop closure applications. As demonstrated by Burguera et al. [119], visual loop
detection (VLD) can be performed within an underwater VSLAM framework by utilizing
convolutional Siamese networks, as shown in Figure 13. This is carried out by passing
two underwater images, each to a separate branch of the Siamese network, where pairs
that do not close the loop are rejected. Similarly, Tan et al. [122] employ Siamese networks
for loop closure in bathymetric point clouds, which is particularly challenging due to
the limited presence of distinguishable landmarks on the seabed and the significant drift
inherent in dead-reckoning navigation. Moreover, PLNet [125] also utilizes shared-weight
multi-branch 3D convolutions with self-attention for matching localization.

Addressing the complexities of dynamic underwater environments, Wang et al. [121]
propose a novel loop closure detection method using a variational autoencoder network
with a dual branch on the encoder side. This unsupervised approach avoids extensive data
labeling and incorporates a semantic object segmentation module to handle fast-moving
objects in the underwater environment.
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Figure 13. Siamese CNN for loop closure. (Adapted from Burguera et al. [119]).

7.4. Mapping and 3D Reconstruction for Underwater SLAM

Accurate mapping of underwater environments is crucial for various applications,
such as navigation and exploration. This section explores recent advances in underwater
mapping using SLAM. Wang et al. [142] survey this rapidly growing field, dividing the
work into four key areas: 3D reconstruction from binocular cameras, reconstruction from
multiple images, object-focused reconstruction with relaxed calibration requirements, and
SLAM-based techniques.

For 3D maps, DL-based underwater monocular depth estimation methods have
emerged recently for accurate mapping without the need to utilize stereo cameras or
other sensors [143,144]. For instance, some methods utilize domain knowledge to utilize
image formation characteristics for synthetic underwater depth map creation [145,146].
Marques et al. [118] introduce a DL-based SLAM method for estimating 3D underwater
environments from single video frames. This self-supervised approach leverages a novel
depth map prior based on GANSs to enhance depth prediction. Beyond monocular cameras,
sonars have also proven to be a cheap alternative for 2D mapping tasks [147].

Semantic mapping has recently gained significant traction in underwater SLAM.
For instance, Li et al. [148] propose a system combining a spatiotemporal deep neural
network for semantic segmentation with a SLAM algorithm to create 3D point cloud
maps annotated with semantic labels. Similarly, Abdullah et al. [149] introduce CaveSeg,
a four-stage SwinTransformer network for semantic segmentation of underwater cave
environments, as illustrated in Figure 14. This method, when paired with visual-inertial
odometry (VIO), demonstrated accurate map reconstruction with minimal inference time.
These advancements in DL-based mapping highlight innovative methods for generating
accurate and detailed representations of underwater environments using SLAM techniques
and multi-sensor solutions.

Recent progress in deep learning emphasizes the development of adaptive models
tailored for underwater applications. Transfer learning and domain adaptation techniques
minimize the need for large, labeled underwater datasets by leveraging pre-trained CNNs
that can be fine-tuned on limited underwater imagery. This significantly enhances feature
extraction accuracy in turbid conditions. Additionally, GANs have been employed for
underwater image enhancement, reducing noise and correcting color distortions to produce
cleaner inputs for SLAM pipelines.
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Figure 14. CaveSeg network architecture for semantic mapping in underwater environments.
(Adapted from Burguera et al. [149]).

7.5. Datasets for Underwater SLAM

DL models require substantial data for training, validation, and testing. Recent
research has focused on providing comprehensive datasets covering various underwater
scenarios while also providing ground-truth poses to train and evaluate DL models. For
instance, Ferrera et al. [150] introduce a comprehensive dataset called Aqualoc to enhance
SLAM methods for underwater vehicles operating near the seabed. This dataset, recorded
in diverse environments, such as harbors and archaeological sites at depths of 270 m and
380 m, includes synchronized data from a monocular camera, an IMU, and a pressure
sensor. It is available as robot operating system (ROS) bags and raw data, providing offline
computed trajectories enabling benchmarking real-time localization methods. This dataset
promotes significant advancements in underwater vision-based localization.

Another commonly used dataset for underwater SLAM evaluation is the EuRoC
dataset [151]. Although originally captured in a terrestrial environment using a drone, the
EuRoC dataset remains relevant for underwater research due to its inclusion of challenging
conditions that sample those encountered underwater. It features sequences with variable
lighting, motion blur, and diverse noise that simulate underwater challenges such as low
visibility due to turbidity, dynamic lighting from surface reflections, and sensor noise from
water particulates. These similarities allow researchers to test the robustness of SLAM
algorithms under scenarios where direct underwater data may be limited. Furthermore,
the scarcity of large-scale, publicly available underwater datasets with ground-truth poses
enhances the EuRoC dataset’s utility as a proxy for benchmarking. While underwater-
specific datasets like Aqualoc are ideal for direct relevance, the EuRoC dataset’s established
benchmarks and challenging conditions make it a valuable and often necessary resource for
assessing the performance and generalization of SLAM methods in underwater contexts.

Moreover, addressing the issue of underwater imaging affected by uneven lighting
and scattered light, Shivaswamy et al. present a dataset of 1000 images with depth maps
from a black smoker field at a depth of 1400 m. This study compares classical Markov
random field-based segmentation and DL-based U-Net segmentation for detecting free
space and enhancing clean mapping and navigation in complex underwater terrains [152].
Wang et al. [153] introduce a new dataset created with a controllable AUV equipped with
high-precision sensors, including fiber-optic inertial sensors, DVL, and depth sensors. This
rigorously tested dataset provides valuable data for evaluating navigation algorithms based
on actual and calculated positions, focusing on the challenges of weak textures and image
degradation in underwater environments.
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8. Underwater SLAM Systems Evaluation and Comparison

Evaluating the performance of underwater SLAM systems is crucial to understanding
their effectiveness in challenging underwater environments. Underwater SLAM evaluation
typically involves two critical components: mapping evaluation and localization evaluation.

8.1. Mapping Evaluation

Mapping evaluation assesses the quality and accuracy of the maps generated by SLAM
systems. Key considerations include map consistency, ensuring that the map accurately
represents the environment without distortions or inconsistencies. Standard metrics for
mapping evaluation are the structural similarity index (SSIM), which measures the sim-
ilarity between the generated map and a ground truth map, and the intersection over
union (IoU), which evaluates the overlap between the mapped areas and the actual envi-
ronment [154].

To evaluate how accurately a SLAM system reconstructs the underwater environ-
ment, mapping metrics focus on comparing the generated map to a reference or ground
truth representation.

Structural Similarity Index: The SSIM quantifies the similarity between two images (in
this case, the generated map and the ground truth map). It considers luminance, contrast,
and structural information to produce a value in the range [—1,1], where 1 indicates
perfect similarity.

A simplified form of the SSIM between two images X and Y is given by

(2uxpy + C1)(20xy + Co)
My + 13 +C1) (0% + 03+ C)

SSIM(X,Y) = (1)

where px and py are the mean intensities of X and Y, (7)2( and (7% are their variances, oxy is
the covariance, and Cy, C; are small constants to avoid division by zero.

Intersection over Union: The IoU measures the overlap between the mapped regions
and the ground truth areas. It is defined as the ratio of the intersecting region to the union
of the predicted and ground truth sets of mapped points:

_ |ANB|

IoU(A, B) = AT

()

where A is the set of points mapped by the SLAM system, and B is the set of ground
truth points. An IoU closer to 1 indicates a better overlap between the generated and
actual maps.

These mapping metrics help determine if the SLAM-generated maps are free of distor-
tions and inconsistencies, ensuring that the environment is accurately represented.

8.2. Localization Evaluation

Localization evaluation focuses on the accuracy of the robot’s estimated position and
orientation within the environment.

8.2.1. Traditional SLAM Metrics

Standard metrics used to evaluate SLAM performance include absolute pose error
(APE) [155], which measures the difference between the estimated position and the ground
truth; relative pose error (RPE), which evaluates the error relative to the actual position [156];
root mean squared error (RMSE) [155], which provides an aggregate measure of the errors
over all N instances; and absolute trajectory error (ATE) [156]. All position vectors are
measured in meters unless otherwise specified. Traditional SLAM metrics provide quanti-
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tative insights into system performance, enabling: accuracy assessment, error propagation
analysis, and comparative evaluation.
Absolute Pose Error:

)

APE = prred — Ptrue

where

- Ppred is the predicted position vector;
- Pirue is the true position vector;
- |I| denotes the Euclidean norm.
This metric provides direct insight into the accuracy of the SLAM system’s instanta-
neous pose estimates.
Relative Pose Error:

prred — Ptrue
IPtrue |

This metric calculates the error relative to the magnitude of the actual position, pro-

RPE = (4)

viding a normalized measure of performance that is dimensionless.
Root Mean Squared Error:

1 2

N

[y

1=z

RMSE = (5)

I
—

where

- Nis the total number of samples;

pgr) g and pt(;)le are the predicted and true positions at instance i.

RMSE provides an aggregate measure of the errors over all instances, with larger
errors having a more significant impact due to the squaring operation.
Absolute Trajectory Error:

2

(6)

1 N . .
ATERMSE = | 37 X%“Tgr)ed - Tike
1=

where

- Tgr)e 4 and Tt(Qle are the predicted and actual poses (including both position and orien-

tation) at instance i.

ATE measures the difference between the estimated and ground truth trajectories over
time, providing a global sense of the SLAM system’s accuracy.

Sampling Rate: The frequency at which sensor data are collected influences the
resolution and responsiveness of the SLAM system. For example, a higher sampling
rate (e.g., 30 Hz) can capture rapid movements more effectively but may increase the
computational load.

Trajectory Length: The total distance or duration over which the SLAM system is
evaluated. Longer trajectories can help assess the accumulation of errors over time, which
is critical for understanding long-term navigation performance.

Environmental Conditions: Parameters such as water turbidity, lighting conditions,
and dynamic obstacles affect sensor measurements and, consequently, the performance
of SLAM. For example, higher turbidity levels can degrade visual sensor data, increasing
positional errors.
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Sensor Specifications: The characteristics of the sensors (e.g., camera resolution,
IMU accuracy) impact the quality of the data and the SLAM system’s ability to estimate
poses accurately. For instance, a high-resolution camera can provide more detailed visual
information, improving feature detection and matching.

8.2.2. DL-Based SLAM Metrics

In learning-based underwater SLAM systems, especially those involving DL, evalua-
tion often goes beyond traditional pose errors. While standard localization metrics (APE,
RPE, ATE, etc.) remain highly relevant, researchers have introduced or adapted additional
metrics to better assess how well a DL-based SLAM system recovers motion and structure
under challenging underwater conditions.

The odometry loss function, employed in DL-based SLAM applications, comprises two
primary terms, each scaled by specific weighting factors to prioritize critical components.
The first term is the positional loss (Lposition), €xpressed as

1 & G i) |2
»Cposition = N ;’p}(n‘)ed - pt(rzle (7)

This equation utilizes mean squared error to measure the difference between predicted
(Ppred) and accurate positional vectors (pirue) in all N instances.

Number of Instances (N): This parameter indicates the number of data points over
which the loss is computed. It depends on factors such as the sensor sampling rate and the
mission duration. For instance, with a higher sampling rate or longer mission duration, N
increases, providing a more extensive dataset for error calculation.

The second term is the angular error (Ay), calculated as

Ap = lppred — Prrue (8)
and normalized within the interval [— 7, 77| using
A = (A + ) mod 2T — 1T )

This ensures consistency in error measurement due to the periodic nature of
angular data.

Normalization of Angular Errors: Normalizing Ay within [—7t, 7] ensures that the
angular differences are measured correctly, accounting for the circular nature of the rota-
tional data. This prevents discontinuities in error measurements when the angles overlap,
such as transitioning from 359° to 0°.

The angular loss term (Langle) is defined as

1

Langle = 37 2 (Ap"))? (10)

=

l
—

1

This represents the average squared angular errors across all instances.
The total odometry 10ss (Lodometry) combines these terms:

Eodometry = wposition‘cposition + wangleﬁangle (11)

where Wposition and Wangle are weighting factors that balance the contributions of positional
and angular errors.

Weighting Factors (wposition, Wangle): These parameters determine the relative im-
portance of positional versus angular errors in the loss function. For example, if precise
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positioning is more critical than orientation in a particular application, a higher value may
be assigned to Wpoesition cOmpared to wypgle. Adjusting these weights allows for tailoring
the SLAM system to prioritize certain aspects of performance.

Beyond the basic odometry loss (positional and angular terms) described earlier,
state-of-the-art literature commonly employs segment-based evaluation metrics and scale-
drift assessments, reflecting practices from the VO and SLAM communities [157,158]. These
metrics help capture specific aspects of trajectory estimation quality that are highly relevant
when learning-based approaches are applied in complex underwater scenarios.

Segment-based Drift Metrics: Inspired by terrestrial benchmarks (e.g., KITTI),
segment-based metrics evaluate how the trajectory error accumulates over fixed distances
or segments of the trajectory. For example, translational and rotational errors can be
computed per 100 m or per fixed intervals. These evaluations produce metrics such as
average translational drift (% per 100 m) and average rotational drift (°/100 m) [159]. These
segment-based metrics highlight how well a DL-based SLAM system maintains consistency
over longer traverses, a critical aspect in feature-poor underwater environments.

Scale Drift: Scale drift refers to the gradual scaling inconsistency that accumulates in
monocular or learning-based SLAM systems. While some DL methods attempt to learn
scale from stereo or depth data, purely monocular systems might suffer from drifting scales
over time. Evaluating the percentage of scale error over extended trajectories or comparing
learned scale estimates against ground truth depths can help quantify how effectively the
DL-based SLAM maintains metric consistency [160].

Feature-based Accuracy: For some DL-based methods that learn feature extraction
end-to-end, additional metrics can include feature repeatability and matching precision.
Although more common in feature evaluation than full SLAM systems, these metrics
can indirectly inform how the learned front-end influences overall SLAM accuracy [161].
Improved feature repeatability and robustness to underwater image degradation can lead
to reduced trajectory error downstream.

DL-based SLAM metrics often combine odometry losses (positional and angular)
to assess the quality of learned pose estimation directly, segment-based drift measures
to understand long-term consistency and cumulative errors, scale drift assessments to
ensure metric correctness, especially in monocular settings, or feature-based evaluations to
examine the quality of learned visual representations.

In summary, evaluating underwater SLAM involves assessing both mapping and
localization performance. Mapping metrics, such as SSIM and IoU, measure how accurately
the SLAM-generated map reflects the true environment. Localization metrics such as
APE, RPE, RMSE, and ATE gauge how closely the estimated trajectory matches the true
trajectory. Additional factors like sensor sampling rate, environmental conditions, and
sensor capabilities influence these metrics. Accurate localization is vital for underwater
SLAM, as errors in position estimation can lead to significant deviations in the generated
map. Therefore, this section focuses on localization evaluation and comparison.

8.3. Comparison of Underwater SLAM Methods

Underwater SLAM systems have undergone significant advancements, leading to a
variety of traditional and deep learning-based approaches. These methods are evaluated
against key metrics such as trajectory error and robustness across different datasets and
environments. This section presents a comparative analysis of traditional and deep learning-
based SLAM techniques, highlighting their performance, strengths, and limitations in
underwater conditions.

While trajectory error and robustness assess accuracy, computational efficiency (FPS,
memory usage) and power consumption determine the feasibility of SLAM methods in
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underwater deployments. FPS reflects real-time performance, critical for dynamic envi-
ronments; memory usage impacts hardware selection on resource-constrained robots; and
power consumption affects mission duration due to limited battery capacity. Unfortunately,
many cited studies do not report these metrics, as indicated by "NR" (not reported) in
Tables 1 and 2. This gap highlights a need for standardized reporting in the field. Future
research should include these metrics to enable comprehensive comparisons and optimize
SLAM systems for underwater operations.

Traditional underwater SLAM methods often rely on classical filtering and optimiza-
tion techniques adapted to work with data from sensors like sonar, cameras, and IMUs.
Table 9 summarizes the performance of these methods across different datasets. However,
the reliance on handcrafted features and the inability to adapt dynamically to challenging
underwater environments limit these methods. For example, McConnell et al. (2022) [162]
and Mu et al. (2022) [163] achieved relatively high RMSE values due to the noisy nature of
acoustic and visual data, respectively, in underwater SLAM systems.

Table 9. Comparison of traditional methods in underwater SLAM.

Source Method Dataset Metric (Meters)
EuRoC RMSE = 0.13
Rahman et al. (2022) [74]  Multi-sensor fusion-based underwater SLAM cavernl RMSE = 0.1243
cavern2 RMSE = 0.1722
Zhang et al. (2022) [2] CLAHE, rr}edlan filtering (MF), and Turbid underwater images RMSE = 0.196
DCP image enhancement
Amarasinghe et al. . . Simulated Dataset and _
(2020) [164] Monocular visual SLAM algorithm Real-world images RMSE = 1.10
Multisensor fusion integrating stereo Images from water tank at
Zhang et al. (2024) [45] vision, multibeam imaging sonar, ges . . RMSE = 0.018
Shanghai Jiao Tong University
and IMU
. . . . Custom dataset recorded in pool _
Vargas et al. (2021) [165] Visual SLAM fusing acoustic sensing with and without lights RMSE = 0.14
Billings et al. (2022) [166] Fusing fe.atures from a camera UVMS Collected. images RMSE = 0.014
into the map in Costa Rica
McConnell et al Distributed robust acoustic
(2022) [162] ’ communication-efficient SLAM for Dataset at two sites in New York RMSE =1.29
imaging sonar
Roznere et al.(2021) [167] Mor}ocul.ar image depth estimation Custom recorded dataset with RSME = 0.169
using single-beam echosounder camera and echosounder
. S EuRoC RMSE =0.274
Hu et al. (2022) [79] Visual-inertial-pressure odometry Aqualoc RMSE = 0.0873
. U-vip-SLAM: underwater visual- Aqualoc RMSE =0.103
Amarasinghe etal. (2024) [168] = "% 40 pressure SLAM EuRoC RMSE = 0.088
. . Aqualoc RMSE =0.19
Leonardi et al. (2023) [169]  UVS: improved underwater VSLAM RTMVO 04 RMSE = 1.10
. Adaptive smooth variable structure . . _
Demim et al. (2022) [39] filter (SVSF-SLAM) strategy Experimental sea trials RMSE = 0.9824
Mu et al. (2022) [163] Variational Bayesian-AUFastSLAM Experimental sea trials RMSE =1.753

Deep learning-based approaches have emerged as a powerful alternative, leveraging
neural networks to enhance feature extraction, pose estimation, and mapping. Table 10
provides a detailed comparison of these methods evaluated across diverse underwater
datasets. Despite these advancements, the performance of deep learning methods varies
significantly across datasets. This variation reflects the influence of environmental fac-
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tors such as turbidity, lighting, and feature richness. Methods specifically designed for
underwater conditions, such as RU-SLAM, outperform general-purpose SLAM techniques.

The localization error for various underwater SLAM methods using the Aqualoc
dataset is shown in Figure 15. Traditional methods are highlighted in blue, while DL-
based methods are highlighted in orange. This comparison provides an evaluation of their

performance in the same dataset.

Table 10. Comparison of deep learning-based underwater SLAM methods.

Reference Method Dataset Metric
.. . CRAS Pool ATE =0.071 m
Teixeira et al. (2020) [136] SLAM with CNN and LSTM Urgeirica Mine ATE = 0111 m

Jang et al. (2021) [82]

Pose-graph SLAM with CNNs
for opti-acoustic processing

Water tank tests RMSE =0.2917 m

Sonar-based SLAM with CNN Simulated underwater

McConnel etal. (2022) [147] encoder—decoder architecture environment RMSE =095 m
SLAM with GAN-enhanced URPC ATE = 1.344m, RMSE = 1.447 m
Zheng etal. (2023) [129] underwater images OUC Fisheye ATE = 2.410 m, RMSE = 2.450 m
ULL-SLAM: SLAM with
Xin et al. (2023) [127] CNN-based underwater URPC-dark ATE =1.292m, RMSE = 1.316 m
low-light enhancement
RU-SLAM: CNN and Aqualoc APE = 0.110 m, RPE = 0.090 m
Wang et al. (2024) [128] attention for local and global
descriptors EuRoC APE =0.031 m
. Pose estimation based on 3 Sets of simulations B
Lin et al. (2021) [135] GRU (Averaged) RMSE = 0.581 m
Pose estimation with 2D CNN, _
Sudevan et al. (2023) [137] 1D CNN and LSTM Aqualoc RMSE = 0.0519
. Pose estimation with CNN Open sea trials sequences _
Lietal. (2024) [138] with attention for IMU (Averaged) RMSE =9.707 m
Loop closure (LC) with Indoor fire pool LC average precision = 0.9945

Wang et al. (2022) [121]

Yellow Sea trials LC average precision = 0.9818

variational autoencoders

Tan et al. (2023) [122]

Loop closure (LC) with a

Siamese network LC accuracy =0.61

Bathymetric point clouds

Abdullah et al. (2024) [149]

CaveSeg: semantic mapping

with Swin Transformers ToU = 48.11%

Underwater cave tests

8.3.1. Traditional Methods

Traditional SLAM methods demonstrate varying performance on the Aqualoc dataset.
Multi-sensor fusion approaches, such as U-vip-SLAM and Visual-inertial-pressure odom-
etry, achieve lower localization errors (0.103 m and 0.0873 m, respectively) compared to
vision-only methods like Improved Underwater VSLAM (0.19 m). This highlights the impor-
tance of integrating multiple sensor modalities, for example visual, inertial, and pressure
data, to improve localization accuracy in underwater environments.
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Localization Error for Underwater SLAM Methods Using Aqualoc Dataset
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Figure 15. Localization error for underwater SLAM methods using the Aqualoc dataset. Traditional
methods are shown in blue, and DL-based methods are shown in orange. Multi-sensor fusion ap-
proaches outperform vision-only methods, while DL-based methods generally achieve lower errors.

8.3.2. DL-Based Methods

DL-based methods, such as RU-SLAM and pose estimation with CNN and LSTM, gener-
ally outperform traditional methods on the Aqualoc dataset. For example, pose estimation
with CNN and LSTM achieves the lowest localization error (0.0519 m), demonstrating the ef-
fectiveness of deep learning techniques in feature extraction and pose estimation. However,
RU-SLAM shows a slightly higher error (0.110 m) compared to some traditional methods,
indicating that the performance of DL-based methods can vary depending on the specific
architecture and training approach.

8.3.3. Analysis on Why DL Outperforms
DL’s superiority stems from three key capabilities:

*  Feature Learning: DL automatically learns robust features, such as Wang 2024’s CNN-
attention hybrid, which adapts to turbidity variations, unlike handcrafted features in
traditional methods that fail in low visibility.

*  Non-linear Modeling: Recurrent architectures (LSTM/GRU) in DL methods like
Sudevan 2023 better model complex underwater dynamics.

*  Multi-modal Fusion: DL’s learned fusion, such as Jang 2021’s opti-acoustic network,
outperforms traditional sensor weighting by discovering complementary sensor rela-
tionships.

However, traditional methods remain preferable when training data are scarce, com-
putational resources are limited, or environments match the method’s assumptions, for
example, structured pipelines where geometry-based SLAM suffices.

9. Research Gaps and Opportunities

Despite significant advancements in underwater SLAM, a number of critical chal-
lenges remain that limit widespread adoption and reliability. These challenges stem from
the unique conditions in underwater environments—ranging from limited visibility and
sensor noise to bandwidth-constrained communication channels. Addressing these gaps
is vital not only to enhance the robustness and accuracy of SLAM algorithms, but also to
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enable a broader suite of applications, including long-term monitoring, resource manage-
ment, and large-scale cooperative missions. In the following subsections, we examine the
current limitations in underwater SLAM research, discuss emerging sensor and computing
technologies, and highlight how novel machine learning paradigms such as deep reinforce-
ment learning and large language models can push the boundaries of performance and
functionality in this critical domain.

9.1. Gaps in Underwater SLAM Research
9.1.1. Limitations of Existing Underwater SLAM Datasets

While datasets such as Aqualoc [150] and the black smoker field dataset [152] have pro-
vided valuable resources for training and validating SLAM algorithms, critical challenges
still remain:

* Limited Diversity: Current datasets often cover a narrow range of underwater con-
ditions and depth profiles. Factors such as turbidity, lighting variations, and diverse
seafloor terrains are not always comprehensively represented, limiting the robustness
of deep learning-based SLAM methods when deployed in new environments.

* Insufficient Annotations: Many underwater datasets lack detailed ground-truth
information, particularly for semantic segmentation or dynamic object tracking.
This hampers the development of advanced DL techniques that rely on precise,
fine-grained annotations.

*  Specialized Use Cases: Some datasets focus on specific tasks such as archaeological
surveys or sensor configurations like monocular cameras only, reducing their general
applicability. This specialization can make it difficult to benchmark SLAM algorithms
intended for multi-sensor or cooperative AUV scenarios.

To advance the field, there is a pressing need for more extensive, standardized datasets
that capture the full spectrum of underwater environments that could help train robust
SLAM models capable of generalizing to unseen conditions. Furthermore, improved
annotations such as semantic labels and precise depth maps would enable the application
of cutting-edge deep learning techniques that go beyond basic pose estimation and mapping
to semantic and dynamic scene understanding.

9.1.2. Absence of Evaluation Metrics Tailored for Underwater Environments

Standard SLAM metrics, such as ATE or RPE, are widely used in terrestrial settings
but do not always capture the unique challenges faced underwater. For instance, low
visibility, sensor drift, and fluctuating lighting conditions can lead to highly non-Gaussian
noise distributions, which are not adequately characterized by traditional metrics alone.
Developing novel evaluation protocols and error metrics capable of assessing robustness
under these distinct conditions is critical to advancing underwater SLAM. Incorporating
environment-specific factors, such as turbidity levels or salinity-induced sensor bias, into
metric design could yield more meaningful performance assessments.

9.1.3. Resource-Constrained Real-Time Computation

Underwater robots often operate with limited computational power and battery ca-
pacity, making it challenging to run resource-intensive SLAM algorithms in real-time. Deep
learning-based methods typically demand high GPU processing, while energy availability
is restricted for extended underwater missions. Consequently, approaches that excel in
laboratory conditions may fail to meet real-time or energy requirements in the field. Meth-
ods such as neural network pruning, quantization, and model compression, along with
optimized sensor scheduling, must be developed and standardized to enable practical,
long-duration deployments. Further research is required to balance accuracy with computa-



Sensors 2025, 25, 3258

40 of 52

tional feasibility, ensuring that underwater SLAM solutions can be effectively implemented
on low-power, embedded systems.

9.1.4. Cost and Power Consumption of Sensors

Underwater SLAM faces significant challenges due to the complex underwater en-
vironment, characterized by limited visibility, variable conditions, and restricted GNSS
availability. This puts high demands on exteroceptive sensors (sonars, cameras, and DVLs)
as well as on proprioceptive sensors (IMU), to enhance the navigational accuracy and
resilience of unmanned underwater vehicles. This becomes a major concern, particularly
for long-duration missions.

A study by Merveille et al. analyzes sensor fusion techniques, combining proprio-
ceptive and exteroceptive sensors to enhance UUV navigation [170]. They explore the use
of sensors, including IMUs, DVLs, cameras, sonar, and LiDAR, and further enhance their
capabilities through various filtering methods. The results are compared to computation-
ally efficient emerging technologies such as quantum sensors and Al-driven filtering. The
power consumption for such systems presents itself as a bottleneck for wider applications.
The study highlights the trade-offs between accuracy, computational and power demands,
and adaptability according to environmental changes.

Another related limitation in the use of underwater sensors for navigation and SLAM
is the high cost of sensors operating in difficult environments. Acoustic modems and
positioning systems have been designed for military and oil and gas industries, requiring
deep water deployments and high reliability, making them expensive and unsuitable for
low-cost applications. However, recent advancements in low-cost unmanned vehicles
like ROVs and AUVs for shallow water missions and the need for sensor networks to
monitor water quality and climate change effects have driven the development of low-cost,
low-power acoustic modems and positioning systems.

In a study on navigation techniques for inspection and data acquisition in UWSNSs,
Wibisono et al. discussed implementing a dynamic homing control algorithm in AUVs,
which helps enhance data acquisition by directing movement based on the importance
of information at each point. This approach not only improves observation accuracy
but also optimizes time and power usage, ensuring the collected data are of maximum
value for mission or research objectives with the least power required for sensors and
AUV navigation.

A study by Campagnaro et al. found that low-cost sensors with reduced transmission
and positioning range and precision are actually suitable for shallow water environments
where obstacles limit long-range transmissions [171]. The paper further reviews recent
developments in low-cost acoustic communication and positioning systems, analyzing
university prototypes and commercial devices, and exploring potential new applications.
The study concludes by urging developers to focus on the growing demand for low-cost
sensors, especially for swarm applications, and calls on the research community to provide
easy-to-understand and implement manuals for these sensors.

SVIn2 is a novel SLAM system designed by Rahman et al. for challenging underwater
environments, focusing on cost savings by reducing the number of necessary sensors [74].
Unlike previous systems that require DVL or expensive INS, SVIn2 uses a unique sensor
configuration where the mechanical scanning sonar maps the vertical plane parallel to
the image plane, enabling the mapping of cave structures. It integrates scanning profiling
sonar, visual, inertial, and water-pressure data in a non-linear optimization framework. The
open-source software has been validated in benchmark datasets and real-world scenarios,
showing excellent accuracy and robustness.
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9.1.5. Limited Communication for Cooperative SLAM

Despite the promise of multi-robot SLAM in large-scale or complex underwater mis-
sions, effective collaboration remains constrained by the low bandwidth and high latency
of underwater communication channels, predominantly acoustic. Transmitting raw sensor
data or high-frequency map updates across multiple AUVs is often infeasible, leading to
incomplete or inconsistent shared maps. Innovative communication strategies—such as
exchanging compressed feature representations or selectively transmitting critical map
segments—are needed to overcome these limitations. Developing robust protocols for
multi-agent coordination, fault-tolerance, and bandwidth adaptation will be essential for
enabling efficient, collaborative SLAM in real-world marine applications.

9.2. Opportunities for Future Research

Underwater SLAM is a rapidly evolving field with huge potential for innovation.
While progress has been made, several emerging applications and research directions offer
exciting opportunities to push the boundaries of what is possible. This section outlines
key areas where future research can drive advancements in underwater SLAM, addressing
both current limitations and new frontiers.

9.2.1. Advancing Deep Reinforcement Learning for Underwater SLAM

Deep reinforcement learning has shown great promise in enhancing active localization
and visual navigation in robotics. However, its application in underwater SLAM remains
challenging due to the unique conditions of underwater environments, such as light
absorption, scattering, and fluid dynamics [172]. Future research should focus on the
following aspects:

*  Realistic Simulation Environments: developing high-fidelity underwater simulation
environments that accurately model underwater physics, including light absorption,
scattering, and fluid dynamics, to train DRL models effectively;

* Sample Efficiency: improving sample efficiency through transfer learning, meta-
learning, and sim-to-real approaches to reduce the reliance on large, costly datasets;

¢  Hybrid DRL Frameworks: integrating model-based and model-free reinforcement
learning techniques to enhance data efficiency and adaptability;

e  Hierarchical DRL: leveraging hierarchical DRL approaches to decompose complex
tasks into smaller, manageable sub-tasks, improving scalability and robustness;

e Adaptability to Dynamic Conditions: ensuring DRL models can adapt to varying
underwater conditions, such as changes in turbidity, dynamic obstacles, and environ-
mental disturbances, through robust policy learning and domain adaptation methods.

9.2.2. Advancing Transformer-Based Underwater SLAM

Transformer architectures have revolutionized computer vision and robotic perception,
offering superior performance in modeling long-range dependencies compared to tradi-
tional CNN-based approaches. Their application to underwater SLAM presents significant
opportunities to address key challenges in feature association and dynamic environment
handling [173]. Future research should focus on the following aspects:

¢  Efficient Transformer Designs: developing lightweight transformer variants opti-
mized for resource-constrained underwater vehicles;

*  Multi-Modal Fusion: exploring cross-attention mechanisms to effectively combine
visual, acoustic, and inertial sensor data, improving robustness in turbid conditions
where single modalities fail [174];
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¢  Self-Supervised Learning: developing transformer-based self-supervised approaches
that can learn robust feature representations from limited labeled underwater
data [175].

9.2.3. Enhancing 3D Reconstruction and Semantic Mapping

Semantic SLAM, which combines traditional geometric mapping with semantic under-
standing, offers richer representations of the environment by identifying and categorizing
elements within the map [176,177]. Future research should focus on the following aspects:

*  Optical Distortion Compensation: developing algorithms that compensate for under-
water optical distortions, enabling more accurate 3D reconstructions from monocular
or stereo-vision systems;

¢  Underwater Semantic Segmentation: creating specialized underwater semantic seg-
mentation datasets to train robust object recognition and semantic segmentation
models tailored for underwater conditions;

*  Graph Neural Networks (GNNs): exploring GNNSs to capture spatial relationships between
objects within underwater environments, providing a richer semantic understanding;

¢ Real-Time Performance: optimizing algorithms for efficiency and leveraging special-
ized hardware accelerators to achieve real-time performance in 3D reconstruction and
semantic mapping on resource-constrained underwater vehicles.

9.2.4. Integrating Large Language Models for Underwater SLAM

LLMs have emerged as powerful tools for semantic understanding and natural lan-
guage interactions. In the broader SLAM domain, LLMs have already been employed
to enhance visual place recognition and localization. For example, LP-SLAM [178] lever-
ages LLMs to detect text in scenes and use it as landmarks for mapping and localization.
Similarly, FM-Loc [179] integrates foundation models, including LLMs, to improve place
recognition by incorporating semantic reasoning into the SLAM pipeline, enhancing ro-
bustness in complex environments.

In underwater contexts, LLMs have demonstrated significant promise. Marine-
Inst [180] employs vision-language models to achieve semantic instance understanding,
enabling underwater robots to interpret their surroundings at a semantic level, such as
identifying objects or features in the environment. ChatSim [181] integrates LLMs with
underwater simulations, providing intuitive natural language control of simulated envi-
ronments, which could be extended to real-world underwater systems.

These examples collectively illustrate how LLMs can improve underwater SLAM by
enabling semantic understanding, supporting natural language interfaces, and facilitating
data integration. Future research should focus on the following aspects:

e  Efficient Deployment Strategies: developing compact representations of LLMs
through model distillation and quantization to enable their deployment on resource-
constrained underwater SLAM systems;

*  Multimodal LLMs: advancing multimodal LLMs that integrate acoustic, visual, and
textual data for a holistic understanding of underwater environments;

* Natural Language Interfaces: exploring the use of LLMs to enable natural lan-
guage control and interaction with underwater SLAM systems, improving usability
and accessibility.

9.2.5. Addressing Dynamic Environments

Dynamic underwater environments, with moving objects such as marine life or floating
debris, pose significant challenges for SLAM systems. Future research should focus on the
following aspects:
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*  Dynamic Object Filtering: developing deep learning-based object tracking methods,
such as attention-based transformers, to detect and filter dynamic objects from SLAM
computations, preventing map corruption and maintaining accuracy [168,182];

¢  Environmental Awareness: enhancing SLAM systems with environmental awareness
capabilities to adapt to real-time changes in conditions such as water clarity and
light levels;

¢  Predictive Models: integrating predictive models of underwater environments that
can anticipate and compensate for dynamic changes, improving overall robustness.

9.2.6. Overcoming Communication Limitations in Cooperative SLAM

Collaborative SLAM systems are transforming multi-robot operations, enhancing
scalability and flexibility in underwater exploration. However, communication constraints
pose a significant challenge [183]. Systems such as Swarm-SLAM enable multiple robots
to work together, sharing mapping information to improve the overall environmental
understanding. Future research should focus on the following aspects:

*  Alternative Communication Technologies: exploring optical or electromagnetic com-
munication methods to complement traditional acoustic channels, improving band-
width and reliability;

*  Machine Learning-Based Predictive Communication: designing predictive commu-
nication models to optimize data exchange strategies and adjust bandwidth allocation
dynamically, enhancing the resilience of cooperative SLAM systems;

¢ Distributed SLAM Frameworks: developing robust distributed SLAM frameworks
that enable efficient information exchange and collaborative mapping among multiple
robots [162,184].

9.2.7. Exploring New Sensor Technologies

The development of novel sensor technologies has the potential to significantly en-
hance underwater SLAM capabilities. Future research should focus on the following aspects:

* Event Cameras: developing SLAM systems using neuromorphic event cameras that
asynchronously detect brightness changes at microsecond resolution, enabling high
dynamic range perception in low-light conditions with minimal power consump-
tion [185];

* Bio-Inspired and Quantum Sensors: investigating bio-inspired [186] or quan-
tum [187] sensors that can operate effectively underwater, offering new avenues
for SLAM enhancement;

*  Sensor Miniaturization: reducing the size and energy consumption of sensors to
make them more suitable for small, battery-powered underwater vehicles [188];

*  Hyperspectral Imaging: advancing hyperspectral imaging sensors to provide de-
tailed spectral information, enhancing feature detection and scene segmentation in
underwater SLAM;

*  Energy Harvesting: incorporating energy-harvesting technologies, such as piezoelec-
tric materials, to power onboard sensors through underwater vibrations or currents,
extending operational duration;

¢ Environmental Sensors: integrating environmental sensors that monitor parameters
such as salinity, temperature, and pH, provides valuable contextual data to improve
the accuracy and reliability of SLAM systems.

Continued research into these areas will be critical for overcoming the current limita-
tions of underwater SLAM, enhancing collaboration among autonomous systems, integrat-
ing advanced technologies that enable more efficient and effective underwater exploration
and navigation, and, so, revolutionizing several emerging applications, including under-
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water archaeology, marine biology and ecology, offshore infrastructure inspection, disaster
response and recovery, and deep-sea mining.

10. Conclusions

This survey has provided a comprehensive examination of the integration of deep
learning (DL) into simultaneous localization and mapping (SLAM) for underwater appli-
cations. As underwater navigation remains a challenge due to limited visibility, sensor
noise, and the unpredictable nature of marine environments, traditional SLAM techniques
have struggled to achieve robust and reliable performance. By leveraging DL, researchers
have made significant strides in improving feature extraction, image enhancement, and
sensor fusion, enabling more precise localization and mapping in underwater settings.
Through a critical analysis of existing methodologies, this review has highlighted key
advancements in DL-based underwater SLAM, including its role in enhancing front-end
perception, mitigating environmental distortions, and improving loop closure detection.
The discussion has also underscored the importance of integrating multi-modal sensor data,
such as optical, sonar, acoustic, and inertial measurements, to compensate for the inherent
limitations of individual sensors. Furthermore, this survey introduced a novel classification
framework for underwater SLAM based on the integration of underwater wireless sensor
networks (UWSNSs), emphasizing the transformative potential of communication-aware
SLAM systems. By leveraging distributed sensing and acoustic communication, UWSNs
facilitate collaborative mapping and real-time localization among multiple autonomous
underwater vehicles, leading to more scalable and resilient SLAM solutions. Despite these
advancements, several challenges remain that require further exploration. The develop-
ment of adaptive learning models capable of dynamically adjusting to variations in lighting,
turbidity, and marine conditions is essential for ensuring consistent performance across
different environments. Moreover, achieving real-time deployment of DL-based SLAM
on computationally constrained platforms remains an open problem, necessitating the
optimization of deep neural architectures for efficiency and energy conservation. Another
pressing challenge is the need for long-term SLAM solutions that can maintain robustness
over extended missions, addressing drift correction, large-scale mapping, and global consis-
tency. Addressing these issues will be pivotal in driving the next generation of autonomous
underwater robots capable of executing complex tasks with minimal human intervention.
By synthesizing the latest research and identifying emerging trends, this survey serves as a
valuable resource for researchers and practitioners working at the intersection of SLAM,
deep learning, and underwater robotics. The continued evolution of DL-powered SLAM
frameworks will play a crucial role in advancing underwater exploration, enabling more
reliable navigation, resource mapping, and environmental monitoring. As the field pro-
gresses, further interdisciplinary collaboration will be key to overcoming existing barriers
and unlocking new possibilities for autonomous operations in the vast and uncharted
underwater world.
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